5 Birkhoff’s Ergodic Theorem

Among the most useful of the various generalizations of KolmogorovaAZs strong law of
large numbers are the ergodic theorems of Birkhoff and Kingman, which extend the valid-
ity of the strong law to stationary sequences. These are of importance even in the context
of random walks (that is, sums or products of independent, identically distributed ran-
dom variables), because many interesting quantities associated with random walks can
be only expressed as functionals of the random walk paths that cannot themselves be
decomposed as sums of inde- pendent random variable.

5.1 Measure-preserving transformations and stationary sequences

Definition 5.1. Let (Q, %, P) be a probability space and let T: Q — Q be a measurable
transformation. The transformation T is said to be measure-preserving if for every A€ %,

P(T™'(A) = P(4), (5.1)

or equivalently if for every random variable X € L},
E(XoT)=EX. (5.2)

The triple (Q2, P, T) is then said to be a measure-preserving system. An invertible measure-
preserving transformation is an invertible mapping 7 : Q — Q such that both T and 7!
are measure-preserving transformations.

Exercise 5.2. Let «/ be an algebra such that & = o(«/). Show that a measurable transfor-
mation T : Q — Q is measure-preserving if equation (5.1) holds for every A € «/.

Example 5.3. Let Q = {z € C | |z| = 1} be the unit circle in the complex plane, and for
any real number 0 define Ry : Q — Q by Ry(2) = €?z. Thus, Ry rotates Q through an
angle 0. Let A be the normalized arclength measure on Q. Then each Rg is A-measure-
preserving.

d
with integer entries a, b, ¢, d and determinant 1, let B4 : T> — T2 be the mapping of the
torus induced by the linear mapping of R? with matrix A. Then B, preserves the uniform

b
Example 5.4. Let T? = R?/Z? be the 2—dimensional torus. For any 2x2 matrix A = (Z )

2 1
distribution on T?. NOTE: in the special case A = ( 1 1), the mapping B4 is sometimes

called Arnold’s cat map, for reasons that I won't try to explain.

Example 5.5. The Shift: Let QQ = R* (the space of all infinite sequences of real numbers),
and let T: Q — Q be the right shift, that is,

T(xO)xl)XZ)---) = (xl’xZ)x?n---)-
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It is easily checked that T is measurable with respect to the Borel o —algebra %8, defined
to be the smallest o—algebra that contains all events {x : x, € B}, where B is a one-
dimensional Borel set. (Here x = (xg, X1,...), and x; is the nth coordinate.) If v is a Borel
probability measure on R, then the product measure v* on %, is the unique probability
measure such that

m

V®(Byx By x -+ x By x RxRx---) = [[v(By)

i=0
for all one-dimensional Borel set By, By,.... (The existence and uniqueness of such a
measure follows from the Caratheodory extension theorem.) It is easily checked (exer-
cise) that the shift T preserves the product measure v.

The notion of a measure-preserving transformation is closely related to that of a sta-
tionary sequence of random variables. A sequence of random variables Xy, X7, Xo,... is
said to be stationary if for every integer m = 0 the joint distribution of the random vector
(X0, X1,..., Xp) is the same as that of (X3, Xy, ..., X;n+1) (and therefore, by induction the
same as that of (X, Xg+1,--., Xk+m), for every k = 1,2,...). Similarly, a doubly-infinite
sequence of random variables (X},) ez is said to be stationary if for every m = 0 and
k € Z the random vector (X, Xx+1,..., Xk+m) has the same joint distribution as does
(X0, X1, X

Stationary sequences arise naturally as models in times series analysis. Useful ex-
amples are easily built using auxiliary sequences of independent, identically distributed
random variables: for instance, if Y7, Y>,... are i.i.d. random variables with finite first
moment E|Y;| < oo, then for any sequence (a,) >0 satisfying ), |a,| < oo the sequence

o0
Xn:= ) arYnsk
k=0
is stationary.

