
2 Independence

2.1 Borel’s Strong Law of Large Numbers

Standing Convention: q = 1°p

Definition 2.1. A sequence {Xn}n∏1 of random variables defined on a common probabil-
ity space (≠,F ,P ) taking values in {0,1} is said to be independent, identically distributed
Bernoulli°p if for every finite sequence ei of 0s and 1s,

P {Xi = ei for each i ∑ m} = p
Pm

i=1 ei qm°Pm
i=1 ei .

Theorem 2.2. (Borel) Assume that X1, X2, . . . are independent, identically distributed
Bernoulli°p random variables defined on a probability space (≠,F ,P ), and for each n ∏ 1
let Sn =Pn

i=1 Xi . Then
P { lim

n!1
Sn/n = p} = 1. (2.1)

Proof. Convergence of a sequence to the limit p means that for every "> 0 only finitely
many terms of the sequence lie outside the interval (p °", p +"), and since the rational
numbers are dense in R, only rational values of " need be considered. Thus, we must
show that with probability one, for every rational " > 0 only finitely many terms of the
sequence Sn/n are not between p°" and p+". Since the rational numbers are countable,
it is enough to prove that for each fixed rational "> 0,

P {|Sn °p|∏ " i .o} = 0.

Consequently, by the Borel-Cantelli lemma, it suffices to prove that for each "> 0,

1X

n=1
P {Sn ∏ np +n"} <1 and (2.2)

1X

n=1
P {Sn ∑ np °n"} <1. (2.3)

The problem is now reduced to finding upper bounds on the tail probabilities for
the distribution of Sn , a common problem in probability theory. The first tool that
might come to mind, the Chebyshev inequality, will not work here, because it gives upper
bounds on the order of c/n (for some c > 0 depending on " and the variance pq), and
unfortunately the sequence 1/n is not summable. Nevertheless, usable bounds can be
gotten by a strategy not unlike that underlying the Chebyshev inequality: in particular, if
f :R! (0,1) is any non-decreasing, positive function, then for any Æ> 0

P {Sn ∏ nÆ} ∑
nX

k=[nÆ]

f (k)
f ([na])

P {Sn = k},
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where [·] is the greatest integer function. The trick will be to find the right function f .
Let’s try f (x) = eµx for some parameter µ > 0; this leads us to

P {Sn ∏ np +n"} ∑ exp{°[npµ+n"µ]}
nX

k=[np+n"]
eµk P {Sn = k}

∑ exp{°[npµ+n"µ]}
nX

k=0
eµk P {Sn = k}

= exp{°[npµ+n"µ]}
nX

k=0

√
n
k

!

(peµ)k qn°k

= exp{°[npµ+n"µ]}
≥
peµ+q

¥n
(2.4)

This chain of inequalities holds for any value of µ > 0. Consequently, if we can find a
particular value of µ > 0 for which the bound is summable in n, then inequality (2.2) will
be proved. Now the bound is (essentially) of the form (something)n (the greatest integer
in the first exponential can be dropped at a cost of at most e1); hence, we should look for
a value of µ that will make (something) less than 1. But

(something) = e°pµ+"µ(peµ+q);

this has the value 1 when µ = 0, and the derivative with respect to µ at µ = 0 is (exercise:
do the calculus!)

°(p +")+p =°"< 0.

Thus, for small values of µ > 0 the value of (something) will be less than the value at
µ = 0, which is one. This proves that for small values of µ > 0 the upper bounds in the
inequalities (2.4) will be exponentially small in n, and so (2.2) holds. A similar argument
(using f (x) = e°µx) proves (2.3).

2.2 Independence and Kolmogorov’s 0–1 Law

Standing Assumption: (≠,F ,P ) is a probability space. An event is an element of the
æ°algebra F , and a random variable is a measurable transformation X :≠!R.

Definition 2.3. Events A1, A2, . . . , Am are said to be independent if for every sub-collection
Ai1 , Ai2 , . . . , Aik

P

√
k\

j=1
Ai j

!

=
kY

j=1
P (Ai j ). (2.5)

An infinite collection of events {Aµ}µ2£ is independent if every finite sub-collection is
independent.
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Definition 2.4. For each i = 1,2,3, . . . let Ci be a collection of events. The collections
C1,C2, . . . are said to be independent if if for every choice of events Ci 2 Ci the events
C1,C2, . . . are independent.

