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DUE THURSDAY MAY 30

Problem 1. Random Walk on a Complete Graph. The complete graph on n vertices, denoted by
Kn, is the graph with vertex set [n] = {1, 2, 3, . . . , n} such that for every pair of vertices i, j there is
an edge e({ij}) with endpoints iand j. Consider the electrical network on Kn in which every edge
is assigned resistance 1. Calculate the effective resistance between vertices 1 and n.

Problem 2. Ehrenfest Random Walk. Calculate the escape probability pescape(0; 1) for the Ehren-
fest random walk on ZN2 , where 0 and 1 are the extreme corners of the hypercube, that is,

0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1).

HINT: Use the series, parallel, and shorting laws discussed in the notes.

Problem 3. Shorting and Effective Resistance. Let {Ce}e∈E be a positive conductance function
on a connected graph (or multi-graph) G = (V, E). Let s, t ∈ V be two distinguished vertices,
and let x, y ∈ V − {s, t} be two vertices other than s, t. Consider the electrical network obtained
by removing the vertices x, y and replacing them by a single vertex z, and then re-routing all the
conducting edges in the original graph that went through x or y to z. Show that the effective
resistance between s and t in the new network is no larger than the effective resistance between s
and t in the original network.

Problem 4. Bead Game. This problem concerns the following stochastic process on a finite graph
G with conductance function Cxy . At each vertex of G there is a bead, which is either black or
white. At each (discrete) time n = 0, 1, . . . an edge of the graph is chosen at random with proba-
bility Cxy/C, where C is the sum of the conductances in the network, and the beads at x and y are
interchanged. When a bead reaches a it is immediately painted black, and when it reaches b it is
immediately painted white.

(A) Let h(x) be the voltage at x when a unit voltage is imposed between a and b (i.e., a 1 volt
battery is hooked up to a and b). Show that regardless of the initial configuration of black and
white beads on the vertex set V the system reaches a statistical equilibrium in which h(x) is the
probability of a black bead occupies vertex x.

(B) Let I be the electrical current flow in the network when a unit voltage is imposed between a
and b. Show that there is a constant γ > 0 such that for every edge xy, the net flow of black beads
across the edge xy is γIxy.

Problem 5. More Electrical Connections. Let Xn be an irreducible, reversible Markov chain on
a finite state space X with transition probability matrix P = (px,y) and stationary distribution πx.
Define Cx,y = πxpx,y to be the conductance function of the corresponding electrical network. Let
s, t be two distinct vertices of X , and set

T = min{n ≥ 1 : Xn = t} and τ = min{n > T : Xn = s}.
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(A) Define

G(s, y) = Es
T−1∑
n=0

1{Xn = y}

to be the expected number of visits to y before first hitting t. Show that

G(s, y) = π(y)v(y)Reff(s; t)

where Reff(s; t) is the effective resistance between s and t and v(x) is the voltage at x when the
voltages at s and t are held at v(s) = 1 and v(t) = 0. HINT: Let f(y) = G(s, y)/π(y). What kind of
function is f(y)?

(B) For any two (distinct) neighboring vertices x, y, let Sx,y be the number of times that the Markov
chain jumps from x to y before reaching the terminus t, that is,

Sx,y =
T−1∑
n=0

1{Xn = x and Xn+1 = y}.

Show that
EaSx,y − EaSy,x = Jx,y

where J is the electrical current flow in the network when the voltages at s and t are held at

V (s) = Reff(s; t) and V (t) = 0.

(C) Loop-Erased Random Walk. Consider the pathX = {Xn}0≤n≤T of the Markov chain up until the
time T when it first hits the terminal vertex t. In general, this path will make loops, that is, it will
occasionally revisit a vertex x that it had visited earlier. Define L to be the path obtained from X
by erasing all loops as they form. For instance, if

X = sabcadeqegkt then L = sadegkt.

(i) Show that L visits any vertex x at most once, and consequently, crosses any edge at most once.
(ii) Let S̃x,y be the number of times that the loop-erased path L crosses from x to y. Show that
ES̃x,y = ESx,y .

Problem 6. Spanning Trees. Let G = (V, E) be a finite, connected graph. A spanning tree of G
is a connected subgraph T = (V, E∗) with no cycles. (Note: The vertex set must be the same as
that of G, and the edge set E∗ must be a subset of the edge set E of G.) Spanning trees are gotten
by removing edges from cycles one at a time until no cycles remain. There are, in general, many
spanning trees of a connected graph G.

(A) Show that if T is a spanning tree then for any two distinct vertices x, y ∈ V there is a unique
self-avoiding path in T from x to y.

