
4 Sums of Independent Random Variables

Standing Assumptions: Assume throughout this section that (≠,F ,P ) is a fixed prob-
ability space and that X1, X2, X3, . . . are independent real-valued random variables on
(≠,F ,P ). Let F0 = {;,≠} be the trivial æ°algebra, and for each n = 1,2,3, . . . let

Fn =æ(X1, X2, . . . , Xn)

be the smallest æ°algebra such that the first n random variables in the sequence are
measurable with respect to Fn . (Equivalently, Fn is the set of all events of the form
{(X1, X2, . . . , Xn) 2 B}, where B is a Borel subset of R.) For each n = 0,1,2, . . . set

Sn =
nX

j=1
X j .

Lemma 4.1. If Y , Z are independent, nonnegative random variables, then

E(Y Z ) = (EY )(E Z ). (4.1)

Similarly, if X ,Y are independent random variables with finite first moments, then the
equality (4.1) holds.

Proof. If Y = 1F and Z = 1G are independent indicator variables then the equation (4.1)
follows by definition of independence. Consequently, by linearity of expectation, (4.1)
holds for any two independent simple random variables. To see that the result holds in
general, observe that if Y and Z are independent nonnegative random variables then
there exist sequences Yn , Zn of nonnegative simple random variables such that

0 ∑ Y1 ∑ Y2 ∑ · · · and lim
n!1

Yn = Y ;

0 ∑ Z1 ∑ Z2 ∑ · · · and lim
n!1

Zn = Z ; and

Yn , Zn are independent.

(Exercise: Why?) Clearly, the sequence Yn Zn converges monotonically to Y Z . Hence, the
monotone convergence theorem implies that

EY = lim
n!1

EYn ;

E Z = lim
n!1

E Zn ; and

EY Z = lim
n!1

E(Yn Zn).

Since E(Yn Zn) = EYnE Zn for each n = 1,2, . . . , it must be that E(Y Z ) = EY E Z .

Remark 4.2. It follows that if both Y , Z 2 L1 then their product Y Z 2 L1. If not for the
hypothesis that Y , Z are independent this would not be true. (See Hölder’s inequality,
sec. 3.5).
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4.1 Stopping Times and the Wald Identities

Lemma 4.3. Let T be a random variable taking values in the set Z+ = {0,1,2, . . . } of non-
negative integers. Then

ET =
1X

n=1
P {T ∏ n}

Proof. Use the monotone convergence theorem and the fact that T =P1
n=1 1{n ∑ T }.

Definition 4.4. A stopping time (relative to the filtration (Fn)n∏0) is a random variable T
taking values in Z+[ {1} such that for every n ∏ 0 the event {T = n} is an element of Fn .

Example 4.5. (a) Let B 2 B be a Borel set, and define øB to be the smallest n ∏ 0 such
that Sn 2 B , or øB =1 on the event that there is no such n. Then øB is a stopping time.
(b) Fix an integer m ∏ 0, and let øB ,m be the smallest n ∏ m such that Sn 2 B , or øB ,m =1
on the event that there is no such n. Then øB ,m is a stopping time. (c) Fix an integer
m ∏ 0, and let ø¥ m. Then ø is a stopping time.

Remark 4.6. If T is a stopping time then for any integer m ∏ 1

(a) the event {T ∏ m} = {T ∑ m °1}c = ([n∑m°1{T = n})c is in Fm°1; and
(b) the random variable T ^m is a stopping time.

Proposition 4.7. (Strong Markov Property) Let X1, X2, . . . be independent, identically dis-
tributed random variables and let ø be a finite stopping time (i.e., a stopping time such
that P {ø<1} = 1). Then the random variables Xø+1, Xø+2, . . . are independent, identically
distributed and have the same joint distribution as do the random variables X1, X2, . . . ,
that is, for any integer m ∏ 1 and Borel sets B1,B2, . . . ,Bm,

P {Xø+ j 2 B j 8 j ∑ m} = P {X j 2 B j 8 j ∑ m}.

