
BROWNIAN MOTION

1. BROWNIAN MOTION: DEFINITION

Definition 1. A standard Brownian (or a standard Wiener process) is a stochastic process {Wt }t≥0+
(that is, a family of random variables Wt , indexed by nonnegative real numbers t , defined on a
common probability space (Ω,F ,P )) with the following properties:

(1) W0 = 0.
(2) With probability 1, the function t →Wt is continuous in t .
(3) The process {Wt }t≥0 has stationary, independent increments.
(4) The increment Wt+s −Ws has the NORMAL(0, t ) distribution.

The term independent increments means that for every choice of nonnegative real numbers

0 ≤ s1 < t1 ≤ s2 < t2 ≤ ·· · ≤ sn < tn <∞,

the increment random variables

Wt1 −Ws1 ,Wt2 −Ws2 , . . . ,Wtn −Wsn

are jointly independent; the term stationary increments means that for any 0 < s, t <∞ the dis-
tribution of the increment Wt+s −Ws has the same distribution as Wt −W0 =Wt .

It should not be obvious that properties (1)–(4) in the definition of a standard Brownian mo-
tion are mutually consistent, so it is not a priori clear that a standard Brownian motion exists.
(The main issue is to show that properties (3)–(4) do not preclude the possibility of continuous
paths.) That it does exist was first proved by N. WIENER in about 1920. His proof was simplified
by P. LÉVY; we shall outline Lévy’s construction in section 10 below. But notice that properties (3)
and (4) are compatible. This follows from the following elementary property of the normal dis-
tributions: If X ,Y are independent, normally distributed random variables with means µX ,µY

and variancesσ2
X ,σ2

Y , then the random variable X +Y is normally distributed with meanµX +µY

and variance σ2
X +σ2

Y .

2. BROWNIAN MOTION AS A LIMIT OF RANDOM WALKS

One of the many reasons that Brownian motion is important in probability theory is that it
is, in a certain sense, a limit of rescaled simple random walks. Let ξ1,ξ2, . . . be a sequence of
independent, identically distributed random variables with mean 0 and variance 1. For each
n ≥ 1 define a continuous–time stochastic process {Wn(t )}t≥0 by

(1) Wn(t ) = 1p
n

∑
1≤ j≤bntc

ξ j

This is a random step function with jumps of size ±1/
p

n at times k/n, where k ∈ Z+. Since
the random variables ξ j are independent, the increments of Wn(t ) are independent. Moreover,
for large n the distribution of Wn(t + s)−Wn(s) is close to the NORMAL(0, t ) distribution, by the
Central Limit theorem. Thus, it requires only a small leap of faith to believe that, as n →∞, the
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distribution of the random function Wn(t ) approaches (in a certain sense)1 that of a standard
Brownian motion.

Why is this important? First, it explains, at least in part, why the Wiener process arises so
commonly in nature. Many stochastic processes behave, at least for long stretches of time, like
random walks with small but frequent jumps. The argument above suggests that such processes
will look, at least approximately, and on the appropriate time scale, like Brownian motion.

Second, it suggests that many important “statistics” of the random walk will have limiting
distributions, and that the limiting distributions will be the distributions of the corresponding
statistics of Brownian motion. The simplest instance of this principle is the central limit theo-
rem: the distribution of Wn(1) is, for large n close to that of W (1) (the gaussian distribution with
mean 0 and variance 1). Other important instances do not follow so easily from the central limit
theorem. For example, the distribution of

(2) Mn(t ) := max
0≤s≤t

Wn(t ) = max
0≤k≤nt

1p
n

∑
1≤ j≤k

ξ j

converges, as n →∞, to that of

(3) M(t ) := max
0≤s≤t

W (t ).

Similarly, for any a > 0 the distribution of

(4) τn(a) := min{t ≥ 0 : Wn(t ) ≥ a}

approaches, as n →∞, that of

(5) τ(a) := min{t ≥ 0 : W (t ) = a}.

The distributions of M(t ) and τ(a) will be calculated below.

3. TRANSITION PROBABILITIES

The mathematical study of Brownian motion arose out of the recognition by Einstein that the
random motion of molecules was responsible for the macroscopic phenomenon of diffusion.
Thus, it should be no surprise that there are deep connections between the theory of Brownian
motion and parabolic partial differential equations such as the heat and diffusion equations. At
the root of the connection is the Gauss kernel, which is the transition probability function for
Brownian motion:

(6) P (Wt+s ∈ d y |Ws = x)
∆= pt (x, y)d y = 1p

2πt
exp{−(y −x)2/2t }d y.

