
5 Birkhoff’s Ergodic Theorem

Among the most useful of the various generalizations of KolmogorovâĂŹs strong law of
large numbers are the ergodic theorems of Birkhoff and Kingman, which extend the valid-
ity of the strong law to stationary sequences. These are of importance even in the context
of random walks (that is, sums or products of independent, identically distributed ran-
dom variables), because many interesting quantities associated with random walks can
be only expressed as functionals of the random walk paths that cannot themselves be
decomposed as sums of inde- pendent random variable.

5.1 Measure-preserving transformations and stationary sequences

Definition 5.1. Let (≠,F ,P ) be a probability space and let T :≠!≠ be a measurable
transformation. The transformation T is said to be measure-preserving if for every A 2F ,

P (T °1(A)) = P (A), (5.1)

or equivalently if for every random variable X 2 L1,

E(X ±T ) = E X . (5.2)

The triple (≠,P,T ) is then said to be a measure-preserving system. An invertible measure-
preserving transformation is an invertible mapping T :≠!≠ such that both T and T °1

are measure-preserving transformations.

Exercise 5.2. Let A be an algebra such that F =æ(A ). Show that a measurable transfor-
mation T :≠!≠ is measure-preserving if equation (5.1) holds for every A 2A .

Example 5.3. Let ≠ = {z 2 C | |z| = 1} be the unit circle in the complex plane, and for
any real number µ define Rµ : ≠! ≠ by Rµ(z) = eiµz. Thus, Rµ rotates ≠ through an
angle µ. Let ∏ be the normalized arclength measure on≠. Then each Rµ is ∏°measure-
preserving.

Example 5.4. LetT2 =R2/Z2 be the 2°dimensional torus. For any 2£2 matrix A =
µ

a b
c d

∂

with integer entries a,b,c,d and determinant 1, let B A :T2 !T2 be the mapping of the
torus induced by the linear mapping of R2 with matrix A. Then B A preserves the uniform

distribution on T2. NOTE: in the special case A =
µ
2 1
1 1

∂
, the mapping B A is sometimes

called Arnold’s cat map, for reasons that I won’t try to explain.

Example 5.5. The Shift: Let≠=R1 (the space of all infinite sequences of real numbers),
and let T :≠!≠ be the right shift, that is,

T (x0, x1, x2, . . . ) = (x1, x2, x3, . . . ).
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It is easily checked that T is measurable with respect to the Borelæ°algebra B1, defined
to be the smallest æ°algebra that contains all events {x : xn 2 B}, where B is a one-
dimensional Borel set. (Here x = (x0, x1, . . . ), and xn is the nth coordinate.) If ∫ is a Borel
probability measure on R, then the product measure ∫1 on B1 is the unique probability
measure such that

∫1(B0 £B1 £ · · ·£Bm £R£R£ · · · ) =
mY

i=0
∫(Bi )

for all one-dimensional Borel set B0,B1, . . . . (The existence and uniqueness of such a
measure follows from the Caratheodory extension theorem.) It is easily checked (exer-
cise) that the shift T preserves the product measure ∫1.

The notion of a measure-preserving transformation is closely related to that of a sta-
tionary sequence of random variables. A sequence of random variables X0, X1, X2, . . . is
said to be stationary if for every integer m ∏ 0 the joint distribution of the random vector
(X0, X1, . . . , Xm) is the same as that of (X1, X2, . . . , Xm+1) (and therefore, by induction the
same as that of (Xk , Xk+1, . . . , Xk+m), for every k = 1,2, . . . ). Similarly, a doubly-infinite
sequence of random variables (Xn)n2Z is said to be stationary if for every m ∏ 0 and
k 2 Z the random vector (Xk , Xk+1, . . . , Xk+m) has the same joint distribution as does
(X0, X1, . . . , Xm).

Stationary sequences arise naturally as models in times series analysis. Useful ex-
amples are easily built using auxiliary sequences of independent, identically distributed
random variables: for instance, if Y1,Y2, . . . are i.i.d. random variables with finite first
moment E |Yi | <1, then for any sequence (an)n∏0 satisfying

P
n |an | <1 the sequence

Xn :=
1X

k=0
ak Yn+k

is stationary.

