1. Markov Chains and their Transition Probabilities

1.1. Definition and Conventions.

Definition 1. A transition probability kernel (also known as a transition probability matrix or a stochastic matrix) on a finite or countable set \(\mathcal{X} \) is a matrix \(P = (p(x, y))_{x, y \in \mathcal{X}} \) of nonnegative numbers, with rows and columns indexed by the elements of \(\mathcal{X} \), that sum to 1 in each row, that is, such that for every \(x \in \mathcal{X} \),

\[
\sum_{y \in \mathcal{X}} p(x, y) = 1.
\]

Definition 2. A (discrete-time) Markov chain with finite or countable state space \(\mathcal{X} \) and transition probability matrix \(P = (p(x, y))_{x, y \in \mathcal{X}} \) is a sequence \(X_0, X_1, \ldots \) of \(\mathcal{X} \)-valued random variables such that for every state \(y \in \mathcal{X} \) and every integer \(n = 0, 1, 2, \ldots \),

\[
P(X_{n+1} = y \mid \sigma(X_0, X_1, \ldots, X_n)) = p(X_n, y).
\]

Notation: Since we will only be dealing with random variables taking values in finite or countable sets, we are back in the world of discrete probability, and will not have to worry about conditioning on events of probability 0. Thus, we can dispense with the trappings of \(\sigma \)-algebras and deal with conditional probabilities as in elementary probability. In particular, for events \(A, B \) with \(P(B) > 0 \) we will henceforth write

\[
P(A \mid B) = \frac{P(A \cap B)}{P(B)}.
\]

Thus, for any states \(x_0, x_1, x_2, \ldots \) the notation \(P(X_{n+1} = x_{n+1} \mid X_i = x_i \ \forall \ i \leq n) \) denotes the value of the random variable \(P(X_{n+1} \mid \sigma(X_0, X_1, \ldots, X_n)) \) on the event \(\{X_i = x_i \ \forall \ i \leq n\} \). With this notation, the Markov property (2) can be reformulated as follows: for any states \(x_0, x_1, x_2, \ldots \),

\[
P(X_{n+1} = x_{n+1} \mid X_i = x_i \ \forall \ i \leq n) = p(x_n, x_{n+1}).
\]

The laws of elementary conditional probability imply the following easy consequences:

\[
P(X_i = x_i \ \forall \ i \leq n) = P(X_0 = 0) \prod_{i=1}^{n} p(x_{i-1}, x_i) \quad \text{and}
\]

\[
P(X_i = x_i \ \forall \ n+1 \leq i \leq n+m \mid X_i = x_i \ \forall \ i \leq n) = \prod_{j=1}^{m} p(x_{i-1}, x_i).
\]
1.2. **First Examples.** We have already encountered a few examples of Markov chains in our study of martingales: (a) Galton-Watson processes, (b) the Polya urn, (c) the simple random walk on \mathbb{Z}. Here are a few others:

Example 1. The simple random walk on the d—dimensional integer lattice \mathbb{Z}^d is the Markov chain whose transition probabilities are

$$ p(x, x \pm e_i) = 1/(2d) \quad \forall x \in \mathbb{Z}^d $$

where e_1, e_2, \ldots, e_d are the standard unit vectors in \mathbb{Z}^d. In other terms, the simple random walk moves, at each step, to a randomly chosen nearest neighbor.

The long-time behavior of the simple random walk is determined by the central limit theorem (and the local central limit theorem). Let X_n be the state of the simple random walk after n steps, and assume that with probability one, $X_0 = 0$ (the origin in \mathbb{Z}^d). Then the CLT implies that as $n \to \infty$,

$$ X_n / \sqrt{n} \to N_d(0, I) \quad \text{in distribution.} $$

Thus, in particular, the distribution of the location X_n becomes more and more diffuse as n becomes large.

Example 2. The random transposition Markov chain on the permutation group \mathcal{S}_N (the set of all permutations of a deck of N cards, labelled 1, 2, ···, N) is a Markov chain whose transition probabilities are

$$ p(x, \sigma x) = 1/N \quad \text{for all transpositions} \ \sigma; $$

$$ p(x, y) = 0 \quad \text{otherwise.} $$

A transposition is a permutation that exchanges two cards. There are exactly $\binom{N}{2}$ transpositions, one for each pair of positions in the deck. Thus, the Markov chain proceeds by the following rule: at each step, choose two different cards at random and switch them.

Since the state space of the random transposition chain is finite, the distribution of the state X_n cannot become more diffuse as $n \to \infty$, as it does for the simple random walk in \mathbb{Z}^d. It will follow from the general theory that we will develop in these notes that, regardless of the distribution of the initial permutation X_0, the distribution of X_n approaches the uniform distribution on \mathcal{S}_N. Thus, even if you start with a perfectly ordered deck of cards 1, 2, ···, N, after enough random transpositions you will have “randomized” the deck.

Example 3. The Ehrenfest urn model with N balls is the Markov chain on the state space $\mathcal{X} = \{0, 1\}^N$ that evolves as follows: At each time $n = 1, 2, \ldots$ a random index $j \in [N]$ is chosen, and the jth coordinate of the last state is flipped. Thus, the transition probabilities are

$$ p(x, y) = 1/N \quad \text{if the vectors} \ x, y \ \text{differ in exactly 1 coordinate} $$

$$ = 0 \quad \text{otherwise.} $$
The Ehrenfest model is a simple model of particle diffusion: Imagine a room with two compartments 0 and 1, and \(N \) (one the order \(N \approx 10^{24} \)) molecules distributed throughout the two compartments (customarily called urns). At each time, one of the molecules is chosen at random and moved from its current compartment to the other. We will see that as the number of steps \(n \to \infty \), the distribution of the state \(X_n \) approaches the uniform distribution on the hypercube \(\{0, 1\}^N \).

Example 4. Renewal Processes: Let \(\xi_1, \xi_2, \ldots \) be independent, identically distributed, positive integer-valued random variables with common distribution \(\{q_m\}_{m \geq 1} \). Think of these as being the lifetimes of a sequence of AAA batteries that I use in my wireless keyboard. Whenever a battery fails, I immediately replace it by a new one. Consequently, the partial sums \(S_n := \sum_{j=1}^n \xi_j \) are the times at which batteries are replaced. In this context, the sequence of random variables \(\{S_n\}_{n \geq 0} \) is called a renewal process.

There are several interesting Markov chains associated with a renewal process: (A) The age process \(A_1, A_2, \ldots \) is the sequence of random variables that record the time elapsed since the last battery failure, in other words, \(A_n \) is the age of the battery in use at time \(n \). At each step, the age process either increases by +1, or it jumps to 0. It is not difficult to verify that it is a Markov chain with transition probabilities

\[
p(m, m + 1) = \sum_{j=m+1}^{\infty} q_j / \sum_{j=m}^{\infty} q_j,
\]

\[
p(m, 0) = q_m / \sum_{j=m}^{\infty} q_j.
\]

(B) The residual lifetime process \(R_1, R_2, \ldots \) is the sequence of random variables that record the time until the next battery failure, that is, the remaining lifetime of the battery currently in use. (If a new battery is installed at time \(n \), the residual lifetime is the lifetime of the new battery, not 0.) The sequence \(R_n \) is a Markov chain with transition probabilities

\[
p(m, m - 1) = 1 \quad \text{if } m \geq 2;
\]

\[
p(1, m) = q_m \quad \text{for all } m \geq 1.
\]

1.3. Chapman-Kolmogorov Equations

Assume henceforth that \(\{X_n\}_{n \geq 0} \) is a discrete-time Markov chain on a state space \(\mathcal{X} \) with transition probability matrix \(P = (p(x, y))_{x, y \in \mathcal{X}} \). If \(\mathcal{X} \) has \(N \) elements, then \(P \) can be represented by an \(N \times N \) matrix, and if \(\mathcal{X} \) is infinite, then \(P \) is an infinite by infinite matrix. For any integer \(n \geq 1 \), the \(n \)-step transition probabilities are defined by

\[
p_n(x, y) := P(X_n = y \mid X_0 = x).
\]

Proposition 1. The \(n \)-step transition probabilities \(p_n(i, j) \) are the entries of the \(n \)th power \(P^n \) of the matrix \(P \). Consequently, the \(n \)-step transition probabilities \(p_n(i, j) \) satisfy the Chapman-Kolmogorov equations

\[
p_{n+m}(i, j) = \sum_{k \in \mathcal{X}} p_n(i, k)p_m(k, j).
\]
Remark 1. It should be apparent from this formula that the entry $p_{n+m}(i, j)$ is the i, j entry of the matrix P^{n+m} obtained by multiplying P^m by P^n. Thus, one approach to studying the long-time behavior of the transition probabilities is by way of matrix theory. If, for instance, one could diagonalize the matrix P, i.e.,

$$P = SDS^{-1}$$

where D is a diagonal matrix, then the n-step transition probabilities would be given by the matrix

$$P^n = SD^n S^{-1}.$$

Now if D has diagonal entries $\lambda_1, \lambda_2, \cdots$, then D^n is the diagonal matrix with diagonal entries $\lambda_1^n, \lambda_2^n, \cdots$. Consequently, in the diagonalizable case, the long-time behavior of the entries $p_n(i, j)$ is mainly determined by the largest eigenvalue and the corresponding eigenspace.