This equation follows directly from properties (3)–(4) in the definition of a standard Brownian
motion, and the definition of the normal distribution. The function pt (y |x) = pt (x, y) is called
the Gauss kernel, or sometimes the heat kernel. (In the parlance of the PDE folks, it is the funda-
mental solution of the heat equation). Here is why:

Theorem 1. Let f : R → R be a continuous, bounded function. Then the unique (continuous)
solution ut (x) to the initial value problem

∂u

∂t
= 1

2

∂2u

∂x2(7)

u0(x) = f (x)(8)

1For a formal definition of convergence in distribution of random functions, together with detailed proofs and
many examples and statistical applications, see BILLINGSLEY, Weak Convergence.



is given by

(9) ut (x) = E f (W x
t ) =

∫ ∞

y=−∞
pt (x, y) f (y)d y.

Here W x
t is a Brownian motion started at x.

The equation (7) is called the heat equation. That the PDE (7) has only one solution that sat-
isfies the initial condition (8) follows from the maximum principle: see a PDE text if you are
interested. The more important thing is that the solution is given by the expectation formula (9).
To see that the right side of (9) actually does solve (7), take the partial derivatives in the PDE (7)
under the integral in (9). You then see that the issue boils down to showing that

(10)
∂pt (x, y)

∂t
= 1

2

∂2pt (x, y)

∂x2 .

Exercise: Verify this.

4. SYMMETRIES AND SCALING LAWS

Proposition 1. Let {W (t )}t≥0 be a standard Brownian motion. Then each of the following pro-
cesses is also a standard Brownian motion:

{−W (t )}t≥0(11)

{W (t + s)−W (s)}t≥0(12)

{aW (t/a2)}t≥0(13)

{tW (1/t )}t≥0.(14)

Exercise: Prove this.

These properties have important ramifications. The most basic of these involve the maximum
and minimum random variables M(t ) and M−(t ) defined by

M(t ) := max{W (s) : 0 ≤ s ≤ t } and(15)

M−(t ) := min{W (s) : 0 ≤ s ≤ t }(16)

These are well-defined, because the Wiener process has continuous paths, and continuous func-
tions always attain their maximal and minimal values on compact intervals. Now observe that
if the path W (s) is replaced by its reflection −W (s) then the maximum and the minimum are
interchanged and negated. But since −W (s) is again a Wiener process, it follows that M(t ) and
−M−(t ) have the same distribution:

(17) M(t )
D=−M−(t ).

Property (13) is called the Brownian scaling property. It is perhaps the most useful elemen-
tary tool in the study of the Wiener process. As a first example, consider its implications for the
distributions of the maximum random variables M(t ). Fix a > 0, and define

W ∗(t ) = aW (t/a2) and

M∗(t ) = max
0≤s≤t

W ∗(s)

= max
0≤s≤t

aW (s/a2)

= aM(t/a2).



By the Brownian scaling property, W ∗(s) is a standard Brownian motion, and so the random
variable M∗(t ) has the same distribution as M(t ). Therefore,

(18) M(t )
D= aM(t/a2).

On first sight, this relation appears rather harmless. However, as we shall see in section 7, it
implies that the sample paths W (s) of the Wiener process are, with probability one, nondifferen-
tiable at s = 0.

Exercise: Use Brownian scaling to deduce a scaling law for the first-passage time random vari-
ables τ(a) defined as follows:

(19) τ(a) = min{t : W (t ) = a}

or τ(a) =∞ on the event that the process W (t ) never attains the value a.

5. THE BROWNIAN FILTRATION AND THE MARKOV PROPERTY

Property (12) is a rudimentary form of the Markov property of Brownian motion. The Markov
property asserts something more: not only is the process {W (t + s)−W (s)}t≥0 a standard Brown-
ian motion, but it is independent of the path {W (r )}0≤r≤s up to time s. This may be stated more
precisely using the language of σ−algebras. A σ−algebra is by definition a collection of events
that includes the empty event ; and is closed under complements and countable unions. Define

(20) Ft :=σ({W (s)}0≤s≤t )

to be the σ−algebra consisting of all events that are “observable” by time t . Formally, Ft is de-
fined to be the smallest σ−algebra containing all events of the form {W (r ) ≤ a}, where a ∈ R
and r ≤ s. The indexed collection of σ−algebra {Ft }t≥0 is called the Brownian filtration, or the
standard filtration.

Example: For each t > 0 and for every a ∈R, the event {M(t ) > a} is an element of Ft . To see this,
observe that by path-continuity,

(21) {M(t ) > a} = ⋃
s∈Q:0≤s≤t

{W (s) > a}.

Here Q denotes the set of rational numbers. Because Q is a countable set, the union in (21) is a
countable union. Since each of the events {W (s) > a} in the union is an element of theσ−algebra
Ft , the event {M(t ) > a} must also be an element of Ft .

