Problem 1. Let \(\{ N_j \} \) be a Poisson point process in \(\mathbb{R}^2 \) with intensity function \(\lambda(x,y) = h(y) \) that depends only on the \(y \)-coordinate. Let \(N_R \) be the number of points in the rectangle \(R = [0, T] \times [0, A] \), and denote by \((X_i, Y_i)\), where \(i = 1, 2, \ldots, N_R \), the locations of the occurrences in the region \(R \).

(A) Show that the conditional distribution of the values \(Y_1, Y_2, \ldots, Y_n \) given the event \(N_R = n \) is the same as the distribution of \(n \) points sampled independently from the density

\[
f_a(y) := \frac{h(y)}{\iint_R h(y) \, dx \, dy}.
\]

(B) Show that the characteristic function of \(\sum_{i=1}^{N_R} Y_i \) is

\[
E \exp\{i \theta \sum_{i=1}^{N_R} Y_i\} = \exp\{-\alpha_R + \alpha_R \varphi(\theta)\}
\]

where

\[
\alpha_R = \iint_R h(y) \, dx \, dy \quad \text{and} \quad \varphi(\theta) = \int_0^A e^{i \theta y} f_a(y) \, dy.
\]

Problem 2. Asymmetric Random Walk. This problem is concerned with the \(p - q \) random walk on the integers, that is, the nearest neighbor random walk in which jumps to the right occur with probability \(p \) and jumps to the left with probability \(q = 1 - p \). Let \(S_n \) be the position after \(n \) steps; then

\[
S_n = x + \sum_{i=1}^{n} \xi_i
\]

where \(\xi_1, \xi_2, \ldots \) are i.i.d. Rademacher-\(p \), that is,

\[
P\{\xi_j = +1\} = p, \quad P\{\xi_j = -1\} = q,
\]

Dependence of probabilities and expectations on the initial state \(x \) will be indicated by putting a superscript \(x \) on the probability and expectation operators \(P \) and \(E \). Fix a positive integer \(M \).
and an arbitrary integer a and let
\begin{equation}
\tau = \tau_{[0,M]} = \inf\{n : S_n = 0 \text{ or } M\}
\end{equation}
\begin{equation}
T_a = \inf\{n : S_n = a\}.
\end{equation}

(A) Write and solve a difference equation for $u(x) := P^x \{S_\tau = M\}$.
(B) Write and solve a difference equation for the expected time of exit $v(x) = E^x \tau$.

Problem 3. Ballot Problem. An election is held with two candidates A and B. A total of N voters cast ballots; candidate A receives N_A votes and candidate B receives $N_B = N - N_A$ votes. Assume that $N_A \geq N_B$. Suppose the votes are drawn from the ballot box in random order and the votes are tallied one at a time. What is the probability that at any stage of the tally candidate B is ahead (by at least one vote) in the count? Solve this using a reflection argument, as follows:

(A) What is the total number $\mathcal{E}(N_A, N_B)$ of random orderings of the ballots, subject to the constraint that N_A are labeled A and $N_B = N - N_A$ are labeled B?

(B) Let S_n^A and S_n^B be the tallies for A and B after n ballots have been observed. Consider the orderings in which at some stage candidate B pulls ahead. There must be a first time $\tau \geq 1$ at which $S_n^B - S_n^A = 1$. Suppose that at this time all of the remaining ballots are flipped, that is, ballots for A are relabeled B and ballots for B are relabeled A. Show that the election would then result in (I think!) $N_A + 1$ votes for candidate B and $N_B - 1$ for candidate A.

(C) Show that the relabeling procedure in part (B) sets up a one-to-one correspondence between (a) the ballot orderings in which at some stage candidate B pulls ahead but ends up with only N_A votes and (b) the ballot orderings in which candidate B wins with $N_A + 1$ votes. **Hint:** The procedure in part (B) is reversible.

(D) Conclude that the number of ballot orderings in which candidate A receives N_A votes, candidate B receives N_B votes, and candidate B never leads in the count, is equal to
\begin{equation}
\mathcal{E}(N_A, N_B) - \mathcal{E}(N_A + 2, N_B - 2).
\end{equation}
Use this and the result of part (A) to calculate the probability that at some stage of the tally candidate B is ahead (by at least one vote) in the count.

(E) **Generalization:** Assume as in the original problem that candidate A receives N_A votes and candidate B receives $N_B = N - N_A$ votes, and assume that $N_B \geq k$ for some $k \geq 1$. What is the probability that at any stage of the tally candidate B is ahead in the vote count by at least k votes?

Problem 4. Ballot Problem and Random Walk. Let S_n be a $p-q$ random walk starting at $S_0 = 0$, that is, the steps $X_j = S_j - S_{j-1}$ are independent, identically distributed with distribution
\begin{align*}
P_p\{X_j = +1\} &= p, \\
P_p\{X_j = -1\} &= q,
\end{align*}
where $p + q = 1$.

(A) Show that conditional on the event $S_N = 2m$, all possible orderings of the steps $X_1, X_2, \ldots X_N$ are equally likely, that is, their conditional distribution is the same as in sampling without replacement from an urn with $N + m$ ballots marked +1 and $N - m$ ballots marked −1.

(B) Use the result of the ballot problem above to give a formula for the first-passage probability

$$P_p\{T = 2N + 1\}$$

where T is the first time (if ever) that the random walk S_n reaches +1, that is,

$$T = \min\{n : S_n = +1\}.$$