Proof of CK. The equations (8) can be proved by a double induction, first on n, then on m. The case $n = 1, m = 1$ follows directly from the definition of a Markov chain and the law of total probability (to get from i to j in two steps, the Markov chain has to go through some intermediate state k). The induction steps are left as an exercise. □

Suppose now that the initial state X_0 is random, with distribution ν, that is,

$$P^\nu\{X_0 = i\} = \nu(i) \quad \text{for all states } i \in \mathcal{X}.$$

(Note: Henceforth when a probability distribution ν is used as a superscript as above, it denotes the initial distribution, that is, the distribution of X_0.) Then by the Chapman-Kolmogorov equations and the law of total probability,

$$P^\nu\{X_n = j\} = \sum_i \nu(i)p_n(i, j),$$

equivalently, if the initial distribution is ν^T (here we are viewing probability distributions on \mathcal{X} as row vectors) then the distribution after n steps is $\nu^T P^n$. Notice that if there is a probability distribution ν on \mathcal{X} such that $\nu^T = \nu^T P$, then $\nu^T = \nu^T P^n$ for all $n \geq 1$. Consequently, if the Markov chain has initial distribution ν then the marginal distribution of X_n will be ν for all $n \geq 1$. For this reason, such a probability distribution is called stationary:

Definition 3. A probability distribution π on \mathcal{X} is stationary if

$$\pi^T = \pi^T P$$

Stationary distributions always exist for finite-state Markov chains, as we will prove in section 2, but do not always exist for infinite-state Markov chains. The simple random walk on \mathbb{Z} is an example: if $(\pi_x)_{x \in \mathbb{Z}}$ were a stationary distribution, it would necessarily satisfy the equations

$$\pi_x = \frac{1}{2} \pi_{x-1} + \frac{1}{2} \pi_{x+1} \quad \forall \ x \in \mathbb{Z}.$$
But these equations imply that \(\pi_x = \text{constant (why?)}, \) and so it is impossible to normalize to obtain a probability distribution.

1.4. Markov Chains and their Digraphs. A directed graph, or digraph for short, consists of a set \(\mathcal{V} \) of vertices and a subset \(\mathcal{D} \subset \mathcal{V} \times \mathcal{V} \) of directed edges. (For each ordered pair \((i, j) \), imagine an arrow pointing from \(i \) to \(j \). Note that ordered pairs \((i, i) \) are allowed, so a digraph can have self-loops.) A weighted digraph is a digraph for which the directed edges \((i, j) \) are assigned weights \(w(i, j) \), usually in some ring. (For most purposes, the appropriate ring is the field of complex numbers \(\mathbb{C} \).) The system of weights is specified by a weight matrix \(W = (w(i, j))_{i,j \in \mathcal{V} \times \mathcal{V}} \).

Given a weight matrix \(W \) on a digraph \(\mathcal{G} \), one may define the weight of a finite path in the digraph to be the product of the weights along the edges of the path: in particular, if \(\gamma = i_0 i_1 \cdots i_n \), then

\[
\text{weight}(\gamma) = \prod_{j=1}^{n} w(i_{j-1}, i_j).
\]

Proposition 2. For any two vertices \(i, j \) and any integer \(n \geq 0 \), define \(w_n(i, j) \) to be the sum of the path-weights \(\text{weight}(\gamma) \) over all paths \(\gamma \) of length \(n \) from \(i \) to \(j \). Then the matrix \((w_n(i, j)) \) is the \(n \)th power of the weight matrix \(W \).

This result can be viewed as a generalization of the Chapman-Kolmogorov theorem and its proof is virtually identical to that of Chapman-Kolmogorov. The result is the basis of the so-called transfer-matrix method of statistical mechanics.

For any transition probability kernel on a set \(\mathcal{X} \) there is an associated digraph \(\mathcal{G} \), with vertex set \(\mathcal{X} \) and directed edges \((i, j) \) for all pairs \(i, j \in \mathcal{X} \) such that \(p(i, j) > 0 \). The transition probabilities themselves give an obvious natural weighting of edges, with weight matrix \(\mathbb{P} \).

Definition 4. Given a transition probability kernel \(\mathbb{P} \) on a set \(\mathcal{X} \), a state \(j \in \mathcal{X} \) is said to be accessible from state \(i \in \mathcal{X} \) if there is a path from \(i \) to \(j \) in the associated digraph. Equivalently, \(j \) is accessible from \(i \) if there is a positive-probability path from \(i \) to \(j \), that is, a finite sequence of states \(k_0, k_1, \ldots, k_m \) such that \(k_0 = i, k_m = j, \) and \(p(k_t, k_{t+1}) > 0 \) for each \(t = 0, 1, \ldots, m-1 \). States \(i \) and \(j \) are said to communicate if each is accessible from the other. This relation is denoted by \(i \leftrightarrow j \).

Fact 1. Communication is an equivalence relation. In particular, it is transitive: if \(i \) communicates with \(j \) and \(j \) communicates with \(k \) then \(i \) communicates with \(k \).

The proof is an exercise. It follows that the state space \(\mathcal{X} \) is uniquely partitioned into communicating classes (the equivalence classes of the relation \(\leftrightarrow \)). If there is only
one communicating class (that is, if every state is accessible from every other) then the
Markov chain (or its transition probability matrix) is said to be irreducible. In general,
if there is more than one communicating class, then states in one communicating class
‘C’ may be accessible from states in another class ‘C’; however, in such a case no state
of ‘C’ can be accessible from a state of ‘C’ (why?).

Definition 5. The period of a state \(i \) is the greatest common divisor of the set \(\{ n \in \mathbb{N} : p_n(i, i) > 0 \} \). If every state has period 1 then the Markov chain (or its transition
probability matrix) is called aperiodic.

Note: If \(i \) is not accessible from itself, then the period is the g.c.d. of the empty set;
by convention, we define the period in this case to be +\(\infty \). Example: Consider simple
random walk on the integers. If at time zero the walk starts in state \(X_0 = 0 \) then at any
subsequent even time the state must be an even integer, and at any odd time the state
must be an odd integer (why?). Consequently, all states have period 2.

Fact 2. If states \(i, j \) communicate, then they must have the same period. Consequently,
if the Markov chain is irreducible, then all states have the same period.

The proof is another easy exercise. There is a simple test to check whether an irre-
ducible Markov chain is aperiodic: If there is a state \(i \) for which the 1—step transition probability \(p(i, i) > 0 \), then the chain is aperiodic.

Fact 3. If the Markov chain has a stationary probability distribution \(\pi \) for which \(\pi(i) > 0 \),
and if states \(i, j \) communicate, then \(\pi(j) > 0 \).

Proof. It suffices to show (why?) that if \(p(i, j) > 0 \) then \(\pi(j) > 0 \). But by definition (9),
\(\pi(j) = \sum_k \pi(k)p(k, j) \geq \pi(i)p(i, j) \).