Proposition 2. (Markov Property) Let {W (t )}t≥0 be a standard Brownian motion, {Ft }t≥0 the stan-
dard filtration, and for s > 0, t ≥ 0 define W ∗(t ) =W (t + s)−W (s) and let {F∗

t }t≥0 be its filtration.
Then for each t > 0 the σ−algebras F (s) and F∗(t ) are independent.

Corollary 1. The random variables M(s) and M∗(t ) = max0≤r≤t W ∗(r ) are independent.

Proof of the Markov Property. The Markov Property is nothing more than a sophisticated restate-
ment of the independent increments property of Brownian motion. One first uses independent
increments to show that certain types of events in the two σ−algebras are independent: in par-
ticular,

A =∩n
j=1{W (s j )−W (s j−1) ≤ x j } ∈Fs and

B =∩m
j=1{W (t j + s)−W (t j−1 + s) ≤ y j } ∈F∗

t



are independent. Events of type A generate the σ−algebra Fs , and events of type B generate the
σ−algebra F∗

t (by definition!). A standard approximation procedure in measure theory (based
on the so–called “π−λ” theorem — see BILLINGSLEY, Probability and Measure) now allows one
to conclude that the σ−algebras F (s) and F∗(t ) are independent.

The Markov property has an important generalization called the Strong Markov Property. This
generalization involves the notion of a stopping time for the Brownian filtration. A stopping time
is defined to be a nonnegative random variable τ such that for each (nonrandom) t ≥ 0 the event
{τ≤ t } is an element of the σ−algebra Ft (that is, if the event {τ≤ t } is “determined by” the path
{W (s)}s≤t up to time t ).

Example: τ(a) := min{t : W (t ) = a} is a stopping time. To see this, observe that, because the
paths of the Wiener process are continuous, the event {τ(a) ≤ t } is identical to the event {M(t ) ≥
a}. We have already shown that this event is an element of Ft .

Associated with any stopping time τ is a σ−algebra Fτ, defined to be the collection of all
events B such that B ∩ {τ≤ t } ∈Ft . Informally, Fτ consists of all events that are “observable” by
time τ.

Example: Let τ= τa as above, and let B be the event that the Brownian path W (t ) hits b before it
hits a. Then B ∈Fτ.

Theorem 2. (Strong Markov Property) Let {W (t )}t≥0 be a standard Brownian motion , and let τ
be a stopping time relative to the standard filtration, with associated stopping σ−algebra Fτ. For
t ≥ 0, define

(22) W ∗(t ) =W (t +τ)−W (τ),

and let {F∗
t }t≥0 be the filtration of the process {W ∗(t )}t≥0. Then

(a) {W ∗(t )}t≥0 is a standard Brownian motion; and
(b) For each t > 0, the σ−algebra F∗

t is independent of Fτ.

Details of the proof are omitted (see, for example, KARATZAS & SHREVE, pp. 79ff). Let’s discuss
briefly the meaning of the statement. In essence, the theorem says that the post-τ process W ∗(t )
is itself a standard Brownian motion, and that it is independent of everything that happened
up to time τ. Thus, in effect, the Brownian motion “begins anew” at time τ, paying no further
attention to what it did before τ. Note that simple random walk (the discrete–time process in
which, at each time n one tosses a fair coin to decide whether to move up or down one unit) has
an analogous property. If, for instance, one waits until first arriving at some integer k and then
continues tossing the coin, the coin tosses after the first arrival at k are independent of the tosses
prior to the first arrival. This is not difficult to show:

Exercise: Formulate and prove a Strong Markov Property for simple random walk.

The hypothesis that τ be a stopping time is essential for the truth of the Strong Markov Prop-
erty. Mistaken application of the Strong Markov Property may lead to intricate and sometimes
subtle contradictions. Here is an example: Let T be the first time that the Wiener path reaches
its maximum value up to time 1, that is,

T = min{t : W (t ) = M(1)}.

Observe that T is well-defined, by path-continuity, which assures that the set of times t ≤ 1 such
that W (t ) = M(1) is closed and nonempty. Since M(1) is the maximum value attained by the
Wiener path up to time 1, the post-T path W ∗(s) = W (T + s)−W (T ) cannot enter the positive



half-line (0,∞) for s ≤ 1−T . Later we will show that T < 1 almost surely; thus, almost surely,
W ∗(s) does not immediately enter (0,∞). Now if the Strong Markov Property were true for the
random time T , then it would follow that, almost surely, W (s) does not immediately enter (0,∞).
Since −W (s) is also a Wiener process, we may infer that, almost surely, W (s) does not imme-
diately enter (−∞,0), and so W (s) = 0 for all s in a (random) time interval of positive duration
beginning at 0. But this is impossible, because with probability one,

W (s) 6= 0 for all rational times s > 0.

