
8 Laplace’s Method and Local Limit Theorems

8.1 Fourier Analysis in Higher DImensions

Most of the theorems of Fourier analysis that we have proved have natural general-
izations to higher dimensions, and these can be proved either by mimicking the one-
dimensional arguments or by deducing them directly from the one-dimensional results
with the help of the Fubini theorem. Here we will look only at random vectors that take
values in the integer lattice Zk , with the aim of developing an inversion formula that will
allow us to settle the question of recurrence/transience for k°dimensional random walk.

Definition 8.1. The characteristic function of a k°dimensional random vector X is the
function 'X :Rd !C defined by

'X (µ) = Eei hµ,X i

where hu, vi denotes the inner product of the vectors u, v . If the random vector X takes
values in Zk then the characteristic function 'X (µ) is 2º°periodic in each coordinate µ j .

Lemma 8.2. (Orthogonality Relations) The exponential functions ei hm,µi are orthonormal
in L2[°º,º]k , that is, for any two elements m,n 2Zk ,

(2º)°k
œ

· · ·
Z

[°º,º]k
ei hm,µie°i hn,µi dµ1dµ2 · · ·dµk = ±m,n . (8.1)

Corollary 8.3. If X takes values in Zk then

P (X = m) = (2º)°k
œ

· · ·
Z

[°º,º]k
'X (µ)e°i hm,µi dµ1dµ2 · · ·dµk . (8.2)

For simple random walk Sn on Zk , the step distribution has characteristic function
'(µ) = 1

k
Pk

j=1 cosµ j ; therefore, the return probabilities are given by

P (Sn = 0) = (2º)°k
œ

· · ·
Z

[°º,º]k

1
k

kX

j=1
cosµ j dµ1dµ2 · · ·dµk . (8.3)

8.2 Laplace’s Method

The first case of the central limit theorem, for sumes of independent, identically dis-
tributed Bernoulli random variables, was proved in the 1730s by De Moivre. De Moivre
proof relied on Stirling’s formula n! ª nne°n

p
2ºn and the fact that the binomial distri-

bution can be explicitly written in terms of factorials. Some 40 (?) years later Laplace
provided a new – and better – approach, using what is now called the Laplace method
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of asymptotic expansion. This is a fundamentally important technique in mathematical
analysis, and one which is especially useful in probability and statistics, and it is the
easiest route to the local central limit theorem. It relies on the following fact, which I will
take as known.

Lemma 8.4.
1

2º

Z1

°1
e°x2/2 d x = 1.

The Laplace method is a technique for obtaining sharp approximations to integrals
of the form (or similar in form to)

J (n) :=
Zb

a
eng (x) d x (8.4)

where g is a smooth real-valued function that attains its max in [a,b] uniquely at an
interior point, which I will assume (without loss of generality) is the origin. Since g is
maximal at x = 0, its first derivative is g 0(0) = 0 and its second derivative is non-positive.
There is no loss of generality in assuming that g (0) = 0 (because subtracting a constant
a from g just multiplies the entire integral by e°an). Laplace’s great insight was that if in
addition the second derivative g 00(0) < 0 is nonzero, then when n is large the integrand
eng (x) spikes very sharply at 0, and in a neighborhood of 0 of width 3/

p
n or 5/

p
n or so

the two-term Taylor series approximation to g gives

eng (x) º eng 00(0)x2/2,

so the spike looks very much like a Gaussian distribution. Formally replacing the inte-
grand by this Gaussian distribution and integrating (using Lemma 8.4 together with the
substitution y =

p
nx) then yields the approximation

J (n) :=
Zb

a
eng (x) d x º

Z1

°1
eng 00(0)x2/2 d x =

p
2º

p
n(°g 00(0))

.

Theorem 8.5. (Laplace) Assume that g is a smooth (at least C 2) function on the interval
[a,b], where a < 0 < b, and assume that

(a) g (0) = 0;
(b) g 00(0) < 0; and
(c) g (x) < 0 for every x 2 [a,b] except x = 0.

Then as n !1,

J (n) :=
Zb

a
eng (x) d x ª

p
2º

p
°ng 00(0)

. (8.5)

The symbol ª means that the limit of the ratio of the two sides converges to 1 as n !1
(equivalently, the relative error in the approximation goes to 0).
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Proof of Theorem 8.5. The integral Jn will be analyzed by breaking the range of integra-
tion into two parts: (i) a small interval [°±,±] containing 0, and (ii) everything else, that is,
[a,°±][ [±,b]. The second region (ii) is easier, so we begin with this. By hypothesis, the
function g is strictly less than 0 at every x 6= 0, and it is continuous on the intervals [a,°±]
and [±,b], so there exists ∞ = ∞(±) > 0 such that g (x) ∑ °∞ for every x 2 [a,°±][ [±,b].
Consequently, Z°±

a
eng (x) d x +

Zb

±

ng (x) d x ∑ e°n∞(b °a).