2. **Finite State Markov Chains**

2.1. **Irreducible Markov chains.** If the state space is finite and all states communicate
(that is, the Markov chain is irreducible) then in the long run, regardless of the initial
condition, the Markov chain must settle into a steady state. Formally,

Theorem 3. An irreducible Markov chain \(X_n \) on a finite state space \(\mathcal{X} \) has a unique
stationary distribution \(\pi \). Furthermore, if the Markov chain is not only irreducible but
also aperiodic, then for any initial distribution \(\nu \),

\[
\lim_{n \to \infty} P^{\nu} \{ X_n = j \} = \pi(j) \quad \forall j \in \mathcal{X}
\]

The remainder of this section is devoted to the proof of this theorem. Assume through-
out that the hypotheses of Theorem 3 are met, and let \(\mathbb{P} \) be the transition probability
matrix of the Markov chain. We will prove Theorem 3 by studying the action of the tran-
sition probability matrix on the set \(\mathcal{P} = \mathcal{P}_\mathcal{X} \) of probability distributions on \(\mathcal{X} \). Recall
from sec. 1.3 above that if \(\nu^T \) is the initial distribution of the Markov chain then \(\nu^T \mathbb{P}^n \)
is the distribution after \(n \) steps. Thus, the natural action of the transition probability matrix on \(\mathcal{P} \) is

\[
\nu^T \mapsto \nu^T \mathbb{P}.
\]

Notice that if \(\nu^T \) is a probability vector, then so is \(\nu^T \mathbb{P} \), because

\[
\sum_j (\nu^T \mathbb{P})_j = \sum_j \sum_i \nu(i)p(i,j) \\
= \sum_i \sum_j \nu(i)p(i,j) \\
= \sum_i \nu(i) \sum_j p(i,j) \\
= \sum_i \nu(i),
\]

the last because the row sums of \(\mathbb{P} \) are all 1. This implies that the mapping \(\nu^T \mapsto \nu^T \mathbb{P} \) takes the set \(\mathcal{P} \) into itself.

2.2. The \(N \)-Simplex

The set \(\mathcal{P}_x \) is called the \(N \)-simplex, where \(N \) is the cardinality of the state space \(\mathcal{X} \): it is the subset of \(\mathbb{R}^N \) gotten by intersecting the first orthant (the set of all vectors with nonnegative entries) with the hyperplane consisting of all vectors whose entries sum to 1. The crucial geometric fact about \(\mathcal{P} \) is this:

Proposition 4. The \(N \)-simplex \(\mathcal{P} \) is a closed and bounded subset of \(\mathbb{R}^N \). Consequently, by the Heine-Borel Theorem, it is compact.

Proof. Easy exercise. \(\square \)

The major difference between finite state spaces and countably infinite state spaces in the theory of Markov chains is that the infinite simplex (the set of all probability distributions on the state space) is not compact. Compactness of the \(N \)-simplex \(\mathcal{P} \) implies that for any initial distribution \(\nu \), the sequence \(\nu^T \mathbb{P}^n \) has convergent subsequences, by the Bolzano-Weierstrass theorem, and that the limits are themselves probability distributions.

Proposition 5. Ant transition probability matrix \(\mathbb{P} \) on a finite state space \(\mathcal{X} \) has a stationary distribution.

Proof. The mapping \(\nu^T \mapsto \nu^T \mathbb{P} \) is a continuous mapping of the simplex \(\mathcal{P}_x \) to itself. (Linear transformations of finite-dimensional vector spaces are always continuous.) Consequently, the Brouwer Fixed Point Theorem implies that there is a fixed point \(\pi^T \in \mathcal{P}_x \), i.e., a probability vector satisfying

\[
\pi^T \mathbb{P} = \pi^T.
\]
This proof is not entirely satisfying, not only because it (unnecessarily) uses a deep theorem from the land of topology\(^1\), but because it is non-constructive, and because it sheds no light on the question of convergence of the sequence \(v^T \mathbb{P}^n\). Moreover, it does not rule out the possibility of more than one stationary distribution – and in fact if the transition probability matrix is reducible then there will be more than one.

2.3. **The Krylov-Bogoliubov Argument.** There is a much simpler argument, due to Krylov and Bogoliubov, that a stationary distribution always exists. It is a very useful argument, because it generalizes to other contexts.

The argument turns on the fact that the probability simplex \(\mathcal{P}\) is compact. This implies that it has the Bolzano-Weierstrass property: Any sequence of vectors in \(\mathcal{P}\) has a convergent subsequence. Fix a probability vector \(v \in \mathcal{P}\) (it doesn't matter what), and consider the so-called Cesaro averages

\[
\nu_n^T := n^{-1} \sum_{k=1}^n v^T \mathbb{P}^k.
\]

Observe that each average \(\nu_n^T\) is a probability vector (because an average of probability vectors is always a probability vector), and so each \(\nu_n^T\) is an element of \(\mathcal{P}\). Consequently, the sequence \(\nu_n^T\) has a convergent subsequence:

\[
\lim_{k \to \infty} \nu_{n_k}^T = \pi^T.
\]

Claim: The limit of any subsequence of \(\nu_n^T\) is a stationary distribution for \(\mathbb{P}\).

\(^1\)For Markov processes on infinite state spaces, however, the existence of stationary distributions is a more delicate problem, and in many cases fixed point theorems are the only tools available. Two of the more useful infinite-dimensional fixed point theorems are the Schauder and Kakutani theorems, cf. Wikipedia.
Proof. Denote the limit by π, as in (12). Since the mapping $\mu^T \mapsto \mu^T P$ is continuous (exercise; or see the proof of Theorem 7 below),

$$\pi^T P = \lim_{k \to \infty} n_k \nu^T P$$

$$= \lim_{k \to \infty} n_k^{-1} \sum_{j=1}^{n_k} \nu^T P^j P$$

$$= \lim_{k \to \infty} n_k^{-1} \sum_{j=2}^{n_k+1} \nu^T P^j$$

$$= \lim_{k \to \infty} n_k^{-1} \left(\sum_{j=1}^{n_k} \nu^T P^j + \nu^T P^{n_k+1} - \nu^T P \right)$$

$$= \lim_{k \to \infty} n_k^{-1} \sum_{j=1}^{n_k} \nu^T P^j$$

$$= \pi^T.$$

(In words: Multiplying the Cesaro average by P has the effect of changing only the first and last term in the average. When this is divided by n_k, it converges to zero in the limit.) Thus, π^T is a stationary distribution. \square

2.4. Total Variation Metric. To prove uniqueness of the stationary distribution under the hypotheses of Theorem 3, we will investigate more closely the action of the transition probability matrix on the simplex. The most natural metric (distance function) on the simplex \mathcal{P} is not the usual Pythagorean distance, but rather the total variation metric, or taxicab distance. This is defined as follows: For any two probability distributions $\nu, \mu \in \mathcal{P}$,

$$d(\mu, \nu) = ||\mu - \nu||_{TV} := \frac{1}{2} \sum_{i \in \mathcal{X}} |\nu(i) - \mu(i)|$$

The factor $1/2$ is a convention, but a long-established one (it ensures that the distance is never larger than one). It is an exercise to show that the following is an equivalent definition:

$$||\mu - \nu||_{TV} = \max_{A \subset \mathcal{X}} (\mu(A) - \nu(A))$$

(Hint: Use the fact that both μ and ν are probability distributions.) One other thing (also very easy to check): The total variation metric is equivalent to the Pythagorean metric, in the sense that a sequence of probability vectors converges in the total variation metric if and only if it converges in the Pythagorean metric.

Proposition 6. Assume that the entries of P are all strictly positive. Then the mapping $\nu^T \mapsto \nu^T P$ is a strict contraction of the simplex \mathcal{P} relative to total variation distance, that is, there exists $0 < \alpha < 1$ such that for any two probability vectors μ, ν

$$||\nu^T P - \mu^T P||_{TV} \leq \alpha ||\nu^T - \mu^T||_{TV}$$
Proof. Since every entry of P is strictly positive, there is a real number $\varepsilon > 0$ such that $p(i, j) \geq \varepsilon$ for every pair of states i, j. Notice that $N\varepsilon \leq 1$, where N is the total number of states, because the row sums of P are all 1. We may assume (by choosing a slightly smaller value of $\varepsilon > 0$, if necessary) that $1 - N\varepsilon > 0$. Define $q(i, j) = (p(i, j) - \varepsilon)/(1 - N\varepsilon)$, and let Q be the matrix with entries $q(i, j)$. Then Q is a stochastic matrix, because its entries are nonnegative (by the choice of ε), and for every state i,

$$\sum_j q(i, j) = (1 - N\varepsilon)^{-1} \sum_j p(i, j) - (1 - N\varepsilon)^{-1} \sum_j \varepsilon = 1,$$

since the row sums of P are all 1. Observe that $P = (1 - N\varepsilon)Q + \varepsilon J$, where J is the $N \times N$ matrix with all entries 1.

