
9 Brownian Motion

9.1 Definition and Heuristics

The central limit theorem states that the standard Gaussian distribution arises as the
weak limit of the rescaled partial sums Sn/

p
n of independent, identically distributed

random variables Xi = Si ° Si°1 with mean 0 and variance 1. This has an important
corollary: the family {'t }t∏0 of normal densities is closed under convolution. To see this,
observe that for any 0 < t < 1 the sum Sn = S[nt ] + (Sn °S[nt ]) is obtained by adding two
independent sums; the central limit theorem applies to each sum separately, and so by
an elementary scaling we must have '1 ='t §'1°t . More generally, for any s, t ∏ 0,

's §'t ='s+t . (9.1)

This law can, of course, be proved without reference to the central limit theorem,
either by direct calculation (“completing the square”) or by Fourier transform. However,
our argument suggests a “dynamical” interpretation of the equation (9.1) that the more
direct proofs obscure. For any finite set of times 0 = t0 < t1 < ·· · < tm <1 there exist (on
some probability space) independent, mean-zero Gaussian random variables Wti+1 °Wti

with variances ti+1 ° ti . The De Moivre-Laplace theorem implies that as n !1,

1
p

n
(S[nt1],S[nt2], . . . ,S[ntm ])

D°! (Wt1 ,Wt2 , . . . ,Wtm ). (9.2)

The convolution law (9.1) guarantees that the joint distributions of these limiting
random vectors are mutually consistent, that is, if the set of times {ti }i∑m is enlarged by
adding more time points, the joint distribution of Wt1 ,Wt2 , . . . ,Wtm will not be changed.
This suggests the possibility of defining a continuous-time stochastic process {Wt }t∏0 in
which all of the random vectors (Wt1 ,Wt2 , . . . ,Wtm ) are embedded.

Definition 9.1. A standard (one-dimensional) Wiener process (also called Brownian mo-
tion) is a continuous-time stochastic process {Wt }t∏0 (i.e., a family of real random vari-
ables indexed by the set of nonnegative real numbers t ) with the following properties:

(A) W0 = 0.
(B) With probability 1, the function t !Wt is continuous in t .
(C) The process {Wt }t∏0 has stationary, independent increments.
(D) For each t the random variable Wt has the NORMAL(0, t ) distribution.

A continuous-time stochastic process {Xt }t∏0 is said to have independent increments
if for all 0 ∑ t0 < t1 < ·· · < tm the random variables (Xti+1 °Xti ) are mutually independent;
it is said to have stationary increments if for any s, t ∏ 0 the distribution of Xt+s °Xs is the
same as that of Xt ° X0. Processes with stationary, independent increments are known
as Lévy processes.
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Properties (C) and (D) are mutually consistent, by the convolution law (9.1), but it is
by no means clear that there exists a stochastic process satisfying (C) and (D) that has
continuous sample paths. That such a process does exist was first proved by N. WIENER

in about 1920; we will give a different proof, due to P. LÉVY.

The convergence (9.2) shows that, in a certain sense, the Wiener process is an in-
finitesimal form of the simple random walk. This convergence also explains, at least
in part, why the Wiener process is useful in the modeling of natural processes. Many
stochastic processes behave, at least for long stretches of time, like random walks with
small but frequent jumps. The argument above suggests that such processes will look, at
least approximately, and on the appropriate time scale, like Brownian motion.

Notation and Terminology. A Brownian motion with initial point x is a stochastic pro-
cess {Wt }t∏0 such that {Wt ° x}t∏0 is a standard Brownian motion. Unless otherwise
specified, Brownian motion means standard Brownian motion. To ease eyestrain, we
will adopt the convention that whenever convenient the index t will be written as a
functional argument instead of as a subscript, that is, W (t ) =Wt .

9.2 Existence of the Wiener process

9.2.1 Preliminaries: Gaussian random variables

Lemma 9.2. Almost sure limits of Gaussian random variables are Gaussian, that is, if
Y1,Y2, . . . are Gaussian random variables, all defined on a common probability space, and
if Y = limn!1 Yn exists almost surely, then either Y is a constant random variable or Y is
Gaussian.

Proof. Characteristic functions. (Exercise.)