Furthermore, the random variables Xø+1, Xø+2, . . . are “conditionally independent of ev-
erything that has happened up to time ø”, that is, for any integers m,n ∏ 0 and Borel sets
B1,B2, . . . ,Bm+n,

P {ø= m and X j 2 B j 8 j ∑ m +n}

= P {ø= m and X j 2 B j 8 j ∑ m}P {X j 2 B j 8m < j ∑ m +n}.

Proof. Routine.

Theorem 4.8. (Wald’s First Identity) Assume that the random variables Xi are indepen-
dent, identically distributed and have finite first moment, and let T be a stopping time
such that ET <1. Then ST has finite first moment and

EST = (E X1)(ET ). (4.2)
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Proof for Bounded Stopping Times. Assume first that T ∑ m. Then clearly, |ST |∑
Pm

i=1 |Xi |,
so the random variable ST has finite first moment. Since T is a stopping time, for every
n ∏ 1 the event {T ∏ n} = {T > n ° 1} is in Fn°1, and therefore is independent of Xn .
Consequently,

EST = E
mX

i=1
Xi 1{T ∏ i }

= E
mX

i=1
Xi 1{T > i °1}

=
mX

i=1
E Xi 1{T > i °1}

=
mX

i=1
(E Xi )(E1{T > i °1})

= E X1

mX

i=1
P {T ∏ i }

= E X1ET.

Proof for Stopping Times with Finite Expectations. This is an exercise in the use of the
monotone convergence theorem for expectations. We will first consider the case where
the random variables Xi are nonnegative, and then we will deduce the general case by
linearity of expectations.

Since the theorem is true for bounded stopping times, we know that for every m <1,

EST^m = E X1E(T ^m). (4.3)

As m increases the random variables T ^m increase, and eventually stabilize at T , so
by the monotone convergence theorem, E(T ^m) ! ET . Furthermore, if the random
variables Xi are nonnegative then the partial sums Sk increase (or at any rate do not
decrease) as k increases, and consequently so do the random variables

ST^m =
T^mX

i=1
Xi .

Clearly, limm!1 ST^m = ST , so by the monotone convergence theorem,

lim
m!1

EST^m = EST .

Thus, the left side of (4.3) converges to EST as m ! 1, and so we conclude that the
identity (4.2) holds when the summands Xi are nonnegative.
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Finally, consider the general case, where the increments Xi satisfy E |Xi | < 1 but
are not necessarily nonnegative. Decomposing each increment Xi into its positive and
negative parts gives

ST =
TX

k=1
X +

k °
TX

k=1
X °

k and

|ST |∑
TX

k=1
X +

k +
TX

k=1
X °

k .

We have proved that the Wald identity (4.2) holds when the increments are nonnegative,
so we have

E

√
TX

k=1
X +

k

!

= E X +
1 ET and

E

√
TX

k=1
X °

k

!

= E X °
1 ET

Adding these shows that E |ST | <1, and subtracting shows that EST = ET E X1.

Theorem 4.9. (Wald’s Second Identity) Assume that the random variables Xi are indepen-
dent, identically distributed with EXi = 0 and æ2 = E X 2

i <1. If T T is a stopping time
such that ET <1 then

ES2
T =æ2ET. (4.4)

Proof. This is more delicate than the corresponding proof for Wald’s First Identity. We
do have pointwise convergence S2

T^m ! S2
T as m !1, so if we could first prove that the

theorem is true for bounded stopping times then the Fatou Lemma and the monotone
convergence theorem would imply that

ES2
T ∑ lim

m!1
ES2

T^m = lim
m!1

æ2E(T ^m) =æ2ET.

The reverse inequality does not follow (at least in any obvious way) from the dominated
convergence theorem, though, because the random variables S2

T^m are not dominated
by an integrable random variable. Thus, a different argument is needed. The key element
of this argument will be the completeness of the metric space L2 (with the metric induced
by the L2°norm).