Now consider the total variation distance between $\nu^T P$ and $\mu^T P$. Using the fact that $\sum_i \nu(i) = \sum_i \mu(i) = 1$, we have

$$2\|\nu^T P - \mu^T P\|_{TV} = \sum_j |(\nu^T P)_j - (\mu^T P)_j|$$

$$= \sum_j |\sum_i (\nu(i)p(i, j) - \mu(i)p(i, j))|$$

$$= \sum_j |\sum_i (\nu(i) - \mu(i))q(i, j)(1 - N\varepsilon)|.$$

Factor out $(1 - N\varepsilon) := \alpha$. What's left is

$$\sum_j |\sum_i (\nu(i) - \mu(i))q(i, j)| \leq \sum_i \sum_j |\nu(i) - \mu(i)|q(i, j)$$

$$= \sum_i |\nu(i) - \mu(i)| \sum_j q(i, j)$$

$$= \sum_i |\nu(i) - \mu(i)|$$

$$= 2\|\nu^T - \mu^T\|_{TV}.$$

\square

2.5. Contraction Mapping Fixed Point Theorem. What do we gain by knowing that the action of the transition probability matrix on the simplex is a contraction? First, it tells us that if we start the Markov chain in two different initial distributions, then the distributions after one step are closer than they were to start. Consequently, by induction, after n steps they are even closer: in fact, the total variation distance will decrease by a factor of α at each step, and so will approach zero exponentially quickly as $n \to \infty$. This means that the Markov chain will ultimately “forget” its initial distribution.

Following is a formalization, due to Banach, of the preceding argument.

Theorem 7. Let (S, d) be a compact metric space, and $F : S \to S$ a strict contraction, that is, a function such that for some real number $\alpha < 1$,

$$d(F(x), F(y)) \leq \alpha d(x, y) \quad \text{for all } x, y \in S.$$

(13)
Then F has a unique fixed point $z \in S$ (that is, a point such that $F(z) = z$), and the orbit of every point $x \in S$ converges to z, that is, if F^n is the nth iterate of F, then

\begin{equation}
\lim_{n \to \infty} F^n(x) = z.
\end{equation}

Proof. First, notice that if F is a contraction, then it must be continuous. (Exercise: check this.) Second, if F is strictly contractive with contraction constant α as in (13), then for any point $x \in S$ and every $n = 1, 2, \ldots$,

\begin{equation}
d(F^n(x), F^{n+1}(x)) \leq \alpha^n d(x, F(x));
\end{equation}

this follows from the assumption (13), by an easy induction argument. Now because the space S is compact, it has the Bolzano-Weierstrass property: every sequence has a convergent subsequence. Hence, for any point $x \in S$ the sequence $\{F^n(x)\}_{n \geq 1}$ has a convergent subsequence. The limit z of any such subsequence must be a fixed point of F. Here is why: If

\[
\lim_{k \to \infty} F^{n_k}(x)
\]

exists, then by continuity of F,

\[
F(z) = \lim_{k \to \infty} F^{n_k+1}(x);
\]

but by (15),

\[
d(F^{n_k}(x), F^{n_k+1}(x)) \leq \alpha^{n_k} d(x, F(x)),
\]

and this converges to 0 as $k \to \infty$, since $\alpha < 1$. Consequently, the two sequences $F^{n_k}(x)$ and $F^{n_k+1}(x)$ cannot converge to different limits, and so it follows that $z = F(z)$.

This proves that the limit of any convergent subsequence of any orbit $F^n(x)$ must be a fixed point of F. To complete the proof, it suffices to show there is only one fixed point. (Exercise: Why does this imply that every orbit $F^n(x)$ must converge?) Suppose there were two fixed points

\[
z_1 = F(z_1) \quad \text{and} \quad z_2 = F(z_2).
\]

By the assumption (13),

\[
d(z_1, z_2) = d(F(z_1), F(z_2)) \leq \alpha d(z_1, z_2).
\]

Since $\alpha < 1$, it must be that $d(z_1, z_2) = 0$, that is, z_1 and z_2 must be the same point. □

2.6. **Proof of Theorem 3.** We have now shown that (a) if the transition probability matrix P has strictly positive entries then the mapping $\nu^T \mapsto \nu^T P$ is a strict contraction of the simplex \mathcal{P}, (b) a strict contraction of a compact metric space has a unique fixed point, and (c) all orbits approach the fixed point. It follows that if P has strictly positive entries then the conclusions of Theorem 3 all hold. Thus, it remains to show how to relax the requirement that the entries of P are strictly positive.

Lemma 8. Let P be the transition probability matrix of an irreducible, aperiodic, finite-state Markov chain. Then there is an integer m such that for all $n \geq m$, the matrix P^n has strictly positive entries.
This is where the hypothesis of *aperiodicity* is needed. The result is definitely not true if the Markov chain is periodic: for example, consider the two-state Markov chain with transition probability matrix
\[
P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
\]
(Exercise: Check what happens when you take powers of this matrix.)

The proof of Lemma 8 will be deferred to section 2.7 below.

Proof of Theorem 3. The proof of Lemma 8 will be given later. For now, let’s take it as true; then if \(P \) is aperiodic and irreducible, as assumed in Theorem 3, there exists an integer \(m \geq 1 \) such that \(Q := P^m \) has strictly positive entries. Powers of a stochastic matrix are also stochastic matrices, so \(Q \) satisfies the hypotheses of Proposition 6. Hence, \(Q \) is strictly contractive on the simplex \(\mathcal{P} \). Therefore, by the Contraction Mapping Fixed Point Theorem, there exists a unique probability vector \(\pi^T \) such that
\[
\pi^T = \pi^T Q = \pi^T P^m,
\]
and such that for all \(\nu^T \in \mathcal{P} \),
\[
\lim_{n \to \infty} \nu^T Q^n = \lim_{n \to \infty} \nu^T P^{nm} = \pi^T.
\]
This last applies not only to \(\nu^T \), but also to \(\nu^T P, \nu^T P^2, \ldots \), since these are all probability vectors. Consequently, for every \(k = 0, 1, \ldots, m - 1 \),
\[
\lim_{n \to \infty} \nu^T P^{nm+k} = \pi^T.
\]
Now if a sequence of vectors \(\{ \nu_n \}_{n \geq 1} \) has the property that the subsequences \(\{ \nu_{nm+k} \}_{n \geq 1} \), for \(k = 0, 1, \ldots m - 1 \), all converge to the same limit \(w \), then the entire sequence must converge to \(w \). (Exercise: Explain why.) Thus,
\[
\lim_{n \to \infty} \nu^T P^n = \pi^T
\]
This is equivalent to the statement (10).

It remains to show that \(\pi \) is a stationary distribution, and that \(\pi \) is the only stationary distribution. Set \(\mu^T := \pi^T P \); then by equation (16) (multiply both sides by \(P \) on the right), \(\mu^T = \mu^T Q \), and so \(\mu \) is a stationary distribution for \(Q \). But \(\pi^T \) is the unique stationary distribution of \(Q \), since \(Q \) is strictly contractive on the simplex; thus, \(\mu = \pi \), and so \(\pi \) is a stationary distribution for \(P \). That it is the only stationary distribution follows from (17). \(\Box \)

2.7. **Aperiodicity: Proof of Lemma 8.** We must show that if the transition probability matrix \(P \) is aperiodic then for all sufficiently large integers \(n \), the matrix \(P^n \) has strictly positive entries. For this, it is enough to show that the diagonal entries of \(P^n \) are all eventually positive. To see this, suppose that
\[
p_n(x, x) > 0 \quad \text{for every } x \in X \text{ and every } n \geq m.
\]
Choose any two states x, y. Since the Markov chain is irreducible, there is an integer $k = k(x, y)$ such that $p_k(x, y) > 0$. But it then follows from the Chapman-Kolmogorov equations that

$$p_{k+n}(x, y) \geq p_n(x, x)p_k(x, y) > 0 \quad \forall n \geq m.$$

Thus, if $n \geq m + \max_{x,y} k(x, y)$ then all entries of P^n will be positive.