Clearly, if T is a measure-preserving transformation of a probability space (≠,F ,P ),
and if Y is a random variable defined on this probability space, then the sequence

Xn = Y ±T n (5.3)

is stationary. This has a (partial) converse: for every stationary sequence X0, X1, . . . there
is a measure-preserving system (≠,P,T ) and a random variable Y defined on ≠ such
that the sequence (Y ±T n)n∏0 has the same joint distribution as (Xn)n∏0. The measure-
preserving system can be built on the space (R1,B1), using the shift mapping T :R1 !
R1 defined above. This is done as follows.

Suppose that (Y0,Y1,Y2, . . . ) is a stationary sequence of random variables defined on
an arbitrary probability space (≠,F ,µ). Let Y :≠!R1 be the mapping

Y(!) = (Y0(!),Y1(!),Y2(!), . . . ).
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This is measurable with respect to the Borel æ°algebra B1 (exercise: why?), and the
induced probability measure

P =µ±Y°1

(that is, the joint distribution of the entire sequence Y under µ) is invariant by the shift
mapping T (that is, T is P°measure-preserving). By construction, the joint distribution
of the sequence Y = (Y0,Y1, . . . ) under µ is the same as that of the coordinate sequence
X = (X0, X1, . . . ) under P . This is a useful observation, because it allows us to deduce
theorems for the original sequence Y from corresponding theorems for the sequence X:
in particular,

lim
n!1

n°1
nX

i=1
Yi = EµY0 a.s.-µ () lim

n!1
n°1

nX

i=1
Xi = EP X0 a.s.-P. (5.4)

Observe that if T is measure-preserving then for every integrable random variable Y ,

EY = E(Y ±T ). (5.5)

5.2 Birkhoff’s Ergodic Theorem

Definition 5.6. If T is a measure-preserving transformation of (≠,F ,P ), then an event
A 2F is said to be invariant if T °1 A = A. The collection I of all invariant events is the
invariant æ°algebra. If the invariant æ°algebra I contains only events of probability 0
or 1 then the measure-preserving transformation T is said to be ergodic.

Definition 5.7. A measure-preserving transformation T of a probability space (≠,F ,P )
is said to be mixing if for any two bounded random variables f , g :≠!R,

E f (g ±T n) = (E f )(E g ).

Exercise 5.8. Show that if T is mixing then T is ergodic.

Exercise 5.9. Show that if A is an algebra such that F =æ(A ) then T is mixing if for all
A,B 2A ,

E1A(1B ±T n) = P (A)P (B).

Exercise 5.10. Let T be the shift on (R1,B1,∫1) (See notes for definitions. The prob-
ability measure ∫1 is the product measure; under ∫1 the coordinate variables are i.i.d.
with distribution ∫.) Show that T is mixing, and therefore ergodic.

Theorem 5.11. (Birkhoff ’s Ergodic Theorem) If T is an ergodic, measure-preserving trans-
formation of (≠,F ,P ) then for every random variable X 2 L1,

lim
n!1

1
n

n°1X

j=0
X ±T j°1 = E X . (5.6)
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The proof will follow the same general strategy as the proof of a number of other
almost everywhere convergence theorems, including Kolmogorov’s SLLN and Lebesgue’s
Differentiation Theorem. The first step is to identify a dense subspace of L1 for which
the convergence can be easily established.

Definition 5.12. Let T be a measure-preserving transformation of (≠,F ,P ). Then a
random variable Y 2 L2(≠,F ,P ) is called a cocycle (more properly, an L2°cocycle) if
there exists W 2 L2 such that Y =W °W ±T .

Proposition 5.13. Let T be an invertible measure-preserving transformation of (≠,F ,P ).
Then the cocycles are dense in the subspace of L2 consisting of all X 2 L2 such that E X = 0;
that is, for any such X there is a cocycle Y =W °W ±T such that

kX °Y k2 < ".

Proof. Let V Ω L2 be the set of all cocycles and let V̄ be its L2°closure. We claim that
if X is orthogonal to the set V then X = 0 a.s. To see this, observe that for any cocycle
W °W ±T ,

E X (W °W ±T ) = E X W °E X (W ±T )

= E X W °E(X ±T °1)W

= EW (X °X ±T °1).

Since this holds for every W 2 L2, it holds for all indicators, and consequently the random
variable X °X ±T °1 = 0 almost surely. This shows that X is an invariant random variable.
Since the measure-preserving transformation T is ergodic, it follows that X is (almost
surely) constant; since E X = 0 it follows that X = 0 a.s.