Lemma 9.3. Random variables Y1,Y2, . . . ,Ym defined on a common probability space are
independent Gaussian random variables with means EYi = 0 and variances æ2

i = EY 2
i if

and only if for any choice of real scalars a1, a2, . . . , am the random variable S =Pm
i=1 ai Yi

is Gaussian with mean zero and variance
Pm

i=1 a2
i æ

2
i .

Proof. The only if implication is easy. To prove the if implication, assume that the
random vector Y = (Y1,Y2, . . . ,Yn) has the property that its one-dimensional projections
S =Pm

i=1 ai Yi are mean-zero Gaussians with variances
Pm

i=1 a2
i æ

2
i . Let '(µ) = Eei hµ,Y i be

the characteristic function of the random vector Y ; then the characteristic function of
the random variable S = hµ,Y i is

EeiØS = EeiØhµ,Y i ='(Øµ).
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Since S has a Gaussian distribution with mean zero and variance
Pm

i=1µ
2
i æ

2
i , its charac-

teristic function must be

EeiØS = exp{°Ø2
mX

k=1
µ2

kæ
2
k /2}.

Hence, the characteristic function of Y splits as a product:

'(µ) =
mY

k=1
e°µ2

kæ
2
k /2.

It now follows that the component random variables Y1,Y2, . . . ,Ym are independent, by
the following lemma.

Lemma 9.4. Random variables Y1,Y2, . . . ,Ym defined on a common probability space are
independent if and only if their joint characteristic function '(µ) = Eei hµ,Y i splits as a
product, that is,

'(µ) = Eei hµ,Y i =
mY

k=1
√k (µk ). (9.3)

If this equation holds then the factors √k (µk ) are the characteristic functions of the com-
ponent random variables Yk .

Proof. It is clear that if (9.3) holds then he factors √k (µk ) are the characteristic functions
of the component random variables Yk , because the characteristic function of any com-
ponent Yk can be recovered by setting µ j = 0 for all j 6= k. Let u1,u2, . . . ,um :R!R be C1

functions all with compact support; then by the Fourier inversion formula,

mY

k=1
uk (yk ) = (2º)°m

œ
· · ·

Z
e°i hµ,yi

mY

k=1
ûk (µk )dµ1dµ2 · · ·dµm .

Consequently, by Fubini, if the relation (9.3) holds then

E
mY

k=1
uk (Yk ) = (2º)°m

œ
· · ·

Z mY

k=1
ûk (µk )√k (µk )dµ1dµ2 · · ·dµm

=
mY

k=1
Euk (Yk ),

the last by the Parseval relation. It now follows by a routine approximation argument
that the identity

E
mY

k=1
uk (Yk ) =

mY

k=1
Euk (Yk )

holds for all indicator functions uk = 1Bk , where Bk is a one-dimensional Borel set, and
so the independence of the random variables Yk follows by definition.
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Lemma 9.5. If Z is a standard normal random variable (i.e., Gaussian with mean 0 and
variance 1) then for every x > 0,

P {Z > x} ∑ 2e°x2/2

p
2ºx

. (9.4)

Proof.

P {Z > x} = 1
p

2º

Z1

x
e°y2/2 d y ∑ 1

p
2º

Z1

x
e°x y/2 d y = 2e°x2/2

p
2ºx

.

9.2.2 The Wiener Isometry

Behind Wiener’s construction lies a simple but cogent observation, that if a Wiener pro-
cess could be built on a probability space (≠,F ,P ) then there would be a natural linear
isometry of the Hilbert space L2([0,1],∏) into the Hilbert space L2(P ). Recall that the
inner product on a (real) L2 space L2(µ) is defined by

h f , g i=
Z

f g dµ.

The inner product of the indicator functions 1[0,t ] and 1[0,s] is

h1[0,t ],1[0,s]i= min(s, t );

more generally, the inner product of any two indicators 1A and 1B is∏(A\B). If {Wt }t2[0,1]

is a Wiener process, then
EWt Ws = min(s, t ); (9.5)

therefore, Wiener reasoned, the assignment 1[0,t ] 7!Wt should extend to a linear isometry
IW , now known as the Wiener isometry or Wiener integral, of L2([0,1],∏) into L2(P ). The
Wiener isometry suggests a natural approach to explicit representations of the Wiener
process, via orthonormal bases.

