
6 Convolution, Smoothing, and Weak Convergence

6.1 Convolution and Smoothing

Definition 6.1. Let µ,∫ be finite Borel measures on R. The convolution µ§∫ = ∫§µ is
the unique finite Borel measure on R such that for every bounded continuous function
f :R!R,

Z
f d(µ§∫) =

œ
f (x + y)dµ(x)d∫(y) =

œ
f (x + y)d∫(y)dµ(x). (6.1)

This notion is perhaps most easily understood in the language of induced measures
(sec. 2.3). If µ£∫ is the product measure on R£R = R2, and T : R2 ! R the mapping
T (x, y) = x + y , then T induces a Borel measure (µ£∫)±T °1 on R: this is the convolution
µ§∫. From this point of view the equations (6.1) are just a transparent reformulation of
Fubini’s theorem, because by definition of T

œ
f (x + y)dµ(x)d∫(y) =

Z
f ±T d(µ£∫).

In the special case where µ and ∫ are both probability measures, this equation identifies
the convolution µ§∫ as the distribution of X +Y , where X ,Y are independent random
variables with marginal distributions µ and ∫, respectively.

Recall that if g : R! R+ is a nonnegative, integrable function relative to Lebesgue
measure ∏ then g determines a finite Borel measure ∫ = ∫g on R by ∫(B) =

R
R1B g d∏.

What happens when this measure is convolved with another finite Borel measure µ? By
the translation invariance of Lebesgue measure and Tonelli’s theorem, for any nonnega-
tive, continuous, bounded function f ,

Z
f d(µ£∫) =

œ
f (x + y)d∫(y)dµ(x)

=
ZµZ

f (x + y)g (y)d∏(y)
∂

dµ(x)

=
ZµZ

f (y)g (y °x)d∏(y)
∂

dµ(x)

=
Z

f (y)
µZ

g (y °x)dµ(x)
∂

d∏(y)

=
Z

f (y)(g §µ)(y)d∏(y)

where g §µ is defined to be the (integrable) function

g §µ(y) =
Z

g (y °x)dµ(x) (6.2)

This proves the following result.
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Proposition 6.2. If µ,∫ are finite Borel measures such that ∫ has a density g with respect
to Lebesgue measure, then the convolution µ§∫ has density g §µ, as defined by (6.2).

The definition (6.2) can also be used for functions g that are not necessarily nonneg-
ative, and also for functions g that are bounded but not necessarily integrable. When the
measure µ in (6.2) is a probability measure, the integral in (6.2) can be interpreted as an
expectation: in particular, if Y is a random variable with distribution µ then

g §µ(x) =
Z

g (y °x)dµ(x) = E g (x °Y ).

Proposition 6.3. If g is a bounded, continuously differentiable function whose derivative
g 0 is also bounded then for any finite Borel measure µ the convolution g §µ is bounded
and continuously differentiable, with derivative

(g §µ)0(x) = (g 0)§µ(x) =
Z

g 0(x ° y)dµ(y). (6.3)

Proof. This is a routine exercise in the use of the dominated convergence theorem. To
show that the difference quotients (g (x +")°g (x))/" are dominated, use the mean value
theorem of calculus and the hypothesis that the derivative g 0 is a bounded function.

Corollary 6.4. If g is a k°times continuously differentiable function (i.e., a C k function)
on R with compact support then for any finite Borel measure µ the convolution g §µ is
also of class C k , and for each j ∑ k the j th derivative of g §µ is g ( j ) §µ.

Proposition 6.5. If g is a C k function on Rwith compact support and if ∫ is the uniform
distribution on a finite interval [a,b] then the convolution g §∫ is of class C k+1, and

(g §∫)( j +1)(x) = (b °a)°1(g ( j )(x °a)° g ( j )(x °b)) (6.4)

Proof. By induction it suffices to show this for k = j = 0, that is, that convolving a continu-
ous function of compact support with the uniform distribution produces a continuously
differentiable function. For this, evaluate the differences

(b °a)(g §∫(x +")° g §∫(x)) =
Zb

a
g (x +"° t )d t °

Zb

a
g (x ° t )d t

=°
Zx+"°b

x°b
g (y)d y +

Zx+"°a

x°a
g (y)d y.

