
Introduction to Brownian Motion

1 Existence and First Properties

1.1 Definition of the Wiener process

According to the De Moivre-Laplace theorem (the first and simplest case of the cen-
tral limit theorem), the standard normal distribution arises as the limit of rescaled
simple random walk, in the following sense. Let ξ1, ξ2, . . . be independent, identi-
cally distributed Rademacher random variables, that is, independent random vari-
ables taking the values ±1 with probability 1

2
each, and for each integer n ≥ 0 let

Sn =
∑n

i=1 ξi. The discrete-time stochastic process {Sn}n≥0 is the simple random walk
on the integers. The De Moivre-Laplace theorem states that for each x ∈ R,

lim
n→∞

P{Sn/
√
n ≤ x} = Φ(x) :=

∫ x

−∞
ϕ1(y) dy where (1)

ϕt(y) =
1√
2πt

e−y
2/2t (2)

is the normal (Gaussian) density with mean 0 and variance t.

The De Moivre-Laplace theorem has an important corollary: the family {ϕt}t≥0

of normal densities is closed under convolution. To see this, observe that for any
0 < t < 1 the sum Sn = S[nt] + (Sn − S[nt]) is obtained by adding two independent
Rademacher sums; the De Moivre-Laplace theorem applies to each sum separately,
and so by an elementary scaling we must have ϕ1 = ϕt ∗ ϕ1−t. More generally, for
any s, t ≥ 0,

ϕs ∗ ϕt = ϕs+t. (3)

This identity can, of course, be proved without reference to the central limit theo-
rem, either by direct calculation (“completing the square”) or by Fourier transform.
However, our argument suggests a “dynamical” interpretation of the equation (3)
that the more direct proofs obscure. In particular, the De Moivre-Laplace theorem
implies that as n→∞,

1√
n

(S[nt1], S[nt2], . . . , S[ntm])
D−→ (Wt1 ,Wt2 , . . . ,Wtm), (4)
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where (Wti+1
−Wti)i=0,1,2,··· ,m−1 are independent Gaussian random variables with

mean zero and variances (ti+1 − ti). The convolution law (3) guarantees that the
joint distributions of these limiting random vectors are mutually consistent, that
is, if the set of times {ti}i≤m is enlarged by adding more time points, the joint
distribution of Wt1 ,Wt2 , . . . ,Wtm will not be changed. This suggests the possibility
of defining a continuous-time stochastic process {Wt}t≥0 in which all of the random
vectors (Wt1 ,Wt2 , . . . ,Wtm) are embedded.

Definition 1. A standard (one-dimensional) Wiener process (also called Brownian mo-
tion) is a continuous-time stochastic process {Wt}t≥0 (i.e., a family of real random
variables indexed by the set of nonnegative real numbers t) with the following
properties:

(A) W0 = 0.
(B) The process {Wt}t≥0 has stationary, independent increments.
(C) With probability 1, the function t→ Wt is continuous in t.
(D) For each t the random variable Wt has the NORMAL(0, t) distribution.

A continuous-time stochastic process {Xt}t≥0 is said to have independent incre-
ments if for any increasing sequence of nonnegative numbers 0 ≤ t0 < t1 < · · · < tm
the random variables (Xti+1

− Xti) are mutually independent; it is said to have
stationary increments if for any s, t ≥ 0 the distribution of Xt+s −Xs is the same as
that of Xt −X0.

Definition 2. A one-dimensional Lévy process is a continuous-time stochastic process
{Xt}t≥0 such that

(A) X0 = 0.
(B) The process {Wt}t≥0 has stationary, independent increments.
(C) With probability 1, the function t→ Xt is right-continuous in t.

Thus, the Wiener process is a Lévy process. There are many others – for instance,
the Poisson process with constant intensity λ > 0 is a Lévy process. However, a
famous (and by no means obvious) theorem of Lévy asserts that the Wiener process
is (up to rescaling and addition of linear drift) the only Lévy process with continuous
sample paths t 7→ Xt. We will not prove this in these notes.

It is not a priori obvious that there exists a Lévy process with continuous sample
paths. That such a process does exist was first proved by N. WIENER in about 1920.

Theorem 1. (Wiener) On any probability space (Ω,F , P ) that supports an infinite se-
quence of independent, identically distributed Normal−(0, 1) random variables there exists
a standard Brownian motion.

We will give a proof, due to P. LÉVY, later in this section.
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Notation and Terminology. The terms Brownian motion and Wiener process are
(unfortunately) used interchangeably by mathematicians. A Brownian motion with
initial point x is a stochastic process {Wt}t≥0 such that {Wt − x}t≥0 is a standard
Brownian motion. Unless otherwise specified, Brownian motion means standard
Brownian motion. To ease eyestrain, we will adopt the convention that whenever
convenient the index t will be written as a functional argument instead of as a
subscript, that is, W (t) = Wt.

1.2 Brownian motion and diffusion

The mathematical study of Brownian motion arose out of the recognition by Ein-
stein that the random motion of molecules was responsible for the macroscopic
phenomenon of diffusion. Thus, it should be no surprise that there are deep con-
nections between the theory of Brownian motion and parabolic partial differential
equations such as the heat and diffusion equations. At the root of the connection is
the Gauss kernel, which is the transition probability function for Brownian motion:

P (Wt+s ∈ dy |Ws = x)
∆
= pt(x, y)dy =

1√
2πt

exp{−(y − x)2/2t}dy. (5)

This follows directly from the definition of a standard Brownian motion. The
function pt(y|x) = pt(x, y) is called the Gauss kernel, or sometimes the heat kernel; it
is the fundamental solution of the heat equation). The following theorem explains
what this means.

Theorem 2. Let f : R→ R be a continuous, bounded function. Then the unique (contin-
uous) solution ut(x) to the initial value problem

∂u

∂t
=

1

2

∂2u

∂x2
(6)

u0(x) = f(x) (7)

is given by

ut(x) = Ef(W x
t ) =

∫ ∞
y=−∞

pt(x, y)f(y) dy. (8)

Here W x
t is a Brownian motion started at x.

The equation (6) is called the heat equation. That the PDE (6) has only one
solution that satisfies the initial condition (7) follows from the maximum principle:
see a PDE text for details. More important (for us) is that the solution is given by
the expectation formula (8). To see that the right side of (8) actually does solve (6),
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take the partial derivatives in the PDE (6) under the integral in (8). You then see
that the issue boils down to showing that

∂pt(x, y)

∂t
=

1

2

∂2pt(x, y)

∂x2
. (9)

Exercise: Verify this.

1.3 Brownian motion in higher dimensions

Definition 3. A standard d−dimensional Brownian motion is an Rd−valued continuous-
time stochastic process {Wt}t≥0 (i.e., a family of d−dimensional random vectors Wt

indexed by the set of nonnegative real numbers t) with the following properties.

(A)’ W0 = 0.
(B)’ With probability 1, the function t→ Wt is continuous in t.
(C)’ The process {Wt}t≥0 has stationary, independent increments.
(D)’ The increment Wt+s −Ws has the d−dimensional normal distribution with

mean vector 0 and covariance matrix tI .

The d−dimensional normal distribution with mean vector 0 and (positive definite)
covariance matrix Σ is the Borel probability measure on Rd with density

ϕΣ(x) = ((2π)d det(Σ))−1/2 exp{−xTΣ−1x/2};

if Σ = tI then this is just the product of d one-dimensional Gaussian distributions
with mean 0 and variance t. Thus, the existence of d−dimensional Brownian motion
follows directly from the existence of 1−dimensional Brownian motion: if {W (i)}t≥0

are independent 1−dimensional Brownian motions then

Wt = (W
(1)
t ,W

(2)
t , . . . ,W

(d)
t )

is a d-dimensional Brownian motion. One of the important properties of the
d−dimensional normal distribution with mean zero and covariance matrix tI pro-
portional to the identity is its invariance under orthogonal transformations. This im-
plies that if {Wt}t≥0 is a d−dimensional Brownian motion then for any orthogonal
transformation U of Rd the process {UWt}t≥0 is also a d−dimensional Brownian
motion.
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1.4 Symmetries and Scaling Laws

Proposition 1. Let {W (t)}t≥0 be a standard Brownian motion. Then each of the following
processes is also a standard Brownian motion:

{−W (t)}t≥0 (10)
{W (t+ s)−W (s)}t≥0 (11)
{aW (t/a2)}t≥0 (12)
{tW (1/t)}t≥0. (13)

Exercise: Prove this.

Exercise: Use Brownian scaling to deduce a scaling law for the first-passage time
random variables τ(a) defined as follows:

τ(a) = min{t : W (t) = a} (14)

or τ(a) =∞ on the event that the process W (t) never attains the value a.

