
7 Fourier Transforms

7.1 Preliminaries

The exponential function ez = exp(z) is defined by the power series6 ez = P1
n=0 zn/n!.

This series converges absolutely for every complex number z, and uniformly in every disk
|z|∑ R of finite radius 0 ∑ R <1. The following elementary properties of the exponential
function will be taken as known.

Properties of the Exponential Function:

(1) exp(z) =P1
n=0 zn/n!

(2) exp(z +w) = exp(z)+exp(w) for all z, w 6C.
(3) exp(iµ) = cosµ+ i sinµ for all µ 2R.
(4) (d/d z)exp(z) = exp(z).
(5) exp(log t ) = log(exp(t )) = t for all t > 0.

The infinite series (1) converges absolutely and uniformly in the disk |z| ∑ R, for any
R < 1. The identity (3) is Euler’s formula; it implies that |eiµ| = 1 for any real µ, and
also that the mapping µ 7! eiµ from R to the unit circle {|ª| = 1} is 2º°periodic. Euler’s
formula also implies that every complex number z = x + i y has a polar representation
z = |z|eiµ, where |z| =

p
x2 + y2 and µ = arctan(y/x).

Exercise 7.1. Prove that for any sequence zn of complex numbers,

lim
n!1

zn = z =) lim
n!1

≥
1+ zn

n

¥n
= ez . (7.1)

Exercise 7.2. The integral of a Borel-measurable complex-valued function f :≠!C on
a measure space (≠,F ,µ) is defined by

Z
f dµ=

Z
< f dµ+ i

Z
= f dµ.

Show that the integral is well-defined for any function f such that the real-valued func-
tion | f | is integrable, and that

ØØØ
Z

f dµ
ØØØ∑

Z
| f |dµ. (7.2)

6The series should be easy for a probabilist or statistician to remember, because for positive values of z
the equation ez =P1

n=0 zn/n! is equivalent (after you divide both sides by ez ) to the fact that the Poisson
distribution n 7! zne°z /n! with mean parameter z is actually a probability distribution on the nonnegative
integers.
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7.2 Characteristic Functions and Fourier Transforms

Definition 7.3. Let µ be a finite Borel measure on R and let f 2 L1(R) be an integrable
function (relative to Lebesgue measure). The Fourier transforms µ̂ and f̂ of µ and f are
the complex-valued functions

µ̂(µ) : =
Z

eiµx dµ(x) and (7.3)

f̂ (µ) : =
Z

R
eiµx f (x)d x. (7.4)

The functions µ̂ and f̂ are well-defined for all arguments µ 2 R; in fact, the inequality
(7.2) implies that they are bounded functions:

|µ̂(µ)|∑ µ̂(0) =µ(R) and | f̂ (µ)|∑ k f k1.

Moreover, both µ̂ and f̂ are uniformly continuous on R, by a routine application of the
dominated convergence theorem.

Definition 7.4. The characteristic function of a real random variable X is the Fourier
transform of its distribution, equivalently, it is the function 'X :R!C defined by

'X (µ) = EeiµX . (7.5)

Proposition 7.5. If X1, X2, . . . are independent integer-valued random variables with par-
tial sumes Sn =Pn

k=1 Xk then

'Sn (µ) =
nY

k=1
'Xk (µ). (7.6)

Therefore, in particular, if the random variables X1, X2, . . . are independent and identically
distributed then

'Sn (µ) ='X1 (µ)n . (7.7)

This follows immediately from the multiplication rule for expectations of products
of independent random variables. There are corresponding product rules for the convo-
lutions of finite Borel measures and L1 functions: in particular, for any two finite Borel
measures µ,∫ on R and any two L1 functions f , g ,

Åµ§∫(µ) = µ̂(µ)∫̂(µ) and (7.8)

Åf § g (µ) = f̂ (µ)ĝ (µ). (7.9)

These both follow by routine application of Fubini’s theorem.

Proposition 7.6. Let µ be a finite Borel measure on R with finite kth moment for some
integer k ∏ 1. Then the Fourier transform µ̂(µ) has k bounded, continuous derivatives,
and these are given by the formula

d k

dµk
µ̂(µ) =

Z
(i x)k eiµx dµ(x). (7.10)
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Proof. It suffices (by induction and the linearity of the integral) to prove this for the case
k = 1. For this, take difference quotients and use the dominated convergence theorem.