Now divide by " and take the limit as "! 0, using the fundamental theorem of calculus;
this gives

(g §∫)0(x) = (b °a)°1(g (x °a)° g (x °b)).
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Corollary 6.6. There exists an even, C1 probability density√(x) on Rwith support [°1,1].

Proof. Let U1,U2, . . . be independent, identically distributed uniform-[°1,1] random
variables and set

Y =
1X

n=1
Un/2n .

The random variable Y is certainly between °1 and 1, and its distribution is symmetric
about 0, so if it has a density √ the density must be an even function with support [°1,1].

To show that Y does have a density, we will first look at the distributions of the partial
sums

Ym =
mX

n=1
Un/2n .

Brute force calculation (exercise) shows that Y2 has a continuous density with support
[°3

4 , 3
4 ] whose graph is a (piecewise linear) trapezoid with vertices

(°3/4,0), (°1/4,1), (+1/4,1), (+3/4,0).

Now Y3 = Y2 +U3/8, so its distribution is the convolution of the distribution of Y2 with
the uniform distribution on [°1

8 , 1
8 ]; hence, by Proposition 6.5, the distribution of Y3 has

a C 1 density. By an easy induction argument, for any m ∏ 3 the distribution of Ym has a
C m°2 density.

Finally, consider the distribution of Y . Since Y = Ym +P
n∏m+1Un/2n , its distribution

is the convolution of the distribution of Ym with that of
P

n∏m+1Un/2n . Since Ym has a
density of class C m°2, Corollary 6.6 implies that Y has a density of class C m°2. But since
m can be taken arbitrarily large, it follows that the density of Y is C1.

Proposition 6.7. Let g : R! R be a bounded, continuous function, and let ' be a con-
tinuous probability density with support [°1,1]. For each 1 > " > 0, let ∫" be the Borel
probability measure with density "°1'(x/"). Then for each x 2R,

lim
"!0

g §∫"(x) = g (x), (6.5)

and the convergence holds uniformly for x in any compact interval.

Proof. For any L > 0 the function g is uniformly continuous on [°L°1,L+1], so for any
±> 0 there exists "> 0 so small that |g (x)°g (y)| < ± for any x, y 2 [°L°1,L+1] such that
|x ° y | < ". But for x 2 [°L,L],

(g §∫")(x)° g (x) =
Z"

°"
(g (x ° z)° g (x))∫"(d z),

so
|(g §∫")(x)° g (x)|∑ ±.
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Corollary 6.8. The C1 functions are dense in the space of continuous functions with
compact support, that is, for any continuous f : R! R with compact support and any
±> 0 there exists a C1 function g with compact support such that

k f ° gk1 := sup
x2R

| f (x)° g (x)| < ±. (6.6)

Proof. Set g = f §∫" where ∫" has density "°1'(x/") and ' is a C1 probability density
with support [°1,1].

6.2 Weak Convergence

Definition 6.9. A sequence of Borel probability measures µn on Rk converges weakly
to a Borel probability measure µ on Rk if for every continuous function f :Rk !R with
compact support,

lim
n!1

Z
f dµn =

Z
f dµ. (6.7)

A sequence of k°dimensional random vectors Xn is said to converge in distribution4 if
their distributions µn convergence weakly to a probability distribution µ, i.e., if for every
continuous, compactly supported function f :Rk !R,

lim
n!1

E f (Xn) =
Z

f dµ. (6.8)

Lemma 6.10. If (6.7) holds for all C1 functions with compact support then it holds for
all continuous functions with compact support.

Proof. This is an easy consequence of Corollary 6.8.