1.5 The Wiener Isometry

Theorem 1 (the fundamental existence theorem) was first proved by N. Wiener
around 1920. Simpler proofs have since been found, but Wiener’s argument con-
tains the germ of an extremely useful insight, which is now known as the Wiener
isometry (or, in some of the older literature, the Wiener integral). Following is an
account of Wiener’s line of thought.

Suppose that Brownian motion exists, that is, suppose that on some proba-
bility space (Ω,F , P ) there is a centered Gaussian process {Wt}t∈[0,1] with covari-
ance EWtWs = min(s, t). The random variables Wt are all elements of the space
L2(Ω,F , P ) consisting of the real random variables defined on (Ω,F , P ) with finite
second moments. This space is a Hilbert space with inner product 〈X, Y 〉 = E(XY ).

Now consider the Hilbert space L2[0, 1], consisting of all real-valued square-
integrable functions on the unit interval, with inner product

〈f, g〉 =

∫ 1

0

f(x)g(x) dx.

Indicator functions 1[0,t] of intervals [0, t] are elements of L2[0, 1], and obviously

〈1[0,t],1[0,s]〉 = min(s, t).

Thus, the indicators 1[0,t] have exactly the same inner products as do the random
variables Wt in the Hilbert space L2(P ). Wiener’s key insight was that this identity
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between inner products implies that there is a linear isometry IW from L2[0, 1] into
L2(P ) mapping each indicator 1[0,t] to the corresponding random variable Wt.

Theorem 3. (Wiener’s Isometry) Let {Wt}t≥0 be a standard Wiener process defined on
a probability space (Ω,F , P ). Then for any nonempty interval J ⊆ R+ the mapping
1(s,t] 7→ Wt − Ws extends to a linear isometry IW : L2(J) → L2(Ω,F , P ). For every
function ϕ ∈ L2(J), the random variable IW (ϕ) is mean-zero Gaussian.

Proof. Given the identity 〈1[0,t],1[0,s]〉 = 〈Ws,Wt〉, the first assertion is a straightfor-
ward use of standard results in Hilbert space theory. Let H0 be the set of all finite
linear combinations of interval indicator functions 1A. Then H0 is a dense, linear
subspace of L2(J), that is, every function f ∈ L2(J) can be approximated arbitrarily
closely in the L2−metric by elements of H0. Since IW is a linear isometry of H0, it
extends uniquely to a linear isometry of L2(J), by standard results in Hilbert space
theory. (EXERCISE: Fill in the details.)

To prove the the second assertion of the theorem we must show that any random
variable IW (ϕ) in the image of the mapping IW must be Gaussian (or identically
0). For this, we will rely on the fact that each element of IW (H0) is Gaussian; this
follows because each such element is a finite linear combination

∑m
i=1 aiWti , which

can be rewritten as a finite linear combination of Wiener increments Wti −Wti−1
.

Now H0 is dense in L2(J), so for any ϕ ∈ L2(J) there is a sequence ϕn ∈ H0 such
that ϕn → ϕ in L2[0, 1]. Since IW is an isometry, it follows that

IW (ϕn)→ IW (ϕ) in L2(Ω,F , P ).

Thus, every random variable IW (ϕ) in the image of the Wiener isometry is the
L2−limit of a sequence of Gaussian random variables with mean zero. Therefore,
every random variable IW (ϕ) in the image of the Wiener isometry is Gaussian, by
the following lemma .

Lemma 1. If Yn is a sequence of mean-zero Gaussian random variables such that Yn → Y
in probability, then the limit Y is a possibly degenerate Gaussian random variable with
mean zero.

Proof. Since Yn is Gaussian with mean zero, its characteristic function must have
the form EeiθYn = exp{−θ2σ2

n/2} for some constant σ2
n < ∞. Convergence in

measure implies convergence in distribution, so Yn → Y in distribution, and so
the characteristic functions of the random variables Yn converge pointwise to the
characteristic function of Y . But the sequence of functions ϕn(θ) = exp{−θ2σ2

n/2}
converges pointwise if and only if the sequence of constants σ2

n converges to some
finite σ2 ≥ 0, and in this case the limit is

EeiθY = exp{−θ2σ2/2}.
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Consequently, the random variable Y is Gaussian if σ2 > 0, or identically 0 if
σ2 = 0.

The Hilbert space isometry IW suggests a natural way to build an i.i.d. sequence
of Normal−(0, 1) random variables. Start with any orthonormal basis ψn of L2[0, 1],
and consider the images IW (ψn) under the Wiener isometry. By Theorem 3, the
random variables IW (ψn) are Gaussian; and since IW preserves inner products, the
covariances of these random variables are

cov(IW (ψn), IW (ψm)) = δn,m.

Since uncorrelated Gaussian random variables are necessarily independent, it fol-
lows that the random variables IW (ψn) are in fact i.i.d. standard normals.

Wiener’s insight was that this whole line of argument (starting with a Wiener
process and using the isometry IW to build an i.i.d. sequence of Normal−(0, 1)
r.v.s) can be reversed. Given a probability space (Ω,F , P ) equipped with an infinite
sequence {ξn}n∈N of i.i.d. unit Gaussian random variables, one can define a linear
isometry J : L2[0, 1] → L2(Ω,F , P ) by taking any orthonormal basis ψn of L2[0, 1]
and setting

J(ψn) = ξn for all n = 0, 1, 2, · · · .

The mapping J clearly extends to a linear isometry, and since it is a linear isometry
it maps the functions 1[0,t] to random variables Wt with the same inner products.
Since each function 1[0,t] has an L2−convergent series expansion in the orthonormal
basis ψn, it follows that each of the random variables Wt has an L2−convergent
series expansion in the i.i.d. Gaussian random variables ξn; this series is

Wt := J(1[0,t]) = L2 − lim
m→∞

m∑
n=1

〈1[0,t], ψn〉J(ψn) = L2 − lim
m→∞

m∑
n=1

〈1[0,t], ψn〉ξn.

Lemma 1 implies that the random variables Wt are mean-zero Gaussians.

Corollary 1. Assume that the probability space (Ω,F , P ) supports an infinite sequence ξn
of independent, identically distributed N(0, 1) random variables, and let {ψn}n∈N be any
orthonormal basis of L2[0, 1]. Then for every t ∈ [0, 1] the infinite series

Wt :=
∞∑
n=1

ξn〈1[0,t], ψn〉 (15)

converges in the L2−metric, and the resulting stochastic process {Wt}t∈[0,1] is a mean-zero
Gaussian process with covariance function

EWtWs = min(s, t). (16)
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Proof. By construction, the random variables Wt are mean-zero Gaussians with co-
variances (16). It remains to show that these random variables are jointly Gaussian,
that is, for any finite collection 0 < t1 < t2 < · · · < tm ≤ 1 the random vector
(Wti)1≤i≤m has a (multivariate) Gaussian distribution. To prove this, it suffices to
show that the joint characteristic function

E exp{i
m∑
j=1

θjWtj}

is the characteristic function of the appropriate multivariate Gaussian distribution.
This is equivalent to showing that for any choice of real scalars θi, the linear com-
bination

∑m
j=1 θjWtj is Gaussian. But this follows directly from equation (15) and

Lemma 1, because equation (15) shows that the linear combination
∑m

j=1 θjWtj is
the L2−limit of linear combinations of the i.i.d Gaussian random variables ξn.

Because the convergence in (15) is in the L2−metric, rather than the sup-norm,
there is no way to conclude directly that the process so constructed has a version
with continuous paths. Wiener was able to show by brute force that for the particu-
lar basis

ψn(x) =
√

2 cosπnx

the series (15) converges (along an appropriate subsequence) not only in L2 but also
uniformly in t, and therefore gives a version of the Wiener process with continuous
paths:

Wt = ξ0t+
∞∑
k=1

2k−1∑
n=2k−1

n−1ξn
√

2 sinπnt. (17)

The proof of this uniform convergence is somewhat technical, though, and more-
over, it is in many ways unnatural. Thus, rather than following Wiener’s construc-
tion, we will describe a different construction, due to P. Lévy.

1.6 Lévy’s Construction

Lévy discovered that a more natural orthonormal basis for the construction of the
Wiener process is the Haar wavelet basis. The Haar basis is defined as follows: first,
let ψ : R→ {−1, 1} be the “mother wavelet” function

ψ(t) =


1 if 0 ≤ t ≤ 1

2
;

−1 if 1
2
< t ≤ 1;

0 otherwise.
(18)
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Then for any integers n ≥ 0 and 0 ≤ k < 2n define the (n, k)th Haar function by

ψn,k(t) = 2n/2ψ(2nt− k) (19)

The function ψn,k has support [k/2n, (k + 1)/2n], and has absolute value equal to
2n/2 on this interval, so its L2−norm is 1. Note that ψ0,0 = 1 on [0, 1]. Moreover, the
functions ψn,k are mutually orthogonal:

〈ψn,k, ψm,l〉 =

{
1 if n = m and k = l;

0 otherwise.
(20)

Exercise 1. Prove that the Haar functions {ψn,k}n≥0,0≤k<2n form a complete or-
thonormal basis of L2[0, 1]. HINT: Linear combinations of the indicator functions
of dyadic intervals [k/2n, (k + 1)/2n] are dense in L2[0, 1].