We must now show that for each state x the return probabilities $p_n(x, x)$ are positive for all large n. Equivalently, we must show that the set

$$A_x := \{n \geq 1 : p_n(x, x) > 0\}$$

contains all but finitely many elements of the natural numbers \mathbb{N}. For this, we will use two basic properties of A_x: First, by the Chapman-Kolmogorov equations, the set A_x is an additive semigroup, in other words, it is closed under addition: if $m, n \in A_x$ are two elements of A_i then $m + n \in A_x$. This implies also that A_x is closed under scalar multiplication by positive integers: if $m \in A_x$ then all multiples of m are elements of A_x. Second, the greatest common divisor of the numbers in A_x is 1, because by hypothesis the Markov chain is aperiodic.

Fix an element $K \in A_x$ (there must be at least one, because by hypothesis the transition probability matrix P is irreducible, and so there are positive-probability paths from x to x of positive length). For each integer $n = 0, 1, 2, \cdots$, define

$$B_n = \{i \in \{0, 1, 2, \cdots, K-1\} : nK + i \in A_x\}.$$

Since A_x is closed under addition, if $nK + i \in A_x$ then $(n+1)K + i \in A_x$, thus,

$$B_0 \subset B_1 \subset B_2 \subset \cdots.$$

Therefore, the sets B_n must eventually stabilize: in particular, if $B = \cup B_n$ then $B_n = B$ for all sufficiently large n.

We claim that B is closed under addition modulo K. To see this, observe that if $i, j \in B$ then for sufficiently large n, both $nK + i$ and $nK + j$ are in A_x. Consequently, since A_x is closed under addition, $2nK + i + j \in A_x$, and so either $i + j \in B_{2n}$ (if $i + j < K - 1$) or $i + j - K \in B_{2n+1}$ (if $i + j \geq K$). But this implies that $i + j$, after reduction modulo K, is in B.

Since B is closed under addition modulo K, it is an additive subgroup of \mathbb{Z}_K. Now any additive subgroup of \mathbb{Z}_K is generated by its least non-zero element J; the subgroup is proper if and only if $J \geq 2$. In this case, J is a divisor of K. But this is impossible, as it would imply that all elements of A_x are multiples of J, in contradiction to our hypothesis that the transition probability matrix P is aperiodic.

This proves that $B = \{0, 1, 2, \cdots, K-1\}$. By construction, $B = B_n$ for all sufficiently large n, and by definition of B_n, it follows that for all large n, every integer between nK and $nK + K - 1$ is an element of A_x. Therefore, A_x contains all but finitely many of the positive integers.

□

This argument actually proves the following fact, which we record for later use:
Corollary 9. If A is a subset of the natural numbers that is closed under addition, and if the greatest common divisor of the elements of A is 1, then A contains all but at most finitely many of the positive integers.

3. Stopping Times, Strong Markov Property

Definition 6. Let $\{X_n\}_{n\geq 0}$ be a Markov chain on finite or countable state space \mathcal{X}. A stopping time is a random variable T with values in the set $\mathbb{Z}_+ \cup \{\infty\}$ such that for every $m \in \mathbb{Z}_+$, the event $\{T = m\}$ is an element of the sigma algebra generated by $X_0, X_1, \ldots X_m$.

Example 5. The first passage time to a state x is the random variable $T_x = T_1^x$ whose value is the first time $n \geq 1$ that $X_n = x$, or ∞ if there is no such (finite) n. The kth passage time is the random variable T_k^x that records the time of the kth visit to x, or ∞ if the Markov chain does not visit the state x at least k times. Clearly, T_k^x is a stopping time.

Example 6. Here is a random time that is not a stopping time: Fix a state x, and let L be the last time $n \leq 100$ that $X_n = x$. This isn’t (in general) a stopping time, because (for instance) to determine whether $L = 97$, you would need to know not only the first 97 steps, but also the 98th through 100th.

Proposition 10. [Strong Markov Property.] Let T be a stopping time for the Markov chain $\{X_n\}_{n\geq 0}$. Then the Markov chain “regenerates” at time T, that is, the future X_{T+1}, X_{T+2}, \ldots is conditionally independent of the past $X_0, X_1, \ldots X_{T-1}$ given the value of T and the state $X_T = x$ at time T. More precisely, for any $m < \infty$ and all states $x_0, x_1, \ldots x_{n+m} \in \mathcal{X}$ such that $T = m$ on the event $\{X_i = x_i \forall i \leq m\}$

\begin{align*}
P(X_{T+i} = x_{m+i} \forall 1 \leq i \leq n \mid T = m \text{ and } X_i = x_i \forall 0 \leq i \leq m) = \prod_{i=1}^n p(x_{m+i-1}, x_{m+i}).
\end{align*}

Proof. The event $\{X_i = x_i \forall i \leq m\}$ determines whether the event $T = m$ occurs or not. If not, the event $\{T = m\} \cap \{X_i = x_i \forall i \leq m\}$ has probability 0, and therefore is impossible. Otherwise (and this is the whole point of Definition 6), the condition $T = m$ in the conditional probability (18) is redundant, as

$$\{T = m\} \cap \{X_i = x_i \forall i \leq m\} = \{X_i = x_i \forall i \leq m\}.$$

Therefore, the assertion (18) follows from the Markov property (6).

4. Recurrence and Transience

Definition 7. Let $\{X_n\}_{n\geq 0}$ be a Markov chain on a finite or countable state space \mathcal{X}, and for any state x let $T_x = T_x^1$ be the first passage time to x. A state x is

\begin{itemize}
 \item[(a)] recurrent if $P^x\{T_x < \infty\} = 1$;
 \item[(b)] transient if $P^x\{T_x < \infty\} < 1$;
\end{itemize}
(c) **positive recurrent** if \(E_x^x T_x < \infty\); and

(d) **null recurrent** if it is recurrent but \(E_x^x T_x = \infty\).

Before looking at some examples, let’s do some preliminary reasoning that will lead to alternative conditions for transience and recurrence that are often easier to check than the conditions in the definition. First, suppose that state \(x\) is recurrent; by definition, if the chain starts at \(X_0 = x\) then it is certain to return. But according to the Strong Markov Property, the chain regenerates at the time \(T^1_x\) of first return, that is, the future behaves like a brand new version of the Markov chain started at state \(x\). Thus, it is certain that the state \(x\) will be revisited a second time, and similarly, by induction, \(x\) will be revisited at least \(k\) times, for any \(k\). So: If a state \(x\) is recurrent, then it will be visited infinitely often.

Now suppose that \(x\) is transient. It is no longer certain that \(x\) will be revisited, but on the event that it is, the chain will regenerate at time \(T^1_x\), by the Strong Markov Property. Therefore, for every \(k = 1, 2, \ldots\),

\[
P_x^x \{T^k_x < \infty\} = P_x^x \{T_x < \infty\}^k.
\]

Proof of (19). A formal proof goes by induction on \(k\). The case \(k = 1\) is obvious, so we need only do the inductive step. Suppose, then, that the formula holds for all positive integers up to \(k\); we’ll show that it then holds also for \(k + 1\). By the Strong Markov Property, for any integers \(m, n \geq 1\),

\[
P_x^x (T^{k+1}_x = m + n \mid T^k_x = m) = P_x^x \{T_x = n\}.
\]

This follows from (18) by summing over all paths \(x_{m+1}, \ldots, x_{m+n}\) such that \(x_{m+i} \neq x\) for \(i < n\), but \(x_{m+n} = x\). Summing (20) over \(n \geq 1\) gives

\[
P_x^x (T^{k+1}_x < \infty \mid T^k_x = m) = P_x^x (T_x < \infty).
\]

Now sum on \(m:\)

\[
P_x^x \{T^{k+1}_x < \infty\} = \sum_{m=1}^{\infty} P_x^x (T^{k+1}_x < \infty \mid T^k_x = m) P_x^x \{T^k_x = m\}
\]

\[= P_x^x (T_x < \infty) \sum_{m=1}^{\infty} P_x^x \{T^k_x = m\}
\]

\[= P_x^x (T_x < \infty) P_x^x \{T^k_x < \infty\}
\]

\[= P_x^x (T_x < \infty)^{k+1},
\]

the last by the induction hypothesis. \(\square\)