Exercises.

Exercise 6.11. Let µn and µ be Borel probability measures on R with cumulative distri-
bution functions Fn and F i.e., for every real number x

µn(°1, x] = Fn(x) and µ(°1, x] = F (x).

Prove that the following conditions are equivalent:

(a) µn =)µ;
(b) limn!1 Fn(x) = F (x) for every continuity point x of F ; and
(c) on some probability space (≠,F ,P ) there are random variables Xn , X such that

4The terms vague convergence, weak convergence, and convergence in distribution all mean the same
thing. Functional analysts use the term weak°§ convergence.
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(i) Xn has distribution µn ;
(ii) X has distribution µ; and

(iii) Xn ! X almost surely.

HINT: (a)=)(b)=)(c)=)(a).

Exercise 6.12. Show that a sequence Xn of integer-valued random variables converges
in distribution to a probability measure µ if and only if µ is supported by the integers and
for every k 2Z,

lim
n!1

P {Xn = k} =µ({k}).

Exercise 6.13. Let Xn ªBinomial°(n, pn). Show that if npn !∏> 0 then Xn =) Poisson
distribution with mean ∏, that is, for every k = 0,1,2, . . . ,

lim
n!1

P (Xn = k) = ∏k

k !
e°∏.

HINT: First show that if ∏n!∏ then (1°∏n/n)n °! e°∏.

Definition 6.14. A sequence of Borel probability measures on Rk is said to be tight if for
every "> 0 there is a compact subset K ΩRk such that

inf
n
µn(K ) ∏ 1°".

Exercise 6.15. Show that if µn =)µ then the sequence µn is tight.

Theorem 6.16. (Helly’s Selection Principle) If {µn}n∏1 is a tight sequence of Borel proba-
bility measures on R then there is a subsequence µnk that converges weakly to a probability
measure µ.

NOTE: Different subsequences could, in principle, have different weak limits. (Exercise:
FInd an example.) However, if one can show by other means that there is only one
possible subsequential limit µ, then it will follow that µn =)µ.

Proof. Let Fn be the cumulative distribution function of µn . By the Bolzano-Weierstrass
theorem, for every rational q there is a subsequence Fk such that limk Fk (q) exists. Since
the rationals are countable, Cantor’s diagonal method ensures that there is a subse-
quence Fk such that for every rational q ,

lim
k!1

Fk (q) :=G(q)

exists. Let F be the right-continuous extension of G , that is, for every x 2R set

F (x) = inf
q>x

G(q).

Claim: F is the cumulative distribution function of a Borel probability measure on R.
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Proof of Claim: By construction F is right-continuous and non-decreasing, and clearly
0 ∑ F (x) ∑ F (1) for every x 2 R. Hence, it suffices to show that limx!°1 F (x) = 0 and
limx!1 F (x) = 1 (see section 1.8).

This is where the assumption of tightness comes in. Fix "> 0; then by tightness there
exists a bounded interval [°A, A] such that every µn assigns mass at least 1°" to [°A, A].
But this implies that Fn(A) ∏ 1°" and Fn(°A°1) < "; consequently,

G(q) ∏ 1°" for all q > A andG(q) ∑ " for all q <°A°1.

It now follows that F (A) ∏ 1°" and F (°A°1) ∑ ". Since "> 0 is arbitrary, it follows that
limx!°1 F (x) = 0 and limx!1 F (x) = 1.

6.3 The Normal Distribution

Definition 6.17. The normal (or Gaussian) distribution with mean µ 2 R and variance
æ2 > 0 is the Borel probability measure on Rwith density

'µ,æ2 (x) = 1
p

2ºæ
exp{°(x °µ)2/2æ2}. (6.9)

The Gaussian distribution with mean 0 and variance 1 is called the standard normal
distribution. It is an easy calculus exercise to check that (i) if Z has the standard normal
distribution then aZ +b has the normal distribution with mean b and variance a2, and
(ii) that if X has the normal distribution with mean b and variance a2 then (X °b)/a has
the standard normal distribution.