Now let X 2 L2 be any random variable such that E X = 0. By an elementary result
in L2°theory (see HW 5), there is a unique Y in V̄ that is closest to X (in L2°distance);
moreover, the random variable X °Y is orthogonal to the space of cocycles. But now the
previous paragraph implies that X °Y = 0.

It is trivial to check that the ergodic theorem (5.6) holds for L2°cocycles. In particular,
if Y =W °W ±T then Y ±T i =W ±T i °W ±T i+1, and so

1
n

n°1X

i=0
Y ±T i = 1

n

°
W °W ±T n¢

°! 0.

Since by Proposition 5.13 the space of cocycles is dense in L2, at least when T is an
invertible measure-preserving transformation, it is also dense in L1, and so there is a
dense subspace of L1 for which (5.6) holds.
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Proposition 5.14. (Wiener’s Maximal Ergodic Lemma) Let T be a measure-preserving
transformation of (≠,F ,P ). Then for any random variable Y 2 L1 and any Æ> 0,

P

(

sup
n∏1

1
n

n°1X

j=0
|Y ±T i |∏Æ

)

∑ E |Y |
Æ

. (5.7)

Proof. Without loss of generality, Y ∏ 0 and EY > 0. For each integer m ∏ 1 define Fm to
be the event (

! : max
n∑m

1
n

n°1X

j=0
Y ±T j (!) ∏Æ

)

.

Fix k ∏ 1, and define B = B k
m(!) (“bad”) to be the set of all integers 1 ∑ r ∑ km such that

T r (!) 2 F , that is, such that one of the first m ergodic averages starting at time r is at
least Æ.

Claim: The set B k
m is contained in the union of a collection of non-overlapping intervals

J µ [km +m] such that X

j2J
Y ±T j (!) ∏ |J |Æ. (5.8)

Proof. Proceed left to right in the interval [km+m] until reaching the first integer r1 2 B k
m .

By definition of the set B k
m , there is an interval J1 of length 1 ∑ |J1|∑ m with left endpoint

r such that inequality (5.8) holds for J = J1. Now proceed inductively: assuming that Jl is
defined, let rl+1 be the smallest integer in B k

m to the right of Jl , and let Jl+1 be the smallest
interval of length 1 ∑ |Jl+1|∑ m with left endpoint rl+1 such that (5.8) holds. Continue in
this manner until reaching the right endpoint km of the interval [0,km].

Given the Claim, the rest of the argument follows routinely. In detail, the nonnegativ-
ity of Y implies that

Æ|B k
m |∑

mk+kX

j=0
Y ±T j .

Taking expectations on both sides, we deduce that for any m ∏ 1,

P

(

max
1∑n∑m

1
n

n°1X

j=0
Y ±T j ∏Æ

)

∑ EY
Æ

.

Finally, let m !1 and use the monotone convergence theorem.

Proof of Birkhoff ’s Theorem: Invertible Case. Assume that T is ergodic and measure-preserving,
and fix X 2 L2 with expectation E X = 0. By Proposition 5.13, every such X can be arbi-
trarily well-approximated in L2°norm by cocycles, that is, for any "> 0 there is a cocycle
Y =W °W ±T such that kX °Y k2 < "2. By the moment inequality (i.e., Hölder),

kX °Y k1 ∑ kX °Y k2 < "2.
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By Wiener’s Maximal Inequality,

P

√

sup
n∏1

ØØØ
1
n

n°1X

i=0
(X ±T i °Y ±T i )

ØØØ> ")

!

∑ ".

But as we have already seen, the ergodic theorem holds for any cocycle, so the ergodic
averages for Y converge to 0 almost surely. Hence,

P

√

limsup
n∏1

ØØØ
1
n

n°1X

i=0
X ±T i

ØØØ∏ ")

!

∑ ".

Since " > 0 is arbitrary, this proves that relation (5.6) holds for every X 2 L2 with mean
E X = 0. It follows trivially that (5.6) holds for every X 2 L2.

It remains to show that (5.6) holds not only for random variables X 2 L2 but also
random variables X 2 L1. This can be done by truncation, with another use of Wiener’s
Maximal Inequality. (Exercise!)

Proof of Birkhoff ’s Theorem: General Case. To complete the proof of Birkhoff’s Theorem,
we will show that if the theorem is true for invertible transformations then it is true for
all ergodic measure-preserving transformations. (Later).
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