
MONOTONE COUPLING AND THE ISING MODEL

1. PERFECT MATCHING IN BIPARTITE GRAPHS

Definition 1. A bipartite graph is a graph G = (V, E) whose vertex set V can be partitioned
into two disjoint set VI , VO in such a way that every edge e ∈ E has one endpoint in VI and
one endpoint in VO. The sets VIand VO in this partition will be referred to as the input set
and the output set, respectively.

Definition 2. A matching (also called a dimer covering) in a bipartite graph G is an injective
mapping f : VI → VO such that for every x ∈ VI there is an edge e ∈ E with endpoints x
and f(x).

Given a bipartite graph G, how can one tell if there is a perfect matching? There is an
obvious necessary condition: it must be the case that for every subset A ⊂ VI there must
be at least |A| vertices v ∈ VO such that there is at least one edge connecting v to VI . Hall’s
matching theorem asserts that this condition is also sufficient.

Theorem 1. (Hall’s Matching Theorem) Let G be a bipartite graph with input set VI , output set
VO, and edge set E . For any subset A ⊂ VI , define ∂A to be the set of all vertices y ∈ VO that are
endpoints of edges with one endpoint in A. Then there exists a matching f : VI → VO if and only
if for every nonempty subset A ⊂ VI ,
(1.1) |∂A| ≥ |A|.

Proof. By induction on the cardinality of VI . If |VI | = 1 the result is trivially true. Suppose,
then, that the result is true for all bipartite graphs such that |VI | ≤ n, and consider a
bipartite graph G whose input set VI has cardinality n + 1. There are two possibilities:
either
Case 1: |∂A| ≥ |A|+ 1 for every nonempty proper subset A ⊂ VI ; or
Case 2: |∂A| = |A| for some nonempty proper subset A ⊂ VI .

Case 1: Choose any x ∈ VI and any y ∈ ∂{x} (by hypothesis, ∂{x} has at least two el-
ements). Let G∗ be the bipartite graph with input set V ∗I = VI − {x}, output set V ∗O =
VO − {y}, and whose edges are the same as those of G, but with edges incident to either x
or y deleted. The bipartite graph G∗ satisfies the hypothesis (1.1), because in Case 1 every
proper subsetA ⊂ VI has |∂A| ≥ |A|+1, so deleting the single vertex y from ∂A still leaves
at least |A| vertices. By the induction hypothesis, there is a perfect matching in G∗; this
perfect matching extends to a perfect matching in the original graphG by setting f(x) = y.

Case 2: Let A ⊂ VI be a nonempty, proper subset of VI such that |∂A| = |A|. Clearly, for
any subset C ⊂ A we have ∂C ⊂ ∂A, and by the hypothesis of the theorem, |∂C| ≥ |C|.
Since A has no more than n elements, it follows by the induction hypothesis that there is a
perfect matching fA : A→ ∂A.

Now let B = VI \ A be the set of all vertices in the input set VI that are not elements of
A. For every nonempty subset D ⊂ B, ∂A ∪ ∂D = ∂(A ∪D), by definition of the operator
∂. Hence, it must be the case that ∂D contains at least |D| elements not in ∂A, because
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2 MONOTONE COUPLING AND THE ISING MODEL

otherwise ∂(A∪D) would have fewer than |A∪D| elements, contradicting the hypothesis
of the theorem. Consequently, the hypotheses of the theorem are satisfied by the smaller
bipartite graph G∗ consisting of input set V ∗I = B, output set V ∗O = ∂B \ ∂A, and edges
connecting all pairs of vertices in V ∗I × V ∗O that were connected in the original graph G.
Consequently, by the induction hypotheses, there is a perfect matching fB : B → ∂B.

Finally, the perfect matchings fA and fB can be joined in the obvious manner to give a
perfect matching in the original graph G.

�

2. THE BIRKHOFF-VON NEUMANN THEOREM

A doubly stochastic matrix is a square matrix with nonnegative entries whose row sums
and column sums are all 1. A magic square is a square matrix with nonnegative integer
entries whose row sums and column sums are all equal; the common value of the row
sums and column sums is called the weight of the square. Observe that if T is a magic
square of weight d ≥ 1, then one obtains a doubly stochastic matrix by dividing all entries
of T by d. Conversely, if P is a doubly stochastic matrix with rational entries, then one
may obtain a magic square by multiplying all entries by their least common denominator.
The magic squares of weight 1 are called permutation matrices: for any m×m permutation
matrix T , there exists a permutation σ of the set [m] such that

Ti,σ(i) = 1 for all i ∈ [m], and(2.1)

Ti,j = 0 if j 6= σ(i).

Theorem 2. Every doubly stochastic matrix is a convex combination (weighted average) of permu-
tation matrices. Every magic square of weight d is the sum of d (not necessarily distinct) permuta-
tion matrices.

Proof. We shall consider only the assertion about magic squares; the assertion about dou-
bly stochastic matrices may be proved by similar arguments.) By definition, every magic
square of weight 1 is a permutation matrix. Let T be anm×mmagic square of weight d > 1.
Consider the bipartite graph with VI = VO = [m] such that, for any pair (i, j) ∈ VI × VO,
there is an edge from i to j if and only if Ti,j > 0.

Claim: The hypothesis (1.1) of the Matching Theorem is satisfied.