First, observe that

ST^m =
mX

k=1
Xk 1{T ∏ k}.

Now let’s calculate the covariances (i.e., L2 inner product) of the summands. For any two
integers 1 ∑ m < n <1,

E(Xm1{T ∏ m})(Xn1{T ∏ n}) = 0,
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by Lemma 4.1, because the random variable Xn is independent of the three other random
variables in the product. Hence, for any 0 ∑ m < n <1,

E(ST^n °ST^m)2 = E

√
nX

k=m+1
Xk 1{T ∏ k}

!2

=
nX

k=m+1
E X 2

k 1{T ∏ k}

=æ2
nX

k=m+1
P {T ∏ k}

=æ2ET ^n °æ2ET ^m.

Since ET <1, this implies (by the monotone convergence theorem) that the sequence
ST^m is Cauchy with respect to the L2°norm. By the completeness of L2, it follows
that the sequence ST^m converges in L2°norm. But ST^m ! ST pointwise, so the only
possible L2°limit is ST . Finally, since the random variables ST^m converge in L2 to ST

their L2°norms also converge, and we conclude that

ES2
T = lim

m!1
ES2

T^m = lim
m!1

æ2ET ^m =æ2ET.

Theorem 4.10. (Wald’s Third Identity) Assume that the random variables Xi are indepen-
dent, identically distributed, nonnegative, and have expectation E Xi = 1. Then for any
bounded stopping time T ,

E
TY

i=1
Xi = 1. (4.5)

Proof. Assume that T is a stopping time bounded by a nonnegative integer m. By Lemma
4.1, E

Qm
i=k+1 Xi = 1 for any two (nonrandom) integers m ∏ k ∏ 0. In addition, for each

k < m the random variables Xk+1, Xk+2, . . . , Xm are independent of 1{T = k}, and so by
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linearity of expectation

E
TY

i=1
Xi =

mX

k=0
E

TY

i=1
Xi 1{T = k}

=
mX

k=0
E

kY

i=1
Xi 1{T = k}

=
mX

k=0
E

kY

i=1
Xi 1{T = k}E

mY

i=k+1
Xi

=
mX

k=0
E

kY

i=1
Xi 1{T = k}

mY

i=k+1
Xi

=
mX

k=0
E

mY

i=1
Xi 1{T = k}

= E
mY

i=1
Xi = 1

4.2 Nearest Neighbor Random Walks on Z

Definition 4.11. The sequence Sn = Pn
i=1 Xi is said to be a nearest neighbor random

walk (or a p-q random walk) on the integers if the random variables Xi are independent,
identically distributed and have common distribution

P {Xi =+1} = 1°P {Xi =°1} = p = 1°q.

If p = 1/2 then Sn is called the simple nearest neighbor random walk. In general, if p 6= 1/2
then we shall assume that 0 < p < 1 to avoid trivialities.

The Gambler’s Ruin Problem. Fix two integers A < 0 < B . What is the probability
that a p °q random walk Sn (starting at the default initial state S0 = 0) will visit B before
A? This is the gambler’s ruin problem. It is not difficult to see (or even to prove) that the
random walk must, with probability one, exit the interval (A,B), by an argument that I
will refer to as Stein’s trick. Break time into successive blocks of length A+B . In any such
block where all of the steps of the random walk are +1, the random walk must exit the
interval (A,B), if it has not already done so. Since there are infinitely many time blocks,
and since for each the probability of A+B consecutive +1 steps is p A+B > 0, the strong
law of large numbers for Bernoulli random variables implies that with probability one
there will eventually be a block of A+B consecutive +1 steps.

40



Proposition 4.12. Let Sn be a simple nearest neighbor random walk on Z, and for any
integers A < 0 < B let T = TA,B be the first time n such that Sn = A or B. Then

P {ST = B} = 1°P {ST = A} = |A|
|A|+B

and (4.6)

ET = |AB |. (4.7)

Proof. Wald 1 and 2. To see that ET <1, observe that T is dominated by (|A|+B) times
a geometric random variable, by Stein’s trick.