6. THE REFLECTION PRINCIPLE AND FIRST-PASSAGE TIMES

Proposition 3.

(23) P {M(t ) ≥ a} = P {τa < t } = 2P {W (t ) > a} = 2−2Φ(a/
p

t ).

Proof. The argument is based on a symmetry principle that may be traced back to the French
mathematician D. ANDRÉ, and is often referred to as the reflection principle. The essential point
of the argument is this: if τ(a) < t , then W (t ) is just as likely to be above the level a as to be below
the level a. Justification of this claim2 requires the use of the Strong Markov Property. First,
observe that τ(a)∧ t is a stopping time. Thus, by the strong Markov property, the post-τa ∧ t
process is a standard Brownian motion independent of the path up to time τa∧t (and, therefore,
independent of τa ∧ t ). It follows that, for any s < t , the conditional distribution of W (t )−W (s)
given that τa = s is Gaussian with mean 0 and variance t − s > 0, and so, by the symmetry of the
Gaussian distribution,

P (W (t )−W (τa) > 0 |τa = s) = P (W (t )−W (τa) < 0 |τa = s) = 1/2.

Integration over 0 < s < t against the distribution of τ(a) gives

P {W (t )−W (τa) > 0 and τa < t } = 1

2
P {τa < t }.

But the event {W (t )−W (τa) > 0}∩{τa < t } coincides with the event {W (t ) > a}, because (i) if τa < t
then, since W (τa) = a, the inequality W (t )−W (τa) > 0 implies W (t ) > a; and (ii) if W (t ) > a then
the Intermediate Value Theorem of calculus and the path-continuity of W (s) implies that τa < t .
This proves that

P {τa < t } = 2P {W (t ) > a} = 2(1−Φ(a/
p

t )).

Because the expression on the right side of this equation is a continuous function of t , it follows
that P {τ(a) < t } = P {τ(a) ≤ t }. Finally, since the events {τ(a) ≤ t } and {M(t ) ≥ a} are the same, we
have P {τ(a) ≤ t } = P {M(t ) ≥ a}. �

Corollary 2. The first-passage time random variable τ(a) is almost surely finite, and has the one-
sided stable probability density function of index 1/2:

(24) f (t ) = ae−a2/2t

p
2πt 3

.

2Many writers of elementary textbooks, including ROSS, seem to think that no justification is needed; or that
readers of their books need not be troubled by the need to justify it.



There is a more sophisticated form of the reflection principle that is useful in certain calcu-
lations. Set τ = τ(a), where τ(a) is the first passage time to the value a. The random variable τ
is a stopping time, and we have now shown that it is finite with probability one. By the Strong
Markov Property, the post-τ process

(25) W ∗(t ) :=W (τ+ t )−W (τ)

is a Wiener process, and is independent of the stopping field Fτ. Consequently, {−W ∗(t )}t≥0

is also a Wiener process, and is also independent of the stopping field Fτ. Thus, if we were to
run the original Wiener process W (s) until the time τ of first passage to the value a and then
attach not W ∗ but instead its reflection −W ∗, we would again obtain a Wiener process. This new
process is formally defined as follows:

W̃ (s) =W (s) for s ≤ τ,(26)

= 2a −W (s) for s ≥ τ.

Proposition 4. (Reflection Principle) If {W (t )}t≥0 is a Wiener process, then so is {W̃ (t )}t≥0.

Proof. An exercise for the interested reader. �

The analogous property for the simple random walk is worth noting. Simple random walk is
performed by repeatedly tossing a fair coin, moving one step to the right on every H, and one
step to the left on every T. The simple random walk with reflection in the level a, for an integer
value a, is gotten by changing the law of motion at the time of first passage to a: after this time,
one moves one step to the left on every H, and one step to the right on every T. It is fairly obvious
(and easy to prove) that this modification does not change the “statistics” of the random walk.

The Reflection Principle for Brownian motion, as formalized in Proposition 4, allows one to
calculate the joint distribution of M(t ) and W (t ):

Corollary 3.

(27) P {M(t ) ≥ a and W (t ) ≤ a −b} = P {W (t ) ≥ a +b} ∀ a,b > 0.

Proof. Because the paths W (s) and W̃ (s) coincide up to time τ, the event that M(t ) ≥ a coincides
with the event M̃(t ) ≥ a, where M̃(t ) is defined to be the maximum of the path W̃ (s) for 0 ≤ s ≤ t .
Thus, by (26),

{M(t ) ≥ a and W (t ) ≤ a −b} = {M̃(t ) ≥ a and W̃ (t ) ≥ a +b} = {W̃ (t ) ≥ a +b}.

