2 Independence ### 2.1 Borel's Strong Law of Large Numbers **Standing Convention:** q = 1 - p **Definition 2.1.** A sequence $\{X_n\}_{n\geq 1}$ of random variables defined on a common probability space (Ω, \mathcal{F}, P) taking values in $\{0, 1\}$ is said to be independent, identically distributed Bernoulli–p if for every finite sequence e_i of 0s and 1s, $$P\{X_i = e_i \text{ for each } i \le m\} = p^{\sum_{i=1}^m e_i} q^{m - \sum_{i=1}^m e_i}.$$ **Theorem 2.2.** (Borel) Assume that $X_1, X_2,...$ are independent, identically distributed Bernoulli–p random variables defined on a probability space (Ω, \mathcal{F}, P) , and for each $n \ge 1$ let $S_n = \sum_{i=1}^n X_i$. Then $$P\{\lim_{n \to \infty} S_n / n = p\} = 1. \tag{2.1}$$ *Proof.* Convergence of a sequence to the limit p means that for every $\varepsilon > 0$ only finitely many terms of the sequence lie outside the interval $(p - \varepsilon, p + \varepsilon)$, and since the rational numbers are dense in \mathbb{R} , only *rational* values of ε need be considered. Thus, we must show that with probability one, for every rational $\varepsilon > 0$ only finitely many terms of the sequence S_n/n are not between $p-\varepsilon$ and $p+\varepsilon$. Since the rational numbers are countable, it is enough to prove that for each fixed rational $\varepsilon > 0$, $$P\{|S_n - p| \ge \varepsilon \ i.o\} = 0.$$ Consequently, by the Borel-Cantelli lemma, it suffices to prove that for each $\varepsilon > 0$, $$\sum_{n=1}^{\infty} P\{S_n \ge np + n\varepsilon\} < \infty \quad \text{and}$$ (2.2) $$\sum_{n=1}^{\infty} P\{S_n \le np - n\varepsilon\} < \infty. \tag{2.3}$$ The problem is now reduced to finding upper bounds on the tail probabilities for the distribution of S_n , a common problem in probability theory. The first tool that might come to mind, the *Chebyshev inequality*, will not work here, because it gives upper bounds on the order of c/n (for some c > 0 depending on ε and the variance pq), and unfortunately the sequence 1/n is not summable. Nevertheless, usable bounds can be gotten by a strategy not unlike that underlying the Chebyshev inequality: in particular, if $f: \mathbb{R} \to (0, \infty)$ is any *non-decreasing*, positive function, then for any $\alpha > 0$ $$P\{S_n \ge n\alpha\} \le \sum_{k=\lfloor n\alpha\rfloor}^n \frac{f(k)}{f(\lfloor n\alpha\rfloor)} P\{S_n = k\},\,$$ where $[\cdot]$ is the greatest integer function. The trick will be to find the right function f. Let's try $f(x) = e^{\theta x}$ for some parameter $\theta > 0$; this leads us to $$P\{S_{n} \geq np + n\epsilon\} \leq \exp\{-[np\theta + n\epsilon\theta]\} \sum_{k=[np+n\epsilon]}^{n} e^{\theta k} P\{S_{n} = k\}$$ $$\leq \exp\{-[np\theta + n\epsilon\theta]\} \sum_{k=0}^{n} e^{\theta k} P\{S_{n} = k\}$$ $$= \exp\{-[np\theta + n\epsilon\theta]\} \sum_{k=0}^{n} \binom{n}{k} (pe^{\theta})^{k} q^{n-k}$$ $$= \exp\{-[np\theta + n\epsilon\theta]\} \left(pe^{\theta} + q\right)^{n}$$ $$(2.4)$$ This chain of inequalities holds for any value of $\theta > 0$. Consequently, if we can find a particular value of $\theta > 0$ for which the bound is summable in n, then inequality (2.2) will be proved. Now the bound is (essentially) of the form (something)ⁿ (the greatest integer in the first exponential can be dropped at a cost of at most e^1); hence, we should look for a value of θ that will make (something) less than 1. But (something) = $$e^{-p\theta + \varepsilon\theta}(pe^{\theta} + q)$$; this has the value 1 when $\theta = 0$, and the derivative with respect to θ at $\theta = 0$ is (exercise: do the calculus!) $$-(p+\varepsilon)+p=-\varepsilon<0.