Definition 9.6. Let (≠,F ,µ) be a probability space7 and let L2(µ) be the Hilbert space of
square-integrable real-valued random variables8 with inner product

h f , g i= Eµ f g .

A set of random variables B = {u∏}∏2§ is said to be orthonormal if for any two elements
u1,u2 2 B ,

hu1,u2i= 0 if u1 6= u2,

= 1 if u1 = u2.

7or, more generally, any measure space.
8more precisely, the set of equivalence classes of square-integrable random variables, where two random

variables are considered equivalent if they are equal almost surely.
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An orthonormal set B is an orthonormal basis if the set of finite linear combinations of
elements of B is dense in L2(µ).

Proposition 9.7. Let B = {ui }1∑i∑m be a finite orthonormal set in L2(µ). Then for any
f 2 L2(µ) the unique element g in the linear span of B that minimizes the L2°distance
k f ° gk2 is

g =
mX

i=1
h f ,ui iui . (9.6)

Proof. Calculus.

Corollary 9.8. If B = {ui }i 6N is a countable orthonormal basis of L2(µ) then for any f 2
L2(µ),

f = L2 ° lim
m!1

mX

i=1
h f ,ui iui and (9.7)

k f k2
2 =

1X

n=1
|k f ,unk|2. (9.8)

The idea behind Wiener’s construction can now be explained. If {√n}n2N is an or-
thonormal basis of L2[0,1], then {IW (√n)}n2N must be an orthonormal set in L2(P ). Since
uncorrelated Gaussian random variables are necessarily independent, it follows that the
random variables ªn := IW (√n) must be i.i.d. standard normals. Finally, since IW is a
linear isometry, it must map the L2°series expansion of 1[0,t ] in the basis√n to the series
expansion of Wt in the basis ªn . Thus, with no further work we have the following.

Theorem 9.9. Assume that the probability space (≠,F ,P ) supports an infinite sequence
ªn of independent, identically distributed N (0,1) random variables, and let {√n}n2N be
any orthonormal basis of L2[0,1]. Then for every t 2 [0,1] the infinite series

Wt :=
1X

n=1
ªnh1[0,t ],√ni (9.9)

converges in the L2°metric, and the resulting stochastic process {Wt }t2[0,1] is a mean-zero
Gaussian process whose covariance function satisfies (9.5). Consequently, the process
{Wt }t2[0,1] satisfies properties (A), (B), and (C) of Definition 9.1.

Proof. (A) Convergence of the series. For any t the indicator function 1[0,t ] is square-
integrable, with L2°norm t 1/2, so by equation (??),

t =
1X

n=1
|h1[0,t ],√ni|2.
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Thus, the sequence h1[0,t ],√ni is square-summable. It now follows by Theorem 4.24 that
the sequence of random variables

mX

n=1
h1[0,t ],√niªn

converges in L2 and almost surely to a limit random variable Wt , and that the limit
random variable has mean EWt = 0 and variance EW 2

t = t . By Lemma ??, the distribution
of Wt is the Gaussian law with mean 0 and variance t .

(B) Independence of the increments. Any finite linear combination
P

ai Wti is the L2°
and a.s. limit of the series 1X

n=1
ªnh

X

i
1[0,t ],√ni.

Since each finite partial sum is a finite linear combination of the Gaussian random vari-
ables ªn , it is itself Gaussian, and so Lemma ?? implies that the linear combinationP

ai Wti is Gaussian.

Suppose now that 0 = t0 < t1 < t2 < ·· · < tm = 1, and consider the joint distribution of
the increments Wti°Wti°1

. By the previous paragraph, any linear combination of these
increments is Gaussian; hence, by Lemma 9.3, it will follow that the increments Wti°Wti°1
are independent Gaussians with mean 0 and variances ti ° ti°1 if we show that for any
scalars a1, a2, . . . , am ,

E

√
mX

i=1
ai (Wti°Wti°1

)

!2

=
mX

i=1

2
i (ti ° ti°1).

But this follows directly from the fact that the mapping

10,t 7!Wt

is an L2°isometry.