Proof. Let B be a subset of VI with r ≤ m elements. Since T is a magic square of weight d,
the sum of all entries Ti,j such that i ∈ B must be rd. The positive entries among these must
all lie in the columns indexed by elements of ∂B; consequently, the sum of the entries Ti,j
such that j ∈ ∂B must be at least rd. But this sum cannot exceed d|∂B|, since the column
sums of T are all d. �

The Matching Theorem now implies that there is a perfect matching in the bipartite
graph. Since VI = VO = [m], this perfect matching must be a permutation σ of the set [m].
By construction, the permutation matrix T σ defined by equations (2.1) is dominated (entry
by entry) by the magic square T , so the difference T −T σ is a magic square of weight d−1.
Thus, the assertion follows by induction on d. �
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3. STRASSEN’S MONOTONE COUPLING THEOREM

A poset is a partially ordered set (X ,≤). Recall that a partial order ≤ must satisfy the
following properties: for all x, y, z ∈ X ,

x ≤ x;(3.1)
x ≤ y & y ≤ x =⇒ x = y;(3.2)
x ≤ y & y ≤ z =⇒ x ≤ z.(3.3)

Posets occur frequently as state spaces in graphical models. An important special case
is the configuration space Σ = {0, 1}V of a spin system: here V is a set of sites, often the
vertices of a lattice, and the elements of Σ are assignments of zeros and ones (“spins”) to
the sites (“configurations”). The partial order ≤ is defined as follows:

x ≤ y iff xs ≤ ys ∀ s ∈ V.
An ideal1 of a poset (X ,≤) is a subset J ⊂ X with the property that if x ∈ J and x ≤ y

then y ∈ J . If µ and ν are two probability distributions on X , say that ν stochastically
dominates µ (and write µ ≤D ν) if for every ideal J ,

(3.4) µ(J ) ≤ ν(J ).

Theorem 3. (Strassen) Let (X ,≤) be a finite poset, and let µ, ν be probability distributions on X .
If µ ≤D ν then on some probability space (in fact, on any probability space supporting a random
variable uniformly distributed on the unit interval) are defined X−valued random variables M,N
with distributions µ, ν, resepectively, such that

(3.5) M ≤ N.
Equivalently, if µ ≤D ν then there is a probability distribution λ on X × X satisfying

(a) λ(x, y) = 0 unless x ≤ y,
(b)

∑
y λ(x, y) = µ(x) for all x ∈ X , and

(c)
∑

x λ(x, y) = ν(y) for all y ∈ X .

Proof. First, observe that the two statements in the theorem are equivalent, because (i) if
M,N exist, then the joint distribution

λ(x, y) := P{M = x and N = y}
satisfies (a)- (c), and (ii) conversely, if λ exists, then the coordinate variablesM,N on X ×X
will satisfy (3.5) and have marginals µ, ν, respectively. Thus, it suffices to prove the first
statement. We shall only consider the case where the probability distributions µ, ν assign
rational probabilities k/N (with a common denominator N ) to the elements of the poset
X . The general case may be deduced from this by an approximation argument, which the
reader will supply (EXERCISE!).

Case A: For every x ∈ X , the probabilities µ(x) and ν(x) are either 0 or 1/N .

Consider the bipartite graph with VI = {x ∈ X : µ(x) = 1/N} and VI = {x ∈ X :
ν(x) = 1/N}, where x ∈ VI and y ∈ VO are connected by an edge if and only if x ≤ y.
The hypothesis that µ is stochastically dominated by ν implies that the hypothesis (1.1) of
the Matching Theorem is satisfied. Consequently, there is a perfect matching f : VI → VO.
Let M be an X−valued random variable M with distribution µ (such a random variable

1sometimes called an upper corner
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will exist on any probability space supporting a uniform-[0,1] random variable). Define
N = f(M). Then the pair (M,N) satisfies M ≤ N , and the marginal distributions of M
and N are µ and ν, as the reader will easily check.

Case B: For every x ∈ X , the probabilities µ(x) and ν(x) are integer multiples of 1/N .

For each x ∈ X , if µ(x) = k/N then construct k “copies” x1, x2, . . . , xk of x, and for each
such copy set πI(xi) = x. Define VI to be the set of all such copies, where x ranges over
X . Similarly, for each y ∈ X , if ν(y) = m/N then construct m copies y1, y2, . . . , ym of y,
and for each such copy set πO(yi) = y. Define VO to be the set of all such copies, where y
ranges over X . For each pair xi ∈ VI and yj ∈ VO, put an edge from xi to yj if and only
if πI(xi) ≤ πO(yj). Once again, it is easily verified that hypothesis (1.1) of the Matching
Theorem is satisfied, since µ ≤ ν. Consequently, there is a perfect matching f : VI → VO.

Let U be a random variable that is uniformly distributed on VI – such a random vari-
able exists on any probability space supporting a Uniform-[0,1] random variable. Set
M = πI(U) and N = πO(f(U)); then the marginal distributions of M and N are µ and
ν, respectively, and M ≤ N , by construction. �

Problem 1. Prove that the general case of Strassen’s theorem is implied by the rational case
(the case where both probability distributions attach only rational probabilities to points
of the poset).

HINTS: (A) Use the Bolzano-Weierstrass theorem to show that any sequence of probability
measures on a finite set X has a convergent subsequence. (B) Show that if F,G are two
probability measures on a finite poset (X ,≤) such that F is stochastically dominated by G
then there are sequences of rational probability measures Fn, Gn on X such that

• Fn → F and Gn → G; and

• Fn
D
≤ Gn for each n.

For this you might find it helpful to first consider the special case where the poset has a
unique maximal element and a unique minimal element.

Corollary 4. Let µ, ν be probability distributions on a finite poset (X ,≤) such that ν stochastically
dominates µ. Then there is a Markov kernel (i.e., a transition probability matrix) q(x, y) on X such
that

(A) q(x, y) > 0 only if x ≤ y, and
(B)

∑
x∈X µ(x)q(x, y) = ν(x) for all x ∈ X .