The Two-Dimensional Standard Normal Distribution. How does one check that
equation (6.12) actually defines a probability density, i.e., that 'µ,æ2 integrates to 1? It
is enough to do this for µ= 0 and æ2 = 1, because then the general case will follow by a
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linear substitution in the integral. By Fubini and a change to polar coordinates,

µZ1

°1
e°x2/2 d x

∂2

=
µZ1

°1
e°x2/2 d x

∂µZ1

°1
e°y2/2 d y

∂
(6.10)

=
œ

R2
e°x2/2e°y2/2 d xd y

=
œ

R2
e°r 2/2 r dr dµ

= (2º)
Z1

0
r e°r 2/2 dr

= (2º)
Z1

0
e°s/2 d s/2

= (2º).

This shows that 1/
p

2º is the right normalizing factor to make e°x2/2 a probability density.

This derivation also reveals something else of importance about the two-dimensional
standard normal distribution. By definition, the two-dimensional standard normal dis-
tribution is the distribution of the random vector (X ,Y ) where X and Y are independent
standard normal random variables. For any two-dimensional Borel set B ,

P ((X ,Y ) 2 B) = 1
2º

œ

B
e°x2/2e°y2/2 d xd y

= 1
2º

œ

B
e°r 2/2r dr.

For sets B of the form B = A1£A2 this follows by independence and Fubini; it then follows
for all Borel sets B by the usual tricks. What is interesting about this formula, though, is
that the two-dimensional density e°r 2/2/(2º) is a function only of r =

p
x2 + y2; thus, the

two-dimensional standard normal distribution is invariant by rotations about the origin.
This proves the following proposition.

Proposition 6.18. If X and Y are independent standard normal random variables, then
for any µ 2R so are

X 0 = X cosµ°Y sinµ and

Y 0 = X sinµ+Y cosµ.

Corollary 6.19. If X and Y are independent, normally distributed random variables then
any non-trivial linear combination aX +bY is normally distributed.

Proof. It suffices to consider the case where X ,Y are independent standard normal ran-
dom variables, and where the scalars a,b satisfy a2 +b2 = 1. (This follows from our re-
marks on scaling and translation rules for normals, immediately following Definition 6.22
above.) If a2 +b2 = 1 then there is some µ 2R such that a = cosµ and b = sinµ.
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Another way to state Corollary 6.19 is that the family of one-dimensional normal
distributions is closed under convolution. It is this property that ultimately lies behind
the central limit theorem.

There is one other interesting feature in the chain of equations (6.10) that we haven’t
yet commented on. This is the substitution s = r 2 in the penultimate equation. Observe
that when we integrated out the variable µ in the preceding equality, we were in essence
determining the probability density of the random variable R2 = X 2 +Y 2: in particular,
if X ,Y are independent standard normals and R2 = X 2 +Y 2 then

P (R2 2 B) =
Z

B
r e°r 2/2 dr for any Borel set B ,

and so by the substitution s = r 2,

P (R 2 B) =
Z

B
e°s/2 d s/2 for any Borel set B.

Thus, R has the exponential distribution with mean 2. Now an exponential random
variable is very easy to simulate: if U is uniformly distributed on [0,1] then ° logU is
exponentially distributed with mean 1, and so °2logU is exponentially distributed with
mean 2. Consequently, if U ,V are independent random variables with the uniform dis-
tribution on [0,1], then the transformation

R =°2logU and £= 2ºV

gives a two-dimensional standard normal (R,£) in polar coordinates. For this one can
recover the rectangular coordinates

X = R cos£,Y = R sin£.