In the special case where µ is a probability measure, the formula (7.10), specialized
to µ = 0, shows that the moments of a random variable X can be read off from the
derivatives of the characteristic function ¡x(µ) at 0:

i k E X k = d k

dµk
'X (0). (7.11)

Proposition 7.7. Let f :R!R be a C1 function such that f and its first two derivative f 0

are integrable. Then

sup
µ2R

|µ f̂ (µ)|∑ k f 0k1 and f̂ (µ) = °1
iµ

bf 0(µ). (7.12)

Proof. Exercise. (Hint: Integrate by parts. The smoothness hypothesis guarantees that
the Fourier transforms of f and all its derivatives decay rapidly at 1.)

Example 7.8. Let f be the standard normal probability density. The function f is in-
finitely differentiable, and all of its derivatives are integrable, so (7.12) applies. Now

f̂ 0(µ) =
Z

eiµx(°xe°x2/2)d x/
p

2º

=
Z

xeiµx(°e°x2/2)d x/
p

2º

=
Zµ

°i
d

dµ
eiµx

∂
(°e°x2/2)d x/

p
2º

= i
d

dµ
f̂ (µ).

Thus, (7.12) shows that the Fourier transform f̂ satisfies the first-order differential equa-
tion

f̂ (µ) =°1
µ

d
dµ

f̂ (µ).

Together with the auxiliary condition f̂ (0) = 1, this differential equation implies that

f̂ (µ) = e°µ2/2. (7.13)

Example 7.9. The Fourier transform of the double-exponential density f (x) = 1
2 e°|x| is

gotten by a simple integration:

f̂ (µ) = 1
1+µ2 .

This is proportional to the Cauchy density. Later we will see (by the Fourier inversion
theorem) that the reverse is also true: the Fourier transform of the Cauchy density is the
double exponential function.
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7.3 Z° Valued Random Variables

If X is an integer-valued random variable then its characteristic function 'X (µ) is given
by the Fourier series

'X (µ) = EeiµX =
1X

°1
P (X = m)eiµm . (7.14)

This function is 2º°periodic. In this case, the distribution of the random variable X
can be recovered from the characteristic function by using the following orthogonality
relations for the complex exponential functions ei mµ.

Proposition 7.10. For m 2Z,

1
2º

Zº

°º
ei mµ dµ = ±m,0

where ±m,0 is the Kronecker delta function (0 if m 6= 0 and 1 is m = 0).

This is proved by a trivial integration. Despite the easy proof, the result is of fun-
damental importance, as it implies that the complex exponential functions ei mµ (also
known as the group characters for the additive group Z) are orthonormal in L2(dµ/2º).

Corollary 7.11. For an integer-valued random variable X with characteristic function
'X (µ) the probability distribution is given by

P (X = m) = 1
2º

Zº

°º
e°i mµ'X (µ)dµ.

7.4 Fourier Inversion

We have seen that certain of the important features of a measure are captured by its
Fourier transform: for instance, if µ is a probability measure then its moments (when
they are finite) can be determined from the derivatives of µ̂ at µ = 0. In this section we
will address more systematically the general problem of recovering information about
a measure µ from its Fourier transform. Following is a list of the main theorems to be
proved.

Theorem 7.12. (Uniqueness) Finite Borel measures are uniquely determined by their
Fourier transforms, that is, if two Borel measures have the same Fourier transform then
they are the same measure.

Theorem 7.12 will follow immediately from the following theorem, which gives an ex-
plicit formula showing how the the integral of a bounded, continuous function f against
a finite measure µ can be recovered from the Fourier transforms of f and µ.
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Theorem 7.13. (Plancherel-Parseval Formula) For any finite Borel measure µ and any
bounded, continuous function f :R!Rwith compact support,

Z
f (x)dµ(x) = lim

"!0

1
2º

Z

R
f̂ (µ)µ̂(°µ)e°"2µ2/2 dµ. (7.15)

The hypothesis that f have compact support is needed to guarantee that the Fourier
transform f̂ is well-defined. The factor e°"2µ2/2 in the integral is needed because in
general the Fourier transforms f̂ and µ̂, although bounded, are not integrable. As "! 0
these factors increase to 1, so if the product f̂ (µ)µ̂(°µ) happens to be integrable then it
will follow, by the dominated convergence theorem, that

Z
f (x)dµ(x) = 1

2º

Z

R
f̂ (µ)µ̂(°µ)dµ. (7.16)

Corollary 7.14. If f :R!R is twice continuously differentiable and has compact support
then for every finite Borel measure µ the identity (7.16) holds.