Corollary 4.13. Let Sn be a simple nearest neighbor random walk on Z. For any integer
a 6= 0 define øa to be the smallest integer n such that Sn = a, or øa =1 if there is no such
n. Then

P {øa <1} = 1 and Eøa =1. (4.8)

Proof. Without loss of generality assume that a > 0. Clearly, øa <1 on the event that
TA,a <1 and STA,a = a, so for any A >°1,

P {øa <1} ∏ |A|
a +|A|

It follows that P {øa <1} = 1. Furthermore, øa ∏ TA,a , so for any A >°1

Eøa ∏ |A|a.

Proposition 4.14. Let Sn be the p ° q nearest neighbor random walk on Z, and for any
integers A < 0 < B let T = TA,B be the first time n such that Sn = A or B. Then

P {ST = B} = 1°P {ST = A} = 1° (q/p)A

(q/p)B ° (q/p)A . (4.9)

Proof. The random variable T is almost surely finite, by Stein’s trick, and so T ^m " T
and ST^m ! ST as m !1. Observe that E(q/p)Xi = 1, so Wald’s third identity implies
that for each m = 1,2, . . . ,

E
µ

q
p

∂ST^m

= E
T^mY

i=1
(q/p)Xi = 1.

Now the random variables (q/p)ST^m are uniformly bounded, because up until time T
the random walk stays between A and B ; consequently, the dominated convergence
theorem implies that

E
µ

q
p

∂ST

= 1.
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Thus, µ
q
p

∂B

P {ST = B}+
µ

q
p

∂A

P {ST = A} = 1;

since P {ST = A} = 1°P {ST = B}, the equality (4.9) follows.

Corollary 4.15. Let Sn be the p ° q nearest neighbor random walk on Z with q < 1
2 < p,

and for any integer a 6= 0 define øa to be the smallest integer n such that Sn = a, or øa =1
if there is no such n. Then

P {øa <1} = 1 if a ∏ 1,

P {øa <1} = (q/p)|a| if a ∑°1.

Exercise 4.16. For p °q nearest neighbor random walk on Z, calculate ETA,B .

First-Passage Time Distribution for Simple Random Walk. Let Sn be simple random
walk with initial state S0 = 0, and let ø= ø(1) be the first passage time to the level 1, as in
Corollary 4.13. We will now deduce the complete distribution of the random variable ø,
by using Wald’s third identity to calculate the probability generating function E sø. For
this, we need the moment generating function of ª1:

'(µ) = Eeµª1 = 1
2

(eµ+e°µ) = coshµ.

Recall that the function coshµ is even, and it is strictly increasing on the half-line µ 2
[0,1); consequently, for every y > 1 the equation coshµ = y has two real solutions ±µ.
Fix 0 < s < 1, and set s = 1/'(µ); then by solving a quadratic equation (exercise) you find
that for µ > 0,

e°µ = 1°
p

1°4s2

2s
.

Now let’s use the third Wald identity. Since this only applies directly to bounded
stopping times, we’ll use it on ø^n and then hope for the best in letting n !1. The
identity gives

E
µ

exp{µSø^n}
'(µ)ø^n

∂
= 1.

We will argue below that if µ > 0 then it is permissible to take n ! 1 in this identity.
Suppose for the moment that it is; then since Sø ¥ 1, the limiting form of the identity will
read, after the substitution s = 1/'(µ),

eµE sø = 1.

Using the formula for e°µ obtained above, we conclude that

E sø = 1°
p

1°4s2

2s
(4.10)
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To justify letting n !1 above, we use the dominated convergence theorem. First,
since ø<1 (at least with probability one),

lim
n!1

exp{µSø^n}
'(µ)ø^n = exp{µSø}

'(µ)ø
.