Proof. Assume for simplicity that µ(x) > 0 for every x. Let λ be a probability distribution
on X × X satisfying the conclusions (a), (b), (c) of Strassen’s theorem. Then the transition
probability matrix

q(x, y) = λ(x, y)/µ(x)
satisfies the conclusions (A)– (B). �

4. CONSEQUENCES OF STRASSEN’S THEOREM

4.1. Stochastic ordering of Markov kernels.

Definition 3. Let (X ,≤) be a finite or countable poset, and let p(x, y) and q(x, y) be Markov
kernels (i.e., stochastic matrices) on X . The kernel q(x, y) is said to stochastically dominate
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the kernel p(x, y) if for every pair of states x, x′ ∈ X such that x ≤ x′ the probability
distribution q(x′, ·) stochastically dominates the distribution p(x, ·).

Proposition 5. Suppose that p(x, y) and q(x, y) are Markov kernels on a finite poset (X ,≤) such
that q stochastically dominates p. Then for any every pair of states x, x′ ∈ X such that x ≤ x′ there
are Markov chains Xn and Yn on X with transition probabilities p(x, y) and q(x, y), respectively,
and initial states X0 = x and Y0 = x′, such that

Xn ≤ Yn for all n ≥ 0

Furthermore, if p(x, y) and q(x, y) are irreducible and have stationary distributions π and ν, re-
spectively, then ν stochastically dominates π.

Proof. Let (X × X )≤ be the subset of X × X consisting of all pairs (y, y′) such that y ≤ y′.
By hypothesis, for each element (y, y′) ∈ (X × X )≤ the probability distribution p(y, ·) is
stochastically dominated by q(y′, ·). Hence, by Strassen’s theorem, there exists a probabil-
ity distribution R((y, y′), ·) on (X × X )≤ with marginals p(y, ·) and q(y′, ·), that is,∑

z′:(z,z′)∈(X×X )≤

R((y, y′), (z, z′)) = p(y, z) and(4.1)

∑
z:(z,z′)∈(X×X )≤

R((y, y′), (z, z′)) = q(y′, z′)

The matrixR on (X×X )≤ is stochastic, so for any initial point (x, x′) we can build a Markov
chain (Xn, Yn) on (X × X )≤ with initial state (x, x′) and transition probability matrix R
(using an i.i.d. sequence of uniform-[0,1] random variables to make the transitions). By
construction, the component sequences Xn, Yn must satisfy Xn ≤ Yn, and by (4.1) the
sequences Xn and Yn will be Markov chains with transition probability matrices p(x, y)
and q(x, y), respectively. This proves the first part of the proposition.

Suppose next that the transition probability matrices p(x, y) and q(x, y) are irreducible,
so that the Markov chains Xn and Yn have unique stationary distributions π and ν. Sup-
pose also that both p(x, y) and q(x, y) are aperiodic. Then by Kolmogorov’s convergence
theorem for Markov chains, for any initial states x ≤ x′,

Xn
D−→ π and

Yn
D−→ ν.

Since Xn ≤ Yn for every n, it follows that π is stochastic dominated by ν (why?). �

EXERCISE: Show that the assumption that the Markov chains are aperiodic in the last
argument is unnecessary.

4.2. Stochastically monotone Markov kernels.

Definition 4. Let (X ,≤) be a finite or countable poset, and let p(x, y) be a Markov kernel
on X . The kernel p(x, y) is said to be stochastically monotone if for every pair of states
x, x′ ∈ X such that x ≤ x′ the probability distribution p(x′, ·) stochastically dominates the
probability distribution p(x, ·).

Corollary 6. If p(x, y) is a stochastically monotone Markov kernel on a finite poset (X ,≤) then
for any two states x, x′ such that x ≤ x′ there exist, on some probability space, Markov chains Xn
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and X ′n, both with transition probability matrix p(·, ·), such that X0 = x, X ′0 = x′, and Xn ≤ X ′n
for every n.

Proof. If p(x, y) is stochastically monotone, then it stochastically dominates itself in the
sense of Definition 3. Consequently, the corollary follows from Proposition 5. �

Corollary 7. If µ0, µ1, . . . is a finite or infinite sequence of probability measures on a finite poset
X such that µn is stochastically dominated by µn+1 for each n, then on some probability space there
are X−valued random variables X0, X1, . . . such that Xn ∼ µn and Xn ≤ Xn+1 for all n ≥ 0.

Proof. By the previous corollary, there are Markov kernels qn(x, y) such that qn(x, y) > 0
only if y ≥ x, and such that for each n and x, y ∈ X ,∑

x

µn(x)qn(x, y) = µn+1(y).

These Markov kernels can be used to build a time-inhomogeneous Markov chain Xn with
X0 ∼ µ0 and steps Xn 7→ Xn+1 made according to qn(Xn, ·): this can be done on any
probability space with an infinite sequence Un of i.i.d. uniform-[0,1] random variables. �

4.3. Correlation inequalities.

Definition 5. A probability distribution on a poset X is said to have positive correlations if
for any two nondecreasing, nonnegative functions f, g : X → R+,

Eµfg ≥ EµfEµg

Problem 2. (A) Show that if X = R with the usual order ≤ then every probability mea-
sure has positive correlations. NOTE: This is roughly equivalent to a famous theorem of
mathematical statistics that is rarely covered in modern statistics classes (sadly).

(B) Show that if X = Rd with the usual (coordinatewise) partial order≤ then every product
probability measure has positive correlations. A product probability measure is defined to be
the joint distribution of independent random variables X1, X2, . . . , Xd. HINT: Induct on d,
and begin the induction step by conditioning on (say) the last coordinate. If you aren’t yet
comfortable with conditional expectation in general, you may assume that the probability
measure is discrete.

(C) Suppose that µ is a probability distribution on a posetX with positive correlations, and
let f : X → R be a nondecreasing, nonnegative function such that Eµf = 1. Define ν to be
the probability distribution on X such that ν has likelihood ratio f relative to µ. Prove that
ν stochastically dominates µ.

