
3 Integration and Expectation

3.1 Construction of the Lebesgue Integral

Let (≠,F ,µ) be a measure space (not necessarily a probability space). Our objective
will be to define the Lebesgue integral

R
f dµ for measurable functions f : ≠! R that

meet some additional criteria to be specified later. When the measure µ is a probability
measure, we will usually write X instead of f and call it a random variable rather than
a measurable function, and we will write E X in place of

R
X dµ. You should be aware,

though, that there are important measure spaces that are not probability spaces.

Example 3.1. Let N be the set of natural numbers and F = 2N be the power set; thus,
every function f :N! R is measurable. Counting measure on (N,2N) is the measure µ
defined by µ(F ) = #F , where # denotes cardinality. In this case (as we will show later) the
integral will coincide with ordinary summation:

Z
f dµ=

1X

n=1
fn provided

1X

n=1
| fn | <1. (3.1)

Example 3.2. Let≠=R and F =BR. The Lebesgue measure on F is the unique measure
whose restriction to each interval [n,n +1] (where n 2Z) is a copy of Lebesgue measure
on [0,1], that is

∏(F ) =
1X

n=°1
∏|(F \ [n,n +1])°n|.

In this case the Lebesgue integral
R

f d∏ will be an extension of the Riemann integral.

Definition 3.3. A simple function f : ≠! R is a measurable function that takes only
finitely many (distinct) possible values a1, a2, . . . , am 2R. Thus,

f =
nX

i=1
ai 1Ai (3.2)

where A1, A2, . . . , An is a measurable partition of ≠. This decomposition is not unique,
unless we further require that the scalars ai are distinct. If f is a nonnegative simple
function (i.e., the values ai 2 [0,1)) then we define

Z
f dµ=

nX

i=1
aiµ(Ai ), (3.3)

with the convention that 0£1 = 0 and a £1 = 1 for a > 0. (Thus,
R

f dµ might be
+1. For probability measures µ, it will always be the case that

R
f dµ<1 for nonneg-

ative simple random variables f .) This definition does not depend on the particular
decomposition (3.2) (as you should check).
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Lemma 3.4. If f , g :≠!R are nonnegative simple functions, then for any two nonnega-
tive scalars a,b, Z

(a f +bg )dµ= a
Z

f dµ+b
Z

g dµ.

Proof. Exercise. Note that the restriction to nonnegative simple function is to ensure
against having an integral be defined as 1°1. This difficulty does not arise when µ is a
probability (or more generally a finite) measure.

Definition 3.5. If f :≠! [0,1) is a nonnegative, measurable function then its integral
is defined by Z

f dµ= sup
0∑g∑ f

Z
g dµ (3.4)

where the sup is over all nonnegative simple functions g that do not exceed f . Observe
that if f is itself simple then the sup is attained by g = f , so the definition (3.4) is a valid
extension of the definition (3.3) for simple functions.

Proposition 3.6. The integral has the following properties:

(a) Monotonicity: If 0 ∑ f ∑ h then
R

f dµ∑
R

h dµ.
(b) Zero function: If µ{ f 6= 0} = 0 then

R
f dµ= 0.

(c) Scaling: If f is a nonnegative measurable function and a ∏ 0 is a scalar then
Z

(a f )dµ= a
Z

f dµ.

(d) Additivity: If f ,h are nonnegative measurable functions then
Z

( f +h)dµ=
Z

f dµ+
Z

h dµ.

Proof. Properties (a), (b), (c) are trivial. Property (d) follows from the corresponding
property for simple functions (see Lemma 3.4) and the Monotone Convergence Theorem,
to which we turn next.

Theorem 3.7. (Monotone Convergence Theorem) Let 0 ∑ f1 ∑ f2 ∑ · · · be a nondecreasing
sequence of nonnegative, measurable functions with (pointwise) limit f := limn!1 fn.
Then Z

f dµ=" lim
n!1

Z
fn dµ. (3.5)

The proof will rely on a simple case of a general principle of real analysis known
(at least to old-timers) as Littlewood’s Third Principle.2 The version that we will use is

2Littlewood, speaking about measure theory and its use in real analysis, claimed that in fact the whole
subject really boiled down to 3 principles:

(1) Every measurable set is nearly a finite union of intervals.
(2) Every measurable function is nearly a continuous function.
(3) Every pointwise convergent sequence of measurable functions is nearly uniformly convergent.