Hence, by the DCT, it will follow that interchange of limit and expectation is allowable
provided the integrands are dominated by an integrable random variable. For this, ex-
amine the numerator and the denominator separately. Since µ > 0, the random variable
eµSø^n cannot be larger than eµ, because on the one hand, Sø = 1, and on the other, if ø> n
then Sn ∑ 0 and so eSø^n ∑ 1. The denominator is even easier: since '(µ) = coshµ ∏ 1, it
is always the case that '(µ)ø^n ∏ 1. Thus,

exp{µSø^n}
'(µ)ø^n ∑ eµ,

and so the integrands are uniformly bounded.

The exact distribution of the first-passage time ø = ø(1) can be recovered from the
generating function (4.10) with the aid of Newton’s binomial formula, according to which

p
1° s2 =

1X

n=0

√
1/2
n

!

(°s2)n for all |s| < 1. (4.11)

From equation (4.10) we now deduce that

E sø =
1X

n=1
snP {ø= n} =

1X

n=1
(°1)n

√
1/2
n

!

s2n°1.

Matching coefficients, we obtain

Proposition 4.17. P {ø= 2n °1} = (°1)n°1/2
n

¢
and P {ø= 2n} = 0.

Exercise 4.18. Verify that P {ø= 2n °1} = 2°2n+1(2n °1)°1°2n°1
n

¢
. This implies that

P {ø= 2n °1} = P {S2n°1 = 1}
2n °1

(4.12)

Exercise 4.19. Show that P {ø = 2n ° 1} ª C /n3/2 for some constant C , and identify C .
(Thus, the density of ø obeys a power law with exponent 3/2. )

Exercise 4.20. (a) Show that the generating function F (s) = E sø given by equation (4.10)
satisfies the relation

1°F (s) ª
p

2
p

1° s as s ! 1° . (4.13)

(b) The random variable ø(m) = min{n : Sn = m} is the sum of m independent copies of
ø= ø(1), and so its probability generating function is the nth power of F (s). Use this fact
and the result of part (a) to show that for every real number ∏> 0,

lim
m!1

E exp{°∏ø(m)/m2} = e°
p

2∏ (4.14)
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Remark 4.21. The function '(∏) = exp{°
p

2∏} is the Laplace transform of a probability
density called the one-sided stable law of exponent 1/2. This is the distribution of the
first-passage time to the level 1 for the Wiener process (also called Brownian motion). In
effect, the result of Exercise 4.20 (b) implies that the random variables ø(m)/m2 converge
in distribution to the stable law of exponent 1/2.

4.3 L2°Maximal Inequality and Convergence of Random Series

Assume in this section that X1, X2, . . . are independent – but not necessarily identically
distributed – random variables with

E Xi = 0 and E X 2
i :=æ2

i <1.

Set Sn = Pn
i=1 Xi and S0 = 0. The next proposition is an extension of Wald’s second

identity to sums of non-identically distributed random variables.

Proposition 4.22. For any bounded stopping time T ,

ES2
T = E

TX

i=1
æ2

i .

Proof. HW.

Corollary 4.23. (L2 Maximal Inequality) For any scalar Æ> 0 and any integer m ∏ 0,

P {max
n∑m

|Sn |∏Æ} ∑Æ°2
mX

i=1
æ2

i and therefore

P {sup
n∏1

|Sn |∏Æ} ∑Æ°2
1X

i=1
æ2

i .

Theorem 4.24. If
P1

n=1æ
2
n <1 then the random variables Sn converge in L2°norm and

almost surely as n !1 to a limit S1 with expectation ES1 = 0.

Proof. The summands Xi are uncorrelated (that is, orthogonal in L2) by Lemma 4.1.
Consequently, the L2° distance between Sn and Sn+m is

kSn+m °Snk2
2 =

n+mX

i=n+1
æ2

i .

Since
P1

n=1æ
2
n < 1, it follows that the sequence Sn is Cauchy in L2, and hence by the

completeness of L2 there exists a random variable S1 2 L2 such that

lim
n!1

E |S1°Sn |2 = 0.
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To prove that Sn ! S1 almost surely, it suffices to show that for every "> 0 there exists
n" <1 such that if n ∏ n" then

P {|S1°Sn | > " for some n ∏ n"} ∑ ".