The Reflection Principle implies that the events {W̃ (t ) ≥ a +b} and {W (t ) ≥ a +b} have the same
probability, and so the corollary follows. �

Corollary 4.

(28) P {M(t ) ∈ d a and W (t ) ∈ a −db} = 2(a +b)exp{−(a +b)2/2t }

(2π)1/2t
d adb



7. BEHAVIOR OF BROWNIAN PATHS

In the latter half of the nineteenth century, mathematicians began to encounter (and invent)
some rather strange objects. Weierstrass produced a continuous function that is nowhere differ-
entiable (more on this later). Cantor constructed a subset C (the “Cantor set”) of the unit interval
with zero area (Lebesgue measure) that is nevertheless in one-to-one correspondence with the
unit interval, and has the further disconcerting property that between any two points of C lies
an interval of positive length totally contained in the complement of C . Not all mathematicians
were pleased by these new objects. Hermite, for one, remarked that he was “revolted” by this
plethora of nondifferentiable functions and bizarre sets.

With Brownian motion, the strange becomes commonplace. With probability one, the sam-
ple paths are nowhere differentiable, and the zero set Z = {t ≤ 1 : W (t ) = 0}) is a homeomorphic
image of the Cantor set. Complete proofs of these facts are beyond the scope of these notes.
However, some closely related facts may be established using only the formula (23) and elemen-
tary arguments.

7.1. Zero Set of a Brownian Path. The zero set is

(29) Z = {t ≥ 0 : W (t ) = 0}.

Because the path W (t ) is continuous in t , the set Z is closed. Furthermore, with probability one
the Lebesgue measure of Z is 0, because Fubini’s theorem implies that the expected Lebesgue
measure of Z is 0:

E |Z | = E
∫ ∞

0
1{0}(Wt )d t

=
∫ ∞

0
E1{0}(Wt )d t

=
∫ ∞

0
P {Wt = 0}d t

= 0,

where |Z | denotes the Lebesgue measure of Z . Observe that for any fixed (nonrandom) t > 0,
the probability that t ∈ Z is 0, because P {W (t ) = 0} = 0. Hence, because Q+ (the set of positive
rationals) is countable,

(30) P {Q+∩Z 6= ;} = 0.

Proposition 5. With probability one, the Brownian path W (t ) has infinitely many zeros in every
time interval (0,ε), where ε> 0.

Proof. First we show that for every ε> 0 there is, with probability one, at least one zero in the time
interval (0,ε). Recall (equation (11)) that the distribution of M−(t ), the minimum up to time t , is
the same as that of−M(t ). By formula (23), the probability that M(ε) > 0 is one; consequently, the
probability that M−(ε) < 0 is also one. Thus, with probability one, W (t ) assumes both negative
and positive values in the time interval (0,ε). Since the path W (t ) is continuous, it follows, by the
Intermediate Value theorem, that it must assume the value 0 at some time between the times it
takes on its minimum and maximum values in (0,ε].

We now show that, almost surely, W (t ) has infinitely many zeros in the time interval (0,ε). By
the preceding paragraph, for each k ∈N the probability that there is at least one zero in (0,1/k)
is one, and so with probability one there is at least one zero in every (0,1/k). This implies that,
with probability one, there is an infinite sequence tn of zeros converging to zero: Take any zero
t1 ∈ (0,1); choose k so large that 1/k < t1; take any zero t2 ∈ (0,1/k); and so on. �



Proposition 6. With probability one, the zero set Z of a Brownian path is a perfect set, that is, Z is
closed, and for every t ∈Z there is a sequence of distinct elements tn ∈Z such that limn→∞ tn = t .

Proof. That Z is closed follows from path-continuity, as noted earlier. Fix a rational number q >
0 (nonrandom), and define ν= νq to be the first time t ≥ such that W (t ) = 0. Because W (q) 6= 0
almost surely, the random variable νq is well-defined and is almost surely strictly greater than
q . By the Strong Markov Property, the post-νq process W (νq + t )−W (νq ) is, conditional on the
stopping field Fν, a Wiener process, and consequently, by Proposition 5, it has infinitely many
zeros in every time interval (0,ε), with probability one. Since W (νq ) = 0, and since the set of
rationals is countable, it follows that, almost surely, the Wiener path W (t ) has infinitely many
zeros in every interval (νq ,νq +ε), where q ∈Q and ε> 0.