See Royden, Real Analysis, sec. 3.6. The first two principles are specific to the real line, but the third holds
for general measure spaces.
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encapsulated in the following lemma, a weak form of what is sometimes called Egorov’s
Theorem.

Lemma 3.8. (Egorov’s Lemma) Let A 2F be a set of finite measure µ(A) <1, and assume
that fn is a measurable functions that converge pointwise to a (finite) function f on A.
Then for every "> 0 there is a (measurable) set B Ω A with measure µ(B) < " and an integer
n" <1 such that for all n ∏ n" and all ! 2 A \ B,

| fn(!)° f (!)| < ".

Proof. Without loss of generality, we may assume that A = ≠ and that µ(≠) < 1. Let
Bn = {! : supm∏n | f (!)° fm(!)| ∏ "}. Since by hypothesis fn ! f pointwise, it must be
the case that \nBn =;; consequently, since finite measures are continuous from above,

# lim
n!1

µ(Bn) =µ(;) = 0.

Now choose n" so large that µ(Bn") < ".

Proof of the Monotone Convergence Theorem. By hypothesis, the functions fn converge
monotonically up to f , so by the monotonicity of the integral (Proposition 3.6, part (a))
the integrals

R
fn dµ are non-decreasing in n, and hence

lim
n!1

Z
fn dµ := L ∑1

exists. Moreover, since fn ∑ f for each n, we must have L ∑
R

f dµ. Consequently, to
prove (3.5) it is enough to show that L ∏

R
f dµ. But by definition,

R
f dµ is the supremum

of
R

g dµ over all simple nonnegative functions g ∑ f ; therefore, to prove the theorem it
will suffice to prove that for every simple function 0 ∑ g ∑ f ,

L ∏
Z

g dµ.

Because g is simple, it has the form g = P
i∑m ai 1Ai where each Ai is a measurable

set and each ai > 0 is a positive scalar. We must consider two cases: (i) where each set Ai

has finite measure, and (ii) where (say) µ(A1) =1. In the first case
R

g <1, whereas in
the second

R
g =1.

Case (i): Assume first that each set Ai has finite measure µ(Ai ) <1. Then A =[m
i=1 Ai

has finite measure, and so Egorov’s Lemma can be applied. Egorov implies that for every
" > 0 there exists B" Ω A of measure µ(B") < " and an integer n" ∏ 1 such that for all
n ∏ n",

fn > f °"∏ g °" on A \ B".
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Consequently, for all n ∏ n",
Z

fn dµ∏
Z

fn(1A °1B")dµ+
Z

fn1B" dµ

∏
Z

(g °")(1A °1B")dµ

∏
Z

g dµ°"µ(A \ B")+
Z

g 1B" dµ

∏
Z

g dµ°"µ(A)+"kgk1,

where kgk1 = maxi∑m |ai |. Here we have used the fact that each function fn is nonnega-
tive, and that the support of g is A. Since "> 0 can be made arbitrarily small, it follows
that

L = lim
n!1

Z
fn dµ∏

Z
g dµ.

Case (ii): Exercise.

The definition of the integral (3.4) as a sup is useful in establishing some of the inte-
gral’s basic properties, but for other purposes it is sometimes more useful to be able to
identify the integral explicitly as a limit. The Monotone Convergence Theorem implies
that the integral

R
f can be approximated from below by

R
fn for any increasing sequence

fn converging to f . One such sequence is the following:

fn(x) = b2n f (x)c/2n if 0 ∑ f (x) ∑ 2n ; (3.6)

= 0 otherwise.

Each of the functions fn is simple ( fn only takes values k/2n for integers 0 ∑ k ∑ 22n), and
clearly fn(x) increases to f (x) as n !1.

Proof of Proposition 3.6 (d). Take any sequences fn and hn of nonnegative simple func-
tions converging pointwise to f and h respectively, for instance the sequences defined by
(3.6). Then for each n the function fn +hn is nonnegative and simple, and the sequence
fn +hn converges to f +h. Monotone convergence implies that

Z
fn !

Z
f ;

Z
hn !

Z
h; and

Z
( fn +hn) !

Z
( f +h).

