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1 Wigner’s Theorem

The mathematical study of large random matrices began with a famous paper of Eugene
Wigner published in 1955. Wigner had earlier suggested, on partly heuristic grounds, that
the distribution of eigenvalues of a large matrix with random entries could perhaps shed
light on the problem of the distribution of energy levels in large, complex quantum me-
chanical systems. In his 1955 paper, he showed that in fact, if the above-diagonal entries
entries of a large, symmetric square matrix are independent and identically distributed
with mean 0 and variance 1 then with high probability the distribution of eigenvalues
will closely follow a certain probability distribution known as the semi-circle law.

Definition 1.1. An N × N Wigner matrix X is a real symmetric matrix whose above-
diagonal entries X (i , j ), where 1 ≤ i ≤ j ≤ N , are independent real random variables
such that

(a) the diagonal entries X (i , i ) are i.i.d. with mean 0, and
(b) the off-diagonal entries X (i , j ) are i.i.d. with mean 0 and variance 1.

The Spectral Theorem for real symmetric matrices states that for any such N × N
matrix there is a complete set λ1,λ2, · · · ,λN of real eigenvalues, with corresponding real
unit eigenvectors u1,u2, · · · ,uN forming a complete orthonormal basis of RN .

Definition 1.2. The empirical spectral distribution F M of a diagonalizable N ×N matrix
M with eigenvalues λ1,λ2, · · · ,λN is the uniform distribution on the set of eigenvalues,
that is,

F M = N−1
N∑

i=1
δλi .

Theorem 1.3. (Wigner) Let X = X (N ) be a sequence of N × N Wigner matrices, and for
each N define

M = M (N ) = X /
p

N .
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Then as N →∞ the empirical spectral distribution F M of M converges weakly to the semi-
circle law with density

p(t ) =
p

4− t 2

2π
1[−2,2](t ). (1.1)

More precisely, if {λi }1≤i≤N are the eigenvalues of M, then for any bounded, continuous
function f :R→R and any ε> 0,

lim
N→∞

P {|N−1
N∑

i=1
f (λi )−

∫
f (t )p(t )dτ| ≥ ε} = 0 (1.2)

The proof will be broken into two distinct parts: first, in sections 4–5 we will show
that the theorem is true under the additional hypotheses that the random variables Xi ,i

and Xi , j have expectation zero and finite moments of all orders; second, in section 7 we
will show that these hypotheses are extraneous.

2 Sample Covariance Matrices

The sample covariance matrix of a sample Y1,Y2, . . . ,YN of independent, identically dis-
tributed random (column) vectors is usually defined by

S = (N −1)−1
N∑

j=1
(Y j − Ȳ )(Y j − Ȳ )T . (2.1)

Here Ȳ denotes the sample mean Ȳ = N−1 ∑
j Y j , and the superscript T denotes ma-

trix transpose. In the particular case where the random vectors Yi are i.i.d. with the
p−dimensional multivariate normal distribution N (0,Σ) with positive-definite popula-
tion covariance matrixΣ, the distribution of the random matrix S is known as the Wishart
distribution W (Σ, N −1). It can be shown (exercise!) that in this case the sample covari-
ance matrix has the same distribution as

S = (N −1)−1
N−1∑
j=1

Y j Y T
j (2.2)

Theorem 2.1. (Marchenko & Pastur) Let G be a probability distribution on R with mean
0 and variance 1. Assume that Y is a p ×n random matrix whose entries are independent,
identically distributed with common distribution G, and define

S = n−1Y Y T . (2.3)

If f p,n →∞ in such a way that p/n → y ∈ (0,1) then the empirical spectral distribution
F S converges weakly to the Marchenko-Pastur distribution with density

fy (x) =
p

(b −x)(x −a)

2πx y
1[a,b](x) (2.4)
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where

a = ay = (1−p
y)2 and

b = by = (1+p
y)2.

The proof, in section 6 below, will follow the same strategy as that of Wigner’s theo-
rem.

3 Method of Moments; Szego’s Theorem

3.1 Method of Moments

The proofs of Theorems 1.3 and 2.1 will be based on the method of moments (see Ap-
pendix A). The strategy will be to show that for each integer k = 1,2, . . . , the kth moment
of the empirical spectral distribution converges (in probability) to the kth moment of the
corresponding limit law (the semi-circle law in Theorem 1.3, the Marchenko-Pastur law
in Theorem 2.1). The key to this strategy is that moments of the empirical spectral distri-
bution can be represented as matrix traces: in particular, if M is an N ×N diagonizable
matrix with empirical spectral distribution F M , then∫

λk F M (dλ) = N−1Tr M k . (3.1)

The trace Tr M k has, in turn, a combinatorial interpretation as a sum over closed paths
of length k in the augmented complete graph K +

N . (A closed path is a path in a graph that
begins and ends at the same vertex. The complete graph KN on N vertices is the graph
with vertex set [N ] = {1,2,3, . . . , N } and an edge connecting every pair of distinct vertices.
The augmented complete graph K +

N has the same vertices and edges as the complete
graph KN , and in addition a loop connecting each vertex to itself. Thus, a path in K +

N is
an arbitrary sequence of vertices i1i2 · · · im , whereas a path in KN is a sequence of vertices
in which no vertex appears twice consecutively.) Denote by P k

i the set of all length−k
closed paths

γ= i = i0, i1, i2, . . . , ik−1, ik = i

in K +
N that begin and end at vertex i , and for each such path γ define the weight

w(γ) = wM (γ) =
k−1∏
j=0

Mi j ,i j+1 . (3.2)

Then

Tr M k =
N∑

i=1

∑
γ∈P k

i

w(γ) . (3.3)
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3.2 Szego’s Theorem

To illustrate how the method of moments works in a simple case, we prove a classical
theorem of Szego regarding the empirical spectral distribution of a Toeplitz matrix. A
Toeplitz matrix is a square matrix whose entries are constant down diagonals:

T = TN =


a0 a1 a2 · · · aN−1 aN

a−1 a0 a1 · · · aN−2 aN−1

a−2 a−1 a0 · · · aN−3 aN−2

· · ·
a−N a−N+1 a−N+2 · · · a−1 a0

 . (3.4)

The Fourier series A(θ) :=∑∞
n=−∞ ane i nθ whose coefficients are the entries of T is some-

times called the symbol of the infinite Toeplitz matrix T∞. The spectral distribution is the
distribution of A(Θ), whereΘ is a random variable uniformly distributed on the interval
[−π,π].

Theorem 3.1. (Szego) Assume that only finitely many of the coefficients an are nonzero,
that is, the symbol A(θ) is a trig polynomial. Then the empirical spectral distribution FN

of the Toeplitz matrix TN converges as N →∞ to the spectral distribution, that is, for every
bounded continuous function f :C→R,

lim
N→∞

∫
f (t )FN (d t ) = 1

2π

∫ π

−π
f (A(θ))dθ. (3.5)

Proof. The kth moment of the empirical spectral distribution FN is N−1×the trace of
T k

N , by (3.1), and by (3.3), the trace Tr T k
N is the sum of the T−weights of all length-k

closed paths. By hypothesis, there exists M <∞ such that an = 0 if |n| > M . Thus, only
closed paths in which the steps are of size ≤ M in magnitude will have nonzero weights.
Moreover, for any indices i , j between kM + 1 and N − kM − 1 there is a one-to-one
correspondence beween length−k paths beginning and ending at i and length−k paths
beginning and ending at j , and because TN is Toeplitz, this correspondence preserves
path-weight, that is, if γ∼ γ′ then w(γ) = w(γ′). Consequently,∑

γ∈P k
i

w(γ) = ∑
γ′∈P k

j

w(γ′) = (a ∗a ∗·· ·∗a)0 = (2π)−1
∫ π

−π
A(θ)k dθ

where ∗ denotes sequence convolution. Thus, as N →∞,

N−1Tr T k
N −→ (2π)−1

∫ π

−π
A(θ)k dθ.

This proves that the moments of the empirical spectral distribution converge to the
corresponding moments of the spectral distribution. Since the spectral distribution is
uniquely determined by its moments (this follows because it has bounded support), the
result follows.
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Exercise 3.2. Show that Szego’s Theorem is true under the weaker hypothesis that
∑∞

−∞ |an | <
∞.

Exercise 3.3. Let MN be the random symmetric tridiagonal matrix

MN =



X1,1 X1,2 0 0 · · · 0 0
X1,2 X2,2 X2,3 0 · · · 0 0

0 X2,3 X3,3 X3,4 · · · 0 0
· · ·

0 0 0 0 · · · XN−1,N−1 XN−1,N

0 0 0 0 · · · XN−1,N XN ,N


whose entries Xi , j , where j = i or j = i + 1, are independent, identically distributed
N (0,1). (Note: Since MN is symmetric, the eigenvalues are real.)