Proof. If f is C 2 and has compact support then its Fourier transform decays at least as
fast as C /µ2 as |µ|!1. (This can be seen by doing two successive integrations by parts
in the integral defining f̂ .) Consequently, f̂ is integrable, and since the Fourier transform
µ̂ of a finite Borel measure is always bounded, it then follows that the product f̂ (µ)µ̂(°µ)
is integrable.

If the measure µ has an integrable Fourier transform µ̂ then the identity (7.16) will
hold for every continuous function f with compact support, regardless of smoothness.
In this case, even more can be said:

Theorem 7.15. (Existence of Densities) If the Fourier transform µ̂(µ) of a finite Borel mea-
sure is an integrable function (with respect to Lebesgue measure on R) then the measure µ
has a bounded, uniformly continuous density g given by

g (x) = 1
2º

Z

R
µ̂(µ)e°iµx dµ. (7.17)

Example 7.16. Let µ be the probability measure on Rwith the double-exponential den-
sity g (x) = e°|x|/2. A routine integration shows that

µ̂(µ)(= ĝ (µ)) = 1
1+µ2 .

Consequently, the inversion formula (7.17) implies that if ∫ is the probability measure
with the Cauchy density º°1(1+x2)°1 then

∫̂(µ) = e°|µ|.
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This example is interesting (and important) for a number of reasons. First, it shows that
the Fourier transform of a probability distribution with infinite first moment need no be
differentiable at µ = 0. Second, it shows that if X1, X2, . . . , Xn are independent, identically
distributed, all with the Cauchy distribution ∫, then the sample average Sn/n also has the
Cauchy distribution. To see this, observe that by the multiplication rule for characteristic
functions of independent random variables, the characteristic function of Sn/n is e°|µ|;
hence, by the uniqueness theorem (Theorem 7.12), the distribution of Sn/n must be the
same as that of X1.

Proofs of the Main Theorems

Fourier analysis on the real line R is complicated by the fact that Fourier transforms
need not be integrable, and so it is often necessary to multiply by “convergence factors”,
such as e°µ2"2/2, to obtain convergent Fourier integrals. The choice of the normal den-
sity is useful not only because it has such rapid decrease at 1 but because the normal
density is its own Fourier transform (apart from the always annoying factors of 2º): if Z
is standard normal, then

EeiµZ = e°µ2/2.

Thus, if

'"(x) := 1
p

2º"
e°x2/2"2

then '̂"(µ) = e°"2µ2/2.

Lemma 7.17. If f :R!R is a continuous function with compact support, then for every
"> 0

f §'"(x) = 1
2º

Z

R

Éf §'"(µ)e°iµx dµ. (7.18)

Remark 7.18. This equality asserts that every function of the form f §'" can be recovered
from its Fourier transform by Fourier inversion. It can be shown that the same is true for
any C 2 function with compact support. Since we will not need this fact, we won’t prove
it.

Proof of Lemma 7.17. Fubini.

Lemma 7.19. For any bounded, continuous function f :R!R,

lim
"!0

f §'"(x) = f (x). (7.19)

Proof. Let Z be a random variable defined on some probability space (≠,F ),P with
standard Gaussian distribution N (0,1); then

f §'"(x) = E f (x +"Z ).

Hence, the convergence (7.19) follows by the dominated convergence theorem.
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Proof of the Plancherel-Parseval Formula (Theorem 7.13). By Lemma 7.19 and the dom-
inated convergence theorem,

Z
f (x)dµ(x) = lim

"!0

Z
( f §'")(x)dµ(x).

But by Lemma 7.17 and Fubini’s theorem,
Z

( f §'")(x)dµ(x) = 1
2º

œ
Éf §'"(µ)e°iµx dµdµ(x)

= 1
2º

œ
Éf §'"(µ)e°iµx dµ(x)dµ

= 1
2º

Z
Éf §'"(µ)µ̂(°µ)dµ

= 1
2º

Z
f̂ (µ)e°"2µ2/2µ̂(°µ)dµ.

Proof of Theorem 7.15. Assume that the Fourier transform µ̂(µ) is an integrable function,
and define g (x) by (7.17). To prove that µ has density g it suffices to prove that for any
continuous function f :R!Rwith compact support,

Z
f (x)dµ(x) =

Z
f (x)g (x)d x.