Since additivity of the integral is easy for simple functions, additivity in general follows.
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Extension to Arbitrary Measurable Functions. If f :≠! R is a measurable real-valued
function, its positive and negative parts are defined as follows:

f+ = f 1{ f ∏0} and f° =° f 1{ f ∑0} = f ° f+

Definition 3.9. The integral of a measurable real-valued function f is defined by
Z

f dµ=
Z

f+ dµ°
Z

f° dµ

unless both of these are +1, in which case
R

f dµ is not defined. Clearly, if f ∏ 0 then
this definition coincides with the definition (3.4). The integral of a measurable complex-
valued function f = u + i v is defined by

Z
f dµ=

Z
u dµ+ i

Z
v dµ

provided both integrals on the right are well-defined and finite. If the integral
R
| f |dµ is

finite then we write f 2 L1(µ) or f 2 L1, and we define the L1°norm of f to be

k f k1 =
Z

| f |dµ.

Proposition 3.10. The sum of two L1 functions (real or complex) is in L1, and the L1°norm
satisfies the triangle inequality:

k f + gk1 ∑ k f k1 +kgk1.

Furthermore, the integral is linear: for any scalars a,b and any measurable functions
f , g 2 L1, Z

(a f +bg )dµ= a
Z

f dµ+b
Z

g dµ

Proof. The triangle inequality follows from the monotonicity of the integral for nonneg-
ative functions (Proposition 3.6 (a)) and the fact that the absolute value for complex
numbers satisfies the triangle inequality |a +b| ∑ |a| + |b|. The linearity of the integral
follows routinely from properties (c)-(d) of Proposition 3.6.

The triangle inequality implies that k·k1 is a pseudo-norm on the vector space L1 of all
measurable functions with finite integrals. When referring to elements of L1 one should
always keep in mind that they are really equivalence classes of functions; however, it is
customary to abuse the terminology and refer to individual functions a elements of L1.
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3.2 The Fatou and Dominated Convergence Theorems

The Fatou Lemma and the Dominated Convergence Theorem are, together with the
Monotone Convergence Theorem, the basic results in the limit theory of the integral.
The Fatou Lemma is itself an easy consequence of the Monotone Convergence Theorem.

Theorem 3.11. (Fatou’s Lemma) For any sequence fn of nonnegative, measurable func-
tions Z

liminf
n!1

fn dµ∑ liminf
n!1

Z
fn dµ.

Proof. For each n define gn = infm∏n fm . Clearly, 0 ∑ gn ∑ fn for each n; furthermore, the
sequence gn is non-decreasing in n, with

lim
n!1

gn = liminf fn .

This latter fact, together with the Monotone Convergence Theorem, implies that

lim
n!1

Z
gn dµ=

Z
liminf

n!1
fn dµ.

Now for every n ∏ 1, Z
gn dµ∑

Z
fn dµ,

since 0 ∑ gn ∑ fn ; consequently,

lim
n!1

Z
gn dµ∑ liminf

n!1

Z
fn dµ.

You should be aware that the inequality in Fatou’s Lemma can be strict. Here is the
basic example: let the measure space be the unit interval with Lebesgue measure, and
set

fn = n1[0,1/n].

Clearly, fn!0 everywhere except at x = 0, but
R

fn = 1 for every n. Thus, additional
conditions are needed to ensure that pointwise convergence of functions (or random
variables) implies convergence of their integrals (or expectations).

Theorem 3.12. (Dominated Convergence Theorem) If fn are measurable functions such
that f = limn!1 fn exists pointwise and such that for some nonnegative measurable func-
tion g 2 L1,

| fn(x)|∑ g (x) for all x 2≠, (3.7)

then
lim

n!1

Z
fn dµ=

Z
f dµ and lim

n!1

Z
| fn ° f |dµ= 0 (3.8)
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Proof. Since each fn is dominated by g the functions g ° fn are nonnegative, and so are
the functions g + fn . Since fn ! f pointwise, the sequence g ° fn converges to g ° f
pointwise, and the sequence g + fn converges to g + f . Therefore, Fatou’s Lemma can be
applied to each sequence; this (together with the linearity of the integral) gives

Z
g dµ°

Z
f dµ∑ liminf

µZ
g dµ°

Z
fn dµ

∂
and

Z
g dµ+

Z
f dµ∑ liminf

µZ
g dµ+

Z
fn dµ

∂
.

Thus,

limsup
Z

fn dµ∑
Z

f dµ and

liminf
Z

fn dµ∏
Z

f dµ.

This proves the first statement in (3.8).