(A) ∗ Prove that as N →∞ the empirical spectral distribution of MN converges to a
nontrivial, nonrandom limit. HINT: WLLN for m−dependent random variables.

(B) ∗∗ Identify the limit distribution.

4 Semi-Circle Law and the Catalan Numbers

Definition 4.1. The nth Catalan number is defined by

κn =
(

2n

n

)/
(n +1). (4.1)

Exercise 4.2. (A) Show that κn is the number of Dyck words of length 2n. A Dyck word is
a sequence x1x2 · · ·x2n consisting of n +1’s and n −1’s such that no initial segment of the
string has more −1’s than +1’s, that is, such that for every 1 ≤ m ≤ 2n,

m∑
j=1

x j ≥ 0

HINT: Reflection Principle. (B) Show that κn is the number of expressions containing n
pairs of parentheses which are correctly matched: For instance, if n = 3,

((())) ()(()) ()()() (())() (()())

(C) Show that κn is the number of rooted ordered binary trees with n +1 leaves. (See
your local combinatoricist for the definition.) HINT: Show that there is a bijection with
the set of Dyck words, and use the result of part (A). (D) Do problem 6.19 in R. Stanley,
Enumerative Combinatorics, vol. 2.
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Proposition 4.3. Let p(t ) be the semi-circle density (1.1). Then all odd moments of p are
zero, and the even moments are the Catalan numbers:

κn =
∫ 2

−2
t 2n p(t )d t ∀ n = 0,1,2, . . . (4.2)

Proof. Calculus exercise. Hint: Use the change of variable t = 2cosθ to rewrite the in-
tegral as an integral involving powers of sinθ and cosθ. Then try either integration by
parts, or rewrite the sines and cosines in terms of e±iθ and use the orthogonality of the
complex exponentials.

Remark 4.4. If the semi-circle density (1.1) seems vaguely familiar, it is because it is
closely related to the probability generating function of the first return time to the ori-
gin by a simple random walk on the integers. Let Sn be a simple random walk started at 0;
thus, the increments Xn = Sn−Sn−1 are independent, identically distributed Rademacher-
1
2 (that is, ±1 with probabilities 1

2 , 1
2 ). Define

T = min{n ≥ 1 : Sn = 0} (4.3)

Then the probability generating function of T is (see 312 notes)

E zT = 2−
√

4− z2 =
∞∑

n=1
z2n

(
2n

n

)/
{(n +1)22n}. (4.4)

The last power series expansion follows either from Newton’s binomial formula or a direct
combinatorial argument (exercise). Note the appearance of the Catalan numbers.

5 Proof of Wigner’s Theorem

In this section we will prove Theorem 1.3 under the following additional assumption on
the distributions of the entries Xi , j . Later we will show how truncation methods can be
used to remove this assumption.

Assumption 5.1. The random variables (Xi , j ) j≥i are independent. The random variables
(Xi , j ) j>i have distribution F with mean zero, variance 1, and all moments finite, and the
(real) random variables Xi ,i have distribution G with mean zero and all moments finite.

5.1 Combinatorial Preliminaries

The proof will be based on the method of moments. We will show that for each k = 1,2, . . . ,
the random variable N−1Tr M k converges in probability to the kth moment of the semi-
circle law. To accomplish this, it suffices, by Chebyshev’s inequality, to show that the
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mean N−1ETr M k converges to the kth moment of the semi-circle law, and that the
variance N−2Var(Tr M k ) converges to 0. By equation (3.3), the expected trace is a sum
over closed paths of length k in the augmented complete graph K +

N . We will begin by
showing that the contribution to the expectation of an closed path γ depends only on its
type.

Definition 5.2. The type of a path γ = i0i1i2 · · · ik of length k is the sequence τ(γ) =
m0m1m2 · · ·mk , where for each j the vertex i j is the m j th distinct vertex encountered in
the sequence i0, i1, . . . , ik . (Observe that for a closed path γ, that is, a path with the same
initial and final vertices, that last entry mk of τ(γ) is 1.)

Example 5.3. The type of the path uvquuquvu is 1,2,3,1,1,3,1,2,1.

Lemma 5.4. If γ and γ′ are two closed paths in the augmented complete graph K +
N with

the same type, then there is a permutation σ of the the vertex set [N ] that maps γ to γ′.

Proof. Easy exercise.

Corollary 5.5. If γ and γ′ are two closed paths in K +
N with the same type, then

EwM (γ) = EwM (γ′) (5.1)

Proof. This follows directly from the preceding lemma, because for any permutationσ of
the index set [N ], the distribution of the random matrix (Mσ(i ),σ( j )) is the same as that of
(Mi , j ). This is obvious, because the off-diagonal entries of M are i.i.d., as are the diagonal
entries. Note: In fact, this holds more generally for any random matrix ensemble that
is invariant under either unitary or orthogonal transformations, because a permutation
matrix is both orthogonal and unitary.

Corollary 5.6. Let Tk be the set of all path types of length−k closed paths. For each type
τ, let H(τ, N ) be the number of closed paths in K +

N with type τ, and let EwM (τ) be the
common value of the expectations (5.1). Then

ETr M k = ∑
τ∈Tk

H(τ, N )EwM (τ). (5.2)

Moreover, if G(τ) is the number of distinct integers in the sequence τ (that is, the number
of distinct vertices in a representative path), then

H(τ, N ) = N (N −1)(N −2) · · · (N −G(τ)+1) := (N )G(τ). (5.3)

Proof. Another easy exercise.

Lemma 5.7. Let γ be a closed path in K +
N . If EwM (γ) 6= 0 then every edge or loop e crossed

by γ at least once must be crossed at least twice.

7



Proof. If the edge i j is crossed by γ just once (say in the forward direction), then the
factor Xi , j occurs to the first power in the weight wM (γ) (see (3.2)), and the factor X j ,i =
X ∗

i , j does not ocur at all. Since the random variables Xi , j above or on the main diagonal
are independent, all with mean zero, it follows that the expectation EwM (γ) = 0.

For each closed path γ in the augmented complete graph K +
N , define Γ(γ) to be the

subgraph of the complete graph KN consisting of the vertices visited and edges crossed
(in either direction) by γ. (Note: Loops are not included.) ClearlyΓ(γ) is itself a connected
graph, because the path γ visits every vertex and edge. By Lemma 5.4, if two closed paths
γ,γ′ are of the same type, then Γ(γ) and Γ(γ′) are isomorphic; moreover, if γ crosses every
edge in Γ(γ) at least twice, then γ′ crosses every edge in Γ(γ′) at least twice.

Lemma 5.8. If Γ is a connected graph , then

#(vertices) ≤ #(edges)+1, (5.4)

and equality holds if and only if Γ is a tree (that is, a graph with no nontrivial cycles).

Remark 5.9. Together with the equation (5.3), this will be used to show that the dominant
contribution to the sum (5.2) comes from path-types for which representative paths γ are
such that Γ(γ) is a tree and γ crosses every edge of Γ(γ) exactly twice. The key observation
is that if γ is a closed path of length k (that is, it makes k steps) that crosses every edge
in Γ(γ) at least twice, then Γ(γ) has no more than [k/2] edges; moreover, if k is even then
the graph Γ(γ) will have fewer than k/2 distinct edges unless the path γ croses every edge
exactly twice.

Proof of Lemma 5.8. Consider first the case where Γ is a tree. I will show, by induction
on the number of vertices in the tree Γ, that

#(vertices) = #(edges)+1.

First note that, since Γ has no nontrivial cycles, the removal of any edge must disconnect
Γ (why?). Also, since Γ contains only finitely many edges, it must have an end, that is, a
vertex v that is incident to only one edge e (why?) Now remove both v and e from the
graph; the resulting graph Γ′ is still a tree (why?) but has one fewer vertex than Γ. Hence,
the induction hypothesis implies that the desired formula holds for Γ′, and it therefore
follows that it must also hold for Γ.

Now consider the case where the graph Γ has at least one cycle. Then removal of one
edge on this cycle will leave the graph connected, with the same number of vertices but
one fewer edge. Continue to remove edges from cycles, one at a time, until there are
no more cycles. Then the resulting graph will be a tree, with the same vertex set as the
original graph Γ but with strictly fewer edges.
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Remark 5.10. Here is another argument for inequality (5.4). This argument has the
virtue that it extends easily to pairs of paths γ,γ′ – see the proof of Proposition 5.13
below. Let γ = i0i1 . . . i2k be a path of length 2k. Define a corresponding 0-1 sequence
ν(γ) = n0n1 · · ·n2k as follows: If γ visits vertex i j for the first time at step j , set n j = 1,
otherwise set n j = 0. Now consider the j th step: If it is across an edge that was previously
crossed (in either direction), then vertex i j must have been visited earlier, and so n j = 0.
Hence, if the path γ crosses every edge at least twice, then

2k∑
j=1

n j ≤ k,

because there are 2k edge crossings. Thus, the total number
∑2k

j=0 n j of vertices visited
by γ cannot be larger than k +1.