Note: This argument is typical of how the Strong Markov Property is used in doing formal proofs in Markov chain theory. Since such arguments are tedious, and (should be) fairly obvious once you have seen one example, I will omit them from here on.
Corollary 11. State \(x \) is recurrent if and only if the expected number of visits to \(x \) is infinite, that is,

\[
E^x N_x = \sum_{n=0}^{\infty} p_n(x, x) = \infty, \quad \text{where}
\]

\[
N_x = \sum_{n=0}^{\infty} 1\{X_n = x\}.
\]

Proof. Since expectations and sums can always be interchanged (even when the sum has infinitely many terms, provided they are all nonnegative),

\[
E^x N_x = E^x \sum_{n=0}^{\infty} 1\{X_n = x\} = \sum_{n=0}^{\infty} P^x \{X_n = x\} = \sum_{n=0}^{\infty} p_n(x, x).
\]

But \(N_x \) has another representation: it is one plus the number of indices \(k \) such that \(T^x_k < \infty \), since each such index counts one visit to \(x \). Hence,

\[
E^x N_x = 1 + E^x \sum_{k=1}^{\infty} 1\{T^x_k < \infty\}
\]

\[
= 1 + \sum_{k=1}^{\infty} P^x \{T^x_k < \infty\}
\]

\[
= 1 + \sum_{k=1}^{\infty} P^x \{T^x_k < \infty\}^k
\]

\[
= 1/(1 - P^x \{T^x_k < \infty\}) = 1/P^x \{T^x = \infty\}.
\]

By definition, \(x \) is recurrent if \(P^x \{T^x < \infty\} = 1 \). Our calculation of \(E^x N_x \) shows that this will be the case precisely if \(E^x N_x = \infty \). \(\Box \)

Corollary 12. Recurrence and transience are class properties: If \(x \) is recurrent and \(x \) communicates with \(y \) then \(y \) is also recurrent.

Note: Positive and null recurrence are also class properties, as will be shown later. Corollary 12 implies that in an irreducible Markov chain, all states have the same type (recurrent or transient). We call an irreducible Markov chain recurrent or transient according as its states are recurrent or transient (and similarly for positive and null recurrence).

Proof. Suppose that \(x \) is recurrent, and that \(y \) communicates with \(x \). Then \(y \) is accessible from \(x \), and \(x \) is accessible from \(y \), so there exist integers \(k, l \geq 1 \) such that \(p_k(x, y) > 0 \) and \(p_l(y, x) > 0 \). By Chapman-Kolmogorov,

\[
p_{k+l}(y, y) \geq p_l(y, x)p_k(x, x)p_k(x, y),
\]

so by the recurrence of \(x \) and Corollary 11,

\[
\sum_{n=0}^{\infty} p_n(y, y) \geq p_l(y, x)p_k(x, x) \sum_{n=0}^{\infty} p_n(x, x) = \infty.
\]
It therefore follows from Corollary 11 that \(y \) is recurrent.

\[\square \]

Polya's Theorem. Simple random walk in dimensions \(d = 1, 2 \) is recurrent, and in dimensions \(d \geq 3 \) is transient.

Proof. (Sketch) We'll use Corollary 11. This requires approximations for (or bounds on) the return probabilities \(P_n(x, x) = P_n(0,0) \). Simple random walk has period 2, so \(P_{2n+1}(0,0) = 0 \) for all \(n \). Thus, we need only worry about the return probabilities for even times \(P_{2n}(0,0) \). This probability is the probability that the sum of the \(2n \) increments \(\xi_j \) is the 0 vector. The increments are i.i.d. random vectors, with mean zero and a covariance matrix that I could calculate if I were any good at that sort of thing. But for the purposes of this calculation, we don’t even need to know the value — we only need to know that it is finite, because then the *Local Central Limit Theorem* (which you can look up in your 304 notes, or in Greg Lawler’s Random Walk book) implies that

\[P_{2n}(0,0) \sim C / n^{d/2} \]

for some positive constant \(C \) that can be calculated from the covariance matrix. The sequence \(1/n^{d/2} \) is summable if \(d > 2 \), but is not summable in \(d = 1,2 \), and so the theorem follows.

\[\square \]

5. **The Excursion Chain**

Assume in the remaining sections 5–7 that \(X_n \) is an irreducible Markov chain on a finite or countable state space \(\mathcal{X} \) with transition probability matrix \(\mathbb{P} \). Assume that there is a recurrent state \(x \). (Recall that if there is a recurrent state, then all states are recurrent, by Corollary 12.) Suppose that the Markov chain \(X_n \) is started in state \(X_0 = x \). Keep a random list of states visited, using the following rule: Start the list with just one item \(x \); for each \(n = 1, 2, \ldots \), add the state \(X_n \) to the end of the list if \(X_n \neq x \), but if \(X_n = x \), erase everything on the list except the item \(x \). The sequence of random lists produced by this algorithm is called the excursion chain.

Example: If the sequence of states visited by the Markov chain \(X_n \) is \(x, y_1, y_2, x, y_3, y_4, \ldots \), then the successive states of the excursion chain are

\[x, \ x y_1, \ x y_1 y_2, \ x, \ x y_3, \ x y_3 y_4, \ \ldots . \]

In general, the lists that can occur as states of the excursion chain are the finite words \(x y_1 y_2 \cdots y_k \) of length \(\geq 1 \) such that (a) the letter \(x \) occurs only once in the word, at the beginning; and (b) for every pair \(y_j y_{j+1} \) (or \(x y_1 \)) of adjacent letters, the transition probability \(p(y_j, y_{j+1}) > 0 \), that is, \(y_j \rightarrow y_{j+1} \) is an allowable jump of the Markov chain \(X_n \). Denote the set of all such words by \(\mathcal{Y} \).
Definition 8. The *excursion chain* (or more properly, the *x−excursion chain*) is the Markov chain on the state space \mathcal{Y} with transition probabilities
\[
q(x y_1 y_2 \cdots y_k, x y_1 y_2 \cdots y_k y_{k+1}) = p(y_k, y_{k+1}) \quad \text{if } y_{k+1} \neq x;
q(x y_1 y_2 \cdots y_k, x) = p(y_k, x);
q(x, x y) = p(x, y) \quad \text{if } y \neq x;
q(w, w') = 0 \quad \text{otherwise}.
\]

Let $F : \mathcal{Y} \to \mathcal{X}$ be the projection on the last letter, that is, the mapping that assigns to each word $x y_1 \cdots y_k$ its last letter y_k.

Lemma 13. Let Y_n be a version of the excursion chain, that is, a Markov chain on the state space \mathcal{Y} with transition probability matrix $Q = (q(u, v))_{u, v \in \mathcal{Y}}$. Then $F(Y_n)$ is a version of the original Markov chain X_n, equivalently, $F(Y_n)$ is a Markov chain on \mathcal{X} with transition probability matrix P.

Proof. Routine exercise. \qed

When does the excursion chain have a stationary distribution? Suppose that it does: call it ν. By definition of a stationary distribution, the distribution ν must satisfy the system of equations $\nu^T = \nu^T Q$. Now if $w \in \mathcal{Y}$ is a word of length 2 or more, then there is only one word w' such that $q(w', w) > 0$, namely, the word w' gotten by deleting the last letter of w. Hence, the steady state equation for $\nu(w)$ reads
\[
\nu(w) = \nu(w') q(w', w).
\]
Applying the same reasoning to $\nu(w')$ and iterating, we find that
\[
(22) \quad \nu(x y_1 \cdots y_k) = \nu(x) p(x, y_1) \prod_{i=1}^{k-1} p(y_i, y_{i+1}).
\]
This shows that there can be at most one stationary distribution for the excursion chain, and that a stationary distribution exists if and only if there is a finite, positive value of $\nu(x)$ such that
\[
(23) \quad \sum_{k=0}^{\infty} \sum_{y_1 y_2 \cdots y_k} \nu(x) p(x, y_1) \prod_{i=1}^{k-1} p(y_i, y_{i+1}) = 1.
\]

Proposition 14. The excursion chain has a stationary probability distribution ν if and only x is a positive recurrent state of the Markov chain X_n, that is, $E^x T_x < \infty$. In this case, the stationary distribution is given by (22), with
\[
(24) \quad \nu(x) = 1/E^x T_x.
\]