In certain senses the Haar basis is better suited to Brownian motion than the
Fourier basis, in part because the functions ψn,k are “localized” (which fits with the
independent increments property), and in part because the normalization of the
functions forces the scale factor 2n/2 in (19) (which fits with the Brownian scaling
law).

The series expansion (15) involves the inner products of the basis functions
with the indicators 10,t. For the Haar basis, these inner products define the Schauder
functions Gn,k, which are defined as the indefinite integrals of the Haar functions:

Gn,k(t) = 〈1[0,t], ψn,k〉 =

∫ t

0

ψn,k(s) ds (21)

The graphs of these functions are steeply peaked “hats” sitting on the dyadic inter-
vals [k/2n, (k + 1)/2n], with heights 2−n/2 and slopes ±2n/2. Note that G0,0(t) = t.

Theorem 4. (Lévy) If the random variables ξm,k are independent, identically distributed
with common distribution N(0, 1), then with probability one, the infinite series

W (t) := ξ0,1t+
∞∑
m=1

2m−1∑
k=0

ξm,kGm,k(t) (22)

converges uniformly for 0 ≤ t ≤ 1 and the limit function W (t) is a standard Wiener
process.

Lemma 2. If Z is a standard normal random variable then for every x > 0,

P{Z > x} ≤ 2e−x
2/2

√
2πx

. (23)
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Proof.

P{Z > x} =
1√
2π

∫ ∞
x

e−y
2/2 dy ≤ 1√

2π

∫ ∞
x

e−xy/2 dy =
2e−x

2/2

√
2πx

.

Proof of Theorem 4. By definition of the Schauder functions Gn,k, the series (22) is a
particular case of (15), so the random variables W (t) defined by (22) are centered
Gaussian with covariances that agree with the covariances of a Wiener process.
Hence, to prove that (22) defines a Brownian motion, it suffices to prove that with
probability one the series converges uniformly for t ∈ [0, 1].

The Schauder function Gm,k has maximum value 2−m/2, so to prove that the
series (22) converges uniformly it is enough to show that

∞∑
m=1

2m∑
k=1

|ξm,k|/2m/2 <∞

with probability 1. To do this we will use the Borel-Cantelli Lemma and the tail
estimate of Lemma 2 for the normal distribution to show that with probability one
there is a (possibly random) m∗ such that

max
k
|ξm,k| ≤ 2m/4 for all m ≥ m∗. (24)

This will imply that almost surely the series is eventually dominated by a multiple
of the geometric series

∑
2−(m+2)/4, and consequently converges uniformly in t.

To prove that (24) holds eventually, it suffices (by Borel-Cantelli) to show that
the probabilities of the complementary events are summable. By Lemma 2,

P{|ξm,k| ≥ 2m/4} ≤ 4

2m/4
√

2π
e−2m/2

.

Hence, by the Bonferroni inequality (i.e., the crude union bound),

P{ max
1≤k≤2m

|ξm,k| ≥ 2m/4} ≤ 2m2−m/4
√

2/πe−2m−1

.

Since this bound is summable in m, Borel-Cantelli implies that with probability
1, eventually (24) must hold. This proves that w.p.1 the series (22) converges uni-
formly, and therefore W (t) is continuous.
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2 The Markov and Strong Markov Properties

2.1 Brownian Filtrations

Definition 4. Let {Wt}t≥0 be a standard Wiener process. Define the standard filtra-
tion for the process to be the (increasing) family of σ−algebras

FWt := σ({Ws}0≤s≤t). (25)

Thus, for any t ≥ 0 the σ−algebra FWt is the smallest σ−algebra containing all
events of the form {Ws ∈ B}, where s ≤ t and B is a Borel set.

Example: For each t > 0 and for every a ∈ R, the event {M(t) > a} is an element
of FWt . To see this, observe that by path-continuity,

{M(t) > a} =
⋃

s∈Q:0≤s≤t

{W (s) > a}. (26)

Here Q denotes the set of rational numbers. Because Q is a countable set, the union
in (26) is a countable union. Since each of the events {W (s) > a} in the union is
an element of the σ−algebra FWt , the event {M(t) > a}must also be an element of
FWt .

In general, a filtration is an increasing family of σ−algebras {Gt}t≥0 indexed
by time t. A stochastic process X(t) is said to be adapted to a filtration {Gt}t≥0

if the random variable X(t) is measurable relative to Gt for every t ≥ 0. It is
sometimes necessary to consider filtrations other than the standard one, because in
some situations there are several sources of randomness (additional independent
Brownian motions, Poisson processes, coin tosses, etc.).

Definition 5. Let {Wt}t≥0 be a Wiener process and {Gt}t≥0 a filtration of the prob-
ability space on which the Wiener process is defined. The filtration is said to be
admissible1 for the Wiener process if (a) the Wiener process is adapted to the filtra-
tion, and (b) for every t ≥ 0, the post-t process {Wt+s −Wt}s≥0 is independent of
the σ−algebra Gt.

Of course, we have not yet defined what it means for a stochastic process
{Xt}t∈J to be independent of a σ−algebra G, but the correct definition is easy to
guess: the process {Xt}t∈J is independent of G if the σ−algebra σ(Xt)t∈J generated
by the random variables Xt (i.e., the smallest σ−algebra containing all events of
the form Xt ∈ B, where t ∈ J and B is a Borel set) is independent of G.

1This is not standard terminology. Some authors (for instance, Karatzas and Shreve) call such
filtrations Brownian filtrations.
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Proposition 2. (Markov Property) If {W (t)}t≥0 is a standard Brownian motion, then the
standard filtration {FWt }t≥0 is admissible.

Proof of the Markov Property. This is nothing more than a sophisticated restatement of
the independent increments property of Brownian motion. Fix s ≥ 0, and consider
two events of the form

A = ∩nj=1{W (sj)−W (sj−1) ≤ xj} ∈ Fs and

B = ∩mj=1{W (tj + s)−W (tj−1 + s) ≤ yj}.

By the independent increments hypothesis, eventsA andB are independent. Events
of type A generate the σ−algebra Fs, and events of type B generate the smallest
σ−algebra with respect to which the post-s Brownian motion W (t + s) − W (s)
is measurable. Consequently, the post-s Brownian motion is independent of the
σ−algebra Fs.

2.2 Stopping times and stopping fields

A stopping time for a filtration F = {Ft}t≥0 is defined to be a nonnegative (possibly
infinite)2 random variable τ such that for each (nonrandom) t ∈ [0,∞] the event
{τ ≤ t} is in the σ−algebra Ft.

Example: τ(a) := min{t : W (t) = a} is a stopping time relative to the standard
filtration. To see this, observe that, because the paths of the Wiener process are
continuous, the event {τ(a) ≤ t} is identical to the event {M(t) ≥ a}. We have
already shown that this event is an element of Ft.
Exercise 2. (a) Prove that if τ, σ are stopping times then so are σ ∧ τ and σ ∨ τ .
(b) Prove that if τ is a finite stopping time then so is

τn = min{k/2n ≥ τ}.

Thus, any finite stopping time is a decreasing limit of stopping times each of which
takes values in a discrete set.

The stopping field Fτ (more accurately, the stopping σ−algebra) associated with a
stopping time τ is the collection of all events F such that F ∩{τ ≤ t} ∈ Ft for every
nonrandom t. Informally, Fτ consists of all events that are “observable” by time τ .

Exercise 3. (a) Show thatFτ is a σ−algebra. (b) Show that if σ ≤ τ are both stopping
times then Fσ ⊂ Fτ .

Exercise 4. Let τ be a finite stopping time with respect to the standard filtration of
a Brownian motion {Wt}t≥0 and let FWτ be the associated stopping field. Show that
each of the random variables τ , Wτ , and Mτ is measurable relative to FWτ .

2A stopping time that takes only finite values will be called a finite stopping time.
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2.3 Strong Markov Property

Theorem 5. (Strong Markov Property) Let {W (t)}t≥0 be a standard Brownian motion,
and let τ be a finite stopping time relative to the standard filtration, with associated stop-
ping σ−algebra Fτ . For t ≥ 0, define the post-τ process

W ∗(t) = W (t+ τ)−W (τ), (27)

and let {F∗t }t≥0 be the standard filtration for this process. Then

(a) {W ∗(t)}t≥0 is a standard Brownian motion; and
(b) for each t > 0, the σ−algebra F∗t is independent of Fτ .

The hypothesis that τ is a stopping time is essential for the truth of the Strong
Markov Property. Consider the following example. Let T be the first time that the
Wiener path reaches its maximum value up to time 1, that is,

T = min{t : W (t) = M(1)}.