Lemma 5.11. Let Gk be the set of closed path types τ ∈T2k with the following properties:

(i) For some (and hence every) closed path γ of type τ(γ) = τ, the graph Γ(γ) is a tree.
(ii) The path γ contains no loops, and crosses every edge in Γ(γ) exactly twice, once in

each direction.

Then Gk has cardinality
#Gk = κk , (5.5)

where κk is the kth Catalan number.

Note: If Γ(γ) is a tree and if γ crosses every edge in Γ(γ) exactly twice, then it must
necessarily cross every edge once in each direction, because otherwise the graph Γ(γ)
would contain a nontrivial cycle.

Proof. Letγ= i0i1 · · · i2k be an element of Gk . By Lemma 5.8, the pathγ visits k+1 distinct
vertices, including the initial vertex i0. Define a ±1 sequence s(γ) = s1s2 · · · s2k as follows:

(+) s j =+1 if γ visits i j−1 for the first time on the ( j −1)th step;
(-) s j =−1 otherwise.

This is a Dyck word, because for every m ≤ 2k the sum
∑m

j=1 s j counts the number of
vertices visited exactly once by γ in the first m steps (why?). Conversely, for every Dyck
word s of length 2k, there is a closed path γ in the graph KN such that s(γ) = s provided
N ≥ k +1 (why?). Hence, the result follows from Exercise 4.2.

5.2 Convergence of Means

Proposition 5.12. If Assumption 5.1 holds, then for every integer k ≥ 0,

lim
N→∞

N−1ETr M 2k = κk and (5.6)

lim
N→∞

N−1ETr M 2k+1 = 0 (5.7)
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where κk is the kth Catalan number.

Proof. The starting point is formula (5.2). According to this formula, the expectation is a
sum over closed path types of the appropriate length. By Lemma 5.7, the only path types
τ that contribute to this sum are those for which representative closed paths γ cross
every edge twice. I will use Lemma 5.8 to determine the types that make the dominant
contribution to the sum (5.2).

Case 1: Odd Moments. Since only paths γ that make 2k +1 steps and cross every edge
at least twice contribute to the expectation ETr M 2k+1, such paths have graphs Γ(γ) with
no more than k edges. Consequently, by Lemma 5.8, Γ(γ) has no more than k+1 vertices,
and so equation (5.3) implies that

H(τ(γ), N ) ≤ N k+1.

Now consider the expectation EwM (γ). The factors in the product

wM (γ) =
2k∏
j=0

Mi j ,i j+1 = N−(2k+1)/2
2k∏
j=0

Xi j ,i j+1

can be grouped by edge (or loop, if there are factors Xi ,i from the diagonal). By Assump-
tion 5.1, the distributions of the diagonal and off-diagonal entries have finite moments
of all orders, so Hölder’s inequality implies that

|EwM (τ(γ))| = |EwM (γ)| ≤ N−(2k+1)/2 max(E |X1,2|2k+1,E |X1,1|2k+1).

Therefore,

N−1|ETr M 2k+1| ≤ N−1
∑
τ

H(τ, N )|EwM (τ)|

≤ N−1N k+1N−(2k+1)/2 max(E |X1,2|2k ,E |X1,1|2k )

=O(N−1/2)

Note: The upper bound can be sharpened by a factor of N−1, because with a bit more
work (Exercise!) it can be shown that if γ is a closed path with an odd number 2k +1 of
steps that crosses every edge at least twice, then Γ(γ) must contain a cycle, and so cannot
have more than k vertices.

Case 2: Even Moments. In this case, I will use use Lemma 5.8 to show that for large N ,
the dominant contribution comes from types τ ∈Gk First, observe that if τ ∈Gk , then for
any closed path γ of type τ(γ) = τ the product contains k distinct factors |Xl ,m |2/N , all
with m > l . This is because the path γ crosses every edge in Γ(γ) exactly twice, once in
each direction, and contains no loops. (Recall that the random matrix X is Hermitian, so
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Xl ,m = X ∗
m,l .) Since the k factors are distinct, they are independent, and since they are

also identically distributed with variance 1 it follows that

EwM (τ) = N−k (E |X1,2|2)k = N−k .

Now consider an arbitrary path type τ ∈T2k , and let γ be a closed path of type τ. As
in Case 1, Assumption 5.1 and Hölder’s inequality imply that

|EwM (γ)| ≤ N−k max(E |X1,2|2k ,E |X1,1|2k ).

Observe that this is of the same order of magnitude as the expectation N−1 for types
τ ∈Gk .

Finally, consider the factors H(τ, N ) = (N )G(τ) in the formula (5.2). By Lemma 5.8,
G(τ) ≤ k + 1 for all types, and the inequality is strict except for types τ ∈ Gk . Hence,
the dominant contribution to the sum (5.2) comes from types τ ∈ Gk . Therefore, by
Lemma 5.11,

ETr M 2k = ∑
τ∈T2k

H(τ, N )EwM (τ) ∼ ∑
τ∈Gk

H(τ, N )N−k ∼ Nκk .

5.3 Bound on the Variance

By Lemma 5.7 and Proposition 5.12, the expected moments of the empirical spectral
distribution F M converge to the corresponding moments of the semi-circle law. Thus, to
complete the proof of Wigner’s theorem, it suffices to show that the variances of these
moments converge to zero as N →∞.

Proposition 5.13. If Assumption 5.1 holds, then there exist constants Ck <∞ such that

Var(N−1Tr M k ) ≤Ck /N . (5.8)

Proof. By the elementary formula Var(Y ) = E (Y 2)−(EY )2, bounding the variance can be
accomplished by comparing the first and second moments of Tr M k . By equation (3.1),

E(Tr M k )2 =∑
γ

∑
γ′

EwM (γ)wM (γ′) and

(ETr M k )2 =∑
γ

∑
γ′

EwM (γ)EwM (γ′),

where the sums are over the set of all pairs γ,γ′ of closed paths of length k in the aug-
mented complete graph K +

N . Now for any pair γ,γ′ with no vertices (and hence no edges)
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in common, the products wM (γ) and wM (γ′) have no factors in common, and conse-
quently

EwM (γ)wM (γ′) = EwM (γ)EwM (γ′).

Consequently, the difference E (Tr M k )2−(ETr M k )2 is entirely due to pairs γ,γ′ that have
at least one vertex in common. Furthermore, for the same reason as in Lemma 5.7,
EwM (γ)wM (γ′) = 0 unless every edge in Γ(γ)∪Γ(γ′) is crossed at least twice (either twice
by γ, twice by γ, or once by each).

Consider a pair of closed paths γ,γ′ such that γ and γ′ share at least one vertex, and
such that every edge crossed at least once by either γ or γ′ is crossed at least twice. Since
γ and γ′ share at least one vertex, the graph1 Γ(γ)∪Γ(γ′) is connected, and since each
edge in this graph is crossed at least twice, the total number of edges in Γ(γ)∪Γ(γ′) is no
larger than k. Consequently, by Lemma 5.8, the number of vertices in Γ(γ)∪Γ(γ′) cannot
exceed k +1. Therefore, the total number of such pairs γ,γ′ is no larger than N k+1, and
so their aggregate contribution to the expectation E(Tr M k )2 is bounded in magnitude
by

N k+1 max
γ,γ′

|EwM (γ)wM (γ′)| ≤Ck N

where Ck = max j≤k max(E |X11| j ,E |X1,2| j ).