(B) Assume now that there are two distinct vertices s, t ∈ V , the source and the terminus. For any
two vertices x, y that share an edge in G, define N(s, x, y, t) to be the number of spanning trees T
of G in which the unique path from s to t crosses the edge from x to y (that is, the path must be of
the form s, x1, . . . , xj , x, y, . . . , xm, t). Define

J(x, y) = N(s, x, y, t)−N(s, y, x, t).

Prove that J is a flow with source s and sink t. What is the size J(s+) of the flow? HINT: Write
J as a sum J =

∑
T J

T where the sum is over all spanning trees T and JT (x, y) = +1,−1, or 0



depending on whether the unique path in T from s to t crosses xy, or crosses yx, or doesn’t cross
in either direction. Show that each each JT is a flow with source s and sink t.

(C) Prove that the flow J is acyclic, and conclude that it must be a gradient flow, that is, there is a
function w : V → Z such that J(x, y) = w(x) − w(y). HINT: Use the fact that a spanning tree has
no cycles.

(D) Let N be the total number of spanning trees of G, and let w be the function obtained in (C).
Define

u(x) = w(x)/N.
Show that u is the voltage function of the electrical network in which each edge of G has conduc-
tance 1 and the total current through s is 1.

Problem 7. Helly’s Selection Theorem. Let {µn}n≥1 be a sequence of (Borel) probability measures
on the unit interval [0, 1]. Helly’s selection theorem states that there is a subsequence {µnk

}k≥1 that
converges in distribution to some (Borel) probability measure µ on [0, 1].

(A) Show that there is a subsequence {µnk
}k≥1 such that for every m ≥ 0

lim
k→∞

∫
[0,1]

xm dµnk
(x) := αm

exists. HINT: Bolzano-Weierstrass plus Cantor’s diagonal argument.

(B) Conclude that for every continuous function f : [0, 1]→ R,

lim
k→∞

∫
[0,1]

f(x) dµnk
(x) := Λ(f)

exists. HINT: Weierstrass Approximation Theorem.

It requires a bit more machinery (e.g., either the Riesz Representation Theorem or the Caratheodory
Extension Theorem) to prove rigorously that there is a Borel probability measure λ on [0, 1] such
that Λ(f) =

∫
f dλ for every continuous function f . However, given the result of (B) it is not

difficult to understand why this should be the case: for any interval [0, x] the indicator function
1[0,x] can be very closely approximated by continuous functions, and so (B) shows how to figure
out how much mass λ should assign to [0, x]. In other words, the convergence in (B) determines
the c.d.f. of λ. The technical step (Caratheodory Extension Theorem) is to show that for any c.d.f.
there is a matching probability measure λ.

Problem 8. Exchangeable Sequences. A sequence X1, X2, . . . of random variables is said to be
exchangeable if for every integer m ≥ 1 and every permutation σ of [m],

(X1, X2, . . . , Xm) D= (Xσ(1), Xσ(2), . . . , Xσ(m)).

Assume that X1, X2, . . . is an exchangeable sequence of Bernoulli random variables. Let Sn =∑n
j=1Xj and Rn = n− Sn.

(A) Prove that the sequence (Rn, Sn)n≥0 is a Markov chain on Z2
+.

(B) Say that a path in the integer lattice is admissible if every step is either up one (i.e., add (0,1))
or one to the right (i.e., add (1, 0)). Show that for any admissible path γ from (0, 0) to (r, s), the
probability that the first r + s steps of the Markov chain follow the path γ is

P{Sn = s}
N(r, s)



where N(r, s) is the number of admissible paths from (0, 0) to (r, s).

(C) Use the result of part (B) to write a simple expression for

P (X1 = e1, X2 = e2, . . . , Xk = ek |Sn = m)

valid for any m ≥ k and any sequence ei of 0s and 1s.

(D) Let µn be the distribution of Sn/n, that is, the probability measure on [0, 1] that puts mass
P{Sn = k} at the point k/n for every integer k = 0, 1, . . . , n. By the Helly Selection Theorem there
is a subsequence µnk

that converges in distribution to a probability measure µ on [0, 1]. Use the
result of (C) to show that

P{X1 = e1, X2 = e2, . . . , Xk = ek} =
∫

[0,1]

θ
Pk

j=1 ej (1− θ)k−
Pk

j=1 ej dµ(θ).

The existence of such a representation is known as de Finetti’s Theorem. What it asserts is that every
exchangeable sequence of Bernoulli random variables is a mixture of i.i.d. Bernoulli processes. The prob-
ability measure µ is the mixing measure. The de Finetti representation can be interpreted as a two
step algorithm for simulating the sequence X1, X2, . . . : first, draw Θ at random with distribution
µ; then, given Θ = θ, generate i.i.d. Bernoulli θ random variables.