Since e°∞n is negligible compared to n°1/2 as n ! 1, to complete the proof it will
suffice to show that for any "> 0 there is a ±> 0 such that for all large n,

1°"<
p

n
Z±

°±
eng (x) d x

.q
2º/(°g 00(0)) < 1+".

Now for any "> 0 there exists ±> 0 such that in the interval [°±,±] the two-term Taylor
series approximation to g (x) is accurate to within a factor (1±")2, that is, for all x 2 [°±,±],

(1°")2g 00(0)x2/2 < g (x) < (1+")2g 00(0)x2/2.

Hence, for x 2 [°±,±] the integrand eng (x) is bounded above and below by Gaussian
densities with variances ((1±")2/(°g 00(0)n). Consequently, the integral

R±
°± eng (x) d x is

bounded above and below by the integrals of the bounding Gaussian densities, which by
Lemma 8.4 are

(1±")

s
2º

°g 00(0)n
.

(Note: because the Gaussian densities have variances of order 1/n, the total mass outside
[°±,±] is exponentially small, by Homework 6, problem 3.)

We have already encountered a class of integrals that very similar in form to (8.4),
in the Fourier inversion formula (??). In general, the characteristic functions 'X (µ) of
integer-valued random variables X are not real-valued, and furthermore the integrals
(??) contain an additional factor e°i mµ, so 8.5 does not apply directly. But there are some
important special cases where Laplace’s theorem does apply directly.

Example 8.6. Let X1, X2, . . . be independent, identically distributed Rademacher random
variables with partial sums Sn . As we have seen, the characteristic function of Sn is

'Sn (µ) = cosn µ.

Clearly, when n is odd the return probability P {Sn = 0} = 0. When n is even, the charac-
teristic function cosn µ has period º, and so the Fourier inversion formula (??) implies
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that

P {Sn = 0} = 1
2º

Zº

°º
cosn µdµ

= 1
º

Zº/2

°º/2
cosn µdµ

Hence, by Laplace’s theorem,

P {S2n = 0} ª
r

1
ºn

.

Example 8.7. Let {pn}n2Z be a symmetric probability distribution on the integers (that
is, pn = p°n) with variance 0 < æ2 < 1, and let X1, X2, . . . be independent, identically
distributed with distribution

P {Xn = m} = pm .

Then the characteristic function '(µ) = EeiµX1 is real-valued and has even, and has sec-
ond derivative '00(0) = °æ2. Assume that the support of the distribution {pn}n2Z is not
contained in an arithmetic progression am + b where a ∏ 2. Then by Proposition ??,
|'(µ)| < 1 for every µ 2 [°º,º] except µ = 0. By the Fourier inversion formula (??),

P {Sn = 0} = 1
2º

Zº

°º
'(µ)n dµ.

Since ' is real-valued and has unique max at µ = 0, Laplace’s theorem applies, so we
conclude that

P {Sn = 0} ª 1
p

2ºnæ
.

Exercise 8.8. (a) Show that n! =
R1

0 xne°x d x.
(b) Deduce that n! = nn+1e°n R1

0 yne°(y°1)n d y .
(c) Adapt the proof of Laplace to show that n! ª nne°n

p
2ºn.

Laplace’s method extends without great difficulty to multiple integrals. The only
differences with the one-dimensional case are (i) one must replace the use of Taylor’s
approximation to g (x) near the origin by a multivariate Taylor approximation; and (ii)
the Gaussian densities that bound eng (x) for x near the origin must be replaced by multi-
variate Gaussian densities. Following is a particular case of interest, where the relevant
multivariate Gaussian density is just the product of one-dimensional Gaussian densities.

Theorem 8.9. Let g : [°a, a]d ! R be a smooth function that satisfies the following hy-
potheses:

(a) g (0) = 0;
(b) g (x) < 0 for all x 6= 0;
(c) D2g (0) =°æ2I for some 0 <æ2 <1,
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where D2g is the d £d matrix of second partial derivatives and I is the d £d identity
matrix. Then as n !1,

Z

[°a,a]d
eng (x) d x ªæ°d

µ
2º
n

∂d/2

. (8.6)

Example 8.10. Let Sn be the location of a simple nearest neighbor random walk on the
d°dimensional integer lattice after n steps. Then

P {S2n = 0} ª
µ

d
ºn

∂d/2

Consequently, the expected number of returns
P1

n=1 P {S2n = 0} to the origin is finite if
d ∏ 3, Thus simple random walk in 3 dimensions and higher is transient.
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