This follows from the Maximal Inequality, which implies that for any m <1,

P {|Sm °Sn | > "/2 for some n ∏ m} ∑ 4
"2

1X

n=m
æ2

n .

Finally, since Sn ! S1 in L2, the random variables Sn are uniformly integrable. Since
Sn ! S1 almost surely, it follows that ESn ! ES1. But by hypothesis, ESn = 0.

Example 4.25. Let X1, X2, . . . be independent, identically distributed Rademacher°1/2,
that is, P {Xi =+1} = P {Xi =°1} = 1/2. Then the random series

1X

n=1

Xn

n

converges almost surely and in L2. The series does not converge absolutely.

4.4 Kolmogorov’s Strong Law Of Large Numbers

Proposition 4.26. (Kronecker’s Lemma) Let an be an increasing sequence of positive num-
bers such that limn!1 an =1, and let xk be a sequence of real numbers such that the seriesP1

n=1(xn/an) converges (not necessarily absolutely). Then

lim
m!1

1
am

mX

n=1
xn = 0. (4.15)

Proof. This is an exercise in summation by parts, a technique that is frequently of use in
dealing with sequences of sums. The idea is to represent the summands xi of interest as
differences of successive terms: in this case,

xn = an(sn ° sn+1) where sn =
1X

i=n

xi

ai
.

The hypothesis ensures that the series defining sn converge, and also imply that limn!1 sn =
0. Now write

1
am

mX

n=1
xn = 1

am

mX

n=1
an(sn ° sn+1)

= 1
am

mX

n=2
(an °an°1)sn + a1

am
s1 ° sm+1.
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It is clear that the last two terms converge to 0 as m !1, because am !1. Therefore,
to prove the proposition it suffices to show that a°1

m
Pm

n=2(an °an°1)sn converges to 0.

Fix "> 0, and choose K °K (") so large that |sn | < " for all n ∏ K . Write

a°1
m

mX

n=2
(an °an°1)sn = a°1

m

KX

n=2
(an °an°1)sn +a°1

m

mX

n=K+1
(an °an°1)sn = fm + gm .

Since am !1 and since the sum
PK

n=2(an °an°1)sn does not change as m increases, we
have limm!1 fm = 0. On the other hand, since the sequence an is nondecreasing and
since |sn | < " for all of the indices K < n ∑ m,

|gm |∑ a°1
m

mX

n=K+1
(an °an°1)|sn |

∑ a°1
m

mX

n=K+1
(an °an°1)"

= a°1
m "

mX

n=K+1
(an °an°1) = "

µ
1° aK

am

∂
∑ ".

Finally, since "> 0 is arbitrary, (4.15) follows.

Theorem 4.27. (L2°Strong Law of Large Numbers) Let X1, X2, . . . be a sequence of inde-
pendent, identically distributed random variables with mean E Xn = 0 and finite variance
æ2 = E X 2

n <1, and let Sn =Pn
i=1 Xi . Then with probability one,

lim
n!1

Sn/n = 0. (4.16)

Proof. Theorem 4.24 implies that the series
P1

n=1(Xn/n) converges almost surely, be-
cause the variances are summable. Kronecker’s Lemma implies that on the event that
the series

P1
n=1(Xn/n) converges, the averages (4.17) converge to 0.

In fact, the hypothesis that the summands have finite variance is extraneous: only
finiteness of the first moment is needed. This is Kolmogorov’s Strong Law Of Large Num-
bers.

Theorem 4.28. (Kolmogorov) Let X1, X2, . . . be a sequence of independent, identically dis-
tributed random variables with finite first moment E |X1| <1 and mean E Xn =µ, and let
Sn =Pn

i=1 Xi . Then with probability one,

lim
n!1

Sn/n =µ. (4.17)

Lemma 4.29. Let X1, X2, . . . be identically distributed random variables with finite first
moment E |X1| <1 and mean E Xn = 0. Then for each "> 0

P {|Xn |∏ "n infinitely often} = 0.
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Proof. By Borel-Cantelli it suffices to show that
P1

n=1 P {|Xn | ∏ "n} <1. Since the ran-
dom variables are identically distributed, it suffices to show that

P1
n=1 P {|X1|∏ "n} <1.