The function g is bounded and continuous, by the usual arguments, but a priori we
do not know that it is integrable. Nevertheless, if f is any bounded continuous function
with compact support then f g is integrable, since g is bounded, and furthermore, for
any "> 0 the function f §'" is integrable (Fubini) and so g (x)( f §'")(x) is also integrable.
By definition of g and Fubini, for any "> 0,

Z
f §'"(x)g (x)d x = 1

2º

œ
f §'"(x)e°iµx µ̂(µ)dµd x

= 1
2º

œ
f §'"(x)e°iµx µ̂(µ)d xdµ

= 1
2º

Z
f̂ (°µ)'̂"(°µ)µ̂(µ)dµ.

As "! 0 the last integral converges to
R

f dµ. Therefore, to complete the proof it suffices
to show that

lim
"!0

Z
f §'"(x)g (x)d x =

Z
f (x)g (x)d x.

74



But by Fubini, for any "> 0
Z

f §'"(x)g (x)d x =
œ

f (y)'"(x ° y)g (x)d yd x

=
œ

f (y)'"(x ° y)g (x)d xd y

=
Z

f (y)(g §'")(y)d y.

Lemma 7.19 implies that as "! 0 the integrand converges to f (y)g (y), and because f is
integrable and kg §'"k1 ∑ kgk1 <1 the dominated convergence theorem implies that

lim
"!0

Z
f (y)(g §'")(y)d y =

Z
f (y)g (y)d y.

7.5 Fourier Transforms and Weak Convergence

Recall that a sequence {µn}n∏1 of Borel probability measures on R converges weakly to a
Borel probability measure µ (written µn =)µ) if for every continuous function u :R!R

with compact support,

lim
n!1

Z
u dµn =

Z
u dµ. (7.20)

Recall also that a sufficient condition for this is that relation (7.20) holds for all C1 func-
tions u with compact support. By the Parseval relation (7.16) (cf. Corollary 7.14),

Z
u(x)dµ(x) = 1

2º

Z
û(µ)µ̂(µ)dµ and

Z
u(x)dµn(x) = 1

2º

Z
û(µ)µ̂n(µ)dµ;

consequently, since the Fourier transform û decays rapidly at 1 (cf. Homework), the
convergence (7.20) will hold for any compactly supported C1 function u if

lim
n!1

µ̂n(µ) = µ̂(µ) for every µ 2R. (7.21)

This proves

Theorem 7.20. (Lévy’s Continuity Theorem) A sequence µn of Borel probability measures
on R converge weakly to a Borel probability µ if and only if for every µ 2R,

lim
n!1

µ̂n(µ) = µ̂(µ). (7.22)

One can use Lévy’s theorem as the basis for another proof of the central limit theorem.
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Theorem 7.21. Let X1, X2, . . . be independent, identically distributed random variables
with E Xi = 0 and E X 2

i = 1, and write Sn = Pn
i=1 Xi . Then the random variables Sn/

p
n

converge in distribution to the standard normal distribution, that is, if µn is the distribu-
tion of Sn/

p
n then

µn =)µ where µ(B) = 1
p

2º

Z

B
e°x2/2 d x. (7.23)

Proof. It suffices to show that EeiµSn /
p

n ! e°µ2/2 for every µ. The random variables Xi

have mean 0 and variance 1, so by Taylor’s theorem their characteristic function '(µ) :=
EeiµXn satisfies

'(µ) = 1° µ2

2
'00(Ø(µ))

where Ø(µ) is a point of the real line intermediate between 0 and µ. Consequently, for
any µ 2R,

'(µ/
p

n) = 1° µ2

2n
(1+o(1)) .

Therefore,

EeiµSn /
p

n = (1° µ2

2n
(1+o(1)))n °! e°µ2/2.

7.6 Lévy’s Continuity Theorem

Lévy actually proved a much more useful extension of the Continuity Theorem 7.20 that
can be used, in certain situations, to show that a given function is the Fourier transform
of a Borel probability measure on R.

Theorem 7.22. The pointwise limit of a sequence of characteristic functions is a charac-
teristic function if it is continuous at µ = 0.

Proof. This will be based on the Helly selection principle (Theorem 6.16). The strategy is
as follows. Let 'n(µ) = µ̂n(µ), where each µn is a Borel probability measure, and suppose
that 'n(µ) ! '(µ) for each µ 2 R. If we knew that the sequence µn were tight, then
Helly’s theorem would imply that for any subsequence there is a weakly convergent
subsequence – and in particular, the weak limit would be a Borel probability measure.
But any such weak limit must have Fourier transform '(µ); thus, by the Uniqueness
Theorem, there is only one possible weak limit µ, and its Fourier transform must be '(µ).