The random variable T is well-defined, by path-continuity, as this assures that the
set of times t ≤ 1 such that W (t) = M(1) is closed and nonempty. Since M(1)
is the maximum value attained by the Wiener path up to time 1, the post-T path
W ∗(s) = W (T + s)−W (T ) cannot enter the positive half-line (0,∞) for s ≤ 1− T .
Later we will show that T < 1 almost surely; thus, almost surely, W ∗(s) does not
immediately enter (0,∞). Now if the strong Markov Property were true for the
random time T , then it would follow that, almost surely,W (s) does not immediately
enter (0,∞). Since−W (s) is also a Wiener process, we may infer that, almost surely,
W (s) does not immediately enter (−∞, 0), and so W (s) = 0 for all s in a (random)
time interval of positive duration beginning at 0. But we have already shown, using
Blumenthal’s Law, that with probability 1, Brownian paths immediately enter both
the positive and negative halflines. This is a contradiction, so we conclude that the
strong Markov property fails for the random variable T .

Proof of the strong Markov property. First, we will show that it suffices to prove the
theorem for stopping times that take values in the discrete set Dm = {k/2m}k≥0,
for some m ≥ 1; then we will prove that the strong Markov property holds for
stopping times that take values in Dm.

Step 1. Suppose that the theorem is true for all stopping times that take values in
one of the sets Dm; we will show that it is then true for any finite stopping time. By
Exercise 2, if τ is a finite stopping time then so is τm = min{k/2m ≥ τ}. Clearly, the
sequence τm is non-increasing in m, and τm → τ as m → ∞. Hence, by Exercise 3,
the stopping fields Fτm are reverse-ordered, and Fτ ⊂ Fτm for every m ≥ 1.
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By hypothesis, for each k ≥ 1 the post-τm process Wt+τm −Wτm is a standard
Brownian motion independent of Fτm and hence also of Fτ (since Fτ ⊂ Fτm). But
Brownian paths are right-continuous, so the convergence τm ↓ τ implies that for
each t ≥ 0,

lim
m→∞

Wt+τm −Wτm = Wt+τ −Wτ = W ∗(t). (28)

Consequently, by the following Exercise, the process {W ∗
t }t≥0is independent of Fτ .

Exercise: Show that if Xn → X almost surely, and if for each n the random vector
Xn is independent of the σ−algebra G, then X is independent of G.

To complete the first step of the proof we must show that the process W ∗(t) is a
Brownian motion. The sample paths are obviously continuous, since the paths of
the original Brownian motion W (t) are continuous, so we need only verify that (i)
the process W ∗

t has stationary, independent increments, and (ii) that for each t the
random variable W ∗

t is Gaussian with mean 0 and variance t. Property (ii) follows
immediately from Lemma 1, since by hypothesis

Wt+τm −Wτm ∼ Normal− (0, t) for each k and W ∗
t = lim

k→∞
Wt+τm −Wτm .

Property (i) can also be deduced from the corresponding property for the approxi-
mating processesWt+τm−Wτm . It suffices to show that for any 0 = t0 < t1 < · · · < tk,

E exp

{
i

k∑
j=1

θj(W
∗
tj
−W ∗

tj−1
)

}
= E exp

{
i

k∑
j=1

θj(Wtj −Wtj−1
)

}
(29)

Since each of the processes Wt+τm −Wτmis a Brownian motion, the equation (29)
holds when W ∗

t is replaced by Wt+τm − Wτm in the expectation on the left side.
Consequently, the equality (29) follows by (28) and the dominated convergence
theorem.

Step 2: We must prove that if τ is a stopping time that takes values in Dm, for some
m ≥ 0, then the post-τ process {W ∗

t }t≥0 is a Brownian motion and is independent
of Fτ . For ease of notation, we will assume that m = 0; the general case can be
proved by replacing each integer n in the following argument by n/2m.

It will suffice to show that if B is any event in Fτ then for any 0 = t0 < t1 <
· · · < tk and θ1, θ2, . . . , θk,

E1B exp

{
i

k∑
j=1

θj(W
∗
tj
−W ∗

tj−1
)

}
= P (B)E exp

{
i

k∑
j=1

θj(Wtj −Wtj−1
)

}
. (30)
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Since τ takes only nonnegative integer values, the event B can be partitioned as
B = ∪n≥0(B ∩ {τ = n}). Since τ is a stopping time, the event B ∩ {τ = n} is in the
σ−algebra Fn; moreover, on {τ = n}, the post-τ process coincides with the post-n
process ∆W (n, t) = Wt+n −Wn. Now the Markov property implies that the post-n
process ∆W (n, t) is a Brownian motion independent of Fn, and hence independent
of B ∩ {τ = n}. Consequently,

E1B1{τ=n} exp {i
k∑
j=1

θj(W
∗
tj
−W ∗

tj−1
)

= E1B1{τ=n} exp

{
i

k∑
j=1

θj(∆W (n, tj)−∆W (n, tk−1))

}

= P (B ∩ {τ = n})E exp

{
i

k∑
j=1

θj(Wtj −Wtj−1
)

}
.

Summing over n = 0, 1, 2, . . . (using the dominated convergence theorem on the
left and the monotone convergence theorem on the right), we obtain (30).

3 Embedded Simple Random Walks

Lemma 3. Define τ = min{t > 0 : |Wt| = 1}. Then with probability 1, τ <∞.

Proof. This should be a familiar argument: I’ll define a sequence of independent
Bernoulli trials Gn in such a way that if any of them results in a success, then the
path Wt must escape from the interval [−1, 1]. Set Gn = {Wn+1 −Wn > 2}. These
events are independent, and each has probability p := 1 − Φ(2) > 0. Since p > 0,
infinitely many of the events Gn will occur (and in fact the number N of trials until
the first success will have the geometric distribution with parameter p). Clearly, if
Gn occurs, then τ ≤ n+ 1.

The lemma guarantees that there will be a first time τ1 = τ when the Wiener
process has traveled ±1 from its initial point. Since this time is a stopping time, the
post-τ process Wt+τ −Wτ is an independent Wiener process, by the strong Markov
property, and so there will be a first time when it has traveled ±1 from its starting
point, and so on. Because the post-τ process is independent of the stopping fieldFτ ,
it is, in particular, independent of the random variable W (τ), and so the sequence
of future ±1 jumps is independent of the first. By an easy induction argument,
the sequence of ±1 jumps made in this sequence are independent and identically
distributed. Similarly, the sequence of elapsed times are i.i.d. copies of τ . Formally,
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define τ0 = 0 and

τn+1 := min{t > τn : |Wt+τn −Wτn| = 1}. (31)

The arguments above imply the following.

Proposition 3. The sequence Yn := W (τn) is a simple random walk started at Y0 = W0 =
0. Furthermore, the sequence of random vectors

(W (τn+1)−W (τn), τn+1 − τn)

is independent and identically distributed.

Corollary 2. With probability one, the Wiener process visits every real number.

Proof. The recurrence of simple random walk implies that Wt must visit every
integer, in fact infinitely many times. Path-continuity and the intermediate value
theorem therefore imply that the path must travel through every real number.

There isn’t anything special about the values±1 for the Wiener process — in fact,
Brownian scaling implies that there is an embedded simple random walk on each
discrete lattice (i.e., discrete additive subgroup) of R. It isn’t hard to see (or to prove,
for that matter) that the embedded simple random walks on the lattices 2−mZ “fill
out” the Brownian path in such a way that as m→∞ the polygonal paths gotten
by connecting the dots in the embedded simple random walks converge uniformly
(on compact time intervals) to the path Wt. This can be used to provide a precise
meaning for the assertion made earlier that Brownian motion is, in some sense, a
continuum limit of random walks.

4 The Reflection Principle

Denote by Mt = M(t) the maximum of the Wiener process up to time t, and by
τa = τ(a) the first passage time to the value a.

Proposition 4.

P{M(t) ≥ a} = P{τa ≤ t} = 2P{W (t) > a} = 2− 2Φ(a/
√
t). (32)

Proof. The argument will be based on a symmetry principle that may be traced back
to the French mathematician D. ANDRÉ. This is often referred to as the reflection
principle. The essential point of the argument is this: if τ(a) < t, then W (t) is just
as likely to be above the level a as to be below the level a. Justification of this claim
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requires the use of the Strong Markov Property. Write τ = τ(a). By Corollary 2
above, τ <∞ almost surely. Since τ is a stopping time, the post-τ process

W ∗(t) := W (τ + t)−W (τ)

is a Wiener process, and is independent of the stopping field Fτ . Since τ is measur-
able with respect to Fτ , and since P{τ = t} = 0, we have

P (W (τ + t)−W (τ) > 0 | F(τ) = P (W (τ + t)−W (τ) < 0 | Fτ ) =
1

2
.