Proof. Consider the kth term of the outer sum in (23): This is a sum over all paths $y_1 y_2 \cdots y_k$ of length k that do not contain the state k. The union of all such paths is the
event that the Markov chain X_n will not revisit the state x in its first k steps. Thus, for each $k \geq 0$,
\[
\sum_{y_1, y_2, \ldots, y_k} p(x, y_1) \prod_{i=1}^{k-1} p(y_i, y_{i+1}) = P^x\{T_x > k\}.
\]
Hence, the equation (23) reduces to
\[
\nu(x) \sum_{k=0}^{\infty} P^x\{T_x > k\} = 1.
\]
The result (24) now follows, because the expectation of any nonnegative integer-valued random variable N is given by $E N = \sum_{k \geq 0} P\{N > k\}$. \qed

Corollary 15. If an irreducible Markov chain has a positive recurrent state x, then it has a stationary distribution π for which
\[
\pi(x) = 1/E^x T_x
\]

Proof. We have just seen that the existence of a positive recurrent state x implies that the $x-$ excursion chain has a unique stationary distribution ν. We have also seen that the excursion chain Y_n projects (via the mapping F onto the last letter) to a version of the original Markov chain X_n. It follows that the stationary distribution of the chain Y_n projects to a stationary distribution for X_n:
\[
\pi(z) = \sum_{y : F(y) = z} \nu(y).
\]
Exercise: Verify that stationary distributions project to stationary distributions. \qed

Later we will show that an irreducible Markov chain can have at most one stationary distribution π, and also that if there is a positive recurrent state then all states are positive recurrent. It will then follow that the formula (25) must hold for all states x.

6. Excursions and the SLLN

The excursion chain introduced in the preceding section grows random words one letter at a time. In this section, we will look at complete excursions, that is, the segments of the Markov chain between successive visits to a distinguished state x. Once again, assume that X_n is an irreducible, recurrent Markov chain on a finite or countable state space \mathcal{X} with transition probability matrix P. Fix a state x, and for typographical ease, set
\[
\tau(k) = T_x^k \quad \text{for } k = 1, 2, \ldots.
\]
Thus, the times $\tau(k)$ mark the successive visits to state x. For convenience, set $\tau(0) = 0$. The *excursions* from state x are the random sequences (words)
\[
W_1 := (X_0, X_1, X_2, \ldots, X_{\tau(1)-1}), \\
W_2 := (X_{\tau(1)}, X_{\tau(1)+1}, X_{\tau(1)+2}, \ldots, X_{\tau(2)-1}), \\
\text{etc.}
\]
Since the Markov chain is recurrent, the stopping times $\tau(k)$ are all finite, so the excursions all terminate, that is, the excursions are finite words with letters in the alphabet \mathcal{X}.

Lemma 16. Under P^x, the excursions W_1, W_2, \ldots are independent and identically distributed. Under P^y (where $y \neq x$), the excursions W_1, W_2, \ldots are independent, and W_2, W_3, \ldots are identically distributed.

Proof. Consider any finite sequence w_1, w_2, \ldots, w_k of possible excursions, with word representations

$$w_j = (x_{j,1}, x_{j,2}, \ldots, x_{j,m(j)}).$$

In order that these words be allowable as excursions, they may only include the letter x once, at the very beginning. By the Markov property,

$$P^x\{W_j = w_j \forall j = 1, 2, \ldots, k\} = \prod_{j=1}^{k} \left(\prod_{l=1}^{m(j)} p(x_{j,l}, x_{j,l+1}) \right) p(x_{j,m(j)-1}, x).$$

(Note that the final factor $p(x_{j,m(j)-1}, x)$ in the inner product occurs because, in order that w_j be the jth excursion, the Markov chain must jump back to the state x at the conclusion of the excursion.) Since this is a product of factors identical in form, it follows that the excursions W_1, W_2, \ldots are i.i.d. A similar calculation applies under the probability measure P^y; the only difference is that the very first excursion must start with the letter y, rather than x, so its distribution differs from the rest. □

This lemma is perhaps the most useful technical tool (along with the Strong Markov Property) in the analysis of discrete Markov chains, because it provides a means for reducing problems about the long-run behavior of the Markov chain to problems about sequences of i.i.d. random variables and vectors.

Corollary 17. If there is a positive recurrent state x, then all states are positive recurrent.

Proof. Exercise. Hint: First show that if x is positive recurrent then

$$E^x(T_x \mid T_y < T_x) < \infty \quad \text{and} \quad E^x(T_x \mid T_y > T_x) < \infty$$

for all states $y \neq x$. Then show that a y—excursion is contained in the conjunction of (i) an x—excursion conditioned to have a visit to y, followed by (ii) a geometric number of x—excursions conditioned not to visit to y, followed by (iii) an x—excursion conditioned to have a visit to y. Alternatively, fashion an argument based on the SLLN for excursions formulated in Corollary 18 below. □

Definition 9. Let $f : \mathcal{X} \to \mathbb{R}$ be a real-valued function on the state space \mathcal{X}. The additive extension of f to the set of finite words with letters in \mathcal{X} is the function f_+ that assigns to a finite word $w = (x_1, x_2, \ldots, x_m)$ the value

$$f_+(w) := \sum_{i=1}^{m} f(x_i).$$
Corollary 18. Let \(f : \mathcal{X} \to \mathbb{R} \) be a nonnegative (or bounded) function, and let \(f^+ \) be its additive extension. For any initial state \(y \in \mathcal{X} \), with \(P^y \)-probability one,

\[
\lim_{k \to \infty} E_x f^+ (W_1) = E_x \sum_{j=0}^{\tau(1)-1} f(X_j).
\]

In particular (use \(f \equiv 1 \)), with \(P^y \)-probability one,

\[
\lim_{k \to \infty} \tau(k)/k = E_x \tau(1).
\]

Proof. For \(y = x \), this follows directly from the usual SLLN (Strong Law of Large Numbers) for sums of i.i.d. nonnegative random variables, because by Lemma 16, under \(P^x \) the random variables \(f^+_i(W_i) \) are independent and identically distributed.

On the other hand, if \(y \neq x \) then under \(P^y \) the distribution of the first excursion \(W_1 \) may be different from that of the subsequent excursions \(W_2, W_3, \ldots \); however, it is still the case that \(W_2, W_3, \ldots \) are i.i.d. and have the same distribution (under \(P^y \)) as does \(W_1 \) under \(P^x \) (because all of the excursions after the first start at \(x \)). Hence, even though the distribution of \(f^+_i(W_i) \) may be different, this won’t affect the limiting behavior in (28), because for large \(k \) the factor \(k^{-1} \) will dampen out the effect of \(f^+_i(W_i) \).

Let’s consider the implications of (29). This states that for large \(k \), the time of the \(k \)th visit to \(x \) will (with probability approaching one as \(k \to \infty \)) be about \(k E_x \tau(1) + o(k) \). But this means that for large \(n \), the number

\[
N^n_x := \sum_{i=1}^{n} 1\{X_i = x\}
\]

of visits to \(x \) by time \(n \) will be about \(n/E_x \tau(1) \). Recall (Corollary 15) that if the Markov chain is positive recurrent, then there exists a stationary distribution \(\pi \) for which \(\pi(x) = 1/E_x \tau(1) \). (We don’t yet know that the stationary distribution is unique, but we will prove this shortly.) Therefore, (29) implies that if the Markov chain is positive recurrent, then the limiting fraction of time that the Markov chain spends in state \(x \) is \(\pi(x) \), and this holds regardless of the initial state \(y \). On the other hand, if the Markov chain is null recurrent, then \(E_x \tau(1) = \infty \), and so (29) implies that the limiting fraction of time spent in state \(x \) is 0. (This is why null recurrent chains are called null recurrent.)

Theorem 19. Fix \(x \in \mathcal{X} \), and let \(N_n = N^n_x \) be the number of visits to state \(x \) up to time \(n \). If the Markov chain is irreducible and positive recurrent, then there is a unique stationary probability distribution \(\pi \), and for all states \(x, y \), with \(P^y \)-probability 1,

\[
\lim_{n \to \infty} \frac{N^n_x}{n} = \pi(x)
\]

Conversely, if the Markov chain is irreducible and has a stationary distribution, then (i) the stationary distribution is unique, and (ii) the Markov chain is positive recurrent. If, on the other hand, the Markov chain is irreducible and null recurrent, then there is no
stationary probability distribution, and for all states \(x, y \), with \(P^y \)-probability 1,

\[
\lim_{n \to \infty} \frac{N_n^x}{n} = 0
\]

In either case, the Markov chain visits every state infinitely often.