But |X1|/" := Y has finite first moment EY = E |X1|/", and hence so does [Y ] (where [·]
denotes the greatest integer function). Since Y takes values in the set of nonnegative
integers,

EY =
1X

n=1
P {Y ∏ n} =

1X

n=1
P {Y |X1|∏ "n}.

Proof of Theorem 4.28. Without loss of generality, we may assume that µ = 0. For each
n = 1,2, . . . define Yn by truncating Xn at the levels ±n, that is, Yn = Xn1{|Xn | ∑ n}, and
let SY

n =Pn
i=1 Yi . By Lemma 4.29, with probability one Yn = Xn except for at most finitely

many indices n. Consequently, to prove that Sn/n ! 0 almost surely it suffices to show
that SY

n /n ! 0 almost surely.

The random variables Y1,Y2, . . . are independent but no longer identically distributed,
and furthermore the expectations EYn need not = 0. Nevertheless,

EYn = E Xn1{|Xn |∑ n} = E X11{|X1|∑ n} °! 0

by the dominated convergence theorem (since E |X1| < 1). Therefore, the averages
n°1 Pn

i=1 EYi converge to 0 as n ! 1. Thus, to prove that SY
n /n ! 0 almost surely, it

suffices to prove that with probability 1,

1
n

nX

i=1
(Yi °EYi ) °! 0.

By Kronecker’s Lemma, it now suffices to show that with probability one the sequencePn
i=1(Yi °EYi )/i converges to a finite limit, and for this it suffices, by the Khintchine-

Kolmogorov theorem, to prove that
P1

n=1 Var(Yn/n) <1. Finally, since Var(Yn) = E(Yn °
EYn)2 ∑ EY 2

n , it suffices to show that

1X

n=1
n°2EY 2

n <1.
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Here we go:

1X

n=1
n°2EY 2

n =
1X

n=1

nX

k=1
n°2E X 2

1 1{k °1 < |X1|∑ k}

=
1X

k=1
E X 2

1 1{k °1 < |X1|∑ k}
1X

n=k
n°2

∑ 2
1X

k=1
E X 2

1 1{k °1 < |X1|∑ k}k°1

∑ 2
1X

k=1
k2P {k °1 < |X1|∑ k}k°1

= 2
1X

k=1
kP {k °1 < |X1|∑ k}

∑ 2(E |X1|+1) <1.

Here we have used the fact that
P1

n=k n°2 ∑
R1

k°1 t°2 d t = (k °1)°1 ∑ 2k°1, and (of course)
the hypothesis that the first moment of |X1| is finite.

Definition 4.30. A sequence X1, X2, . . . of random variables is said to be m°dependent
for some integer m ∏ 1 if for every n ∏ 1 the æ°algebras æ(Xi )i∑n and æ(Xi )i∏n+m+1 are
independent.

Exercise 4.31. If X1, X2, . . . are m°dependent then for each i the random variables

Xi , Xi+m+1, Xi+2m+2, . . .

are independent.

Corollary 4.32. If X1, X2, . . . are m°dependent random variables all with the same distri-
bution, and if E |X1| <1 and E Xi =µ then with probability one,

lim
Sn

n
=µ.

4.5 The Kesten-Spitzer-Whitman Theorem

Next, we will use Kolmogorov’s Strong Law of Large Numbers to derive a deep and inter-
esting theorem about the behavior of random walks on the integer lattices Zd . A random
walk on Zd is just the sequence Sn =Pn

k=1 Xk of partial sums of a sequence X1, X2, . . . of
independent, identically distributed random vectors taking values in Z; these random
vectors Xk are called the steps of the random walk, and their common distribution is the
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step distribution. For example, the simple nearest neighbor random walk on Z has step
distribution

P {Xk =±ei } = 1
4

where e1 and e2 are the standard unit vectors in R.