Consequently,

P{W (t) < a and τ ≤ t} = P{W (t) > a and τ ≤ t},

and so P{τ ≤ t} = 2P{W (t) > a and τ ≤ t}. But the events {W (t) > a and τ ≤ t}
and {W (t) > a} coincide, because if W (t) > a then by path-continuity the Wiener
process must have crossed the level a at some time before t. Therefore,

P{τ ≤ t} = 2P{W (t) > a} = 2(1− Φ(a/
√
t).)

Corollary 3. The first-passage time random variable τ(a) has the one-sided stable prob-
ability density function of index 1/2:

f(t) =
ae−a

2/2t

√
2πt3

. (33)

Proof. Differentiate the equation (32) with respect to the variable t.

Essentially the same arguments prove the following.

Corollary 4.

P{M(t) ∈ da and W (t) ∈ a− db} =
2(a+ b) exp{−(a+ b)2/2t}

(2π)1/2t3/2
dadb (34)

It follows, by an easy calculation, that for every t the random variables |Wt| and
Mt−Wt have the same distribution. In fact, the processes |Wt| and Mt−Wt have the
same joint distributions:

Proposition 5. (P. Lévy) The processes {Mt−Wt}t≥0 and {|Wt|}t≥0 have the same distri-
butions.
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Exercise 5. Prove this. Hints: (A) It is enough to show that the two processes have
the same finite-dimensional distributions, that is, that for any finite set of time points
t1, t2, . . . , tk the joint distributions of the two processes at the time points ti are
the same. (B) By the Markov property for the Wiener process, to prove equality
of finite-dimensional distributions it is enough to show that the two-dimensional
distributions are the same. (C) For this, use the Reflection Principle.

Remark 1. The reflection principle and its use in determining the distributions of the
max Mt and the first-passage time τ(a) are really no different from their analogues
for simple random walks, about which you learned in 312. In fact, we could have
obtained the results for Brownian motion directly from the corresponding results
for simple random walk, by using embedding.

Exercise 6. Brownian motion with absorption.

(A) Define Brownian motion with absorption at 0 by Yt = Wt∧τ(0), that is, Yt is the
process that follows the Brownian path until the first visit to 0, then sticks at 0
forever after. Calculate the transition probability densities p0

t (x, y) of Yt.

(B) Define Brownian motion with absorption on [0, 1] by Zt = Wt∧T , where T =
min{t : Wt = 0 or 1}. Calculate the transition probability densities qt(x, y) for
x, y ∈ (0, 1).

5 Wald Identities for Brownian Motion

5.1 Doob’s optional sampling formula

A continuous-time martingale with respect to a filtration {Ft}t≥0 is an adapted process
{Xt}t≥0 such that each Xt is integrable, and such that for any 0 ≤ s ≤ t <∞,

E(Xt | Fs) = Xs almost surely. (35)

Equivalently, for every finite set of times 0 ≤ t1 < t2 < · · · < tn, the finite sequence
{Xti}i≤n is a discrete-time martingale with respect to the discrete filtration {Fti}i≤n.
Observe that the definition does not require that the sample paths t 7→ Xt be
continuous, or even measurable.

Theorem 6. (Doob) If {Xt}t≥0 is a martingale with respect to the filtration {Ft}t≥0 such
that {Xt}t≥0 has right-continuous paths and if τ is a bounded stopping time for this
filtration, then Xτ is an integrable random variable and

EXτ = EX0. (36)
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Proof. By hypothesis there is a finite constant C such that τ ≤ C. By Exercise 2, the
random variables τm := min{k/2m ≥ τ} are stopping times. Clearly, each τm takes
values in a finite set ,

C + 1 ≥ τ1 ≥ τ2 ≥ · · · ≥ · · · , and
τ = lim

m→∞
τm.

Since τm takes values in a discrete set, Doob’s identity for discrete-time martingales
implies that for each m,

EXτm = EX0.

Furthermore, because the sample paths of {Xt}t≥0 are right-continuous, Xτ =
limXτm pointwise. Hence, by the dominated convergence theorem, to prove the
identity (36) it suffices to show that the sequence Xτm is uniformly integrable. For
this, observe that the ordering C + 1 ≥ τ1 ≥ τ2 ≥ · · · of the stopping times implies
that the sequence {Xτm}m≥1 is a reverse martingale with respect to the backward
filtration {Fτm}. Any reverse martingale is uniformly integrable.

Remark 2. (a) If we knew a priori that supt≤C+1 |Xt|were integrable then there would
be no need to show that the sequence {Xτm}m≥1 is uniformly integrable, and so
the use of results concerning reverse martingales could be avoided. All of the
martingales that will figure into the results of section 5.2 will have this property.
(b) It can be shown that every continuous-time martingale has a version with right-
continuous paths. (In fact, this can be done by using only the upcrossings and
maximal inequalities for discrete-time martingales, together with the fact that the
dyadic rationals are dense in [0,∞).) We will not need this result, though.

5.2 The Wald identities

You should recall (see the notes on discrete-time martingales) that there are several
discrete-time martingales associated with the simple random walk on Z that are
quite useful in first-passage problems. If Sn =

∑n
i=1 ξi is a simple random walk

on Z (that is, the random variables {ξi}i≥1 are independent, identically distributed
Rademacher, as in section 1) and Fn = σ(ξi)i≤n is the σ−algebra generated by
the first n steps of the random walk, then each of the following sequences is a
martingale relative to the discrete filtration (Fn)n≥0:

(a) Sn;
(b) S2

n − n;
(c) exp{θSn}/(cosh θ)n.

There are corresponding continuous-time martingales associated with the Wiener
process that can be used to obtain analogues of the Wald identities for simple
random walk.
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Proposition 6. Let {W (t)}t≥0 be a standard Wiener process and let G = {Gt}t≥0 be an
admissible filtration. Then each of the following is a continuous martingale relative to G
(with θ ∈ R):

(a) {Wt}t≥0

(b) {W 2
t − t}t≥0

(c) {exp{θWt − θ2t/2}}t≥0

(d) {exp{iθWt + θ2t/2}}t≥0

Consequently, for any bounded stopping time τ , each fo the following holds:

EW (τ) = 0; (37)
EW (τ)2 = Eτ ; (38)

E exp{θW (τ)− θ2τ/2} = 1 ∀θ ∈ R; and (39)
E exp{iθW (τ) + θ2τ/2} = 1 ∀θ ∈ R. (40)

Observe that for nonrandom times τ = t, these identities follow from elementary
properties of the normal distribution. Notice also that if τ is an unbounded stopping
time, then the identities may fail to be true: for example, if τ = τ(1) is the first
passage time to the value 1, then W (τ) = 1, and so EW (τ) 6= 0. Finally, it is crucial
that τ should be a stopping time: if, for instance, τ = min{t ≤ 1 : W (t) = M(1)},
then EW (τ) = EM(1) > 0.

Proof. The martingale property follows immediately from the independent incre-
ments property. In particular, the definition of an admissible filtration implies that
W (t+ s)−W (s) is independent of Gs; hence (for instance),

E(exp{θWt+s − θ2(t+ s)/2} | Gs) = exp{θWs − θ2s/2}E(exp{θWt+s −Ws − θ2t/2} | Gs)
= exp{θWs − θ2s/2}E exp{θWt+s −Ws − θ2t/2}
= exp{θWs − θ2s/2}.

The Wald identities follow from Doob’s optional sampling formula.

5.3 Wald identities and first-passage problems

Example 1: Fix constants a, b > 0, and define T = T−a,b to be the first time t such
that W (t) = −a or +b. The random variable T is a finite, but unbounded, stopping
time, and so the Wald identities may not be applied directly. However, for each
integer n ≥ 1, the random variable T ∧n is a bounded stopping time. Consequently,

EW (T ∧ n) = 0 and EW (T ∧ n)2 = ET ∧ n.
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Now until time T , the Wiener path remains between the values −a and +b, so
the random variables |W (T ∧ n)| are uniformly bounded by a + b. Furthermore,
by path-continuity, W (T ∧ n) → W (T ) as n → ∞. Therefore, by the dominated
convergence theorem,

EW (T ) = −aP{W (T ) = −a}+ bP{W (T ) = b} = 0.

Since P{W (T ) = −a}+ P{W (T ) = b} = 1, it follows that

P{W (T ) = b} =
a

a+ b
. (41)

The dominated convergence theorem also guarantees that EW (T ∧n)2 → EW (T )2,
and the monotone convergence theorem that ET ∧ n ↑ ET . Thus,

EW (T )2 = ET.