The proof of the second assertion is similar. Since each fn is dominated by g , so is f ;
consequently, by the triangle inequality, | fn ° f | ∑ 2g . Now limn!1(2g ° | fn ° f |) = 2g
pointwise, so by Fatou’s Lemma,

Z
2g dµ∑ liminf

Z
(2g ° | fn ° f |dµ) =

Z
2g dµ° limsup

Z
| fn ° f |dµ =)

0 ∏ limsup
Z

| fn ° f |dµ.

But since each integrand | fn ° f | is nonnegative, the liminf of the sequence
R
| fn ° f |dµ

must be nonnegative also, and so it follows that

0 = lim
Z

| fn ° f |dµ.

This proves the second part of (3.8).

Sets of Measure Zero. The hypotheses of Theorems 3.7 and 3.12 require that the
sequence fn converge pointwise to the limit function f . In fact, it is enough that they
converge almost everywhere (that is, at all points except for those in a set of measure
0). This follows, in essence, from Proposition 3.6 (b), which states that if a function is
0 except on a set of measure 0 then its integral is 0. The argument for the monotone
convergence theorem goes as follows; the other theorems can be handled in similar
fashion.

Assume that fn is a sequence of measurable real-valued functions on≠ such that

0 ∑ f1 ∑ f2 ∑ · · · on G
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where G is a measurable set whose complement Gc has measure 0. Define a new se-
quence of functions Fn = fn1G ; then each Fn is a measurable function that agrees with
fn except on Gc , and so

R
Fn =

R
fn , by Proposition 3.6 (b) and the linearity of the integral.

Furthermore,
0 ∑ F1 ∑ F2 ∑ F3 ∑ · · · everywhere;

thus, the hypotheses of Theorem 3.7 are satisfied, and so

lim
n!1

Z
fn dµ= lim

n!1

Z
Fn dµ=

Z
lim

n!1
Fn dµ.

This proves that the conclusions of the Monotone Convergence Theorem hold for the
sequence fn .

3.3 Measures Defined by Likelihood Ratios

Let (≠,F ,µ) be a measure space and g ∏ 0 a nonnegative measurable function on ≠.
The function g can be used as a density against µ to define another measure ∫ on ≠ as
follows:

∫(F ) =
Z

g 1F dµ (3.9)

Proposition 3.13. The set function ∫ on F is a measure. Moreover, a nonnegative mea-
surable function h on≠ is integrable with respect to ∫ if and only if (hg ) is integrable with
respect to µ, and Z

h d∫=
Z

(g h)dµ (3.10)

Proof. The first assertion follows by the Monotone Convergence Theorem. For the sec-
ond, first check that the formula (3.10) holds for nonnegative simple functions, and then
use Monotone Convergence to get it for everything else.

Observe that if
R

g dµ= 1 then the measure defined by (3.9) is a probability measure.
Many of the important parametric families of probability distributions in statistics are
built this way. A special case of particular interest is that of an exponential family of
probability measures. First, a necessary inequality:

Proposition 3.14. (Jensen’s inequality) Let (≠,F ,P ) be a probability space and X 2 L1 an
integrable real-valued random variable. If ' :R!R is convex then the integral of '(X ) is
well-defined (although possibly infinite) and

'(E X ) ∑ E'(X ).

Proof. Support lines.
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Example: Exponential Families. Suppose now that X is a real-valued random variable
on a probability space (≠,F ,P ); then the set of real numbers µ for which EeµX <1 is an
interval J containing µ = 0 (by Jensen). For any µ 2 J , define

'(µ) = e√(µ) = EeµX ;

then ' is called the moment generating function of X and √ is the cumulant generat-
ing function of X . By Jensen’s inequality, the moment generating function ' and the
cumulant generating function √ are both convex functions. Now fix µ 2 J and define

Pµ(F ) = EeµX°√(µ)1F for F 2F .

For each µ 2 J the set function Pµ is a probability measure on (≠,F ). The family of prob-
abilities {Pµ}µ2J is called a (one-dimensional) exponential family. The random variable
X is the sufficient statistic, and µ is the natural parameter.

Exercise 3.15. Verify that each of the following is an exponential family:

(a) Pµ = normal distribution with mean µ and variance 1.
(b) Pµ = Poisson distribution with mean eµ.
(c) Pµ = Binomial (n, p) with eµ = p/(1°p).

Proposition 3.16. Let µ be a point in the interior of J . Then for each k = 1,2, . . . ,

EµX k =
µ

d
dµ

∂k

'(µ).

Proof. Dominated Convergence Theorem + Jensen.