$$ Thus, for small values of $\theta > 0$ the value of (something) will be *less than* the value at $\theta = 0$, which is one. This proves that for small values of $\theta > 0$ the upper bounds in the inequalities (2.4) will be exponentially small in n, and so (2.2) holds. A similar argument (using $f(x) = e^{-\theta x}$) proves (2.3). ## 2.2 Independence and Kolmogorov's 0-1 Law **Standing Assumption:** (Ω, \mathcal{F}, P) is a probability space. An *event* is an element of the σ -algebra \mathcal{F} , and a *random variable* is a measurable transformation $X : \Omega \to \mathbb{R}$. **Definition 2.3.** Events $A_1, A_2, ..., A_m$ are said to be *independent* if for every sub-collection $A_{i_1}, A_{i_2}, ..., A_{i_k}$ $$P\left(\bigcap_{j=1}^{k} A_{i_j}\right) = \prod_{j=1}^{k} P(A_{i_j}). \tag{2.5}$$ An infinite collection of events $\{A_{\theta}\}_{{\theta}\in\Theta}$ is independent if every finite sub-collection is independent. **Definition 2.4.** For each i = 1, 2, 3, ... let \mathcal{C}_i be a collection of events. The collections $\mathcal{C}_1, \mathcal{C}_2, ...$ are said to be *independent* if if for every choice of events $C_i \in \mathcal{C}_i$ the events $C_1, C_2, ...$ are independent. In many instances the collections \mathscr{C}_i of interest will be σ -algebras. In this case, checking that equation (2.5) holds for all possible choices $A_i = C_i \in \mathscr{C}_i$ might be difficult; fortunately, there are some useful shortcuts. The following criterion is especially useful: it states that one need only check that (2.5) holds for events A_i in π -systems that generate the σ -algebras. **Proposition 2.5.** Suppose that for each i = 1, 2, ... the collection \mathcal{A}_i is a π -system of events. If the collections \mathcal{A}_i are independent, then the collections $\sigma(\mathcal{A}_i)$ are independent. *Proof.* $$\pi - \lambda$$ lemma. **Example 2.6.** Let $X_1, Y_1, X_2, Y_2, ...$ be independent, identically distributed Bernoulli–p random variables defined on (Ω, \mathcal{F}, P) . Let A be the event that $\sum_{i=1}^{n} (1 - 2X_{i}) = 0$ for infinitely many n, and let B be the event that $\sum_{i=1}^{n} (1 - 2Y_{i}) = 0$ for infinitely many n. Proposition 2.5 implies that A and B are independent, because A is in the σ -algebra generated by the cylinder sets for the sequence $X_1, X_2, ...$, and B is in σ -algebra generated by the cylinder sets for the sequence $Y_1, Y_2, ...$ Example 2.6 helps to explain the usefulness of extending the notion of independence to σ -algebras. Often (usually?) a σ -algebra arises in connection with a collection of random variables in the same way that the two σ -algebras in Example 2.6 are associated with the sequences X_1, X_2, \ldots and Y_1, Y_2, \ldots The next definition formalizes this. **Definition 2.7.** If $\{X_{\theta}\}_{{\theta}\in\Theta}$ is a family of random variables then $\sigma(\{X_{\theta}\}_{{\theta}\in\Theta})$ is the smallest σ -algebra ${\mathscr G}$ such that all of the random variables X_{θ} are measurable with respect to ${\mathscr G}$. Equivalently, $$\sigma(\{X_{\theta}\}_{\theta \in \Theta}) := \sigma(\{X_{\theta}^{-1}(B)\}_{\theta \in \Theta, B \in \mathcal{B}})$$ where \mathcal{B} is the family of Borel subsets of \mathbb{R} . **Definition 2.8.** Random variables $X_1, X_2,...$ are said to be *independent* if the σ -algebras $\sigma(X_1), \sigma(X_2),...$ are independent. Borel's strong law of large numbers is the first of many theorems we will see in which some event involving a sequence of independent random variables turns out to have probability 1. You might wonder why it's always 1, and not (say) $\pi/6$ or $\sqrt{2}/2$ or \cdots . The next theorem, the *Kolmogorov 0–1 Law*, explains why. **Definition 2.9.