Now let t be any zero of the path. Then either there is an increasing sequence tn of zeros such
that tn → t , or there is a real number ε > 0 such that the interval (t −ε, t ) is free of zeros. In the
latter case, there is a rational number q ∈ (t − ε, t ), and t = νq . In this case, by the preceding
paragraph, there must be a decreasing sequence tn of zeros such that tn → t . �

It may be shown that every compact perfect set of Lebesgue measure zero is homeomorphic to
the Cantor set. (This is not especially difficult – consult your local mathematician for assistance.)
Thus, with probability one, the set of zeros of the Brownian path W (t ) in the unit interval is a
homeomorphic image of the Cantor set.

7.2. Nondifferentiability of Paths.

Proposition 7. For each t ≥ 0, the Brownian path is almost surely not differentiable at t .

Note: It follows that, with probability one, the Brownian path is not differentiable at any rational
time t ≥ 0.DVORETSKY, ERDÖS, and KAKUTANI proved an even stronger statement: with proba-
bility one, the Brownian path is nowhere differentiable. This, like Proposition 7, is ultimately a
consequence of Brownian scaling.

Proof. By the Markov property, it suffices to prove that the Brownian path is almost surely not
differentiable at t = 0. Suppose that it were: then the difference quotients W (t )/t would be
bounded for t in some neighborhood of 0, that is, for some A <∞ and ε> 0 it would be the case
that

W (t ) < At for all 0 ≤ t < ε.

Fix an integer A > 0. By formula (23),

P {M(t ) < At } = 2−2Φ(At/
p

t ) = 2−2Φ(A
p

t ) −→ 0

as t → 0. Consequently, for each fixed A > 0, the probability that W (t ) < At for all t ≤ ε is zero.
Since the union of countably many events of probability zero has probability zero, it follows that
for any ε> 0 the event that W (t )/t remains bounded for 0 ≤ t < ε has probability zero. �



8. WALD IDENTITIES FOR BROWNIAN MOTION

Proposition 8. Let {W (t )}t≥0 be a standard Wiener process, and let τ be a bounded stopping time.
Then

EW (τ) = 0;(31)

EW (τ)2 = Eτ;(32)

E exp{θW (τ)−θ2τ/2} = 1 ∀θ ∈R; and(33)

E exp{iθW (τ)+θ2τ/2} = 1 ∀θ ∈R.(34)

Observe that for nonrandom times τ= t , these identities follow from elementary properties of
the normal distribution. Notice also that if τ is an unbounded stopping time, then the identities
may fail to be true: for example, if τ= τ(1) is the first passage time to the value 1, then W (τ) = 1,
and so EW (τ) 6= 0. Finally, it is crucial that τ should be a stopping time: if, for instance, τ =
min{t ≤ 1 : W (t ) = M(1)}, then EW (τ) = E M(1) > 0.

Proof. By hypothesis, τ is a bounded stopping time, so there is a nonrandom N <∞ such that τ<
N almost surely. By the Strong Markov Property, the post-τ process W (τ+ t )−W (τ) is a standard
Wiener process that is independent of the stopping field Fτ, and, in particular, independent of
the random vector (τ,W (τ)). Hence, the conditional distribution of W (N )−W (τ) given that τ= s
is the normal distribution with mean 0 and variance N − s. It follows that

E(exp{θ(W (N )−W (τ))−θ2(N −τ)} |W (τ),τ) = 1

Therefore,

EeθW (τ)−θ2τ/2 = E exp{θW (τ)−θ2τ/2} ·1

= E exp{θW (τ)−θ2τ/2}E(exp{θ(W (N )−W (τ))−θ2(N −τ)} |W (τ),τ)

= EE(exp{θW (τ)−θ2τ/2}exp{θ(W (N )−W (τ))−θ2(N −τ)} |W (τ),τ)

= EE(exp{θW (N )−θ2N /2} |W (τ),τ)

= E exp{θW (N )−θ2N /2}

= 1.

The other three identities can be established in a similar fashion. �

Example 1: Fix constants a,b > 0, and define T = T−a,b to be the first time t such that W (t ) =
−a or +b. The random variable T is a finite, but unbounded, stopping time, and so the Wald
identities may not be applied directly. However, for each integer n ≥ 1, the random variable
T ∧n is a bounded stopping time. Consequently,

EW (T ∧n) = 0 and EW (T ∧n)2 = ET ∧n.

Now until time T , the Wiener path remains between the values −a and +b, so the random vari-
ables |W (T ∧n)| are uniformly bounded by a +b. Furthermore, by path-continuity, W (T ∧n) →
W (T ) as n →∞. Therefore, by the dominated convergence theorem,

EW (T ) =−aP {W (T ) =−a}+bP {W (T ) = b} = 0.

Since P {W (T ) =−a}+P {W (T ) = b} = 1, it follows that

(35) P {W (T ) = b} = a

a +b
.