Corollary 3.17. The mapping µ 7! µµ = EµX is a smooth, nondecreasing function of µ
on the natural parameter space J . If Var0(X ) > 0 then µ 7! µµ is strictly increasing, and
consequently maps J homeomorphically onto an interval.

Proof. The first statement is a direct consequence of the preceding proposition. To prove
the second assertion, you must show that if Var0(X ) > 0 then '00(µ) > 0 for all µ 2 J .

3.4 Uniform Integrability

Definition 3.18. Let (≠,F .P ) be a probability space3. A family of {Xµ}µ2£ of random
variables on≠ is uniformly integrable if

lim
Æ!1

sup
µ2£

E |Xµ|1{|Xµ|∏Æ} = 0

3The notion of uniform integrability also makes sense in infinite measure spaces, but is less useful.
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If the family {Xµ}µ2£ is uniformly integrable then it is bounded in L1 norm (exercise).
If X 2 L1 then the singleton family {X } is trivially uniformly integrable, by the dominated
convergence theorem, because the sequence |X |1{|X |∏ n} converges to 0 pointwise and
is dominated by the integrable random variable |X |.

Exercise 3.19. If there exists X 2 L1 such that |Xµ|∑ X pointwise for every µ 2£ then the
collection {Xµ}µ2£ is uniformly integrable.

Exercise 3.20. If there is a function ' : [0,1) ! [0,1] such that '(x)/x !1 as x !1
and if

sup
µ2£

E'(|Xµ|) <1

then the collection {Xµ}µ2£ is uniformly integrable. Thus, for example, if the second mo-
ments E X 2

µ are uniformly bounded then the collection {Xµ}µ2£ is uniformly integrable.

Theorem 3.21. (Vitali’s Convergence Theorem) Let Xn be a sequence of random variables
such that limn!1 Xn = X pointwise. If the sequence {Xn}n2N is uniformly integrable then
X 2 L1, the collection {X }[ {Xn}n∏1 is uniformly integrable, and

lim
n!1

E Xn = E X and lim
n!1

E |Xn °X | = 0. (3.11)

Exercise 3.22. Prove the first two assertions (that E |X | <1 and that the collection {X }[
{Xn}n∏1 is uniformly integrable).

Proof. The strategy of the proof will be to truncate the random variables at some level m
(i.e., to replace the original random variables Xn by the random variables Xn1[0,m](|Xn |)
for some large m and then use bounded convergence. Unfortunately, though, on the
event that |X | = m it is possible that

lim
n!1

Xn1[0,m](|Xn |) = 0 but X 1[0,m](|X |) = X .

To circumvent this difficulty, we will modify the usual truncation procedure. For each
m, let gm be the piecewise linear function

gm(x) = 1 if x ∑ m;

= 0 if x ∏ m +1;

= m +1°x if m ∑ x ∑ m +1.

Clearly, gm is a continuous function; hence, for each m ∏ 1 the sequence of random
variables Xn gm(|Xn |) converges pointwise to the random variable X gm(|X |) as n !1.
Moreover,

|Xn |g (|Xn |) ∑ |Xn |1[0,m+1](|Xn |)),
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so for each fixed m ∏ 1 the random variables Xn gm(|Xn |) are uniformly bounded. There-
fore, by the dominated convergence theorem,

lim
n!1

E Xn gm(|Xn |) = E X gm(|X |).

Next, choose " > 0 small. Since the collection {X }[ {Xn}n∏1 is uniformly integrable
(exercise 3.22), there exists m ∏ 1 so large that

sup
n

E |Xn |1[m,1)(|Xn |)+E |X |1[m,1)(|X |) ∑ ".

Now the function gm coincides with 1[0,m] except in the interval [m,m+1], where it takes
values between 0 and 1; hence,

|x|(1° gm(|x)) ∑ |x|(1°1[0,m](x)).

It follows that
sup

n
E |Xn |(1° gm(|Xn |))+E |X |(1° gm(|X |)) ∑ ".

Together with the result of the previous paragraph, this implies that

limsup
n!1

|E Xn °E X |

∑ limsup
n!1

|E Xn gm(|Xn |)°E X gm(|X |)|

+ sup
n

E |Xn |(1° gm(|Xn |))+E |X |(1° gm(|X |))

∑ 0+".

Since "> 0 is arbitrary, it follows that limn!1 E Xn = E X . A similar argument proves that
limn!1 E |Xn °X | = 0.