(more later)

5. THE ISING MODEL

The Ising model is a crude but extremely important mathematical model of a ferromag-
netic metal introduced by Ising about 70 years ago. Its importance stems from the fact that
it is the one of the simplest mathematical models to exhibit a phase transition: at high tem-
perature, there is a unique equilibrium state for the system, but at temperatures below a
certain critical temperature, there are several distinct equilibrium states. This corresponds
to the physical phenomenon of spontaneous magnetization: If unmagnetized iron is cooled
to a very low temperature, it will magnetize; and if a magnet is heated to a sufficiently high
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temperature, it will demagnetize. The latter may be verified easily by experiment, using
only a floppy disk and a household stove.

In the following sections the basic theory of the Ising model and an Markov chain, the
Gibbs sampler, that can be used to simulate it.

5.1. Gibbs States. Let X be a finite set and H : X → R a function, called the Hamiltonian
of the system. In physical applications H(x) represents the energy of the system when it is
in state x. The Gibbs state µ = µβ for inverse temperature β is the probability measure on
X defined by

µβ(x) = e−βH(x)/Z(β), where(5.1)

Z(β) =
∑
x∈X

e−βH(x).(5.2)

The normalizing constant Z(β) is called the partition function. The family {µβ}β>0 is a one-
paramter exponential family of probability measures on X , withH(x) playing the role of the
natural parameter and logZ(β) the role of the cumulant generating function. Observe that,
since the sum in (5.2) is finite, the partition function is well-defined and (real-)analytic in
the domain β > 0.

5.2. The Ising Hamiltonian. In condensed-matter physics, field theory, and various other
parts of statistical physics, the state space X is often of the form

(5.3) X = AΛ

where Λ is a set of sites (which we will also call vertices) and A is a finite set. Elements of Λ
usually represent spatial locations, and elements of A may represent atomic elements (in
models of alloys), presence (+1) or absence (0) of particles (in models of gases), spins (in
models of magnetism and in quantum field theory), and so on. In the Ising model, A is the
two-element set A = {±1}, and Λ is the set of vertices of a graph G; the most interesting
case (from the standpoint of the physicist) is where Λ is a subset of the d−dimensional
integer lattice Zd. The Ising Hamiltonian is defined as follows: for any configuration x ∈
X := {−1,+1}Λ

(5.4) H(x) = HΛ(x) = J
∑
i,j∈Λ:
i∼j

xixj

Here i ∼ j means that vertices i, j are nearest neighbors, that is, there is an edge of the
graph G connecting i and j; each edge counts only once in the sum. The constant J is
called the coupling constant: if J < 0 the model is called ferromagnetic, and if J > 0 it
is anti-ferromagnetic. Unless otherwise specified, it is henceforth assumed that J = −1.
Observe that in this case, the system “prefers” configurations in which neighboring spins
are aligned, as these have lower energy. The degree to which this is true depends, of
course, on the inverse temperature β – for larger values of β the preference for low-energy
states is stronger.

Let’s focus on the case where Λ is the set of integer lattice points in a square or cube
centered at the origin. The set of lattice points on the outer boundary of Λ (but not included
in Λ) will be denoted ∂Λ. For physical reasons it is sometimes natural to fix the spins on
the boundary ∂Λ and to include the interactions between these boundary spins with the
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neighboring interior spins in the Hamiltonian, so for any configuration ξ of spins ξi at
boundary vertices i ∈ ∂Λ, let’s write

HΛ,ξ(x) = −
∑

i,j∈Λ :i∼j
xixj +−

∑
i∈Λ,j∈∂Λ :i∼j

xiξj .

When the boundary condition is ξv = +1 at all v ∈ ∂Λ, we will write H+
Λ instead of HΛ,ξ,

and similarly for the boundary condition ξv = −1 at all v ∈
partialΛ. The associated Gibbs states are the probability measures

µξβ,Λ(x) = exp{−βHΛ,ξ(x)}/ZΛ,ξ(β).

When ξ is the boundary configuration with all spins +1, we will write µ+
β,Λ for µξβ,Λ; simi-

larly for the boundary configuration with all spins −1.

Important: Take note of the fact that the Ising Hamiltonian is invariant under spin reversal,
that is,HΛ,ξ(x) = HΛ,−ξ(−x). Consequently, the joint distribution of the spin configuration
X under µ+

β,Λ is the same as the joint distribution of the reversed spin configuration −X
under µ−β,Λ.

Stochastic monotonicity plays an important role in the study of the Ising model. The
relevant partial order is the coordinatewise order: in particular, for any configurations x, y
we have x ≤ y if and only if y can be obtained from x by flipping some of the − spins in x
to +, but leaving the + spins in x alone.

Proposition 8. For each β > 0, the probability measure µ+
β,Λ stochastically dominates µ−β,Λ.

This will be proved in section 6 below, using the machinery developed in section 4.
The Gibbs states for the Ising model have an important property known in the study of

random fields as the Markov property. Let Λ ⊂ Λ∗ be two finite sets of sites. For any spin
configuration X = (Xv)v∈Λ∗ and any subset F ⊂ L∗ denote by XF the restriction of the
spin configuration to F , that is,

XF = (Xv)v∈F .

Proposition 9. For any value of β > 0, the conditional distribution under µ+
β,Λ∗

of XΛ given the
event that all of the spins in Λ∗ \ Λ are +1 is the same as the unconditional distribution of XΛ

under µ+
β,Λ. Explicitly, for any fixed configuration σΛ = (σv)v∈Λ of spins in Λ,

µ+
β,Λ∗

(XΛ = σΛ |Xv = +1 ∀ v ∈ Λ∗ \ Λ) = µ+
β,Λ(XΛ = σΛ).