6 Proof of the Marchenko-Pastur Theorem

6.1 Trace Formula for Covariance Matrices

The basic strategy will be the same as for Wigner’s theorem, but the combinatorics is
somewhat different. The starting point is once again a combinatorial formula for Tr Sk ,
where S is defined by equation (2.3):

S = n−1Y Y T . (6.1)

Recall that Y is a p ×n random matrix whose entries are i.i.d. with mean 0 and variance
1. Thus, the entries Yi , j of Y have row indices i ∈ [p] and column indices j ∈ [n]. Define
B = B(p,n) to be the complete bipartite graph with partitioned vertex set [p]∪ [n]: that
is, the graph whose edges join arbitrary pairs i ∈ [p] and j ∈ [n]. It is helpful to think of
the vertices as being arranged on two levels, an upper level [p] and a lower level [n]; with
this convention, paths in the graph make alternating up and down steps. Denote by Q

the set of all closed paths

γ= i0, j1, i1, j2, · · · ik−1, jk , ik = i0 (6.2)

1Recall that Γ(γ) is the subgraph of the complete graph KN consisting of all vertices visited and all edges
crossed (in either direction) by γ.
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in B(p,n) of length 2k +1 beginning and ending at a vertex i ∈ [p], and for each such
path define the weight (or Y −weight) of γ by

w(γ) = wY (γ) =
k∏

m=1
Yim−1, jm Y jm ,im . (6.3)

Then
Tr Sk = ∑

γ∈Q

wY (γ) . (6.4)

6.2 Enumeration of Paths

The proof of the Marchenko-Pastur Theorem will be accomplished by showing that for
each k ≥ 0 (a) the expectation ETr Sk converges to the kth moment of the Marchenko-
Pastur distribution (2.4), and (b) the variance VarTr Sk converges to 0. Given (a), the
proof of (b) is nearly the same as in the proof of Wigner’s theorem, so I will omit it. The
main item, then, is the analysis of the expectation ETr Sk as n, p →∞ with p/n → y .

Lemma 6.1. Let γ ∈Q be a closed path in B(p,n) that begins and ends at a vertex i ∈ [p].
If EwY (γ) 6= 0 then every edge crossed by γ must be crossed at least twice.

Proof. See Lemma 5.7.

For any path γ in B(n, p) with initial vertex in [p], the type τ(γ) and the associated
subgraph Γ(γ) of B(n, p) are defined as earlier. Since paths γ jump back and forth be-
tween the disjoint vertex sets [p] and [n], even entries of τ(γ) count vertices in [p] and
odd entries count vertices in [n].( Note: Indices start at 0.) Thus, it will be convenient to
extract the even- and odd- entry subsequences τE and τO of τ, and to write τ= (τE ,τO)
(this is an abuse of notation – actually τ is the sequence obtained by shuffling τE and τO).
Lemma 5.4 translates to the bipartite setting as follows:

Lemma 6.2. If γ and γ′ are two closed paths in the complete bipartite graph B(n, p) with
the same type τ(γ) = τ(γ′), then there are permutations σ,σ′ of the vertex sets [n] and [p]
that jointly map γ to γ′. Consequently, if γ,γ′ have the same type then

EwM (γ) = EwM (γ′). (6.5)

Corollary 6.3. Let T B
k be the set of all closed path types of length 2k +1. For each τ ∈T B

K
let H B (τ,n, p) be the number of closed paths in B(n, p) of type τ, and let EwS(τ) be the
common value of the expectations (6.5). Then

ETr Sk = ∑
τ∈T B

k

H B (τ,n, p)EwS(τ). (6.6)
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Moreover, if GO(τ) and GE (τ) are the number of distinct entries in the even/odd sequences
τO and τE , respectively, then

H(τ,n, p) = (p)GE (τ)(n)GO (τ). (6.7)

Recall that (n)m = n(n − 1) · · · (n −m + 1). The proof of Corollary 6.3 is trivial, but
the difference in formulas (5.3) and (6.7) is what ultimately accounts for the difference
between the limit distributions in the Wigner and Marchenko-Pastur theorems. Note
that GO(τ) and GE (τ) are the numbers of distinct vertices in the lower and upper levels
[n] and [p], respectively, visited by a path γ of type τ.

Lemma 6.4. Let γ be a closed path in the bipartite graph B(n, p) of length 2k +1 (thus, γ
makes 2k steps, each across an edge). If γ crosses each edge of Γ(γ) at least twice, then the
number of distinct vertices in Γ(γ) is no larger than k +1:

GO(τ(γ))+GE (τ(γ)) ≤ k +1, (6.8)

and equality holds if and only if G(γ) is a tree and γ crosses every edge of Γ(γ) exactly twice,
once in each direction.

This can be proved by the same argument as in Lemma 5.8, and the result serves the
same purpose in the proof of the theorem – it implies that the main contribution to the
sum (6.6) comes from path types τ for which the corresponding graph Γ is a tree. To see
this, keep in mind that p and n are of the same order of magnitude, so (6.7) will be of
maximum order of magnitude when GO(τ(γ))+GE (τ(γ)) is maximal. Enumeration of
these types is the main combinatorial task:

Lemma 6.5. Let G B
k (r ) be the set of closed path types τ ∈T B

2k with the following properties:

(i) For some (and hence every) closed path γ of type τ(γ) = τ, the graph Γ(γ) is a tree.
(ii) The path γ crosses every edge in Γ(γ) exactly twice, once in each direction.

(iii) GE (τ) = r +1 and GO(τ) = k − r .

(Note that GE (τ) ≥ 1 for any allowable type, because all paths start and end on the upper
level [p].) Then G B

k (r ) has cardinality

#G B
k (r ) =

(
k −1

r

)(
k

r

)/
(r +1). (6.9)

Proof. First, I will show that G B
k (r ) can be put into one-to-one correspondence with the

set A +
k (r,r ) of sequences

s = d1u1d2u2 · · ·dk uk

satisfying the following properties:

(A) Each di ∈ {0,−1}, and each ui ∈ {0,1}.
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(r,r)
∑k

i=1 u1 = r and
∑k

i=1 di =−r .
(+)

∑m
i=1(ui +di )+dm+1 ≥ 0 for all m < k.

Then I will show that the set A +
k (r,r ) has cardinality (6.9).

Step 1: Bijection G B
k (r ) ↔ A +

k (r,r ). Let γ be a path satisfying hypotheses (i)–(iii) of
the lemma. This path crossses k edges, once in each direction, and alternates between
the vertex sets [p] and [n]. After an even number 2i of edge crossings, γ is at a vertex
in [p]; if this vertex is new – that is, if it is being visited for the first time – then set
ui =+1, and otherwise set ui = 0. After an odd number 2i −1 of edge crossings, γ is at
a vertex in [n], having just exited a vertex v ∈ [p]. If this edge crossing is the last exit
from vertex v , then set di = −1; otherwise, set di = 0. It is clear that this sequence s
has properties (1), (2), (3) above, and it is also clear that if γ and γ′ have the same type,
then the corresponding sequences s and s′ are the same. Thus, we have constructed a
mapping ϕ : G B

k (r ) →A +
k (r,r ).

It remains to prove that ϕ is a bijection. This we will accomplish by exhibiting an
inverse mappingψ : A +

k (r,r ) →G B
k (r ). Several facts about the algorithm used to produce

ϕ are relevant: If γ is a path through vertices i0, j1, i1, j2, . . . as in (6.2), with im ∈ [p] amd
jm ∈ [n], then

(a) Vertex jm is new unless dm =−1.
(b) Vertex jm is exited for the last time if and only if um = 0.
(c) If vertex im is not new, that is, if um = 0, then im is the last vertex in [p] visited by γ

that has not been exited for the last time, that is, by an edge marked d =−1.
(d) If vertex jm is not new, then jm is the last vertex in [n] visited by γ that has not

been exited for the last time.

These all follow from the hypotheses that Γ(γ) is a tree, and that γ crosses every edge
of Γ(γ) exactly twice, once in each direction. Consider, for instance, assertion (a): If
dm =−1, then vertex im−1 is being exited for the last time, across the edge im−1 jm ; this
edge must have been crossed once earlier, so jm is not new. Similarly, if dm = 0, then
vertex im−1 will be revisited at some later time; if jm were not new, then either γ would
have a nontrivial cycle or edge im−1 jm would be crossed ≥ 3 times.

Exercise 6.6. Give detailed proofs of (a)–(d).

Assertions (a)–(d) provide an algorithm for constructing the type sequences τE ,τO

from the sequence s. By (a) and the definition of the sequence s, the markers um = 1 and
dl = 0 indicate which entries of τE and τO correspond to new vertices; each such entry
must be the max+1 of the previous entries. By (b) and the definition of s, the markers
um = 0 and dl = −1 indicate which entries of τE and τO correspond to vertices being
exited for the last time. Consequently, (c) and (d) allow one to deduce which previously
visited vertex is being visited when the current vertex is not new.

Step 2: Enumeration of A +
k (r,r ). This will make use of the Reflection Principle, in much
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the same way as in the classical ballot problem. Note first that sequences s ∈ A +
k (r,r )

must have d1 = 0 and uk = 0, because of the constraints (+) and (r,r), so we are really
enumerating the set of sequences

s = 0(u1d2)(u2d3) · · · (uk−1dk )0 (6.10)

that satisfy the properties (A), (r,r), and (+).