Because the convergence is in the L2°metric, rather than the sup-norm, there is no
way to conclude directly that the process so constructed has a version with continuous
paths. Wiener was able to show by brute force that for the particular basis

√n(x) =
p

2cosºnx

the series (9.7) converges (along an appropriate subsequence) not only in L2 but also
uniformly in t , and therefore gives a version of the Wiener process with continuous
paths:

Wt = ª0t +
1X

k=1

2k°1X

n=2k°1

n°1ªn
p

2sinºnt . (9.10)
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The argument for the uniform convergence of the series is somewhat technical, though,
and moreover, it is in many ways unnatural. Thus, rather than following Wiener’s con-
struction, we will describe an alternative construction, the due to Lévy.

9.2.3 Lévy’s argument

Paul Lévy realized that Wiener’s construction could be greatly simplified by using instead
the simplest “wavelet” basis, consisting of the Haar functions.

Definition 9.10. The Haar functions √n,k are defined as follows. First, let √ :R! {°1,1}
be the function

√(t ) =

8
>><

>>:

1 if 0 ∑ t ∑ 1
2 ;

°1 if 1
2 < t ∑ 1;

0 otherwise.

(9.11)

Then for any integers n ∏ 0 and 0 ∑ k < 2n define the (n,k)th Haar function by

√n,k (t ) = 2n/2√(2n t °k). (9.12)

Proposition 9.11. The Haar functions √n,k form an orthonormal basis of L2(∏), where ∏
is Lebesgue measure on [0,1].

Proof. Exercise.

Theorem 9.12. (Lévy) If the random variables ªm,k are independent, identically distributed
with common distribution N (0,1), then with probability one, the infinite series

W (t ) := ª0,1t +
1X

m=1

2m°1X

k=0
ªm,kGm,k (t ) (9.13)

converges uniformly for 0 ∑ t ∑ 1 and the limit function W (t ) is a standard Wiener process.

For any t 2 [0,1] the indicator function 1[0,t ] is an element of L2(∏), and so by Corol-
lary 9.8 has the representation

1[0,t ] =
1X

n=0

2n°1X

k=0
h1[0,t ],√n,ki√n,k . (9.14)

The functions

Gn,k (t ) = h1[0,t ],√n,ki=
Zt

0
√n,k (s)d s (9.15)

aer called the Schauder functions. For any n ∏ 1, the graph of Gn,k is a “hat” (isosceles
triangle) of height 2°n/2 and base [k/2n , (k +1)/2n]. The function G0,0 is just G0,0(t ) = t .
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Proof of Theorem 9.12. By definition of the Schauder functions Gn,k , the series (9.11) is
a particular case of (9.7), so the random variables W (t ) defined by (9.11) are centered
Gaussian with covariances that agree with the covariances of a Wiener process. Hence,
to prove that (9.11) defines a Brownian motion, it suffices to prove that with probability
one the series converges uniformly for t 2 [0,1].

The Schauder function Gm,k has maximum value 2°m/2, so to prove that the series
(9.11) converges uniformly it is enough to show that

1X

m=1

2mX

k=1
|ªm,k |/2m/2 <1

with probability 1. To do this we will use the Borel-Cantelli Lemma and the tail estimate
of Lemma 9.5 for the normal distribution to show that with probability one there is a
(possibly random) m§ such that

max
k

|ªm,k |∑ 2m/4 for all m ∏ m§. (9.16)

This will imply that almost surely the series is eventually dominated by a multiple of the
geometric series

P
2°(m+2)/4, and consequently converges uniformly in t .

To prove that (9.14) holds eventually, it suffices (by Borel-Cantelli) to show that the
probabilities of the complementary events are summable. By Lemma 9.5,

P {|ªm,k |∏ 2m/4} ∑ 4

2m/4
p

2º
e°2m/2

.

Hence, by the Bonferroni inequality (i.e., the crude union bound),

P { max
1∑k∑2m

|ªm,k |∏ 2m/4} ∑ 2m2°m/4
p

2/ºe°2m°1
.

Since this bound is summable in m, Borel-Cantelli implies that with probability 1, even-
tually (9.14) must hold. This proves that w.p.1 the series (9.11) converges uniformly, and
therefore W (t ) is continuous.
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