This gives an efficient and easy-to-code5 way to simulate standard normals using the
output of a standard random number generator. Random number generators provide
streams of (pseudo-random) uniforms; one can use these in pairs to produce pairs of
standard normals at the computational cost of computing one log, one sin, and one
cos. By comparison, the computational cost of obtaining a standard normal by the
quantile transform is enormous, because computing the inverse ©°1 of the standard
normal distribution function is prohibitively expensive.

The n°Dimensional Normal Distribution

The standard n°dimensional normal distribution is defined to be the joint distri-
bution of X = (X1, X2, . . . , Xn) where the entries Xi are independent one-dimensional

5There are even more efficient methods for producing pseudo-random normals, but they are consider-
ably more complicated and require quite a bit more coding.
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standard normal random variables. By the same argument as in the two-dimensional
case, one sees that the distribution of X has a density: in particular, for any B 2BRn ,

P (X 2 B) = 1
(2º)n/2

œ
· · ·

Z

B
e°r 2/2 d x1d x2 · · ·d xn . (6.11)

As in the two-dimensional case, the density depends only on R, and hence it is invariant
under rotations.

Exercise 6.20. Use the rotational invariance of the n°dimensional normal distribution
to prove that if X1, X2, . . . , Xn are independent standard normals then the sample mean
and the sample variance are independent.

The rotational symmetry of the n°dimensional normal distribution can be used to
show that there is an invariant probability measure on the rotation group On , called the
Haar measure. Let X1,X2, . . . ,Xn be independent random vectors, each with the standard
n°dimensional normal distribution. Construct a random n £n matrix M by using the
vectors X1,X2, . . . ,Xn as its columns. Then construct a random orthogonal matrix U by
applying the Gram-Schmidt orthogonalization algorithm to the columns of M .

Exercise 6.21. Show that if X1,X2, . . . ,Xn are independent n°dimensional standard nor-
mal random vectors then with probability one the linear subspace of Rn spanned by
these vectors is Rn . Therefore, the Gram-Schmidt algorithm will produce an orthogonal
matrix U .

Fact: The random matrix U has a distribution that is invariant by rotations, that is, for
any non-random n £n orthogonal matrix A the distribution of AU is the same as that of
U .

Proof. Because the n°dimensional standard normal distribution is invariant by rota-
tions, the random matrix AM has the same distribution as does M . But the Gram-
Schmidt algorithm is also equivariant under rotation: for any linearly independent
vectors x1,x2, . . . ,xn the orthonormal basis produced by Gram-Schmidt when applied
to Ax1, Ax2, . . . , Axn is the rotation by A of the orthonormal basis produced by Gram-
Schmidt when applied to x1,x2, . . . ,xn .

6.4 The Central Limit Theorem

Theorem 6.22. (Central Limit Theorem) Let ª1,ª2, . . . be independent, identically dis-
tributed random variables with mean zero and variance 1. Then

1
p

n

nX

i=1
ªi =) Z

where Z is a standard normal random variable.
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Proof. It suffices to prove that for any C1 functions f :R!Rwith compact support,

lim
n!1

E f

√
1
p

n

nX

i=1
ªi

!

= E f (Z ) (6.12)

The proof, due to Lindeberg, depends on the fact that the family of normal densities is
closed under convolutions, in particular, if X and Y are independent Gaussian random
variables then X + Y is also Gaussian. Consequently, if ≥1,≥2, . . . ,≥n are independent
standard normal random variables then

Z
D= 1
p

n

nX

i=1
≥i .

Without loss of generality we may assume that the underlying probability space is large
enough to support not only the random variables ªi but also an independent sequence
of i.i.d. standard Gaussian random variables ≥i . The objective is to show that as n !1,

E f

√
1
p

n

nX

i=1
ªi

!

°E f

√
1
p

n

nX

i=1
≥i

!

°! 0. (6.13)

For notational ease set

ª0i = ªi /
p

n and

≥0i = ≥i /
p

n;

then relation (6.14) can be re-stated as

E f

√
nX

i=1
ª0i

!

°E f

√
nX

i=1
≥0i

!

