BRANCHING PROCESSES

1. GALTON-WATSON PROCESSES

Galton-Watson processes were introduced by Francis Galton in 1889 as a simple mathemat-
ical model for the propagation of family names. They were reinvented by Leo Szilard in the late
1930s as models for the proliferation of free neutrons in a nuclear fission reaction. General-
izations of the extinction probability formulas that we shall derive below played a role in the
calculation of the critical mass of fissionable material needed for a sustained chain reaction.
Galton-Watson processes continue to play a fundamental role in both the theory and applica-
tions of stochastic processes.

First, an informal desription: A population of individuals (which may represent people, or-
ganisms, free neutrons, etc., depending on the context) evolves in discrete time n =0,1,2,...
according to the following rules. Each nth generation individual produces a random number
(possibly 0) of individuals, called offspring, in the (n + 1)st generation. The offspring counts
Ea€p,Ey,... for distinct individuals @, ,7,... are mutually independent, and also indepen-
dent of the offspring counts of individuals from earlier generations. Furthermore, they are
identically distributed, with common distribution {py };>o. The state Z,, of the Galton-Watson
process at time 7 is the number of individuals in the nth generation.

More formally,

Definition 1. A Galton-Watson process {Z,,},,>¢ with offspring distribution F = {py}i>¢ is a
discrete-time Markov chain taking values in the set Z, of nonnegative integers whose transition
probabilities are as follows:

ey P{Zn+1:k|Zn:m}:p;:m-

Here {p;"'} denotes the m—th convolution power of the distribution {p;}. In other words, the
conditional distribution of Z,,; given that Z, = m is the distribution of the sum of m i.i.d.
random variables each with distribution {p;}. The default initial state is Zy = 1.

Construction: A Galton-Watson process with offspring distribution F = {p;}1>¢ can be built
on any probability space that supports an infinite sequence of i.i.d. random variables all with
distribution F. Assume that these are arranged in a doubly infinite array, as follows:

1 1 1
1}52753)"'
2 g2 g2
28282

3 3 3
3,83,85 ...

etc.
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Set Z;, =1, and inductively define

Zn
@ Znn =D &M
i=1

The independence of the random variables £ guarantees that the sequence (Z,),> has the
Markov property, and that the conditional distributions satisfy equation (1).

0

For certain choices of the offspring distribution F, the Galton-Watson process isn’t very in-
teresting. For example, if F is the probability distribution that puts mass 1 on the integer 17,
then the evolution of the process is purely deterministic:

Z,=017)" forevery n>0.
Another uninteresting case is when F has the form
pop1>0 and py+p =1.

In this case the population remains at its initial size Z; = 1 for a random number of steps with
a geometric distribution, then jumps to 0, after which it remains stuck at 0 forever afterwards.
(Observe that for any Galton-Watson process, with any offspring distribution, the state 0 is
an absorbing state.) To avoid having to consider these uninteresting cases separately in every
result to follow, we make the following standing assumption:

Assumption 1. The offspring distribution is not a point mass (that s, there is no k > 0 such that
pr = 1), and it places positive probability on some integer k > 2. Furthermore, the offspring
distribution has finite mean u > 0 and finite variance g2 > 0.

1.1. First Moment Calculation. The inductive definition (2) allows a painless calculation of
the means E Z,,. Since the random variables & ;’” are independent of Z,,,

o
EZ —ZE( N g’l“)l{z =m}
n+l1 — i n—
i=1

k=0

iE (ié?“)l’{Zn =m}
i=1

k=0

muP{Z, =m}

M

=~
(=}

I
=
try

Z,.
Since E Zy =1, it follows that

3) EZ,=u".