Using (41), one may now easily obtain

ET = ab. (42)

Example 2: Let τ = τ(a) be the first passage time to the value a > 0 by the Wiener
path W (t). As we have seen, τ is a stopping time and τ < ∞ with probability
one, but τ is not bounded. Nevertheless, for any n < ∞, the truncation τ ∧ n is a
bounded stopping time, and so by the third Wald identity, for any θ > 0,

E exp{θW (τ ∧ n)− θ2(τ ∧ n)} = 1. (43)

Because the path W (t) does not assume a value larger than a until after time τ ,
the random variables W (τ ∧ n) are uniformly bounded by a, and so the random
variables in equation (43) are dominated by the constant exp{θa}. Since τ <∞with
probability one, τ ∧ n→ τ as n→∞, and by path-continuity, the random variables
W (τ ∧ n) converge to a as n → ∞. Therefore, by the dominated convergence
theorem,

E exp{θa− θ2(τ)} = 1.

Thus, setting λ = θ2/2, we have

E exp{−λτa} = exp{−
√

2λa}. (44)

The only density with this Laplace transform3 is the one–sided stable density given
in equation (33). Thus, the Optional Sampling Formula gives us a second proof of
(32).

3Check a table of Laplace transforms.
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Exercise 7. First Passage to a Tilted Line. Let Wt be a standard Wiener process,
and define τ = min{t > 0 : W (t) = a − bt} where a, b > 0 are positive constants.
Find the Laplace transform and/or the probability density function of τ .

Exercise 8. Two-dimensional Brownian motion: First-passage distribution. Let
Zt = (Xt, Yt) be a two-dimensional Brownian motion started at the origin (0, 0) (that
is, the coordinate processes Xt and Yt are independent standard one-dimensional
Wiener processes).

(A) Prove that for each real θ, the process exp{θXt + iθYt} is a martingale relative
to any admissible filtration.

(B) Deduce the corresponding Wald identity for the first passage time τ(a) =
min{t : Wt = a}, for a > 0.

(C) What does this tell you about the distribution of Yτ(a)?

Exercise 9. Eigenfunction expansions. These exercises show how to use Wald
identities to obtain eigenfunction expansions (in this case, Fourier expansions) of
the transition probability densities of Brownian motion with absorption on the unit
interval (0, 1). You will need to know that the functions {

√
2 sin kπx}k≥1 (together

with) constitute an orthonormal basis of L2[0, 1]. Let Wt be a Brownian motion
started at x ∈ [0, 1] under P x, and let T = T[0,1] be the first time that Wt = 0 or 1.

(A) Use the appropriate martingale (Wald) identity to check that

Ex sin(kπWt)e
k2π2t/21{T > t} = sin(kπx).

(B) Deduce that for every C∞ function u which vanishes at the endpoints x = 0, 1
of the interval,

Exu(Wt∧T ) =
∞∑
k=1

e−k
2π2t/2(

√
2 sin(kπx))û(k)

where û(k) =
√

2
∫ 1

0
u(y) sin(kπy) dy is the kth Fourier coefficient of u.

(C) Conclude that the sub-probability measure P x{Wt ∈ dy ;T > t} has density

qt(x, y) =
∞∑
k=1

e−k
2π2t/22 sin(kπx) sin(kπy).

22



6 Brownian Paths

In the latter half of the nineteenth century, mathematicians began to encounter (and
invent) some rather strange objects. Weierstrass produced a continuous function
that is nowhere differentiable. Cantor constructed a subset C (the “Cantor set”)
of the unit interval with zero area (Lebesgue measure) that is nevertheless in one-
to-one correspondence with the unit interval, and has the further disconcerting
property that between any two points of C lies an interval of positive length totally
contained in the complement of C. Not all mathematicians were pleased by these
new objects. Hermite, for one, remarked that he was “revolted” by this plethora of
nondifferentiable functions and bizarre sets.

With Brownian motion, the strange becomes commonplace. With probability
one, the sample paths are nowhere differentiable, and the zero set Z = {t ≤ 1 :
W (t) = 0}) is a homeomorphic image of the Cantor set. These facts may be estab-
lished using only the formula (32), Brownian scaling, the strong Markov property,
and elementary arguments.

6.1 Zero Set of a Brownian Path

The zero set is
Z = {t ≥ 0 : W (t) = 0}. (45)

Because the path W (t) is continuous in t, the set Z is closed. Furthermore, with
probability one the Lebesgue measure of Z is 0, because Fubini’s theorem implies
that the expected Lebesgue measure of Z is 0:

E|Z| = E

∫ ∞
0

1{0}(Wt) dt

=

∫ ∞
0

E1{0}(Wt) dt

=

∫ ∞
0

P{Wt = 0} dt

= 0,

where |Z| denotes the Lebesgue measure of Z . Observe that for any fixed (non-
random) t > 0, the probability that t ∈ Z is 0, because P{W (t) = 0} = 0. Hence,
because Q+ (the set of positive rationals) is countable,

P{Q+ ∩ Z 6= ∅} = 0. (46)

Proposition 7. With probability one, the Brownian path W (t) has infinitely many zeros
in every time interval (0, ε), where ε > 0.
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Proof. We have already seen that this is a consequence of the Blumenthal 0-1 Law,
but we will now give a different proof using what we have learned about the
distribution of M(t). First we show that for every ε > 0 there is, with probability
one, at least one zero in the time interval (0, ε). Recall (equation (10)) that the
distribution of M−(t), the minimum up to time t, is the same as that of −M(t). By
formula (32), the probability that M(ε) > 0 is one; consequently, the probability
thatM−(ε) < 0 is also one. Thus, with probability one, W (t) assumes both negative
and positive values in the time interval (0, ε). Since the path W (t) is continuous, it
follows, by the Intermediate Value theorem, that it must assume the value 0 at some
time between the times it takes on its minimum and maximum values in (0, ε].

We now show that, almost surely, W (t) has infinitely many zeros in the time
interval (0, ε). By the preceding paragraph, for each k ∈ N the probability that there
is at least one zero in (0, 1/k) is one, and so with probability one there is at least one
zero in every (0, 1/k). This implies that, with probability one, there is an infinite
sequence tn of zeros converging to zero: Take any zero t1 ∈ (0, 1); choose k so large
that 1/k < t1; take any zero t2 ∈ (0, 1/k); and so on.

Proposition 8. With probability one, the zero set Z of a Brownian path is a perfect set,
that is, Z is closed, and for every t ∈ Z there is a sequence of distinct elements tn ∈ Z
such that limn→∞ tn = t.

Proof. That Z is closed follows from path-continuity, as noted earlier. Fix a rational
number q > 0 (nonrandom), and define ν = νq to be the first time t ≥ such that
W (t) = 0. Because W (q) 6= 0 almost surely, the random variable νq is well-defined
and is almost surely strictly greater than q. By the Strong Markov Property, the
post-νq process W (νq + t)−W (νq) is, conditional on the stopping field Fν , a Wiener
process, and consequently, by Proposition 7, it has infinitely many zeros in every
time interval (0, ε), with probability one. Since W (νq) = 0, and since the set of
rationals is countable, it follows that, almost surely, the Wiener path W (t) has
infinitely many zeros in every interval (νq, νq + ε), where q ∈ Q and ε > 0.

Now let t be any zero of the path. Then either there is an increasing sequence
tn of zeros such that tn → t, or there is a real number ε > 0 such that the interval
(t − ε, t) is free of zeros. In the latter case, there is a rational number q ∈ (t − ε, t),
and t = νq. In this case, by the preceding paragraph, there must be a decreasing
sequence tn of zeros such that tn → t.

It can be shown (this is not especially difficult) that every compact perfect set
of Lebesgue measure zero is homeomorphic to the Cantor set. Thus, with prob-
ability one, the set of zeros of the Brownian path W (t) in the unit interval is a
homeomorphic image of the Cantor set.
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6.2 Nondifferentiability of Paths

Proposition 9. With probability one, the Brownian path Wt is nowhere differentiable.

Proof. This is an adaptation of an argument of DVORETSKY, ERDÖS, & KAKUTANI
1961. The theorem itself was first proved by PALEY, WIENER & ZYGMUND in 1931.
It suffices to prove that the path Wt is not differentiable at any t ∈ (0, 1) (why?).
Suppose to the contrary that for some t∗ ∈ (0, 1) the path were differentiable at
t = t∗; then for some ε > 0 and some C <∞ it would be the case that

|Wt −Wt∗| ≤ C|t− t∗| for all t ∈ (t∗ − ε, t∗ + ε), (47)

that is, the graph of Wt would lie between two intersecting lines of finite slope in
some neighborhood of their intersection. This in turn would imply, by the triangle
inequality, that for infinitely many k ∈ N there would be some 0 ≤ m ≤ 4k such
that4

|W ((m+ i+ 1)/4k)−W ((m+ i)/4k)| ≤ 16C/4k for each i = 0, 1, 2. (48)

I’ll show that the probability of this event is 0. Let Bm,k = Bk,m(C) be the event that
(48) holds, and set Bk = ∪m≤4kBm,k; then by the Borel-Cantelli lemma it is enough
to show that (for each C <∞)

∞∑
k=1

P (Bm) <∞. (49)

The trick is Brownian scaling: in particular, for all s, t ≥ 0 the incrementWt+s−Wt

is Gaussian with mean 0 and standard deviation
√
s. Consequently, since the three

increments in (48) are independent, each with standard deviation 2−k, and since
the standard normal density is bounded above by 1/

√
2π,

P (Bm,k) = P{|Z| ≤ 16C/2k}3 ≤ (32C/2k
√

2π)3.

where Z is standard normal. Since Bk is the union of 4k such events Bm,k, it follows
that

P (Bk) ≤ 4k(32C/2k
√

2π)3) ≤ (32C/
√

2π)3/2k.