Clearly, if T is a measure-preserving transformation of a probability space (2, &%, P),
and if Y is a random variable defined on this probability space, then the sequence

Xp,=YoT" (5.3)

is stationary. This has a (partial) converse: for every stationary sequence Xy, X, ... there
is a measure-preserving system (Q2, B, T) and a random variable Y defined on Q such
that the sequence (Y o T"),,5¢ has the same joint distribution as (X;,) ;0. The measure-
preserving system can be built on the space (R*, %), using the shift mapping T : R* —
R defined above. This is done as follows.

Suppose that (Y, Y1, Y,...) is a stationary sequence of random variables defined on
an arbitrary probability space (Q, %, u). Let Y : Q — R* be the mapping

Y(w) = (Yp(w), V1 (w), Y2 (w),...).
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This is measurable with respect to the Borel o—algebra %, (exercise: why?), and the
induced probability measure
P=poY!

(that is, the joint distribution of the entire sequence Y under p) is invariant by the shift
mapping T (thatis, T is P—measure-preserving). By construction, the joint distribution
of the sequence Y = (Y, Y1,...) under u is the same as that of the coordinate sequence
X = (Xp, X1,...) under P. This is a useful observation, because it allows us to deduce
theorems for the original sequence Y from corresponding theorems for the sequence X:
in particular,
n
Xi = EpXO a.s.-P. (5.4)

n
limn 'Y V;=E, Yy as-u < limn!
& 1

n—oo n—oo .
i=1 i

Observe that if T is measure-preserving then for every integrable random variable Y,

EY=E(YoT). (5.5)

5.2 Birkhoff’s Ergodic Theorem

Definition 5.6. If T is a measure-preserving transformation of (2, %, P), then an event
A€ Z is said to be invariant if T~' A= A. The collection .# of all invariant events is the
invariant o —algebra. If the invariant o —algebra .# contains only events of probability 0
or 1 then the measure-preserving transformation T is said to be ergodic.

Definition 5.7. A measure-preserving transformation T of a probability space (2, &, P)
is said to be mixing if for any two bounded random variables f,g:Q — R,

Ef(goT") = (Ef)(Eg).
Exercise 5.8. Show that if T is mixing then T is ergodic.

Exercise 5.9. Show that if « is an algebra such that & = o(«/) then T is mixing if for all
ABed,
El,(1goT™ =P(A)P(B).

Exercise 5.10. Let T be the shift on (R, B, v™°) (See notes for definitions. The prob-
ability measure v*° is the product measure; under v*° the coordinate variables are i.i.d.
with distribution v.) Show that T is mixing, and therefore ergodic.

Theorem 5.11. (Birkhoff’s Ergodic Theorem) If T is an ergodic, measure-preserving trans-
formation of (Q, %, P) then for every random variable X € L',

n—1

1 )
lim — Y XoT/™'=EX. (5.6)
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The proof will follow the same general strategy as the proof of a number of other
almost everywhere convergence theorems, including Kolmogorov’s SLLN and Lebesgue’s
Differentiation Theorem. The first step is to identify a dense subspace of L' for which
the convergence can be easily established.

Definition 5.12. Let T be a measure-preserving transformation of (2,4, P). Then a
random variable Y € L2(Q, %, P) is called a cocycle (more properly, an Lz—cocycle) if
there exists W e L[> suchthat Y =W - Wo T.

Proposition 5.13. Let T be an invertible measure-preserving transformation of (2, &, P).
Then the cocycles are dense in the subspace of L? consisting of all X € L? such that EX = 0;
that is, for any such X there is a cocycleY = W — W o T such that

IX-Y].<e.

Proof. Let V c I? be the set of all cocycles and let V be its L?—closure. We claim that
if X is orthogonal to the set V then X = 0 a.s. To see this, observe that for any cocycle
W—-WoT,

EX(W-WoT)=EXW-EX(WoT)
=EXW-EXoT Hhw
—EWX-XoT™ ).

Since this holds for every W € L2, it holds for all indicators, and consequently the random
variable X — X o T~! = 0 almost surely. This shows that X is an invariant random variable.
Since the measure-preserving transformation 7 is ergodic, it follows that X is (almost
surely) constant; since EX = 0 it follows that X =0 a.s.