The first step is to enumerate the sequences of the form (6.10) that satisfy property
(A) and count constraints (r, s) such as the constraint (r,r ) above. Thus, for each integer
k ≥ 1 and integers r, s ≥ 0, let Ak−1(r, s) be the set of sequences s of the form (6.10) such
that:

(A) Each di ∈ {0,−1}, and each ui ∈ {0,1}.

(r,s)
∑k

i=1 u1 = r and
∑k

i=1 di =−s.

This set is easily enumerated: There are k − 1 “down” slots, which must be filled with
k − s −1 0’s and s (-1)’s, and there are k −1 “up” slots, which must be filled with k − r −1
0’s and r (+1)’s, so

#(Ak−1(r, s)) =
(

k −1

r

)(
k −1

s

)
. (6.11)

The proof of (6.9) will be completed by showing that

#A +
k (r,r ) = #Ak−1(r,r )−#Ak−1(r −1,r +1). (6.12)

To see this, observe that every sequence in A +
k (r,r ) is an element of Ak−1(r,r ), by (6.10).

Hence, it is enough to show that the set of sequences in Ak−1(r,r ) that do not satisfy the
nonnegativity constraint (+) is in one-to-one correspondence with Ak−1(r −1,r +1). If a
sequence s ∈Ak (r,r ) does not satisfy (+), then there must be a first time τ< k such that

τ−1∑
i=1

(ui +di+1) =−1; (6.13)

moreover, the remaining terms must sum to +1, because the overall sum is 0:

k−1∑
i=τ

(ui +di+1) =+1. (6.14)

Reflect this part of the path by reversing all pairs u j d j+1 and then negating: thus, for
each u j d j+1 with j ≥ τ,

(+,0) 7→ (0,−)

(+,−) 7→ (+,−)

(0,−) 7→ (+,0)

(0,0) 7→ (0,0).
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This mapping sends sequences s in Ak−1(r,r ) that do not satisfy (+) to sequences s′ in
Ak−1(r − 1),r + 1); it is invertible because for any sequence s′ ∈ Ak−1(r − 1,r + 1), the
reflection rule can be applied in reverse – after the first time τ such that the sum (6.13)
reaches the level −1, flip the remaining pairs according to the same rules as above to
recover a sequence s ∈Ak−1(r −1,r −1).

6.3 Moments of the Marchenko-Pastur Law

Proposition 6.7. The kth moment of the Marchenko-Pastur density fy (x) defined by (2.4)
is ∫

xk fy (x)d x =
k∑

r=0
y r

(
k −1

r

)(
k

r

)/
(r +1). (6.15)

Proof. Another calculus exercise, this one somewhat harder than the last.

6.4 Convergence of Means

Proposition 6.8. Let X be a random p ×n matrix whose entries Xi , j are independent,
identically distributed random variables with distribution G with mean zero, variance 1,
and all moments finite. Define S = X X T /n. As n, p →∞ with p/n → y ∈ (0,∞),

E p−1Tr Sk −→
k∑

r=0
y r

(
k −1

r

)(
k

r

)/
(r +1).

Proof. This is very similar to the proof of the corresponding result in the Wigner matrix
setting. Lemma 6.4, together with a simple argument based on the Hölder inequality,
implies that the dominant contribution to the sum (6.6) comes from types τ such that
paths γ of type τ(γ) = τ have graphs Γ(γ) that are trees, and cross every edge exactly
twice, once in each direction. For these types τ, the products wS(τ) contain k factors
|Xi , j |2/nk ; these are independent, with mean 1, so the expectation EwS(γ) = 1/nk for
each type τ ∈G B

k (r ). Consequently,

ETr Sk ∼
k−1∑
r=0

∑
τ∈G B

k (r )

H B (τ,n, p)/nk =
k−1∑
r=0

∑
τ∈G B

k (r )

(p)r+1(n)k−r /nk

The result now follows directly from Lemma 6.5.
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7 Truncation Techniques

7.1 Perturbation Inequalities

In section 5 we proved Wigner’s theorem under the assumption that the entries Xi , j have
expectation zero and all moments finite. In this section, we show how these hypotheses
can be removed. The main tools are the following inequalities on the difference between
the empirical spectral distributions of two Hermitian matrices A,B . In the first, L(F,G)
denotes the Lévy distance between the probability distributions F,G (see Background
notes).

Proposition 7.1. (Perturbation Inequality) Let A and B be Hermitian operators on V =Cn

relative to the standard inner product, and let F A and F B be their empirical spectral
distributions. Then

L(F A,F B ) ≤ n−1rank(A−B). (7.1)

Proposition 7.2. (Hoffman-Wielandt Inequality) Let A and B be n×n Hermitian matrices
with eigenvalues λi and µi , respectively, listed in decreasing order. Then

n∑
i=1

(λi −µi )2 ≤ Tr (A−B)2. (7.2)

See Appendix C below for proofs.

7.2 Wigner’s Theorem for Real Symmetric Matrices

Assume now that the entries Xi , j are real, so that Xi , j = X j ,i ,and that the hypotheses of
Theorem 1.3 are satisfied. Thus, the common distribution G of the off-diagonal entries
Xi , j has finite second moment, but the distribution H of the diagonal entries is arbitrary
(it need not even have a finite first moment). The first step will be to show that truncating
either the diagonal or off-diagonal entries has only a small effect on the empirical spectral
distribution .

Lemma 7.3. For a fixed constant 0 <C <∞, set

X̃i ,i = Xi ,i 1[−C ,C ](Xi ,i )

and define X̃ and M̃ = X̃ /
p

N to be the matrices obtained from X by changing the diagonal
entries Xi ,i of X to X̃i ,i . Then for any ε > 0 there exists C = Cε,F < ∞ such that with
probability approaching 1 as N →∞,

‖F M −F M̃‖∞ < ε. (7.3)
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Proof. This follows from the perturbation inequality (C.12). For any ε > 0, if C is suf-
ficiently large then with probability approaching one as N →∞, fewer than εN of the
diagonal entries will be changed. Consequently, the difference M − M̃ will have fewer
than εN nonzero entries, and hence will be of rank < εN . Therefore, the perturbation
inequality (C.12) implies (7.3).

Lemma 7.4. Assume that the distribution G of the off-diagonal entries Xi , j has finite
second moment. For any constant 0 <C <∞, let

X̃i , j = Xi , j 1[−C ,C ](Xi , j ) for j 6= i , (7.4)

and define X̃ and M̃ = X̃ /
p

N to be the matrix obtained from X by changing the off-
diagonal entries Xi , j of X to X̃i , j . Then for any ε > 0 there exists C = Cε,F <∞ such that
with probability approaching 1 as N →∞,

sup
x∈R

|F M (x +ε)−F M̃ (x)| < ε and (7.5)

sup
x∈R

|F M (x −ε)−F M̃ (x)| < ε. (7.6)

Remark 7.5. The slightly odd-looking conclusion is a way of asserting that the empir-
ical spectral distributions of M and M̃ are close in the weak topology (the topology of
convergence in distribution).

Proof. This follows from the trace inequality (C.13). Denote by λi and µi the eigenvalues
of M and M̃ , respectively (in decreasing order). The difference M−M̃ has nonzero entries
only in those i , j for which i 6= j and |Xi , j | >C , and so

Tr (M − M̃)2 = N−1
∑
i 6= j

X 2
i , j 1{|Xi , j | >C }.

Taking expectation gives

ETr (M − M̃)2 = N−1
∑
i 6= j

E X 2
i , j 1{|Xi , j | >C }

≤ N−1N (N −1)E X 2
1,21{|X1,2| >C }

≤ δ2N

provided C is sufficiently large. (This follows because we have assumed that the distri-
bution of the random variables Xi , j has finite second moment). The Markov inequality
now implies that

P {Tr (M − M̃)2 ≥ δN } ≤ δ.

Hence, by the trace inequality (C.13),

P {
N∑

i=1
(λi −µi )2 ≥ δN } ≤ δ.

This (with δ= ε2) implies the inequalities (7.5)-(??). (Exercise: Explain why.)
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For any constant C < ∞, the truncated random variables X̃i ,i and X̃i , j defined in
Lemmas 7.3 and 7.4 have finite moments of all order. However, they need not have
expectation zero, so the version of Wigner’s theorem proved in section 5 doesn’t apply
directly.

Lemma 7.6. Suppose that Wigner’s theorem holds for Wigner matrices Xi ,i ∼G and Xi , j ∼
H. Then for any constants a,b ∈ R, the theorem also holds for Wigner matrices with
diagonal entries Xi ,i +a and off-diagonal entries Xi , j +b.