Proof. This is a routine calculation, using the definition (5.1) of a Gibbs state and the for-
mula (5.4) for the Ising Hamiltonian. Denote by (+1)Λ∗\Λ the spin configuration on Λ∗ \ Λ
with all spins +1, and by σΛ ∨ 1 the configuration on Λ∗ with spins σv for v ∈ Λ and spins
+1 outside Λ. For notational ease, let’s drop the subscript β on the Gibbs measures, since
β is fixed throughout the argument. Then

µ+
Λ∗

(XΛ = σΛ |XΛ∗\Λ = (+1)Λ∗\Λ) =
exp{−βH+

Λ∗
(σΛ ∨ 1)}∑

σ′∈{+1,−1}Λ exp{−βH+
Λ∗

(σ′Λ ∨ 1)}

=
exp{−βH+

Λ (σΛ)}∑
σ′∈{+1,−1}Λ exp{−βH+

Λ (σ′Λ)}

= µ+
Λ(XΛ = σΛ).
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The key step is the second equality: this holds because all of the factors corresponding to
edges of the lattices not in Λ cancel in the numerator and denominator. �

5.3. Phase Transition in Dimension 2. The observable physical phenomenon of spon-
taneous magnetization (and demagnetization) has a mathematical analogue in the Ising
model in dimensions two and higher, a fact discovered by R. PEIERLS in the 1930s, some
years after Ising introduced his model. 2 Let G = (Z2, E) be the standard two-dimensional
lattice, and let Λn be the square of side 2n+1 centered at the origin o. Denote by µ+

n = µ+
β,Λn

and µ−n = µ−β,Λn
the Gibbs states with external boundary conditions z+ and z− on the

square Λn.

Theorem 10. There exists βc satisfying 0 < βc < ∞ such that the following is true: For each
vertex i ∈ Z2

lim
n→∞

µ+
n {Xi = +1} > 1/2 if β > βc(5.5)

lim
n→∞

µ+
n {Xi = +1} = 1/2 if β ≤ βc.(5.6)

The fact that βc < ∞ is, in essence, Peierls discovery. I do not know who first proved
that βc > 0. Peierls’ argument will be presented in section 7 below.

6. GLAUBER DYNAMICS – THE GIBBS SAMPLER

6.1. Gibbs Sampler. In the early 1960s the physicist Glauber proposed a Markov chain
that in principle could be used for Markov chain Monte Carlo studies of the Gibbs distribu-
tions µ±β,Λ. Subsequently, various people (notably Swendsen and Wang) have discovered
much more effective algorithms for simulation, so Glauber dynamics isn’t used for MCMC
purposes any more. Nevertheless, Glauber’s Markov chain provides some useful theoreti-
cal information about the Gibbs distributions. Furthermore, the rate of convergence of this
Markov chain remains an important area of study.

Glauber dynamics is an instance of what is now called the Gibbs sampler, a general strat-
egy for designing a Markov chain for MCMC studies of a probability distribution on a
product space. It is similar in certain respects to the Metropolis algorithm, and in many
situations works with similar computational efficiency. The strategy is as follows. Sup-
pose you want to simulate the distribution µ of a random vector Y = (Y1, Y2, . . . , Ym),
and for one reason or another can’t do this directly. Start with an initial configuration
Y 0 = (y0

1, y
0
2, . . . , y

0
m). At each step n = 0, 1, 2, . . . , update the current state Y n by first

choosing an index i ∈ [m] at random and then replacing the ith coordinate by re-sampling
from the conditional distribution of Yi given Yj = ynj for all j 6= i, that is, replace Y n

i by
Y n+1
i where

P (Y n+1
i = u |Y n

j = yj ∀ j 6= i) = µ(Yi = u |Yj = yj ∀ j 6= i)).

Since the updating rule uses only the current state, the resulting sequence of states Y n is a
Markov chain.

Proposition 11. Assume that the distribution µ is discrete. Then µ is a stationary distribution for
the Markov chain Y n, and the Markov chain is reversible with respect to µ.

2Ising’s Ph. D. thesis supervisor LENZ had suggested to Ising that a phase transition might exist in the Ising
model; Ising was able to prove that there is no phase transition in one dimension, but proved nothing about
the behavior in higher dimensions.
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Proof. Exercise: check the detailed balance conditions (it shouldn’t take more than about
three lines). �

6.2. Monotonicity properties of the Glauber chain. Fix a domain Λ and a boundary con-
figuration ξ. Let q(x, y) = qβ,ξ(x, y) be the transition probability matrix of the Glauber
chain (Gibbs sampler) for the Ising model on Λ at inverse temperature β. Because only
one site can be changed at any step, the only transitions that can occur are between con-
figurations x, x′ that differ only at a single site, say site i. Hence, all of the terms in the
expression (5.4) except those that involve the spins at nearest neighbors of site i are the
same in H(x) and H(x′), so the transition probabilities q(x, x′) involve only the spins at
the neighbors j ∼ i. Thus, the transition probabilities have a simple closed form: for any
spin configurations y and any site i ∈ Λ,

q(y, y+,i) =
e−βSi(y)

e−βSi(y) + e+βSi(y)
and(6.1)

q(y, y−,i) =
e+βSi(y)

e−βSi(y) + e+βSi(y)

where
Si(y) =

∑
j∈Λ : j∼i

yj +
∑

j∈∂Λ : j∼i
ξj

and where y+,i and y−,i are the spin configurations obtained from y by re-setting the ith
spin to +1 and −1, respectively.

Proposition 12. For any fixed β > 0 and any two boundary configurations satisfying ξ ≤ ξ∗
the Markov kernel qβ,ξ(·, ·) is stochastically dominated by qβ,ξ∗(·, ·). Consequently, for each fixed
β > 0 and each boundary configuration ξ, the Markov kernel qβ,ξ(·, ·) is stochastically monotone.