This is obviously summable in k.

4The constant 16 might really be 32, possibly even 64.
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Exercise 10. Local Maxima of the Brownian Path. A continuous function f(t) is
said to have a local maximum at t = s if there exists ε > 0 such that

f(t) ≤ f(s) for all t ∈ (s− ε, s+ ε).

(A) Prove that if the Brownian pathW (t) has a local maximum w at some time s > 0
then, with probability one, it cannot have a local maximum at some later time s∗

with the same value w. HINT: Use the Strong Markov Property and the fact that
the rational numbers are countable and dense in [0,∞).

(B) Prove that, with probability one, the times of local maxima of the Brownian
path W (t) are dense in [0,∞)

(C) Prove that, with probability one, the set of local maxima of the Brownian path
W (t) is countable. HINT: Use the result of part (A) to show that for each local
maximum (s,Ws) there is an interval (s− ε, s+ ε) such that

Wt < Ws for all t ∈ (s− ε, s+ ε), t 6= s.

7 Quadratic Variation

Fix t > 0, and let Π = {t0, t1, t2, . . . , tn} be a partition of the interval [0, t], that is, an
increasing sequence 0 = t0 < t1 < t2 < · · · < tn = t. The mesh of a partition Π is the
length of its longest interval ti− ti−1. If Π is a partition of [0, t] and if 0 < s < t, then
the restriction of Π to [0, s] (or the restriction to [s, t]) is defined in the obvious way:
just terminate the sequence tj at the largest entry before s, and append s. Say that a
partition Π′ is a refinement of the partition Π if the sequence of points ti that defines
Π is a subsequence of the sequence t′j that defines Π′. A nested sequence of partitions
is a sequence Πn such that each is a refinement of its predecessor. For any partition
Π and any continuous-time stochastic process Xt, define the quadratic variation of
X relative to Π by

QV (X; Π) =
n∑
j=1

(X(tj)−X(tj−1))2. (50)

Theorem 7. Let Πn be a nested sequence of partitions of the unit interval [0, 1] with mesh
→ 0 as n→∞. Let Wt be a standard Wiener process. Then with probability one,

lim
n→∞

QV (W ; Πn) = 1. (51)

Note 1. It can be shown, without too much additional difficulty, that if Πt
n is the

restriction of Πn to [0, t] then with probability one, for all t ∈ [0, 1],

lim
n→∞

QV (W ; Πt
n) = t.
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Before giving the proof of Theorem 7, I’ll discuss a much simpler special case5,
where the reason for the convergence is more transparent. For each natural number
n, define the nth dyadic partition Dn[0, t] to be the partition consisting of the dyadic
rationals k/2n of depth n (here k is an integer) that are between 0 and t (with t added
if it is not a dyadic rational of depth n). Let X(s) be any process indexed by s.

Proposition 10. Let {W (t)}t≥0 be a standard Brownian motion. For each t > 0, with
probability one,

lim
n→∞

QV (W ;Dn[0, t]) = t. (52)

Proof. Proof of Proposition 10. First let’s prove convergence in probability. To
simplify things, assume that t = 1. Then for each n ≥ 1, the random variables

ξn,k
∆
= 2n(W (k/2n)−W ((k − 1)/2n))2, k = 1, 2, . . . , 2n

are independent, identically distributed χ2 with one degree of freedom (that is,
they are distributed as the square of a standard normal random variable). Observe
that Eξn,k = 1. Now

QV (W ;Dn[0, 1]) = 2−n
2n∑
k=1

ξn,k.

The right side of this equation is the average of 2n independent, identically dis-
tributed random variables, and so the Weak Law of Large Numbers implies conver-
gence in probability to the mean of the χ2 distribution with one degree of freedom,
which equals 1.

The stronger statement that the convergence holds with probability one can
easily be deduced from the Chebyshev inequality and the Borel–Cantelli lemma.
The Chebyshev inequality and Brownian scaling implies that

P{|QV (W ;Dn[0, 1])− 1| ≥ ε} = P{|
2n∑
k=1

(ξn,k − 1)| ≥ 2nε} ≤
Eξ2

1,1

4nε2
.

Since
∑∞

n=1 1/4n < ∞, the Borel–Cantelli lemma implies that, with probability
one, the event |QV (W ;Dn[0, 1]) − 1| ≥ ε occurs for at most finitely many n. Since
ε > 0 can be chosen arbitrarily small, it follows that limn→∞QV (W ;Dn[0, 1]) = 1
almost surely. The same argument shows that for any dyadic rational t ∈ [0, 1], the
convergence (52) holds a.s.

Exercise 11. Prove that if (52) holds a.s. for each dyadic rational in the unit interval,
then with probability one it holds for all t.

5Only the special case will be needed for the Itô calculus. However, it will be of crucial impor-
tance — it is, in essence the basis for the Itô formula.
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In general, when the partition Π is not a dyadic partition, the summands in the
formula (51) for the quadratic variation are (when X = W is a Wiener process) still
independent χ2 random variables, but they are no longer identically distributed,
and so Chebyshev’s inequality by itself won’t always be good enough to prove
a.s. convergence. The route we’ll take is completely different: we’ll show that for
nested partitions Πn the sequence QV (W ; Πn) is a reverse martingale relative to an
appropriate filtration Gn.

Lemma 4. Let ξ, ζ be independent Gaussian random variables with means 0 and variances
σ2
ξ , σ

2
ζ , respectively. Let G be any σ−algebra such that the random variables ξ2 and ζ2 are

G−measurable, but such that sgn(ζ) and sgn(ζ) are independent of G. Then

E((ξ + ζ)2 | G) = ξ2 + ζ2. (53)

Proof. Expand the square, and use the fact that ξ2 and ζ2 are G−measurable to
extract them from the conditional expectation. What’s left is

2E(ξζ | G) = 2E(sgn(ξ)sgn(ζ)|ξ| |ζ| | G)

= 2|ξ| |ζ|E(sgn(ξ)sgn(ζ) | G)

= 0,

because sgn(ξ) and sgn(ζ) are independent of G.

Proof of Theorem 7. Without loss of generality, we may assume that each partition
Πn+1 is gotten by splitting one interval of Πn, and that Π0 is the trivial partition of
[0, 1] (consisting of the single interval [0, 1]). Thus, Πn consists of n+ 1 nonoverlap-
ping intervals Jnk = [tnk−1, t

n
k ]. Define

ξn,k = W (tnk)−W (tnk−1),

and for each n ≥ 0 let Gn be the σ−algebra generated by the random variables ξ2
m,k,

where m ≥ n and k ∈ [m+ 1]. The σ−algebras Gn are decreasing in n, so they form
a reverse filtration. By Lemma 4, the random variables QV (W ; Πn) form a reverse
martingale relative to the reverse filtration Gn, that is, for each n,

E(QV (W ; Πn) | Gn+1) = QV (W ; Πn+1).

By the reverse martingale convergence theorem,

lim
n→∞

QV (W ; Πn) = E(QV (W ; Π0) | ∩n≥0 Gn) = E(W 2
1 | ∩n≥0 Gn) almost surely.

Exercise 12. Prove that the limit is constant a.s., and that the constant is 1.
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8 Skorohod’s Theorem

In section 3 we showed that there are simple random walks embedded in the
Wiener path. Skorohod discovered that any mean zero, finite variance random
walk is also embedded, in a certain sense.

Theorem 8. (Skorohod Embedding I) Let F be any probability distribution on the real
line with mean 0 and variance σ2 < ∞. Then on some probability space there exist (i) a
standard Wiener process {Wt}t≥0; (ii) an admissible filtration {Ft}t≥0; and (iii) a sequence
of finite stopping times 0 = T0 ≤ T1 ≤ T2 ≤ · · · such that

(A) the random vectors (Tn+1 − Tn,WTn+1 − WTn) are independent, identically dis-
tributed;

(B) each random variable ,WTn+1 −WTn has distribution F ; and
(C) ETn+1 − ETn = σ2.