Proof. First, consider the effect of adding a constant b to all of the entries of X : this
changes the matrix to X̃ = X +b1, where 1 is the matrix with all entries 1. The matrix 1
has rank 1, so the perturbation inequality (C.12) implies that the Lévy distance between
the empirical spectral distributions F M ,F M̃ of M = X /

p
N and M̃ = X̃ /

p
N is bounded

by 1/N . Hence, if F M is close to the semi-circle law in Lévy distance, then so is F M̃ .

Now consider the effect of adding a constant a to every diagonal entry. This changes
X to X̃ = X +aI , and thus M to M̃ = M +aI /N . Clearly,

Tr (M − M̃)2 = a2/N ;

consequently, by Proposition C.13, the eigenvalues λi and µi (listed in order) satisfy∑
i
|λi −µi |2 ≤ a2/N .

This implies that the Lévy distance between the empirical spectral distributions of M
and M̃ converges to 0 as N →∞.

Proof of Wigner’s Theorem. This is a direct consequence of Lemmas 7.3, 7.4, and 7.6.

A Weak Convergence

Definition A.1. Let (X ,d) be a complete, separable metric space (also known as a Polish
space). The Borel σ−algebra on X is the minimal σ−algebra containing the open (and
hence also closed) subsets of X . If µn and µ are finite Borel measures on X , then µn

converges weakly (or in distribution), written

µn =⇒µ,

if for every bounded, continuous function f : X →R,

lim
n→∞

∫
f dµn =

∫
f dµ. (A.1)
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Proposition A.2. (Weierstrass) Let X be a compact subset of Rd . Then the polynomial
functions in d variables on X are uniformly dense in C (X ), that is, for every function
f ∈C (X ) and every ε> 0 there is a polynomial p(x) = p(x1, x2, . . . , xd ) such that

‖ f −p‖∞ < ε.

Proposition A.3. Let µ,ν be finite Borel measures both with compact support K ⊂Rd . If µ
and ν have the same moments, that is, if for every monomial xn1

1 xn2
2 . . . xnd

d ,∫
xn1

1 xn2
2 . . . xnd

d dµ=
∫

xn1
1 xn2

2 . . . xnd
d dν, (A.2)

then they are equal as measures. More generally, if µ and ν are finite positive Borel mea-
sures on Rd with finite moment generating functions in a neighborhood of the origin, then
equality of moments (A.2) implies that µ= ν.

Remark A.4. In general, a probability measure is not uniquely determined by its mo-
ments, even when they are all finite. For further information on this subject, see, e.g.,
Rudin, Real and Complex Analysis, chapter on the Denjoy-Carleman theorem.

Proof. Consider first the case where both µ and ν are supported by a compact set K .
Equality of moments (A.2) implies that

∫
f dµ= ∫

f dν for every polynomial f , and there-
fore, by the Weierstrass theorem, for all continuous functions f on K . This in turn implies
thatµ(F ) = ν(F ) for every rectangle F , by an easy approximation argument, and therefore
for every Borel set F .

Now consider the case where both measures have finite moment generating func-
tions in a neighborhood of 0, that is,∫

eθ
T x dµ(x)+

∫
eθ

T x dν(x) <∞

for all θ in a neighborhood of the origin in Rd . In this case the moment generating
functions extend to complex arguments z = (z1, z2, . . . , zd ), and define holomorphic (see
Remark A.5 below) functions of d variables:

ϕµ(z) :=
∫

ezT x dµ(x) and ϕν(z) :=
∫

ezT x dν(x). (A.3)

Equality of moments implies that these two holomorphic functions have the same power
series coefficients, and therefore are equal in a neighborhood of zero. It now follows that
the two measures are the same (e.g., by the Fourier inversion theorem).

Remark A.5. That the functions ϕµ(z) and ϕν defined by (A.3) are holomorphic in their
arguments z1, z2, . . . , zd is a consequence of the Cauchy, Morrera, and Fubini theorems, by

a standard argument, using the fact that ezT x is holomorphic in z for each x. The Morrera
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theorem states that a function f (ζ) is holomorphic in a domainΩ⊂C if it integrates to
0 on every closed curve γ that is contractible inΩ. The Cauchy integral theorem asserts
that if f (ζ) is holomorphic in a domainΩ then it integrates to zero on every closed curve
γ that is contractible inΩ. Thus, if f (ζ, x) is holomorphic in ζ for each x ∈X , and µ is a
Borel measure on X , then

∫
X f (ζ, x)dµ(x) is holomorphic in ζ provided the conditions

of the Fubini theorem are satisfied.

Proposition A.6. (Method of Moments) Let µ be a probability measure on Rd with com-
pact support K , and let µn be a sequence of probability measures on Rd whose moments
converge as n →∞ to the moments of µ. Then

µn =⇒µ.

Proof. Convergence of moments implies that for every polynomial p(x) = p(x1, x2, · · · , xd ),

lim
n→∞

∫
p(x)dµn(x) =

∫
p(x)dµ(x)

The density of polynomials in the space C (K ) of continuous functions on K (Weierstrass’
theorem) and an elementary argument now show that for every continuous function
f : K →R,

lim
n→∞

∫
f (x)dµn(x) =

∫
f (x)dµ(x).

The method of moments is the most useful tool for proving convergence of empirical
spectral distributions in the theory of random matrices. There is one other useful tool,
the Stieltjes transform:

Definition A.7. Let µ be a finite, positive Borel measure on R. The Stieltjes transform
Fµ(z) is the holomorphic (see Remark A.5) function of z ∈C\R defined by

Fµ(z) =
∫

(x − z)−1 dµ(x).

Remark A.8. Since the probability measure µ is supported by R, the Stieltjes transform
satisfies

Fµ(z̄) = Fµ(z).

Proposition A.9. Let µn be a tight sequence of probability measures on R. If the Stieltjes
transforms Fn(z) of the measures µn converge for all z in a set A ⊂C\R with an accumu-
lation point in C\R to a limit function F (z) defined on A, then the sequence µn converges
weakly to a probability measure whose Stieltjes transform agrees with F (z) on A.
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Proof. Since the sequence µn is tight, every subsequence has a weakly convergent sub-
sequence. For every convergent subsequence µk , the Stieltjes transforms Fk (z) converge
to the Stieltjes transform of the limit measure for all z ∈C\R, because x 7→ (x − z)−1 is a
bounded, continuous function of x ∈R. (Note: This function is complex-valued, but its
real and imaginary parts will be bounded, continuous, real-valued functions.) Thus, the
limit measure must have a Stieltjes transform that agrees with F (z) on the set A. Since
the set A has an accumulation point, analyticity guarantees that the Stieltjes transform
of the limit measure is uniquely determined by its values F (z) on A.

B Matrix Theory: Trace of a Square Matrix

The trace of a square matrix M = (mi , j ), denoted by tr(M), is the sum
∑

i mi ,i of its diago-
nal entries. The following is elementary but important:

Proposition B.1. Let A = (ai , j )m×n and B = (bi , j )n×m be real or complex square matrices.
Then

tr(AB) = tr(B A) =
m∑

i=1

n∑
j=1

ai , j b j ,i . (B.1)

Consequently, if A and B are similar square matrices, that is, if there is an invertible matrix
U such that B =U−1 AU , then

tr(A) = tr(B). (B.2)

A square matrix A is diagonalizable if there exist an invertible matrix U amd a diago-
nal matrix D such that A =U−1DU . You should recall that A is diagonalizable if and only
if the underlying vector space has a basis consisting of eigenvectors of A; in this case,
the diagonalization A =U−1DU is obtained by letting U be the matrix whose columns
are the eigenvectors, and D the diagonal matrix whose diagonal entries are the corre-
sponding eigenvalues. Thus, for diagonalizable A, the trace tr(A) is just the sum of the
eigenvalues. More generally:

Corollary B.2. Assume that A is diagonalizable. Then for any integer k ≥ 0,

tr(Ak ) =∑
i
λk

i . (B.3)

Furthermore, for any analytic function f (z) defined by a power series f (z) = ∑∞
k=0 ak zk

with radious of convergence R > 0, if A has spectral radius < R (that is, if all eigenvalues
of A have absolute value < R) then

tr( f (A)) =∑
i

f (λi ). (B.4)

23



Both assertions are easy consequences of Proposition B.1. Relation (B.3) is especially
useful in conjunction with the method of moments, as it gives an effective way of com-
puting the moments of the empirical spectral distribution (defined below). Similarly,
relation (B.4) gives a handle on various transforms of the empirical spectral distribution,
in particular, the Stieltjes transform.