Proof. Let x ≤ x∗ be two spin configurations such that all spins of x are ≤ the correspond-
ing spins of x∗. We must show that the distribution qβ,ξ(x, ·) is stochastically dominated by
qβ∗,ξ∗(x∗, ·). Since Glauber dynamics changes at most one coordinate at a time, it suffices
to show that for any two configurations y ≤ y∗ and any coordinate (site) i,

(6.2) qβ,ξ(y, y+,i) ≤ qβ,ξ∗(y∗, y+,i
∗ )

where y+,i is the configuration obtained from y by re-setting the ith coordinate spin to +1.
(Mental exercise: Convince yourself that this implies that upper corner probabilities for
qβ,ξ(y, ·) are dominated by the corresponding upper corner probabilities for qβ∗,ξ∗(y∗, ·).)

Look closely at the equations (6.1) that give the transition probabilities for the Glauber
chain. If the configuration y is replaced by a configuration y∗ ≥ y, then for any interior site
i (that is, one that doesn’t have a neighbor j ∈ ∂Λ)∑

j : j∼i
yj ≤

∑
j : j∼i

(y∗)j .

Consequently, the effect of replacing y by y∗ while keeping β fixed is to increase (or at least
not to decrease) the probability of flipping the spin at site i to a +. (To see this, check that
the exponential in the numerator of q(y, y+,i) goes up, and the inverse exponential in the
denominator goes down.) Note that changing ξ to ξ∗ has no effect on this transition prob-
ability, because for interior sites i the transition probabilities (6.1) do not involve boundary
spins.
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Now consider the case where i ∈ Λ has at least one neighbor j ∈ ∂Λ. If ξ is replaced by
ξ∗ and y by y∗, then ∑

j∈Λ : j∼i
yj +

∑
j∈∂Λ : j∼i

ξj ≤
∑

j∈Λ : j∼i
(y∗)j +

∑
j∈∂Λ : j∼i

(ξ∗)j .

Consequently, by (6.1), the probability of flipping the spin at site i to a + is higher when ξ
is replaced by ξ∗ and y by y∗. This proves (6.2). �

Corollary 13. For any fixed β > 0 and any two boundary configurations satisfying ξ ≤ ξ∗, the
corresponding Gibbs distributions satisfy

(6.3) µξβ,Λ
D
≤ µξ∗β,Λ.

This follows immediately from the preceding proposition and Proposition 5.
Stochastic monotonicity considerations provide an approach to making sense of what

statistical physicists call the thermodynamic limit for the Ising model. Let Λm be the square
(or cube) of side length 2m+ 1 centered at the origin, and fix β > 0. Denote by

µ+
m = µ+

β,Λm
and

µ−m = µ−β,Λm

the Gibbs states for the Ising model at inverse temperature β with boundary spins all set
at + (for µ+

m) or − (for µ−m). Fix a finite set F of sites, and denote by

XF = (Xu)u∈F
the random vector of spins at the sites u ∈ F . Since F is finite, it will be entirely contained
in Λm for all sufficiently large m.

Corollary 14. For any finite set F of sites denote by GF = {Xv = +1 ∀ v ∈ F} the event that all
of the spins in F are +1. For any value of β > 0, if m is large enough that F ⊂ Λm then

(6.4) µ−m(GF ) ≤ µ−m+1(GF ) ≤ µ+
m+1(GF ) ≤ µ+

m(GF ).

Consequently, the limits

(6.5) µ+
∞(GF ) := lim

m→∞
µ+
m(GF ) and µ−∞(GF ) := lim

m→∞
µ−m(GF )

exist, and satisfy

(6.6) µ−∞(GF ) ≤ µ+
∞(GF ).

Proof. The existence of the limits and the final inequality follow immediately from the
inequalities (6.4). These in turn follow from the stochastic monotonicity relation (6.3) and
the Markov property of the Gibbs measures (Proposition 9). The Markov property implies
that the µ+

m+1−distribution of the spin vector XΛm given the event

XΛm+1\Λm
= σΛm+1\Λm

:= σ

is the unconditional distribution of XΛm under the Gibbs measure µσΛm
. But relation (6.3)

implies that the distribution of XΛm under µ+
m stochastically dominates the distribution

of XΛm under µσΛm
, for any configuration σ of spins on Λm+1 \ Λm. Since the (indicator

function of the) event GF is nondecreasing in the partial order ≤, it follows that for every
choice of σ,

µ+
m+1(GF |XΛm+1\Λm

= σ) ≤ µ+
m(GF ).
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The inequality µ+
m+1(GF ) ≤ µ+

m(GF ) therefore follows from elementary properties of con-
ditional expectation. Similar arguments prove the other inequalities. �

7. PEIERLS’ CONTOUR ARGUMENT

Peierls’ argument is based on the observation that the Ising Hamiltonian HΛ defined by
(??) depends only on the number of +/− nearest neighbor pairs in the configuration:

HΛ(x) = −2JLΛ(x) + CΛ where(7.1)

LΛ(x) =
∑

i∈Λ,j∈V
i∼j

δ(xi,−xj),(7.2)

with δ(·, ·) being the Kronecker delta function. Evaluation of LΛ(x) can be accomplished
by partitioning the vertices of Λ ∪ ∂Λ into (maximal) connected clusters of + spins and −
spins in x, as in Figure ; LΛ(x) is the number of edges in Λ∪ ∂Λ connecting + clusters to −
clusters. For two-dimensional graphs, LΛ(x) may be evaluated by drawing boundary con-
tours around the connected clusters, as shown in the following lemma. For the remainder
of this section, assume that G is the standard two-dimensional integer lattice Z2.