Thus, in particular, the sequence {WTn}n≥0 has the same joint distribution as
a random walk with step distribution F , and Tn/n → σ2 as n → ∞. For most
applications of the theorem, this is all that is needed. However, it is natural to
wonder about the choice of filtration: is it true that there are stopping times 0 =
T0 ≤ T1 ≤ T2 ≤ · · · with respect to the standard filtration such that (A), (B), (C)
hold? The answer is yes, but the proof is more subtle.

Theorem 9. (Skorohod Embedding II) Let F be any probability distribution on the real line
with mean 0 and variance σ2 <∞, and let W (t) be a standard Wiener process. Then there
exist stopping times 0 = T0 ≤ T1 ≤ T2 ≤ · · · with respect to the standard filtration
such that the conclusions (A), (B), (C) of Theorem 8 hold.

I will only prove Theorem 8. The proof will hinge on a representation of an
arbitrary mean-zero probability distribution as a mixture of mean-zero two-point
distributions. A two-point distribution is, by definition, a probability measure whose
support has only two points. For any two points −a < 0 < b there is a unique
two-point distribution Fa,b with support {−a, b} and mean 0, to wit,

Fa,b({b}) =
a

a+ b
and Fa,b({−a}) =

b

a+ b
.

The variance of Fa,b is ab.

Proposition 11. For any Borel probability distribution F on R with mean zero there exists
a Borel probability distribution G on R2

+ such that

F =

∫
Fa,b dG(a, b). (54)

Hence, ∫
x2 dF (x) =

∫
ab dG(a, b). (55)
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Proof for compactly supported F . First we will prove this for distributions F with
finite support. To do this, we induct on the number of support points. If F is sup-
ported by only two points then F = Fa,b for some a, b > 0, and so the representation
(54) holds with G concentrated at the single point (a, b). Suppose, then, that the
result is true for mean-zero distributions supported by fewer than m points, and let
F be a mean-zero distribution supported by m points. Then among the m support
points there must be two satisfying −a < 0 < b, both with positive probabilities
F (−a) and F (b). There are three possibilities:

−aF (−a) + bF (b) = 0, or
−aF (−a) + bF (b) > 0, or
−aF (−a) + bF (b) < 0.

In the first case, F can obviously be decomposed as a convex combination of Fa,b
and a probability distribution F ′ supported by the remaining m − 2 points in the
support of F In the second case, where −aF (−a) + bF (b) > 0, there is some value
0 < β < F (b) such that −aF (−a) + βF (b) = 0, and so F can be decomposed as a
convex combination of Fa,b and a distribution F ′ supported by b and the remaining
m− 2 support points. Similarly, in the third case F is a convex combination of Fa,b
and a distribution F ′ supported by −a and the remaining m− 2 supported points
of F . Thus, in all three cases (54) holds by the induction hypothesis. The formula
(55) follows from (54) by Fubini’s theorem.

Next, let F be a Borel probability distribution on R with mean zero and com-
pact support [−A,A]. Clearly, there is a sequence of probability distributions Fn
converging to F in distribution such that Fn is supported by finitely many points.
In particular, if X is a random variable with distribution F , then set

Xn = max{k/2n : k/2n ≤ X}

and let Fn be the distribution of Xn. Clearly, Xn → X pointwise as n → ∞. The
distributions Fn need not have mean zero, but by the dominated convergence theo-
rem, EXn → EX = 0. Thus, if we replace Xn be Xn−EXn we will have a sequence
of mean-zero distributions converging to F , each supported by only finitely many
points, all contained in [−A − 1, A + 1]. Therefore, since the representation (54)
holds for distributions with finite support, there are Borel probability distributions
Gn such that

Fn =

∫
Fa,b dGn(a, b) and σ2

n :=

∫
x2 dFn(x) =

∫
ab dGn(a, b).

Moreover, since each Fn has supports contained in [−A − 1, A + 1], the mixing
distributions Gn have supports contained in [0, A+ 1]2. Hence, by Helly’s selection
principle (i.e., Banach-Alaoglu to those of you from Planet Math), there is a subse-
quence Gk that converges weakly to a Borel probability distribution G. It follows
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routinely sthat

F =

∫
Fa,b dG(a, b) and σ2 :=

∫
x2 dF (x) =

∫
ab dG(a, b).

Exercise 13. Finish the proof: Show that the representation (54) holds for all mean-
zero, finite variance distributions.

Remark 3. Proposition 11 can also be deduced from CHOQUET’S theorem. The set of
mean-zero, probability distributions on R with variances bounded by C is a convex,
weak-∗compact subset of the space of finite Borel measures on R. It is not difficult
to see that the extreme points are the two-point distributions Fa,b. Therefore, the
representation (54) is a special case of Choquet’s theorem.

Proof of Theorem 8. Consider first the case where F is supported by only two points.
Since F has mean zero, the two support points must satisfy a < 0 < b, with
p = F ({b}) = 1 − F ({a}). Let {Wt}t≥0 be a standard Wiener process, and let T
be the first time that the Wiener process visits either a or b. Then T < ∞ almost
surely, and T is a stopping time with respect to any admissible filtration. Equations
(41)–(42) imply that the distribution of WT is F , and ET = σ2. (Exercise: Fill in the
details.)

To complete the proof in the case of a two-point distribution, we now use the
strong Markov property and an induction argument. Assume that stopping times
0 = T0 ≤ T1 ≤ T2 ≤ · · · ≤ Tm have been defined in such a way that properties
(A), (B), (C) hold for n < m. Define Tm+1 to be the first time after Tm that WTm+1 −
WTm = a or b; then by the strong Markov property, the random vector (Tm+1 −
Tm,WTm+1 −WTm) is independent of the random vectors (Tn+1 − Tn,WTn+1 −WTn)
for n < m (since these are all measurable with respect to the stopping field FTm),
and (Tm+1−Tm,WTm+1−WTm) has the same distribution as does (T1−T0,WT1−WT0).
This completes the induction for two-point distributions. It should be noted that the
random variables Tn are stopping times with respect to any admissible filtration.

Now let F be any mean-zero distribution with finite variance σ2. By Proposi-
tion 11, F has a representation as a mixture of two-point distributions Fa,b, with
mixing measure G. Let (Ω,F , P ) be a probability space that supports a sequence
{(An, Bn)}n≥1 of independent, identically distributed random vectors each with
distribution G, and an independent Wiener process {Wt}t≥0. (Such a probability
space can always be realized as a product space.) Let F0 be the σ−algebra gener-
ated by the random vectors (An, Bn), and for each t ≥ 0 let Ft be the σ−algebra
generated by F0 and the random variables Ws, for s ≤ t; since the random vectors
(An, Bn) are independent of the Wiener process, the filtration {Ft}t≥0 is admissible.
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Define stopping times Tn inductively as follows: T0 = 0, and

Tn+1 = min{t ≥ 0 : WTn+t −WTn = −An or Bn}.

Conditional onF0, the random vectors (Tn+1−Tn,WTn+1−WTn) are independent, by
the strong Markov property. Furthermore, conditional on F0, the random variable
WTn+1 −WTn has the two-point distribution Fa,b with a = An and b = Bn. Since
the unconditional distribution of (An, Bn) is G, it follows that unconditionally the
random vectors (Tn+1 − Tn,WTn+1 −WTn) are independent, identically distributed,
and WTn+1 − WTn has distribution F . That ETn+1 − ETn = σ2 follows from the
variance formula in the mixture representation (54).

Proof of Theorem 9 for the uniform distribution on (-1,1). The general case is proved by
showing directly (without using the Choquet representation (54)) that a mean-zero
probability distribution F is a limit of finitely supported mean-zero distributions. I
will consider only the special case where F is the uniform distribution (normalized
Lebesgue measure) on [−1, 1]. Define a sequence of stopping times τn as follows:

τ1 = min{t > 0 : W (t) = ±1/2}
τn+1 = min{t > τn : W (t)−W (τn) = ±1/2n+1}.

By symmetry, the random variable W (τ1) takes the values ±1/2 with probabilities
1/2 each. Similarly, by the Strong Markov Property and induction on n, the random
variable W (τn) takes each of the values k/2n, where k is an odd number between
−2n and +2n, with probability 1/2n. Notice that these values are equally spaced in
the interval [−1, 1], and that as→∞ the values fill the interval. Consequently, the
distribution of W (τn) converges to the uniform distribution on [−1, 1] as n→∞.

The stopping times τn are clearly increasing with n. Do they converge to a finite
value? Yes, because they are all bounded by T−1,1, the first passage time to one
of the values ±1. (Exercise: Why?) Consequently, τ := lim τn = sup τn is finite
with probability one. By path-continuity, W (τn) → W (τ) almost surely. As we
have seen, the distributions of the random variables W (τn) approach the uniform
distribution on [−1, 1] as n → ∞, so it follows that the random variable W (τ) is
uniformly distributed on [−1, 1].

Exercise 14. Show that if τn is an increasing sequence of stopping times such that
τ = lim τn is finite with probability one, then τ is a stopping time.
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