Corollary 1. Ifu < 1 then with probability one the Galton-Watson process dies out eventually,
i.e.,, Z, =0 forall but finitely many n. Furthermore, if 1 =min{n : Z,, =0} is the extinction time,
then

P{t>n}<u".
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Proof. The event {T > n} coincides with the event {Z,, > 1}. By Markov’s inequality,
P{Z,>1}<EZ,=u".
O

1.2. Recursive Structure and Generating Functions. The Galton-Watson process Z,, has a sim-
ple recursive structure that makes it amenable to analysis by generating function methods.
Each of the first-generation individuals «, 8,7, ... behaves independently of the others; more-
over, all of its descendants (the offspring of the offspring, etc.) behaves independently of the
descendants of the other first-generation individuals. Thus, each of the first-generation indi-
viduals engenders an independent copy of the Galton-Watson process. It follows that a Galton-
Watson process is gotten by conjoining to the single individual in the Oth generation Z; (con-
ditionally) independent copies of the Galton-Watson process. The recursive structure leads to
a simple set of relations among the probability generating functions of the random variables
Zy:

Proposition 2. Denote by p,(t)= Et?» the probability generating function of the random vari-
able Z,,, and by ¢(t) = 2,;“;0 Pt the probability generating function of the offspring distribu-
tion. Then ¢,, is the n—fold composition of ¢ by itself, that is,

(4) polt)=t and
®) Pnn(t)=@(0n(1)=ulp(t)  Vnzo0.

Proof. There are two ways to proceed, both simple. The first uses the recursive structure di-
rectly to deduce that Z,,; is the sum of Z; conditionally independent copies of Z,,. Thus,

Son-i—l(t) = Et#mi = E‘Pn(t)zl
= @(@n(t)).

The second argument relies on the fact the generating function of the mth convolution power
{p;"} is the mth power of the generating function ¢(z) of {p;}. Thus,

o
Pun(t)= Et7m1 = E(t71| 2y = k)P(Z, = k)

k=0
o0
= p()"P(Z, = k)
k=0
= @ulp(1)).
By induction on n, this is the (n + 1)st iterate of the function @(¢). ]

Problem 1. (A) Show that if the mean offspring number u := >, kp; < oo then the expected
size of the nth generation is EZ,, = u". (B) Show that if the variance 02 = >, (k — u)> pr < 00
then the variance of Z,, is finite, and give a formula for it.
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Properties of the Generating Function ¢(¢): Assumption 1 guarantees that ¢(¢) is not a linear
function, because the offspring distribution puts mass on some integer k > 2. Thus, ¢(¢) has
the following properties:

(A) (t)is strictly increasing for0< ¢ < 1.
(B) ¢(t)is strictly convex, with strictly increasing first derivative.
© ¢(1)=1

1.3. Extinction Probability. If for some 7 the population size Z,, = 0 then the population size
is 0 in all subsequent generations. In such an event, the population is said to be extinct. The
first time that the population size is 0 (formally, T = min{n : Z, = 0}, or 7 = oo if there is no
such n) is called the extinction time. The most obvious and natural question concerning the
behavior of a Galton-Watson process is: What is the probability P{7 < oo} of extinction?

Proposition 3. The probability { of extinction is the smallest nonnegative root t = { of the equa-
tion

(6) p(t)=t.

Proof. The key idea is recursion. Consider what must happen in order for the event 7 < 0o of
extinction to occur: Either (a) the single individual alive at time 0 has no offspring; or (b) each
of its offspring must engender a Galton-Watson process that reaches extinction. Possibility (a)
occurs with probability py. Conditional on the event that Z; = k, possibility (b) occurs with
probability £*. Therefore,

I=po+ D pF=0(0),
k=1

that is, the extinction probability { is a root of the Fixed-Point Equation (6).

There is an alternative proof that { = ¢({) that uses the iteration formula (5) for the prob-
ability generating function of Z,,. Observe that the probability of the event Z,, = 0 is easily
recovered from the generating function ¢, (¢):

P{Z,=0}= 90,2(0)

By the nature of the Galton-Watson process, these probabilities are nondecreasing in n, be-
cause if Z,, = 0 then Z,,; = 0. Therefore, the limit & := lim,,_,~, ¢,(0) exists, and its value is
the extinction probability for the Galton-Watson process. The limit & must be a root of the
Fixed-Point Equation, because by the continuity of ¢,

p(&)=y(lim ¢,(0))
= im ¢ (¢,(0)
= nILrgo (pn-t-l(o)

Finally, it remains to show that & is the smallest nonnegative root { of the Fixed-Point Equa-
tion. This follows from the monotonicity of the probability generating functions ¢,,: Since
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>0,
(Pn(o) < Son(g) =Z.
Taking the limit of each side as n — oo reveals that £ < Z. ]

It now behooves us to find out what we can about the roots of the Fixed-Point Equation (6).
First, observe that there is always at least one nonnegative root, to wit, ¢t = 1, this because ¢(t)
is a probability generating function. Furthermore, since Assumption 1 guarantees that ¢(t) is
strictly convex, roots of equation 6 must be isolated. The next proposition asserts that there
are either one or two roots, depending on whether the mean number of offspring u :=>_, kpy
is greater than one.