Proof. The argument outlined in the paragraph preceding the statement of the theorem shows that in both the positive and null recurrent cases,

\[
\lim_{n \to \infty} \frac{N_n^x}{n} = 1 / E^x T_x
\]

with \(P^y \)-probability one, for any \(y \in \mathcal{X} \). In the null recurrent case, \(E^x T_x = \infty \) for every state \(x \) (Corollary 17), and so (32) follows.

Assume now that the Markov chain has a stationary distribution \(\pi \) (recall that in the positive recurrent case there is always at least one stationary distribution, by Corollary 15). Since \(P^\pi = \sum_y \pi(y) P^y \) is a weighted average of the probability measures \(P^y \), the convergence (33) holds with \(P^\pi \)-probability 1. Since the ratios \(N_n^x / n \) are bounded between 0 and 1, the Bounded Convergence Theorem implies that

\[
\lim_{n \to \infty} E^\pi N_n^x / n = 1 / E^x T_x.
\]

But

\[
E^\pi N_n^x / n = E^\pi n^{-1} \sum_{j=1}^n 1\{X_j = x\} = n^{-1} \sum_{j=1}^n P^\pi\{X_j = x\} = \pi(x),
\]

since \(\pi \) is a stationary distribution. Therefore,

\[
\pi(x) = 1 / E^x T_x
\]

for all states \(x \). It follows that there is no stationary distribution in the null recurrent case (because (34) would force it to be identically zero) and in the positive recurrent case there can only be one stationary distribution.

It remains to prove the final assertion of the theorem, that every state is visited infinitely often, with probability one. In the positive recurrent case, this follows directly from (31), because \(\pi(x) > 0 \). (Recall [Fact 3] that every state in an irreducible, positive recurrent Markov chain must have positive stationary probability.) Now consider the null recurrent case: Fix states \(x, y, z \), and consider the event that an \(x \)–excursion \(W_i \) includes a visit to \(z \). This event has positive \(P^x \)-probability, because by irreducibility there exist positive probability paths from \(x \) to \(z \) and from \(z \) back to \(x \), which may be pieced together to give an \(x \)–excursion with a visit to \(z \). Therefore, the SLLN (28) implies that, under \(P^y \), the limiting proportion of the excursions \(W_i \) that visit \(z \) is positive. \(\square \)
7. Coupling and Kolmogorov’s Limit Theorem

Theorem 20. Assume that X_n is an aperiodic, positive recurrent, irreducible Markov chain on \mathcal{X}, and let π be the unique stationary distribution. Then for all states x, y,

$$(35) \quad \lim_{n \to \infty} P^x \{X_n = y\} = \pi(y).$$

This is the fundamental limit theorem of discrete Markov chain theory. There are a number of different proofs, each with its own virtues; the proof to be given here relies on a useful technique known as coupling, first invented by Doeblin several years after Kolmogorov published his work on countable state Markov chain.

Proof of Theorem 20. The strategy of the coupling argument is this: Suppose that we could construct two versions X_n and X_n^* of the Markov chain simultaneously (on the same probability space (Ω, \mathcal{F}, P)) in such a way that

- $(36) \quad X_0 = x$;
- $(37) \quad X_0^* \sim \pi$; and
- $(38) \quad X_n = X_n^*$ eventually with probability 1.

(The third condition is the reason for the term “coupling”.) Since X_n^* starts in the stationary distribution π, at any subsequent time $n \geq 1$ the distribution of X_n^* will still be π. On the other hand, for large n the chains X_n and X_n^* will be in the same state with high probability, by the third requirement, so

$$|P \{X_n = y\} - \pi(y)| = |P \{X_n = y\} - P \{X_n^* = y\}| \leq P \{X_n \neq X_n^*\} \to 0$$

as $n \to \infty$. Kolmogorov’s theorem then follows.

There are a number of ways to construct the coupling X_n, X_n^*. The one followed here is completely elementary, relying only what we already know about Markov chain theory. The idea is to run the chains X_n and X_n^* independently, starting from initial states $X_0 = x$ and $X_0^* \sim \pi$, until the first time τ that they meet (i.e., τ is the first n such that $X_n = X_n^*$). Then, after time τ, we force the two chains to follow the same path, so that

$$X_n = X_n^* \text{ for all } n \geq \tau.$$

Following is a more precise description of the construction: Let X_n and X_n' be independent versions of the Markov chain, with initial states $X_0 = x$ and $X_0' \sim \pi$. (Observe that independent realizations of a Markov chain can always be constructed – for instance, just use two independent random number generators in conjunction with the transition probabilities to determine the jumps.) Define

$$(39) \quad \tau := \min\{n \geq 0 : X_n = X_n'\};$$

we will prove below that $\tau < \infty$ with probability one. Finally, define

$$(40) \quad X_n^* = X_n' \text{ for } n \leq \tau, \quad \text{and} \quad X_n^* = X_n \text{ for } n \geq \tau.$$

This definition is valid, because $X_\tau = X_\tau'$.
To prove that $\tau < \infty$ with probability one, and that the process X^*_n just constructed is actually a version of the Markov chain, we shall look more closely at the sequence $V_n := (X_n, X'_n)$ that tracks the states of both X and X' together. Since the sequences X_n and X'_n are independent, by hypothesis, the vector process V_n is itself a Markov chain on the state space $\mathcal{X} \times \mathcal{X}$, with transition probabilities

\[(41) \quad q((x, x'), (y, y')) = p(x, y)p(x', y').\]

(This is easily checked, using the fact that each of the processes X_n and X'_n has the Markov property separately, together with the mutual independence.)

Lemma 21. The Markov chain V_n is irreducible and positive recurrent, with stationary distribution ν given by

\[(42) \quad \nu((x, x')) = \pi(x)\pi(x').\]

Proof. It is routine to check that the probability distribution ν is stationary (exercise). Thus, if we can show that the Markov chain V_n is irreducible, then it will follow, by Theorem 19 that it is positive recurrent and visits every state infinitely often. The tricky thing here is irreducibility; this is where we will use the assumption that the original Markov chain X_n is aperiodic.

By hypothesis, the chain X_n is aperiodic and irreducible. Fix $x \in \mathcal{X}$, and consider the set $A_x = \{n \geq 1 : p_n(x, x) > 0\}$. By the Chapman-Kolmogorov equations, the set A_x is closed under addition (see the proof of Lemma 8). Furthermore, by irreducibility, the greatest common divisor of A_x is 1. Consequently, by Corollary 9, all but at most finitely many of the natural numbers are included in A_x. Thus, there is an integer n_x such that

\[p_n(x, x) > 0 \quad \forall n \geq n_x.\]

Now let $x, y \in \mathcal{X}$ be any two states. Since the Markov chain X_n is irreducible, there is a positive-probability path from x to y, of length (say) $k_{x,y}$. Hence, by Chapman-Kolmogorov and the result of the preceding paragraph,

\[p_n(x, y) > 0 \quad \forall n \geq n_x + k_{x,y}.\]

Finally, consider any four states x, x', y, y' (not necessarily distinct). For all $n \geq \max(n_x + k_{x,y}, n_{x'} + k_{x',y'})$,

\[q_n((x, x'), (y, y')) = p_n(x, y)p_n(x', y') > 0.\]

This proves that the vector chain V_n is irreducible, and also aperiodic. \square

Lemma 21 implies that the Markov chain V_n is irreducible and recurrent. Therefore, by Theorem 19, it must visit every state in $\mathcal{X} \times \mathcal{X}$ infinitely often, and in particular, it must visit the state (x, x) at least once. Thus, $\tau < \infty$ with probability one. Clearly, τ is a stopping time for the Markov chain V_n, and so the Strong Markov Property holds: Conditional on $\tau = m$ and on the history of V_n up to time m, the future depends only on the state $V_m = (X_m, X_m) = (z, z)$, and has the same law as a pair of independent versions
of X_n both started at z. It follows (exercise) that the spliced process X_n^* defined by (40) is a version of X'_n. □