** Let $\mathscr{F}_1, \mathscr{F}_2, \ldots$ be σ -algebras of events (i.e., each $\mathscr{F}_i \subset \mathscr{F}$). The associated *tail field*¹ is defined to be the σ -algebra $$\mathcal{T} := \bigcap_{m=1}^{\infty} \sigma \left(\bigcup_{n=m}^{\infty} \mathscr{F}_n \right)$$ ¹It should really be called the *tail* σ – *algebra*, but everyone is now used to calling it the *tail* field. **Theorem 2.10.** If the σ -algebras $\mathcal{F}_1, \mathcal{F}_2, \ldots$ are independent then every event of the associated tail field has probability either 0 or 1. *Proof.* The strategy is to show that every event $A \in \mathcal{T}$ is independent of itself, so that P(A) = P(A)P(A). For this we will show that A is independent of every event in $\mathcal{H} := \sigma(\cup_{n=1}^{\infty} \mathcal{F}_n)$; since $A \in \mathcal{H}$ it will then follow that A is independent of A. By Proposition 2.5, it suffices to show that for each $m \ge 1$ the event A is independent of $\sigma(\cup_{n=1}^{m} \mathcal{F}_n)$. But another application of Proposition 2.5 shows that for every r > m the σ -algebras $$\sigma(\bigcup_{n=1}^{m} \mathscr{F}_n)$$ and $\sigma(\bigcup_{n=m+1}^{r} \mathscr{F}_n)$ are independent, and so a third application of Proposition 2.5 shows that the σ -algebras $$\sigma(\bigcup_{n=1}^{m} \mathscr{F}_n)$$ and $\sigma(\bigcup_{n=m+1}^{\infty} \mathscr{F}_n)$ are independent. Since *A* is an element of this last σ -algebra, the result follows. ### 2.3 SLLN for Bounded Random Variables **Definition 2.11.** A real random variable X defined on (Ω, \mathcal{F}, P) is called *simple* if there is a *finite* set $F \subset \mathbb{R}$ such that $P\{X \in F\} = 1$. If X is simple and a_1, a_2, \ldots, a_m are real numbers such that $P(\bigcup_{i \le m} \{X = a_i\})$ then the *expectation* of X is defined to be $$EX = \sum_{i=1}^{m} a_i P\{X = a_i\}.$$ (2.6) The definition (2.6) is the only one that makes sense if we want expectation to be *linear* and to agree with *P* on indicators of events, i.e., - (i) E(aX) = a(EX) for all scalars $a \in \mathbb{R}$; - (ii) E(X + Y) = (EX) + (EY) for any two random variables X, Y; and - (iii) $E\mathbf{1}_F = P(F)$ for any indicator $\mathbf{1}_F$ where $F \in \mathcal{F}$. **Theorem 2.12.** If $X_1, X_2, ...$ are independent, identically distributed simple random variables then with probability one, $$\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} X_i = EX_1$$ *Proof.* Write $\sum_{i=1}^{n} X_i = \sum_{i=1}^{n} \sum_{j=1}^{m} a_j \mathbf{1}\{X_i = a_j\}$ and then apply Borel's strong law of large numbers to the Bernoulli random variables $1\{X_i = a_j\}$. It is only a bit more work to prove the strong law of large numbers for *bounded* random variables. Since we haven't yet defined expectation for arbitrary random variables, we cannot yet express the limit as an expectation; nevertheless, the proof will yield an expression for the limit. **Theorem 2.13.** If $X_1, X_2,...$ are independent, identically distributed bounded random variables then with probability one, $$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i \tag{2.7}$$ exists and is constant. *Proof.* For simplicity let's assume that $0 < X_i < 1$; the general case can then be deduced by a simple scaling and translation. For each integer $m \ge 1$, define functions g_m and h_m on [0,1] as follows: $$g_m(x) = 2^{-m} \lfloor 2^m x \rfloor$$ and $h_m(x) = g_m(x) + 2^{-m}$; thus, $g_m(x)$ is the largest $k/2^m$ less or equal to x, and $h_m(x)$ is the smallest $k/2^m$ greater than x. Clearly, the random variables $g_m(X_i)$ and $h_m(X_i)$ are simple, as they take values in the finite set $\{k/2^m\}_{0 \le k \le 2^m}$. Moreover, since the random variables X_1, X_2, \ldots are independent and identically distributed, then for any fixed $m \ge 1$ so are the random variables $g_m(X_1), g_m(X_2), \ldots$, and so are the random variables $h_m(X_1), h_m(X_2), \ldots$. Therefore, by Theorem 2.12, for each $m \ge 1$, with probability one, $$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} g_m(X_i) = Eg_m(X_1) \quad \text{and}$$ $$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} h_m(X_i) = Eh_m(X_1).