Now let X € L? be any random variable such that EX = 0. By an elementary result
in I?>~theory (see HW 5), there is a unique Y in V that is closest to X (in L?>~distance);
moreover, the random variable X — Y is orthogonal to the space of cocycles. But now the
previous paragraph implies that X — Y = 0. O

Itis trivial to check that the ergodic theorem (5.6) holds for [2 —cocycles. In particular,
ifY=W-WoTthenYoT!=WoT!—Wo T andso

ll’l—l . 1
ZZ YoT’:E(W—WoT”)—>O.
i=0

Since by Proposition 5.13 the space of cocycles is dense in I?, at least when T is an
invertible measure-preserving transformation, it is also dense in L', and so there is a
dense subspace of L! for which (5.6) holds.
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Proposition 5.14. (Wiener’s Maximal Ergodic Lemma) Let T be a measure-preserving
transformation of (Q, %, P). Then for any random variable Y € L' and any a > 0,

17 ElY|
P{sup— Y |YoT!|2a}<— (5.7)
nz1 N ;= a

Proof. Without loss of generality, Y =0 and EY > 0. For each integer m = 1 define F,, to
be the event
n-1
Jj
{w rnn<an)1< Z YoT (w)>a}

Fix k=1, and define B = B’,j,(w) (“bad”) to be the set of all integers 1 < r < km such that
T (w) € F, that is, such that one of the first m ergodic averages starting at time r is at
least a.

Claim: The set BY is contained in the union of a collection of non-overlapping intervals
J € [km+ m] such that
Y YoT/(w) =]l (5.8)
Jjel

Proof. Proceed left to right in the interval [km+m] until reaching the first integer r1 € BX .
By definition of the set B,’fn, there is an interval J; oflength 1 <|/;| < m with left endpoint
r such that inequality (5.8) holds for J = J;. Now proceed inductively: assuming that J; is
defined, let r;4; be the smallest integer in B’,ﬁ, to the right of J;, and let /4, be the smallest
interval of length 1 < |J;;,| < m with left endpoint r;,; such that (5.8) holds. Continue in
this manner until reaching the right endpoint km of the interval [0, km]. O

Given the Claim, the rest of the argument follows routinely. In detail, the nonnegativ-
ity of Y implies that
mk+k )
alBkl< Y voTl.
j=0

Taking expectations on both sides, we deduce that forany m = 1,

172l EY
P{ max ZYon>a}<—
l<sn<mn 0 Qa

Finally, let m — oo and use the monotone convergence theorem. O

Proof of Birkhoff’s Theorem: Invertible Case. Assume that T is ergodic and measure-preserving,
and fix X € L? with expectation EX = 0. By Proposition 5.13, every such X can be arbi-
trarily well-approximated in L?>~norm by cocycles, that is, for any £ > 0 there is a cocycle

Y = W - Wo T such that | X — Y|, < £€2. By the moment inequality (i.e., Holder),

IX-Y[1<IX-Yl, <&
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By Wiener’s Maximal Inequality,

1 n-1 . .
=Y XoT'-YoT"
" i=o

n=1

p (sup > e)) <e.
But as we have already seen, the ergodic theorem holds for any cocycle, so the ergodic
averages for Y converge to 0 almost surely. Hence,

1 n-1 .
P|limsup|— ) XoT'
n=1 N ;>

25)) <e.

Since ¢ > 0 is arbitrary, this proves that relation (5.6) holds for every X € L? with mean
EX = 0. It follows trivially that (5.6) holds for every X € L2.

It remains to show that (5.6) holds not only for random variables X € L? but also
random variables X € L. This can be done by truncation, with another use of Wiener’s
Maximal Inequality. (Exercise!) O

Proof of Birkhoff’s Theorem: General Case. To complete the proof of Birkhoff’s Theorem,

we will show that if the theorem is true for invertible transformations then it is true for
all ergodic measure-preserving transformations. (Later). O
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