In many instances the collections Ci of interest will be æ°algebras. In this case,
checking that equation (2.5) holds for all possible choices Ai =Ci 2Ci might be difficult;
fortunately, there are some useful shortcuts. The following criterion is especially useful: it
states that one need only check that (2.5) holds for events Ai in º°systems that generate
the æ°algebras.

Proposition 2.5. Suppose that for each i = 1,2, . . . the collection Ai is aº°system of events.
If the collections Ai are independent, then the collections æ(Ai ) are independent.

Proof. º°∏ lemma.

Example 2.6. Let X1,Y1, X2,Y2, . . . be independent, identically distributed Bernoulli°p
random variables defined on (≠,F ,P ). Let A be the event that

Pn
i=1(1° 2Xi )=0 for in-

finitely many n, and let B be the event that
Pn

i=1(1°2Yi )=0 for infinitely many n. Proposi-
tion 2.5 implies that A and B are independent, because A is in the æ°algebra generated
by the cylinder sets for the sequence X1, X2, . . . , and B is in æ°algebra generated by the
cylinder sets for the sequence Y1,Y2, . . . .

Example 2.6 helps to explain the usefulness of extending the notion of independence
to æ°algebras. Often (usually?) a æ°algebra arises in connection with a collection of
random variables in the same way that the twoæ°algebras in Example 2.6 are associated
with the sequences X1, X2, . . . and Y1,Y2, . . . . The next definition formalizes this.

Definition 2.7. If {Xµ}µ2£ is a family of random variables then æ({Xµ}µ2£) is the smallest
æ°algebra G such that all of the random variables Xµ are measurable with respect to G .
Equivalently,

æ({Xµ}µ2£) :=æ({X °1
µ (B)}µ2£,B2B)

where B is the family of Borel subsets of R.

Definition 2.8. Random variables X1, X2, . . . are said to be independent if theæ°algebras
æ(X1),æ(X2), . . . are independent.

Borel’s strong law of large numbers is the first of many theorems we will see in which
some event involving a sequence of independent random variables turns out to have
probability 1. You might wonder why it’s always 1, and not (say) º/6 or

p
2/2 or · · · . The

next theorem, the Kolmogorov 0–1 Law, explains why.

Definition 2.9. Let F1,F2, . . . beæ°algebras of events (i.e., each Fi ΩF ). The associated
tail field1 is defined to be the æ°algebra

T :=
1\

m=1
æ

µ 1[

n=m
Fn

∂

1It should really be called the tail æ°algebra, but everyone is now used to calling it the tail field.
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Theorem 2.10. If the æ°algebras F1,F2, . . . are independent then every event of the asso-
ciated tail field has probability either 0 or 1.

Proof. The strategy is to show that every event A 2 T is independent of itself, so that
P (A) = P (A)P (A). For this we will show that A is independent of every event in H :=
æ([1

n=1Fn); since A 2H it will then follow that A is independent of A. By Proposition 2.5,
it suffices to show that for each m ∏ 1 the event A is independent of æ([m

n=1Fn). But
another application of Proposition 2.5 shows that for every r > m the æ°algebras

æ(
m[

n=1
Fn) and æ(

r[

n=m+1
Fn)

are independent, and so a third application of Proposition 2.5 shows that the æ°algebras

æ(
m[

n=1
Fn) and æ(

1[

n=m+1
Fn)

are independent. Since A is an element of this last æ°algebra, the result follows.

2.3 SLLN for Bounded Random Variables

Definition 2.11. A real random variable X defined on (≠,F ,P ) is called simple if there is
a finite set F ΩR such that P {X 2 F } = 1. If X is simple and a1, a2, . . . , am are real numbers
such that P ([i∑m{X = ai }) then the expectation of X is defined to be

E X =
mX

i=1
ai P {X = ai }. (2.6)

The definition (2.6) is the only one that makes sense if we want expectation to be linear
and to agree with P on indicators of events, i.e.,

(i) E(aX ) = a(E X ) for all scalars a 2R;
(ii) E(X +Y ) = (E X )+ (EY ) for any two random variables X ,Y ; and

(iii) E1F = P (F ) for any indicator 1F where F 2F .

Theorem 2.12. If X1, X2, . . . are independent, identically distributed simple random vari-
ables then with probability one,

lim
n!1

1
n

nX

i=1
Xi = E X1

Proof. Write
Pn

i=1 Xi =
Pn

i=1
Pm

j=1 a j 1{Xi = a j } and then apply Borel’s strong law of large
numbers to the Bernoulli random variables 1{Xi = a j }.
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It is only a bit more work to prove the strong law of large numbers for bounded ran-
dom variables. Since we haven’t yet defined expectation for arbitrary random variables,
we cannot yet express the limit as an expectation; nevertheless, the proof will yield an
expression for the limit.

