Problem 1. Sequence Space. Let $\Omega = \{0, 1\}^\mathbb{N}$ be the space of infinite sequences of 0s and 1s. Define a metric on Ω by setting $d(x, y) = 2^{-n(x, y)}$ where $n(x, y)$ is defined to be the maximum n such that $x_i = y_i$ for all $i \leq n$.

(a) Show that this is in fact a metric.
(b) Show that the metric space (Ω, d) is compact.
(c) Show that the Borel σ–algebra on (Ω, d) is the σ–algebra generated by the cylinder sets.
(d) Show that the set of sequences x_n satisfying $\lim_{n \to \infty} n^{-1} \sum_{i=1}^{n} x_i = 1/3$ is a Borel set.

NOTE: The Borel σ–algebra is by definition the σ–algebra generated by the open subsets of Ω.

Problem 2. Prove that a σ–algebra cannot be countably infinite – it must either be finite or uncountable.

Problem 3. Let $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$ be a nested sequence of σ–algebras on a set Ω.

(A) Show that $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is a field.
(B) Show by example that $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ need not be a σ–algebra.

Problem 4. For any two events A, B define $d(A, B) = P(A \Delta B)$, where $A \Delta B$ is the symmetric difference between A, B. Say that two events A, A' are almost surely equal if $d(A, A') = 0$.

(a) Check that almost surely equal is an equivalence relation.
(b) Show that d is a metric on the set \mathcal{F}^* of equivalence classes of events.
(c) Show that the metric space (\mathcal{F}^*, d) is complete.
(d) Suppose that $\mathcal{F} = \sigma(\mathcal{A})$ where \mathcal{A} is an algebra. Let \mathcal{A}^* be the set of equivalence classes that contain elements of \mathcal{A}. Show that \mathcal{A}^* is dense in (\mathcal{F}^*, d).

HINT: For (c), extract a subsequence and use Borel-Cantelli.

Problem 5. A probability measure P on a σ–algebra \mathcal{F} is said to be non-atomic if for every $F \in \mathcal{F}$ such that $P(F) > 0$ there exists $G \in \mathcal{F}$ such that $G \subset F$ and $0 < P(G) < P(F)$.

(A) Show that Lebesgue measure on the unit interval is non-atomic.
(B) Show that if P is non-atomic then for every $F \in \mathcal{F}$ of positive measure $P(F) > 0$ and every real $x \in (0, P(F))$ there exists $G \in \mathcal{F}$ such that $G \subset F$ and $P(G) = x$.
(C) Show that if P is non-atomic then there is a collection of events $\{G_t\}_{t \in [0,1]}$ indexed by the real numbers between 0 and 1 such that

(i) if $s \leq t$ then $G_s \subset G_t$, and
(ii) $P(G_t) = t$ for every $t \in [0,1]$.

(D) Conclude that if P is a nonatomic probability measure on a measurable space (Ω, \mathcal{F}) then there is a random variable $T : \Omega \rightarrow [0,1]$ whose distribution is the uniform distribution on $[0,1]$.

1