The dominated convergence theorem also guarantees that EW (T∧n)2 → EW (T )2, and the mono-
tone convergence theorem that ET ∧n ↑ ET . Thus,

EW (T )2 = ET.

Using (35), one may now easily obtain

(36) ET = ab.

Example 2: Let τ = τ(a) be the first passage time to the value a > 0 by the Wiener path W (t ).
As we have seen, τ is a stopping time and τ < ∞ with probability one, but τ is not bounded.
Nevertheless, for any n <∞, the truncation τ∧n is a bounded stopping time, and so by the third
Wald identity, for any θ > 0,

(37) E exp{θW (τ∧n)−θ2(τ∧n)} = 1.

Because the path W (t ) does not assume a value larger than a until after time τ, the random
variables W (τ∧n) are uniformly bounded by a, and so the random variables in equation (37) are
dominated by the constant exp{θa}. Since τ<∞ with probability one, τ∧n → τ as n →∞, and
by path-continuity, the random variables W (τ∧n) converge to a as n → ∞. Therefore, by the
dominated convergence theorem,

E exp{θa −θ2(τ)} = 1.

Thus, setting λ= θ2/2, we have

(38) E exp{−λτa} = exp{−
p

2λa}.

The only density with this Laplace transform3 is the one–sided stable density given in equation
(24). Thus, the Optional Sampling Formula gives us a second proof of (23).

9. SKOROHOD’S THEOREM

The calculation in Example 1 of the preceding section shows that there are Rademacher ran-
dom variables4 lurking in the Brownian path: if T = T−1,1 is the first time that the Wiener path
visitis one of the values ±1 then W (T ) is a Rademacher random variable. Skorohod discovered
that any mean zero, finite variance random variable has a replica in the Brownian path.

Theorem 3. Let F be any probability distribution on the real line with mean 0 and variance σ2 <
∞, and let W (t ) be a standard Wiener process. There is a stopping time T with expectation ET =σ2

such that the random variable W (T ) has distribution F .

We refrain from giving a complete proof. Instead, we shall discuss the case of the uniform
distribution on the interval [−1,1], as the calculations are simple in this case. Define a sequence
of stopping times τn as follows:

τ1 = min{t > 0 : W (t ) =±1/2}

τn+1 = min{t > τn : W (t )−W (τn) =±1/2n+1}.

By symmetry, the random variable W (τ1) takes the values ±1/2 with probabilities 1/2 each. Sim-
ilarly, by the Strong Markov Property and induction on n, the random variable W (τn) takes each
of the values k/2n , where k is an odd number between −2n and +2n , with probability 1/2n . No-
tice that these values are equally spaced in the interval [−1,1], and that as → ∞ the values fill

3Check a table of Laplace transforms.
4A Rademacher random variable is a random variable taking the values ±1 with probabilities 1/2.



the interval. Consequently, the distribution of W (τn) converges to the uniform distribution on
[−1,1] as n →∞.

The stopping times τn are clearly increasing with n. Do they converge to a finite value? Yes,
because they are all bounded by T−1,1, the first passage time to one of the values ±1. (Exer-
cise: Why?) Consequently, τ := limτn = supτn is finite with probability one. By path-continuity,
W (τn) → W (τ) almost surely. As we have seen, the distributions of the random variables W (τn)
approach the uniform distribution on [−1,1] as n → ∞, so it follows that the random variable
W (τ) is uniformly distributed on [−1,1].

Exercise 1: Show that if τn is an increasing sequence of stopping times such that τ = limτn is
finite with probability one, then τ is a stopping time.

Exercise 2: Use one of the Wald identities to show that, for the stopping time τ constructed
above,

(39) Eτ= 1

2

∫ 1

−1
x2 d x.

10. LÉVY ’S CONSTRUCTION

Each of the three principal figures in the development of the mathematical theory of Brownian
motion – Wiener, Kolmogorov, and Lévy – gave a construction of the process. Of the three, Levy’s
is the shortest, and requires least in the way of preparation. It is based on a very simple property
of normal distributions:

Lemma 1. Let X ,Y be independent random variables, each normally distributed, with mean 0
and variances s > 0 and t > 0, respectively. Then the conditional distribution of X given that
X +Y = z is

(40) D(X |X +Y = z) = Normal(zs/(s + t ), st/(s + t )).