Lemma 15. For each vertex i ∈ Λ ∪ ∂Λ, let Ki = Ki(x) be the maximal connected set of vertices
j such that sites i and j have the same spin in configuration x. Then for any two vertices i, j such
that Ki 6= Kj there is a simple closed curve γ = γi,j , called a boundary contour (possibly empty)
separatingKi fromKj . The curve γ is a finite union of horizontal and vertical segments in the dual
lattice. Each such segment bisects an edge connecting a vertex in Ki to a vertex in Kj .

Proof. The curve γ may be constructed using a “maze-walking” algorithm. Begin by choos-
ing an edge e connecting Ki to Kj (if there is one), and let the first segment γ1 of γ be a
perpendicular bisector of e. Define (oriented) segments γn, for n = 2, 3, . . . , inductively,
in such a way that if one traverses the segment γn then a vertex of Ki is on the right and
a vertex of Kj is on the left. Eventually the sequence γn will enter a cycle. This cycle
must include all of the segments γn because otherwise the right/left rule would be vio-
lated somewhere. Therefore, the cycle determines a closed curve. This closed curve must
completely separate the regions Ki and Kj , because otherwise one of them could not be
connected. Consult your local topologist for further details. �

Corollary 16. LΛ(x) =
∑

i,j |γi,j |. �

Assume now that the region Λ is a square. Fix a vertex i ∈ Λ, and let x ∈ X be a con-
figuration such that xΛc = z+

Λc . If xi = −1, then it must be that the vertex i is completely
surrounded by a contour that separates it from ∂Λ, as the vertices outside Λ all have +
spins. In particular, the boundary of the connected cluster Ki = Ki(x) of − spins to which
vertex i belongs contains a unique contour γ := γi,∞ that separates Ki from the exterior
Λc of the square Λ. (Note that this contour may in general surround other connected com-
ponents Kj .) Define Cγ ot be the set of all vertices j that are surrounded by γ; define
configuration x̃ to be the configuration obtained from x by flipping all spins inside γi,∞

(7.3) (x̃)j =

{
−xj if j ∈ Cγ
+xj if j 6∈ Cγ .
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Lemma 17. Let x ∈ X be any configuration such that xi = −1, and let γ = γi,∞ be the contour
that separates Ki from Λc. If x̃ is the configuration defined by (7.3), then

(7.4)
µ+

Λ(x)
µ+

Λ(x̃)
= exp{−2βJ |γ|}.

Proof. For all nearest neighbor pairs j, k, the spin products xjxk and x̃j x̃k are related as
follows:

xjxk = −x̃j x̃k if j, k are on opposite sides of γ;
= +x̃j x̃k otherwise.

Consequently,
HΛ(x̃)−HΛ(x) = 2J |γ|.

�

Lemma 18. The mapping x 7→ (x̃, γ) is one-to-one.

Proof. Given (x̃, γ), one can recover x by negating in the region Cγ surrounded by γ. �

Proposition 19. For each β > 0 and each square Λ containing vertex i,

(7.5) µ+
Λ(Xi = −1) ≤

∞∑
n=4

n3ne−2βJn.

Proof. On the event Xi = −1 the connected cluster Ki of − spins containing the vertex i
must be separated from the connected cluster K∞ of + spins containing the vertices on the
boundary ∂Λ. Let Γ be the boundary contour of Ki = Ki(X) that separates Ki from K∞.
By Lemmas 18 and 17, the µ+

Λ−probability that Xi = −1 and Γ = γ satisfies

µ+
Λ(Xi = −1 and Γ = γ) ≤ exp{−2βJ |γ|}.

Consequently,

µ+
Λ(Xi = −1) ≤

∑
γ

exp{−2βJ |γ|},

where the sum is over all contours in the (dual) integer lattice surrounding i. To estimate
the number of such surrounding contours of length k, observe that any such contour must
intersect the vertical upward ray emanating from vertex i at some point within distance
k of i. Starting from this intersection point, the contour is formed by attaching successive
line segments, one at a time; at each stage, there are at most 3 such segments to choose
from. Hence, the number of surrounding contours of length k is at most k3k. The estimate
(7.5) now follows easily. �

Since the sum on the right side of inequality (7.5) is less than 1/2 for all sufficiently
large values of β Proposition 19, together with Theorem ??, implies that (5.5) holds at low
temperature.
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8. THE HIGH TEMPERATURE LIMIT

In this section we shall prove the following proposition, which implies that (5.6), and
hence also (??), hold at high temperature.

Proposition 20.

(8.1) tanh(−4βJ) < 1/4 =⇒ lim
n→∞

µ+
n {Xi = −1} = 1/2.

The proof, unlike Peierls’ argument, does not really depend on planarity of the underly-
ing graph, and may be extended not only to the higher-dimensional integer lattices but to
arbitrary vertex-regular graphs (graphs with the property that all vertices have the same
number of incident edges). We shall only discuss the case G = Z2.

8.1. Bernoulli-p Site Percolation. The upper bound of 1/4 in (8.1) for tanh(−4βJ) emerges
from the world of site percolation. In its simplest incarnation, site percolation has to do wtih
the connectivity properties of the random graph obtained from the two-dimensional in-
teger lattice by tossing a p−coin at every vertex, then erasing the vertex, and all edges
incident to it, if the coin toss results in a T . Percolation is the event that the resulting sub-
graph of Z2 has an infinite connected cluster of vertices, equivalently, that Z2 has an infinite
connected cluster of H−vertices.

Proposition 21. If p < 1/4 then percolation occurs with probability 0.