Theorem 2.13. If X1, X2, . . . are independent, identically distributed bounded random
variables then with probability one,

lim
n!1

1
n

nX

i=1
Xi (2.7)

exists and is constant.

Proof. For simplicity let’s assume that 0 < Xi < 1; the general case can then be deduced
by a simple scaling and translation. For each integer m ∏ 1, define functions gm and hm

on [0,1] as follows:

gm(x) = 2°mb2m xc and hm(x) = gm(x)+2°m ;

thus, gm(x) is the largest k/2m less or equal to x, and hm(x) is the smallest k/2m greater
than x. Clearly, the random variables gm(Xi ) and hm(Xi ) are simple, as they take values
in the finite set {k/2m}0∑k∑2m . Moreover, since the random variables X1, X2, . . . are inde-
pendent and identically distributed, then for any fixed m ∏ 1 so are the random variables
gm(X1), gm(X2), . . . , and so are the random variables hm(X1),hm(X2), . . . . Therefore, by
Theorem 2.12, for each m ∏ 1, with probability one,

lim
n!1

1
n

nX

i=1
gm(Xi ) = E gm(X1) and

lim
n!1

1
n

nX

i=1
hm(Xi ) = Ehm(X1).

Since hm ° gm = 2°m , the difference between the two limits Ehm(X1) and E gm(X1) is
exactly 2°m . Now each random variable Xi is bounded above and below by hm(Xi ) and
gm(Xi ); consequently, for each n

1
n

nX

i=1
gm(Xi ) ∑ 1

n

nX

i=1
Xi ∑

1
n

nX

i=1
hm(Xi ),

and so with probability one the liminf and limsup of the sequence n°1 Pn
i=1 Xi are be-

tween E gm(X1) and Ehm(X1). Since this is true for every m ∏ 1, and since Ehm(X1)°
E gm(X1) = 2°m , it follows that with probability one the limit (2.7) exists and equals

lim
m!1

E gm(X1).
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2.4 Glivenko-Cantelli Theorem

Definition 2.14. If X1, X2, . . . , Xn are any real random variables defined n a common prob-
ability space (≠,F ,P ) then their empirical c.d.f is the cumulative distribution function

Fn(y) := 1
n

nX

i=1
1{Xi ∑ y}.

Theorem 2.15. (Glivenko-Cantelli) If X1, X2, . . . are independent, identically distributed
real random variables with common cumulative distribution function F then with proba-
bility one,

lim
n!1

sup
y2R

|Fn(y)°F (y)| = 0. (2.8)

Proof. First observe that for each fixed y 2 R the random variables 1{Xi ∑ y} are inde-
pendent, identically distributed Bernoulli°p with p = F (y). Hence, Borel’s strong law of
large numbers implies that for each y

lim
n!1

1
n

nX

i=1
1{Xi ∑ y} = F (y) with probability 1.

This statement is weaker than (2.8), however, which states that the convergence is uni-
form over all real numbers y . For uniformity an additional argument is needed.

Consider first the case where F is everywhere continuous. In this case, for every "> 0
there are real numbers y1, y2, . . . , ym such that (with the notational convention y0 =°1
and ym+1 =+1)

F (yi+1)°F (yi ) < " for every 0 ∑ i ∑ m.

Since there are only finitely many points yi involved, Borel’s SLLN implies that with
probability one,

lim
n!1

max
i∑m

|Fn(yi )°F (yi )| = 0

But both Fn and F are monotone functions of y , since they are cumulative distribution
functions. Consequently, if |Fn(yi )°F (yi )| < " for both i = j and i = j +1 then by the
triangle inequality,

sup
yi∑y∑yi+1

|Fn(y)°F (y)| < 2".

The uniform convergence (2.8) now follows.

Exercise 2.16. Finish the proof by showing how to handle distribution functions F with
points of discontinuity. HINTS: (a) For any y 2R the random variables 1{Xi < y} are inde-
pendent, identically distributed Bernoulli°p with p = F (y°) = limx"y F (x). (b) For any
"> 0 there are at most finitely many real numbers y at which F has a jump discontinuity
of size " or greater.
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Exercise 2.17. Let X1, X2, . . . be independent, identically distributed, each with the uni-
form distribution on [0,1]. Explain why

lim
n!1

sup
B2B[0,1]

| 1
n

nX

i=1
1B (Xi )°∏(B)| = 1.
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