Theorem 4.33. (Kesten-Spitzer-Whitman) Let Sn be a random walk on Zd . For each
n = 0,1,2, . . . define Rn to be the number of distinct sites visited by the random walk in its
first n steps, that is,

Rn := cardinality{S0,S1, . . . ,Sn}. (4.18)

Then
Rn

n
°! P {no return to S0} a.s. (4.19)

I will only prove the weaker statement that Rn/n converges to P {no return} in proba-
bility. Even the weaker statement has quite a lot of information in it, though, as the next
corollary shows.

Corollary 4.34. Let Sn be a random walk on Z=Z1 whose step distribution has finite first
moment and mean 0. Then

P {no return to 0} = 0.

Proof. Since the increments Xn = Sn ° Sn°1 have finite first moment and mean zero,
Kolmogorov’s SLLN implies that Sn/n ! 0 almost surely. This in turn implies that for
every "> 0, eventually |Sn |∑ n", and so the number of distinct sites visited by time n (at
least for large n) cannot be much larger than the total number of integers between °n"
and +n". Thus, for sufficiently large n,

Rn ∑ 4"n.

Since "> 0 is arbitrary, it follows that limRn/n = 0 almost surely. The KSW theorem does
the rest.

Proof of the KSW Theorem. To calculate Rn , run through the first n +1 states S j of the
random walk and for each count +1 if S j is not revisited by time n, that is,

Rn =
nX

j=0
1{S j not revisited before time n}.

The event that S j is not revisited by time n contains the event that S j is never revisited at
all; consequently,

Rn ∏
nX

j=0
1{S j never revisited} =

nX

j=0
1{S j 6= Sm+ j for any m ∏ 1}.
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This clearly implies that
ERn/n ∏ P {no return}. (4.20)

We can also obtain a simple upper bound for Rn by similar reasoning. For this, con-
sider again the event that S j is not revisited by time n. Fix M ∏ 1. If j ∑ n °M , then this
event is contained in the event that S j is not revisited in the next M steps. Thus,

Rn ∑
n°MX

j=0
1{S j 6= S j+i for any 1 ∑ i ∑ M }+M . (4.21)

The random variable Y M
j := 1{S j 6= S j+i for any 1 ∑ i ∑ M } is a Bernoulli random vari-

able that depends only on the increments X j+1, X j+2, . . . , X j+M of the underlying random
walk. Since these increments are independent and identically distributed, it follows that
for any M the sequence {Y M

j } j∏1 is an M°dependent sequence of identically distributed
Bernoulli random variables, and so the strong law of large numbers applies: in particular,
with probability one,

lim
n!1

n°1
nX

j=1
Y M

j = EY M
1 = P {Si 6= 0 for any i ∑ M }.

Consequently, by (4.21), for every M ∏ 1, with probability one,

limsup
n!1

Rn

n
∑ P {Si 6= 0 for any i ∑ M }.

The dominated convergence theorem implies that the probabilities on the right converge
(down) to P {no return}, so this proves that with probability one

limsup
n!1

Rn

n
∑ P {no return}.

So here is what we have proved: (a) the random variables Rn/n have limsup no larger
than P {no return}, and (b) have expectations no smaller than P {no return}. Since Rn/n ∑
1, this implies, by the next exercise, that in fact

Rn/n
P°! P {no return}.

Exercise 4.35. Let Zn be a sequence of uniformly bounded random variables (that is,
there exists a constant C < 1 such that |Zn | ∑ C for every n) such that limsup Zn ∑ Æ
almost surely and E Zn ∏Æ. Prove that Zn !Æ in probability.

Exercise 4.36. Use the Kesten-Spitzer-Whitman theorem to calculate P {no return to 0}
for p °q nearest-neighbor random walk on Z when p > q .
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