°! 0.

Lindeberg’s strategy for proving (6.14) is to replace the summands ª0i in the first ex-
pectation by the corresponding Gaussian summands ≥0i , one by one, and to bound at
each step the change in the expectation resulting from the replacement of ª0i by ≥0i :

ØØØØE f

√
nX

i=1
ª0i

!

°E f

√
nX

i=1
≥0i

!ØØØØ∑
nX

k=1

ØØØØE f

√
kX

i=1
ª0i +

nX

i=k+1
≥0i

!

°E f

√
k°1X

i=1
ª0i +

nX

i=k
≥0i

!ØØØØ (6.14)

Since the individual terms ª0i and ≥0i account for only a small fraction of the sums, the
differences in the value of f can be approximated by using two-term Taylor series ap-
proximations. Furthermore, since f has compact support, the derivatives are uniformly
continuous, and so the remainder terms can be estimated uniformly. In particular, for
any "> 0 there exist ±> 0 and C <1 such that for any x, y 2R,

| f (x + y)° f (x)° f 0(x)y ° f 00(x)y2/2|∑ "y2 if |y |∑ ± and

| f (x + y)° f (x)° f 0(x)y ° f 00(x)y2/2|∑C y2 otherwise. (6.15)
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Consequently, for each k,

E f

√
kX

i=1
ª0i +

nX

i=k+1
≥0i

!

°E f

√
k°1X

i=1
ª0i +

nX

i=k
≥0i

!

= E f 0
√

k°1X

i=1
ª0i +

nX

i=k+1
≥0i

!

(ª0k°≥
0
k )+1

2
E f 00

√
k°1X

i=1
ª0i +

nX

i=k+1
≥0i

!

((ª0k )2°(≥0k )2)+ERk (A)+ERk (B)

(6.16)

where

Rk (A) ∑ "(ª0k )2 +C (ª0k )21{|ª0k |∏ ±} and

Rk (B) ∑ "(≥0k )2 +C (≥0k )21{|≥0k |∏ ±}.

The crucial feature of the expansion (6.17) is the independence of the individual terms
ª0i and ≥0i ; this guarantees that the first two expectations on the right side of (6.17) split
(as products of expectations), and since ª0k and ≥0k have the same mean and variance, it
follows that the first two expectations on the right side are 0. Consequently, for each k,

ØØØØE f

√
kX

i=1
ª0i +

nX

i=k+1
≥0i

!

°E f

√
k°1X

i=1
ª0i +

nX

i=k
≥0i

!ØØØØ

∑ E |Rk (A)|+E |Rk (B)|
∑ "E(ª0k )2 +"E(≥0k )2)+C E(ª0k )21{|ª0k |∏ ±}+C E(≥0k )2)1{|≥0k |∏ ±}

∑ n°1"(E(ªk )2 +E(≥k )2)+n°1C E(ªk )21{|ªk |∏
p

n±}+n°1C E(≥k )2)1{|≥k |∏
p

n±}

∑ 2"n°1 +n°1C E(ªk )21{|ªk |∏
p

n±}+n°1C E(≥k )2)1{|≥k |∏
p

n±}.

Substituting this bound in inequality (6.15) now yields

ØØØØE f

√
1
p

n

nX

i=1
ªi

!

°E f

√
1
p

n

nX

i=1
≥i

!ØØØØ∑ 2"+C E(ª1)21{|ª1|∏
p

n±}+C E(≥1)2)1{|≥1|∏
p

n±}.

Since Eª2
1 = 1 <1 and E≥2

1 = 1 <1, the dominated convergence theorem implies that
the last two expectations converge to zero as n !1, and so

limsup
n!1

ØØØØE f

√
1
p

n

nX

i=1
ªi

!

°E f

√
1
p

n

nX

i=1
≥i

!ØØØØ∑ 2".

Finally, since "> 0 is arbitrary, the convergence (6.14) must hold.
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