Definition B.3. If A is a diagonalizable n ×n matrix with eigenvalues λi , the empirical
spectral distribution F A of A is defined to be the uniform distribution on the eigenvalues
(counted according to multiplicity), that is

F A := n−1
n∑

i=1
δλi . (B.5)

Relation (B.3) implies ∫
λk F A(dλ) = n−k tr(Ak ). (B.6)

C Hermitian, Unitary, and Orthogonal Matrices

C.1 Spectral Theorems

A Hermitian matrix is a square complex matrix that equals its conjugate transpose. A
matrix with real entries is therefore Hermitian if and only if it is symmetric. A unitary
matrix is a square complex matrix whose conjugate transpose is its inverse. In spectral
problems, it is often advantageous to take a coordinate-free approach, using an inner
product to define Hermitian and unitary operators. Thus, let V be a complex vector
space, and let 〈·, ·〉 be a complex inner product on V . Recall the definition (see Rudin,
Real and Complex Analysis, ch. 4):

Definition C.1. An inner product on a complex vector space V is a mapping V ×V →C

that satisfies

(a) 〈u, v〉 = 〈v,u〉.
(b) 〈αu +α′u′, v〉 =α〈u, v〉+α′〈u′, v〉.
(c) 〈u,u〉 > 0 for all u 6= 0.
(d) 〈0,0〉 = 0.

The difference between the real and complex cases is rule (a); this together with (b)
implies that 〈u,αv〉 = ᾱ〈u, v〉. The natural inner product on Cn is 〈u, v〉 =∑

i ui v̄i . More
generally, the natural inner product on the space L2(µ) of square-integrable complex-
valued functions on a measure space (Ω,F ,µ) is

〈 f , g 〉 =
∫

f ḡ dµ;
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when µ is a probability measure this is a complex analogue of the covariance. An inner
product space is a vector space equipped with an inner product. Two vectors u, v in an
inner product space are said to be orthogonal if 〈u, v〉 = 0. An orthonormal set is a set of
unit vectors such that any two are orthogonal. You should recall that the Gram-Schmidt
algorithm produces orthonormal bases.

Definition C.2. Let V be a finite-dimensional inner product space. For any operator (i.e.,
linear transformation) T : V →V the adjoint T ∗ is the unique linear transformation such
that

〈Tu, v〉 = 〈u,T v〉 ∀ u, v ∈V. (C.1)

The linear transformation T is called Hermitian if T = T ∗, and unitary if T −1 = T ∗, equiv-
alently,

〈Tu, v〉 = 〈u,T v〉 (Hermitian) (C.2)

〈Tu,T v〉 = 〈u, v〉 (Unitary) (C.3)

Theorem C.3. (Spectral Theorem for Hermitian Operators) Let T be a Hermitian operator
on a finite-dimensional inner product space V . Then all eigenvalues λi of T are real, and
there is an orthonormal basis {ui } consisting of eigenvectors of T . Thus,

T v =∑
i
λi 〈v,ui 〉ui ∀ v ∈V. (C.4)

Theorem C.4. (Spectral Theorem for Unitary Operators) Let T be a unitary operator on
a finite-dimensional inner product space V . Then all eigenvalues λi of T have absolute
value 1, and there is an orthonormal basis {ui } consisting of eigenvectors of T . Thus,

T v =∑
i
λi 〈v,ui 〉ui ∀ v ∈V. (C.5)

Some of the important elements of the proofs are laid out below. Consider first the
case where T is Hermitian. Suppose that T v =λv ; then

λ〈v, v〉 = 〈λv, v〉
= 〈T v, v〉
= 〈v,T v〉
= 〈v,λv〉
= λ̄〈v, v〉.

Thus, λ= λ̄, so all eigenvalues of T are real. A similar argument shows that eigenvalues
of unitary operators must be complex numbers of absolute value 1.

Next, there is the notion of an invariant subspace: a linear subspace W of V is in-
variant for T if T W ⊂W . If T is Hermitian (respectively, unitary) and W is an invariant
subspace, then the restriction T |W of T to W is also Hermitian (respectively, unitary).
Also, if T is invertible, as is the case if T is unitary, then W is an invariant subspace if and
only if T W =W . The following is an easy exercise:
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Proposition C.5. Let T be either Hermitian or unitary. If T has an invariant subspace W ,
then the orthogonal complement2 W ⊥ of W is also an invariant subspace for T .

Proof of Theorems C.3–C.4. The proof is by induction on the dimension of V . Dimension
1 is trivial. Now every linear operator T on a complex vector space V has at least one
eigenvector v . (Proof: The characteristic polynomial det(λI −T ) has a zero, since C is
algebraically complete. For any such root λ the linear transformation λI −T must be
singular, by Proposition ??, and so the equation (λI −T )v = 0 has a nonzero solution
v .) If v is an eigenvector of T , then the one-dimensional subspace of V spanned by v
is invariant, and so its orthogonal complement W is also invariant. But dimension(W )
is less than dimension(V ), so the induction hypothesis applies to T |W : in particular,
W has an orthonormal basis consisting of eigenvectors of T . When augmented by the
vector v/

p〈v, v〉, this gives an orthonormal basis of V made up entirely of eigenvectors
of T .

C.2 Orthogonal Matrices: Spectral Theory

An orthogonal matrix is a unitary matrix whose entries are real, equivalently, a real matrix
whose transpose is its inverse. Because an orthogonal matrix is unitary, the Spectral The-
orem for unitary operators implies that its eigenvalues are complex numbers of modulus
1, and that there is an orthonormal basis of eigenvectors. This doesn’t tell the whole story,
however, because in many circumstances one is interested in the action of an orthonor-
mal matrix on a real vector space. An orthogonal linear transformation of a real inner
product space need not have real eigenvectors: for instance, the matrix

Rθ :=
(

cosθ −sinθ
sinθ cosθ

)
acting on R2 has no nonzero eigenvectors unless θ is an integer multiple of 2π, because
Rθ rotates every nonzero vector through an angle of θ.

Lemma C.6. Let T be an orthogonal n×n matrix, and let v be a (possibly complex) eigen-
vector with eigenvalue λ. Then the complex conjugate v̄is also an eigenvector, with eigen-
value λ̄.

The proof is trivial, but the result is important because it implies the following struc-
ture theorem for orthogonal linear transformations of real inner product spaces.

Corollary C.7. Let T be an orthogonal n × n matrix acting on the real inner product
space Rn . Then Rn decomposes as an orthogonal direct sum of one- or two-dimensional

2The orthogonal complement W ⊥ is defined to be the set of all vectors u such that u is orthogonal to
every w ∈W .
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invariant subspaces for T , on each of which T acts as a rotation matrix Rθ. In other words,
in a suitable orthonormal basis T is represented by a matrix in block form (where all but
the last two blocks are of size 2×2)

Rθ1 0 0 · · · 0 0 0
0 Rθ2 0 · · · 0 0 0

· · ·
0 0 0 · · · Rθk 0 0
0 0 0 · · · 0 −I 0
0 0 0 · · · 0 0 I


Proof. The only possible real eigenvalues are ±1. On the space of eigenvectors with
eigenvector +1 the matrix T acts as the identity, and on the space of eigenvectors with
eigenvector +1 the matrix T acts as (−1)× the identity. Consequently, each of these
subspaces splits as a direct sum of one-dimensional subspaces.

Let v = u + i w be a complex eigenvector with real and imaginary parts u, w and
eigenvalue λ = e iθ. By Lemma C.6, v̄ = u − i w is an eigenvector with eigenvalue e−iθ.
Adding and subtracting the eigenvector equations for these two eigenvectors shows that
the two-dimensional real subspace of Rn spanned by u, w is invariant for T , and that the
restriction of T to this subspace is just the rotation by θ. It is routine to check that the
two-dimensional invariant subspaces obtained in this manner are mutually orthogonal,
and that each is orthogonal to the one-dimensional invariant subspaces corresponding
to eigenvalues ±1.

C.3 Minimax Characterization of Eigenvalues

Let T : V →V be a Hermitian operator on a finite-dimensional vector space V of dimen-
sion n. According to the Spectral Theorem C.3, the eigenvalues λi of T are real, and there
is an orthonormal basis consisting of eigenvectors ui . Because the eigenvectors are real,
they are linearly ordered:

λ1 ≤λ2 ≤ ·· · ≤λn . (C.6)

Proposition C.8.