The gap in this argument is the tightness of the sequence µn . It is here that we will
need the hypothesis that the limit function '(µ) is continuous at µ = 0. To make use of
this hypothesis, we will find it convenient to utilize another characterization of tightness.

76



Lemma 7.23. A sequence of probability measures µn on R is tight if and only if for every
"> 0 there exists æ2 <1 such that

Z1

°1
e°x2/2æ2

dµn(x) > 1°". (7.24)

Proof. Exercise.

Corollary 7.24. Let µn be a sequence of Borel probability measures on R whose Fourier
transforms µ̂n(µ) converge pointwise to a function '(µ) that is continuous at µ = 0. Then
the sequence µn is tight.

Proof. Recall that the Plancherel-Parseval identity (7.16) holds for any bounded, con-
tinuous function f whose Fourier transform f̂ (µ) is integrable. This is the case for the
function fæ(x) = exp{°x2/2æ2}: its Fourier transform is

f̂æ(µ) =
p

2ºæexp{°µ2æ2/2},

which is certainly integrable. Thus, for any æ> 0 and each n = 1,2, . . . ,
Z1

°1
e°x2/2æ2

dµn(x) = æ
p

2º

Z1

°1
e°æ2µ2/2µ̂n(°µ)dµ = E µ̂n(Z /æ),

where Z is a standard normal random variable.

By hypothesis, the functions µ̂n(µ) converge pointwise to '(µ), and the function '(µ)
is continuous at µ = 0. Now since µ̂n(0) = 1 for every n, it must also be the case that
'(0) = 1; and since |µ̂n(µ)| ∑ 1 for every µ 2 R, it must also be the case that |'(µ)| ∑ 1.
Hence, by the bounded convergence theorem,

lim
æ!1

E'(Z /æ) ='(0) = 1,

and so for any "> 0 there exists æ<1 such that

E'(Z /æ) ∏ 1°".

But the pointwise convergence µ̂n(µ) ! '(µ), together with another application of the
bounded convergence theorem, implies that

lim
n!1

E µ̂n(Z /æ) = E'(Z /æ) ∏ 1°".

Therefore, for all sufficiently large n,

E µ̂n(Z /æ) > 1°2",

and so by Lemma 7.23, the sequence µn is tight.
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7.7 The Symmetric Stable Laws

Theorem 7.25. For every real number Æ 2 (0,2) the function 'Æ(µ) = exp{°|µ|Æ} is a char-
acteristic function.

Proof. Fix Æ, and letX1, X2, . . . be independent, identically distributed random variables
with probability density fÆ(x) = 1

2Æ|x|
°Æ°11[1,1)(|X |), and set Sn =Pn

i=1 Xi . We will show
that the characteristic functions of the random variables Sn/n1/Æ converge pointwise to
'Æ(µ); Theorem 7.22 will then imply that 'Æ is a characteristic function.

The characteristic function of Xi is the Fourier transform of the density fÆ:

'Xi (µ) = f̂Æ(µ) =Æ
Z1

1

cos(|µ|x|)
xÆ+1 d x.

Consequently, as |µ|! 0,

1°'Xi (µ) =Æ
Z1

1

1°cos(|µ|x|)
xÆ+1 d x =Æ|µ|Æ

Z1

|µ|

1°cos y
y1+Æ d y ªC |µ|Æ,

where

C =
Z1

0

1°cos y
y1+Æ d y ;

the relation ª follows from the dominated convergence theorem, using the fact that the
(dominating) function (1°cos y)y1+Æ is nonnegative and integrable on (0,1). (This uses
the hypothesis that 0 <Æ< 2.) Therefore, for any µ 2R and any n ∏ 1,

'Sn /n1/Æ(µ) ='X1 (µ/n1/Æ)n =
µ
1° C |µ|Æ

n

∂n

,

and as n !1 this converges to exp{°|µ|1Æ}.

Exercise 7.26. Let g (x) be any even probability density on R such that g (x) = fÆ(x) for
all x outside some compact interval [°A, A]. Show that if Y1,Y2, . . . are independent,
identically distributed with density g then

n°1/Æ
nX

i=1
Yi =)µÆ

where µÆ is the symmetric stable law of exponent Æ 2 (0,2), that is, the unique proba-
bility measure with Fourier transform 'Æ(µ) = exp{|µ|Æ}. HINT: Show that the random
variables Yi can be constructed on a probability space that supports independent, iden-
tically distributed random variables Xi with density fÆ in such a way that Xi = Yi on the
event that |Xi | > A or |Yi | > A.
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