Proof. Exercise. �

Levy’s idea was that one could use this fact to build a sequence of successive approximations
Wn(t ) to the Wiener process W (t ), each a (random) polygonal function linear in each of the time
intervals [k/2n , (k + 1)/2n]. This would be done in such a way that the values of Wn(t ) at the
dyadic rationals k/2m of level m, where k = 0,1, . . . ,2m would remain the same for all n ≥ m.
Thus, the joint distribution of the random variables

Wm(0),Wm(1/2m),Wm(2/2m), . . . ,Wm(1)

should be chosen in such a way that there joint distribution is the same as that for the corre-
sponding points on the Wiener path. The trick is that one can arrange for this joint distribution
by choosing each Wm(k/2m), where k is odd, from the conditional distribution of W (k/2m) given
the values W ((k − 1)/2m) = Wm−1((k − 1)/2m) and W ((k + 1)/2m) = Wm−1((k + 1)/2m). This is
where Lemma 1 comes in. It guarantees that the conditional variance does not depend on the
values Wm−1((k−1)/2m) and Wm−1((k+1)/2m), and that the conditional mean is just the average
of these values; in particular, since Wm−1(t ) is linear between times (k −1)/2m and (k +1)/2m ,
the conditional mean of Wm(k/2m) given the values Wm−1((k −1)/2m) and Wm−1((k +1)/2m) is
Wm−1(k/2m)! Hence, to obtain Wm+1(t ) from Wm(t ):

(41) Wm+1(t ) =Wm(t )+
2m∑

k=1
Zm+1,kGm,k (t )/2(m+2)/2



where the random variables Zm,k are independent, with the unit normal distribution, and the
functions Gm,k (t ) are the Schauder functions:

Gm,k (t ) = 2m+1t − (k −1) for (k −1)/2m+1 ≤ t ≤ k/2m+1;(42)

= k +1−2m+1t for k/2m+1 ≤ t ≤ (k +1)/2m+1;

= 0 otherwise.

The construction of the initial approximation W0(t ) is trivial: since the distribution of W (t ) is
Normal(0,1), merely set

(43) W0(t ) = Z0,1t ,

where Z0,1 is a unit normal.

Theorem 4. (Lévy) If the random variables Zm,k are independent, identically distributed with
common distribution N (0,1), then with probability one, the infinite series

(44) W (t ) := Z0,1t +
∞∑

m=0

2m∑
k=1

Zm+1,kGm,k (t )/2(m+2)/2

converges uniformly for 0 ≤ t ≤ 1. The limit function W (t ) is a standard Wiener process.

11. QUADRATIC VARIATION

Fix t > 0, and let Π = {t0, t1, t2, . . . , tn} be a partition of the interval [0, t ], that is, an increasing
sequence 0 = t0 < t1 < t2 < ·· · < tn = t . For each natural number n, define the nth dyadic parti-
tion Dn[0, t ] to be the partition consisting of the dyadic rationals k/2n of depth n (here k is an
integer) that are between 0 and t (with t added if it is not a dyadic rational of depth n). Let X (s)
be any process indexed by s. For any partition Π, define the quadratic variation of X relative to
Π by

(45) QV (X ;Π) =
n∑

j=1
(X (t j )−X (t j−1))2.

Proposition 9. Let {W (t )}t≥0 be a standard Brownian motion. For each t > 0, with probability
one,

(46) lim
n→∞QV (W ;Dn[0, t ]) = t .

The primary significance of this result is that it is the key to the Itô formula pf stochastic calcu-
lus, about which we shall have much to say later in the course. It also implies that the Brownian
path cannot be of bounded variation in any interval, and so in particular is not differentiable in
any interval. (Even more is known: the Brownian path is nowhere differentiable.)

Partial Proof. We will only prove the weaker statement that the convergence in (46) holds in
probability. To simplify things, assume that t = 1. Then for each n ≥ 1, the random variables

ξn,k
∆= 2n(W (k/2n)−W ((k −1)/2n))2, k = 1,2, . . . ,2n

are independent, identically distributed χ2 with one degree of freedom (that is, they are dis-
tributed as the square of a standard normal random variable). Observe that Eξn,k = 1. Now

QV (W ;Dn[0,1]) = 2−n
2n∑

k=1
ξn,k .



The right side of this equation is the average of 2n independent, identically distributed random
variables, and so the Weak Law of Large Numbers implies convergence in probability to the mean
of the χ2 distribution with one degree of freedom, which equals 1.

The stronger statement that the convergence holds with probability one can easily be deduced
from the Chebyshev inequality and the Borel–Cantelli lemma. The Chebyshev inequality implies
that

P {|QV (W ;Dn[0,1])−1| ≥ ε} = P {|
2n∑

k=1
(ξn,k −1)| ≥ 2nε} ≤

Eξ2
1,1

4nε2 .

Since
∑∞

n=1 1/4n < ∞, the Borel–Cantelli lemma implies that, with probability one, the event
|QV (W ;Dn[0,1])−1| ≥ ε occurs for at most finitely many n. Since ε> 0 can be chosen arbitrarily
small, it follows that limn→∞QV (W ;Dn[0,1]) = 1 almost surely.