$$ Since $h_m - g_m = 2^{-m}$, the difference between the two limits $Eh_m(X_1)$ and $Eg_m(X_1)$ is exactly 2^{-m} . Now each random variable X_i is bounded above and below by $h_m(X_i)$ and $g_m(X_i)$; consequently, for each n $$\frac{1}{n}\sum_{i=1}^{n}g_{m}(X_{i})\leq\frac{1}{n}\sum_{i=1}^{n}X_{i}\leq\frac{1}{n}\sum_{i=1}^{n}h_{m}(X_{i}),$$ and so with probability one the liminf and limsup of the sequence $n^{-1}\sum_{i=1}^{n}X_i$ are between $Eg_m(X_1)$ and $Eh_m(X_1)$. Since this is true for *every* $m \ge 1$, and since $Eh_m(X_1) - Eg_m(X_1) = 2^{-m}$, it follows that with probability one the limit (2.7) exists and equals $$\lim_{m\to\infty} Eg_m(X_1).$$ ### 2.4 Glivenko-Cantelli Theorem **Definition 2.14.** If $X_1, X_2, ..., X_n$ are any real random variables defined n a common probability space (Ω, \mathcal{F}, P) then their *empirical c.d.f* is the cumulative distribution function $$F_n(y) := \frac{1}{n} \sum_{i=1}^n \mathbf{1} \{ X_i \le y \}.$$ **Theorem 2.15.** (Glivenko-Cantelli) If $X_1, X_2,...$ are independent, identically distributed real random variables with common cumulative distribution function F then with probability one, $$\lim_{n \to \infty} \sup_{y \in \mathbb{R}} |F_n(y) - F(y)| = 0. \tag{2.8}$$ *Proof.* First observe that for each *fixed* $y \in \mathbb{R}$ the random variables $\mathbf{1}\{X_i \leq y\}$ are independent, identically distributed Bernoulli–p with p = F(y). Hence, Borel's strong law of large numbers implies that for each y $$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{ X_i \le y \} = F(y) \quad \text{with probability 1.}$$ This statement is weaker than (2.8), however, which states that the convergence is uniform over all real numbers *y*. For uniformity an additional argument is needed. Consider first the case where F is everywhere continuous. In this case, for every $\varepsilon > 0$ there are real numbers y_1, y_2, \dots, y_m such that (with the notational convention $y_0 = -\infty$ and $y_{m+1} = +\infty$) $$F(y_{i+1}) - F(y_i) < \varepsilon$$ for every $0 \le i \le m$. Since there are only finitely many points y_i involved, Borel's SLLN implies that with probability one, $$\lim_{n\to\infty} \max_{i\leq m} |F_n(y_i) - F(y_i)| = 0$$ But both F_n and F are *monotone* functions of y, since they are cumulative distribution functions. Consequently, if $|F_n(y_i) - F(y_i)| < \varepsilon$ for both i = j and i = j + 1 then by the triangle inequality, $$\sup_{y_i \le y \le y_{i+1}} |F_n(y) - F(y)| < 2\varepsilon.$$ The uniform convergence (2.8) now follows. **Exercise 2.16.** Finish the proof by showing how to handle distribution functions F with points of discontinuity. HINTS: (a) For any $y \in \mathbb{R}$ the random variables $\mathbf{1}\{X_i < y\}$ are independent, identically distributed Bernoulli-p with $p = F(y-) = \lim_{x \uparrow y} F(x)$. (b) For any $\varepsilon > 0$ there are at most finitely many real numbers y at which F has a jump discontinuity of size ε or greater. **Exercise 2.17.** Let $X_1, X_2,...$ be independent, identically distributed, each with the uniform distribution on [0,1]. Explain why $$\lim_{n\to\infty}\sup_{B\in\mathcal{B}_{[0,1]}}|\frac{1}{n}\sum_{i=1}^n\mathbf{1}_B(X_i)-\lambda(B)|=1.$$