Definition 2. A Galton-Watson process with mean offspring number y is said to be supercritical
if u> 1, critical if u =1, or subcritical if u < 1.

Proposition 4. Unless the offspring distribution is the degenerate distribution that puts mass 1
at k = 1, the Fixed-Point Equation (6) has either one or two roots. In the supercritical case, the
Fixed-Point Equation has a unique root t = { < 1 less than one. In the critical and subcritical
cases, the only rootis t =1.

Together with Proposition 3 this implies that extinction is certain (that is, has probability
one) if and only if the Galton-Watson process is critical or subcritical. If, on the other hand, it
is supercritical then the probability of extinction is ¢ < 1.

Proof. By assumption, the generating function ¢(t) is strictly convex, with strictly increasing
first derivative and positive second derivative. Hence, if u = ¢’(1) < 1 then there cannot be a
root 0 < ¢ < 1 of the Fixed-Point Equation ¢ = ¢({). This follows from the Mean Value theorem,
which implies thatif { = ¢({)and 1 = (1) then there would be a point { < 8 < 1 where ¢’(6)=1.

Next, consider the case u > 1. If py = 0 then the Fixed-Point Equation has roots t = 0 and
t =1, and because ¢(¢) is strictly convex, there are no other positive roots. So suppose that
Po >0, so that ¢(0) = py > 0. Since ¢’(1) = u > 1, Taylor’s formula implies that () < t for values
of t < 1 sufficiently near 1. Thus, ¢(0)—0 > 0 and ¢(£,)— £, < 0 for some 0 < ¢, < 1. By the
Intermediate Value Theorem, there must exist { € (0, ¢,.) such that ¢({)— =0. ]

1.4. Tail of the Extinction Time Distribution. For both critical and subcritical Galton-Watson
processes extinction is certain. However, critical and subcritical Galton-Watson processes dif-
fer dramatically in certain respects, most notably in the distribution of the time to extinction.
This is defined as follows:

@ T=min{n>1: Z, =0}

Proposition 5. Let{Z,},>¢ bea Galton-Watson process whose offspring distribution F has mean
u < 1 and variance o> < 0o. Denote by T the extinction time. Then

(A) Ifu <1 then there exists C = Cp €(0,00) such that P{t > n}~ Cu" asn — oo.
(B) Ifu=1then P{t>n}~2/(c%n)asn— oo.
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Thus, in the subcritical case, the extinction time has an exponentially decaying tail, and
hence finite moments of all orders. On the other hand, in the critical case the extinction time
has infinite mean.

Proof. Firstnote that P{t > n} = P{Z, > 0}. Recall from the proof of Proposition 3 that P{Z,, =
0} = ¢,(0); hence,

P{t>n}=1-—¢,(0).
This shows that the tail of the distribution is determined by the speed at which the sequence
¢ ,(0) approaches 1. In the subcritical case, the graph of the generating function ¢(¢) has slope
u <1 att =1, whereas in the critical case the slope is u = 1. It is this difference that accounts
for the drastic difference in the rate of convergence.

Subcritical Case: Consider first the case where u = ¢’(1) < 1. Recall from the proof of Proposi-
tion 3 that in this case the sequence ¢,,(0) increases and has limit 1. Thus, for n large, ¢,,(0) will
be near 1, and in this neighborhood the first-order Taylor series will provide a good approxi-
mation to ¢. Consequently,

®) 1—0,11(0)=1—¢(©,(0)
=1—p(1—(1—,(0))
=1—(1—¢ (1)1 —p,(0))+ 01—, (0))
= (1= 9,(0)+ O(1— ¢,,(0))*.