Proof. It is enough to show that for any vertex i, the probability that i is part of an infinite
connected cluster of Hs is zero. Denote by K the (maximal) connected cluster of vertices
containing i at which the coin toss is H . Define sets F0, F1, F2, . . . inductively as follows:
Let F0 = {i}, and for each n ≥ 0 define Fn+1 to be the set of all vertices at which the
coin toss is H that are nearest neighbors of vertices in Fn and that have not been listed in
∪nj=0Fj . I claim that

(8.2) E|Fn+1| ≤ 4pE|Fn|.
To see this, observe that, for each vertex j ∈ Fn there are at most 4 vertices adjacent to j that
can be included in Fn+1. For each of these, the conditional probability that it is included
in Fn+1, given the coin tosses that have resulted in constructing F0, F1, . . . , Fn, is at most
p; consequently, the expected number that are included is no more than 4p.

The cluster K is the union of the sets F0, F1, . . . , and so its expected cardinality is
bounded by

∑
nE|Fn|. By inequality (8.2), if 4p < 1 then E|K| < ∞, in which case K

is finite with probability 1. �

Fix a site i ∈ V = Z2, and denote by Λn the square of side 2n+ 1 centered at the origin.
Say that i percolates to ∂Λn if the connected cluster of Hs containing site i extends to the
boundary of Λn, equivalently, if there is a path ofH−vertices from i ot the boundary of Λn.
Denote this event by A(i, n).

Corollary 22. If p < 1/4 then limn→∞ Pp(A(i, n)) = 0 for each site i. �

8.2. Monotone Coupling of Gibbs States.

Proposition 23. Fix β > 0, and set p = tanh(−4βJ). On some probability space (Ω,F , P ),
there exist X−valued random variables Z(n) ≤ Y (n) with marginal distributions µ−n and µ+

n ,
respectively, such that

(8.3) P (Z(n)
i 6= Y

(n)
i ) ≤ Pp(A(i, n)),
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where Pp(A(i, n)) is the probability that site i percolates to ∂Λn in Bernoulli-p site percolation.

Observe that this proposition and Corollary 22 imply Proposition 20, because Corol-
lary 22 implies that the probability that site i percolates to ∂Λn converges to zero if p =
tanh(−4βJ) < 1/4. The proof of Proposition 23 will use the following lemma, which ex-
plains the occurrence of the quantity tanh(−4βJ).

Lemma 24. For any two configurations z, y such that z ≤ y, and for any finite regions Σ ⊂ Λ and
any site i ∈ Λ− Σ,

(8.4) µ+
Λ(Xi = +1 |XΣ = yΣ)− µ−Λ(Xi = +1 |XΣ = zΣ) ≤ tanh(−4βJ).

Proof. In view of the Markov property (Proposition ??), it suffices to show that for any two
configurations x, y,

(8.5) |µxΛ−i(Xi = +1)− µyΛ−i(Xi = +1)| ≤ tanh(−4βJ).

The two probabilities in (8.5) are easily calculated, as they depend only on the spins xj , yj
at the four nearest neighbors of i. The maximum discrepancy occurs when the x−spins are
all +1 and the y−spins are all −1: it is tanh(−4βJ). �

Proof of Proposition 23. Fix n, and abbreviate Λ = Λn, Z = Z(n), and Y = Y (n). There are
N := (2n+ 1)2 sites in the square Λ: label these 1, 2, . . . , N in order, starting from the sites
at distance 1 from ∂Λ, then proceeding through the sites at distance 2 from ∂Λ, and so on,
but omitting site i until the very end, so that it is listed as site N . We will construct Z, Y
one site at a time, proceeding through the sites 1, 2, . . . , N in order, using independent
uniform-(0, 1) random variables U1, U2, . . . , UN . (The values Zi = −1 and Yi = +1 are
determined by the requirement that the marginal distributions of Z and Y are µ−n and µ+

n ,
respectively.)

To construct Z1, Y1, use the uniform U1 to choose ± spins from the Gibbs distributions
µ−n (X1 ∈ dx) and µ+

n (X1 ∈ dx). By Proposition ??, these distributions are stochastically
ordered, so the assignment of spins may be done in such a way that Z1 ≤ Y1. Moreover,by
Lemma 24,

|µ−n (X1 = +1)− µ+
n (X1 = +1)| ≤ p,

so the probability that Z1 < Y1 is no larger than p. Hence, the assignment of spins may be
dome in such a way that the event Z1 < Y1 is contained in the event U1 < p.

Now suppose that Zj , Yj , for 1 ≤ j < m, are defined. Conditional on the event Zj = zj ,
Yj = yj , with zj ≤ yj , use the uniform random variable Um to assign the spins± at Zm and
Ym using the conditional distributions

Zm ∼ µ−n (Xm ∈ dx |Xj = zj ∀ 1 ≤ j < m) and

Ym ∼ µ+
n (Xm ∈ dx |Xj = yj ∀ 1 ≤ j < m).

Since zj ≤ yj , these conditional distributions are again stochastically ordered, by Proposi-
tion ?? and Proposition ??; consequently, the assignment of spins may be done in such a
way that Zm ≤ Ym. Moreover, by Lemma 24, the conditional probability that Zm < Ym,
given the assignments Yj = yj and Zj = zj for 1 ≤ j < m, is, once again, no larger than
p; consequently, the assignments may be done in such a way that the event Zm < Ym is
contained in the event Um < p.

It remains to show that the inequality (8.3) holds. By construction, Zj < Yj can only
occur if Uj < p. Moreover, by Corollary ??, if in the course of the construction it develops
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that Zj = Yj for all sites j in a contour that surrounds site i, then it must be the case that
Zi = Yi, as the conditional distributions of the spins Zk and Yk will coincide for all sites k
after completion of the contour. Thus, Zi 6= Yi can only occur if there is a connected path
of sites j leading from site i to ∂Λ along which Uj < p. But this is precisely the event that
site i percolates to ∂Λ in Bernoulli-p percolation. �
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