3.5 Convergence in Measure and Completeness of L1

Definition 3.23. Let (≠,F ),µ be a measure space. For any realÆ∏ 1 define the LÆ°norm
of a measurable function f :≠!R by

k f kÆ =
µZ

| f |Ædµ
∂1/Æ

This is not, strictly speaking, a norm, because k f kÆ = 0 does not imply that f is iden-
tically 0, it only implies that f = 0 a.e. For this reason, we shall consider two measurable
functions f , g equivalent if the set on which they differ has measure 0. The space of
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equivalence classes of functions f with k f kÆ <1 is denoted by LÆ (or if the measure
space must be emphasized, LÆ(≠,F ,µ)). It is obvious that for any scalar b,

kb f kÆ = |b|k f kÆ;

thus, to show that k ·kÆ is a norm on LÆ it suffices to establish the triangle inequality.

Lemma 3.24. (Minkowski Inequality) k f + gkÆ ∑ k f kÆ+kgkÆ.

Proof. In view of the scaling property noted above, it suffices to consider the case where
k f kÆ = s 2 (0,1) and kgkÆ = 1° s. By the convexity of the function x 7! |x|Æ,

ØØØs
f
s
+ (1° s)

g
1° s

ØØØ
Æ
∑ s| f /s|Æ+ (1° s)|g /(1° s)|Æ.

(NOTE: This is where the assumption that Æ ∏ 1 is needed, because these are the only
values for which the function x 7! |x|Æ is convex.) Integrating on both sides and using
the scaling relations k f /skÆ = kg /(1° s)kÆ = 1 gives

Z
| f + g |Æ ∑ s

Z
| f /s|Æ+ (1° s)

Z
|g /(1° s)|Æ = 1.

For any Æ∏ 1 the space LÆ with the norm k ·kÆ is a normed vector space. The norm
induces a metric on LÆ by

dÆ( f , g ) := k f ° gkÆ.

Our next objective is to show that for every Æ the metric space (LÆ,dÆ is complete, that is,
every Cauchy sequence has a limit. Recall that a sequence fn is Cauchy if for every "> 0
there exists n" <1 such that for any two indices n,m ∏ n",

dÆ( fn , fm) < ".

Lemma 3.25. (Markov Inequality) µ{| f |∏C } ∑ k f kÆÆ/CÆ.

Proposition 3.26. If a sequence fn is Cauchy in LÆ then there exists a measurable function
f 2 LÆ such that

lim
n!1

k f ° fnkÆ = 0

Proof. Since any subsequence of a Cauchy sequence is Cauchy, and since a Cauchy
sequence can have at most one limit, it suffices to show that there is a subsequence of fn
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that converges in LÆ. For this, choose any subsequence fk such that k fk ° fk+1kÆ ∑ 4°k .
By the Markov inequality, for any "> 0,

µ{| fk ° fk+1|∏ "/2k } ∑ 1

"Æ2kÆ
.

Since
P

k∏1 2°kÆ <1, the Borel-Cantelli Lemma implies that, except on a set B of mea-
sure 0, the event | fk ° fk+1|∏ "/2k occurs for only finitely many k. Consequently, except
on the set B the sequence fk converges pointwise, and so we may define

f (!) = lim
k!1

fk (!) for ! 2 B c ,

= 0 for ! 2 B.

By Fatou’s Lemma, since fk ! f and | fk ° f |! 0 almost everywhere (i.e., except on B),

Z
| f ° fk |Ædµ∑ liminf

m!1

Z
| fk ° fmk |

Ædµ∑
µ 1X

n=1
4°n

∂Æ
.

Thus, fk ! f in LÆ.

Definition 3.27. A sequence of measurable functions defined on a measure space (≠,F ,µ)
is said to converge in measure (or in probability, if the measure µ is a probability) to a
measurable function f if for every "> 0,

lim
n!1

µ{| fn ° f |∏ "} = 0.

Convergence in probability is denoted Xn
P! X . For any real number Æ∏ 1 the sequence

fn converges in Lp to f if

lim
n!1

Z
| fn ° f |p dµ= 0.

Exercise 3.28. Show that if fn ! f almost surely then fn ! f in measure.

Exercise 3.29. Show that if fn ! f in Lp then fn ! f in measure.

Proposition 3.30. If fn ! f in measure then there is a subsequence fnk such that fnk ! f
almost everywhere.

Proof. Mimic the proof of Proposition 3.26.
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