λn = max
u:|u|=1

〈Tu,u〉 and (C.7)

λ1 = min
u:|u|=1

〈Tu,u〉 (C.8)

Proof. Any unit vector u has an expansion u = ∑
i α1ui in the eigenvectors of T , where

the (complex) scalars αi satisfy
∑

i |αi |2 = 1. It follows that

Tu =∑
i
αiλi ui =⇒ 〈Tu,u〉 =∑

i
λi |αi |2
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Since u is a unit vector, the assignment i 7→ |αi |2 is a probability distribution on the index
set [n]. Clearly, the probability distribution that maximizes the expectation

∑
i λi |αi |2

puts all of its mass on the indices i for which λi is maximal. Thus, the maximal expecta-
tion is λn . Similarly, the minimum expectation is λ1.

The minimax characterization is a generalization of Proposition C.8 to the entire
spectrum. This characterization is best described using the terminology of game theory.
The game is as follows: First, I pick a linear subspace W ⊂ V of dimension k; then you
pick a unit vector u in W . I pay you 〈Tu,u〉. If we both behave rationally (not always a
sure thing on my end, but for the sake of argument let’s assume that in this case I do)
then I should choose the subspace spanned by the eigenvectors u1,u2, . . . ,uk , and then
you should choose u = uk , so that the payoff is λk . That this is in fact the optimal strategy
is the content of the minimax theorem:

Theorem C.9. (Minimax Characterization of Eigenvalues)

λk = min
W :dim(W )=k

max
u∈W : |u|=1

〈Tu,u〉 (C.9)

= max
W :dim(W )=n−k

min
u∈W : |u|=1

〈Tu,u〉

Proof. The second equality is obtained from the first by applying the result to the Hermi-
tian operator −T , so only the first equality need be proved. It is clear that the right side
of (C.9) is no larger than λk (see the comments preceding the statement of the theorem),
so what must be proved is that for any subspace W of dimension k,

max
u∈W : |u|=1

〈Tu,u〉 ≥λk .

Let ui be an orthonormal basis of V such that Tui =λi ui , where the eigenvalues λi

are arranged in increasing order as in (C.6). Let U be the linear subspace of V spanned by
the vectors uk ,uk+1, · · · ,un ; since the vectors ui are linearly independent, the subspace
U has dimension n −k +1. Hence,

dim(W )+dim(U ) = k + (n −k +1) = n +1 > dim(V ),

and so the subspaces U and W must have a nonzero vector in common, and conse-
quently a unit vector u in common. Since u ∈U , it is a linear combination of uk ,uk+1, · · · ,un :

u =
n∑

i=k
ai ui where

n∑
i=k

a2
i = 1.

Consequently,

〈Tu,u〉 =
n∑

i=k
λi a2

i ;
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since the eigenvalues λi are listed in increasing order, and since the coefficients a2
i con-

stitute a probability distribution on the indices i = k,k +1, · · · ,n, it follows that

〈Tu,u〉 ≥λk .

Corollary C.10. (Eigenvalue interlacing) Let T : V → V be Hermitian, and let W ⊂ V be
a linear subspace of dimension n − 1, where n = dim(V ). Then the eigenvalues of the
restriction T |W are interlaced with those of T on V : that is, if the eigenvalues of T are
λ1 ≤λ2 ≤ ·· · ≤λn and the eigenvalues of T |W are µ1 ≤µ2 ≤ ·· · ≤µn−1, then

λ1 ≤µ1 ≤λ2 ≤µ2 ≤ ·· · ≤λn−1 ≤µn−1 ≤λn . (C.10)

Proof. It suffices to prove that µk ≥ λk , because the reverse inequalities then follow by
considering −T . By Theorem C.9,

λk = min
S⊂V :dim(S)=k

max
u∈S : |u|=1

〈Tu,u〉 and

µk = min
S⊂W :dim(S)=k

max
u∈S : |u|=1

〈Tu,u〉,

where the minima are taken over linear subspaces S of V and W , respectively. Since
W ⊂V , every linear subspace of W is a linear subspace of V , and so the first min is taken
over a larger collection than the second. Thus, µk ≥λk .

C.4 Empirical spectral distributions

Recall that the empirical spectral distribution of a diagonalizable matrix is the uniform
distribution on eigenvalues (counted according to multiplicity). The empirical spectral
distribution is the object of primary interest in the study of random matrices. Thus, it
is useful to know how changes in the entries of a matrix affect the empirical spectral
distribution. In this section we give two useful bounds on the magnitude of the change
in the empirical spectral distribution under certain types of matrix perturbations.

Definition C.11. The Lévy distance between two probability distributions µ,ν on R with
cumulative distribution functions Fµ and Fν is defined to be

L(µ,ν) := inf{ε> 0 : F (x −ε)−ε≤G(x) ≤ F (x +ε)+ε}. (C.11)

Observe that if ‖F −G‖∞ < ε then L(F,G) < ε; the converse, however, need not
hold. Moreover, the Lévy distance characterizes convergence in distribution, that is,
limn→∞ L(Fn ,F ) = 0 if and only if Fn =⇒ F .
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Corollary C.12. (Perturbation Inequality) Let A and B be Hermitian operators on V =Cn

relative to the standard inner product, and let F A and F B be their empirical spectral
distributions. Then

L(F A,F B ) ≤ n−1rank(A−B). (C.12)

Proof. It suffices to prove this for Hermitian operators A,B that differ by a rank-1 oper-
ator ∆= A −B , because operators that differ by a rank-k operator can be connected by
a chain of k +1 Hermitian operators whose successive differences are all rank-1. The
operator ∆ is Hermitian, so if it is rank-1 then it has a single nonzero eigenvalue δ, with
corresponding eigenvector w . Let W be the (n−1)−dimensional subspace orthogonal to
w ; then∆|W = 0 and so the restrictions A|W and B |W are identical. Letµ1 ≤ ·· · ≤µn−1 be
the eigenvalues of A|W = B |W . By the Eigenvalue Interlacing Theorem (Corollary C.10),
the (ordered) eigenvalues λB

i of B are interlaced with the sequence µi , and so are the
eigenvalues λA

i of A. Consequently, it is impossible for either

λA
k+2 <λB

k or λB
k+2 <λA

k

to occur for any k.

Proposition C.13. (Hoffman-Wielandt Inequality) Let A and B be n ×n Hermitian ma-
trices with eigenvalues λi and µi , respectively, listed in decreasing order. Then

n∑
i=1

(λi −µi )2 ≤ Tr (A−B)2. (C.13)

Proof. Expand the squares on both sides of the inequality to obtain the equivalent state-
ment ∑

i
(λ2

i −2λiµi +µ2
i ) ≤ Tr A2 +Tr B 2 −2Tr AB (C.14)

(this also uses the fact that Tr AB = Tr B A). SInce Tr A2 =∑
λ2

i and Tr B =∑
µ2

i , proving
inequality (C.14) is tantamount to proving

Tr AB ≤∑
λiµi . (C.15)

Neither the trace nor the spectrum of a diagonizable matrix depends on which basis
for the vector space is used. Consequently, we can work in the orthonormal basis of
eigenvectors of A, that is to say, we may assume that A is diagonal. Since B is also
Hermitian, there is a unitary matrix U that diagonizes B . Thus,

A = diag(λ1,λ2, . . . ,λn) and

B =U diag(µ1,µ2, . . . ,µn)U∗,

and so (C.15) is equivalent to ∑
i

∑
j
λiµ j |Ui , j |2 ≤

∑
λiµi (C.16)
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Now U is unitary, so the matrix (|Ui , j |2)i , j is doubly stochastic (U unitary means that the
rows and columns are orthonormal). Hence, to prove inequality (C.16) it will suffice to
prove that ∑

i

∑
j
λiµ j pi , j ≤

∑
i
λiµi (C.17)

where pi , j is any doubly stochastic matrix.

There are various ways to prove (C.17). Following is a short and painless proof that
uses the Birkhoff-von Neumann theorem on doubly stochastic matrices. This theorem
states that every doubly stochastic matrix is a convex combination of permutation ma-
trices. To see how the Birkhoff-von Neumann theorem applies to (C.17), consider the
problem of maximizing the left side over all doubly stochastic matrices pi , j . Since the
left side is linear in the variables pi , j , the Birkhoff-von Neumann theorem implies that
to prove (C.17) it suffices to check that

max
σ

∑
i
λiµσ(i ) =

∑
i
λiµi ,

where the max is over the set of all permutations σ. For this, just check that if σ is not
the identity permutation, then the left side can be increased (or at least not decreased)
by switching two indices i , i ′ where λi ,λi ′ and µi ,µi ′ are in opposite relative order.

Exercise C.14. (Challenging) Prove Birkhoff theorem, that is, show that every doubly
stochastic matrix can be written as a convex combination of permutation matrices.

Example: (
.3 .7
.7 .3

)
= .3

(
1 0
0 1

)
+ .7

(
0 1
1 0

)
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