If not for the remainder term, we would have an exact equality 1—¢,,,1(0) = u(1—¢,(0)), which
could be iterated to give

1—¢,(0)=pu"(1—go(0) =p".
This would prove the assertion (A). Unfortunately, the equalities are exact only in the special

case where the generating function ¢(¢) is linear. In the general case, the remainder term in
the Taylor series expansion (??) must be accounted for.

Because the generating function ¢(t) is convex, with derivative ¢’(1) = u, the error in the
approximation (8) is negative: in particular, for some constant 0 < C < 0o,

(1= 95(0) = C1— @, (0))* 1= 041(0) < (1= 0, (0).

The upper bound implies that 1 —¢,,(0) < u" (repeat the iteration argument above, replacing
equalities by inequalities!). Now divide through by u(1— ¢,,(0)) to get
PN (=9 (0)

u=(1=9,(0) ~
p " (1= 9,11(0)) <

u="(1—,(0))
Thus, successive ratios of the terms u~"(1— ¢,(0)) are exceedingly close to 1, the error decay-

ing geometrically. Since these errors sum, Weierstrass’ Theorem on convergence of products
implies that

1-C(1—pp(0) <

1-Cu" <

p"A—en0) .
nggom—nggou (1—¢,(0)):=Cp
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exists and is positive.

Critical Case: Exercise. (See Problem 4 below.) OJ

1.5. Asymptotic Growth Rate for Supercritical Galton-Watson Processes. Itis not hard to see
that if a Galton-Watson process Z,, is supercritical (that is, the mean offspring number u > 1)
then either Z,, = 0 eventually or Z,, — co. Here is an informal argument for the case where
po > 0: Each time that Z,, = K, for some K > 1, there is chance pOK that Z,,.; = 0. If somehow
the process Z,, were to visit the state K infinitely many times, then it would have infinitely many
chances to hit an event of probability pOK ; but once it hits this event, it is absorbed in the state
0 and can never revisit state K. This argument can be made rigorous:

Problem 2. Prove that if a Markov chain has an absorbing state z, and if x is a state such that
z is accessible from x, then x is transient.

If Z,, is supercritical, then it follows that with positive probability (=1-probability of extinc-
tion) Z,, — oo. How fast does it grow?

Theorem 6. There exists a nonnegative random variable W such that
9) Jim Z,/u" =W almost surely.

If the offspring distribution has finite second moment' and p.> 1 then the limit random variable
W is positive on the event that Z,, — 00.

Given the Martingale Convergence Theorem, the convergence (9) is easy; however, (9) is quite
difficult to prove without martingales. In section 2 below, I will prove an analogous conver-
gence theorem for a continuous-time branching process.

1.6. Problems.

Problem 3. Suppose that the offspring distribution is nondegenerate, with mean u # 1, and
let { be the smallest positive root of the Fixed-Point Equation. (A) Show that if u # 1 then the
root ¢ is an attractive fixed point of ¢, that is, ¢’({) < 1. (B) Prove that for a suitable positive
constant C,

{—=pn(0)~Co ()"
(Hence the term attractive fixed point.)

Problem 4. Suppose that the offspring distribution is nondegenerate, with mean y = 1. This is
called the critical case. Suppose also that the offspring distribution has finite variance o2. (A)
Prove that for a suitable positive constant C,

1—¢,(0)~C/n.

(B) Use the result of part (A) to conclude that the distribution of the extinction time has the
following scaling property: for every x > 1,

lim P(t>nx|t>n)=C/x.
n—0o0

lActually, itis enough that ), pyklogk < oo: this is the Kesten-Stigum theorem.
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HINT for part (A): The Taylor series approximation to ¢(t) at { = 1 leads to the following ap-
proximate relationship, valid for large n:

1= g0~ 1= 6,05 (1~ 9,0,

which at first does not seem to help, but on further inspection does. The trick is to change
variables: if x,, is a sequence of positive numbers that satisfies the recursion

2
Xps1 =X, —bx;,
then the sequence y, :=1/x,, satisfies

Yne1=Yn+b+b/y,+....

Problem 5. There’s a Galton-Watson process in myrandom walk! Let S,, be the simple nearest-
neighbor random walk on the integers started at Sy = 1. Define T to be the time of the first visit
to the origin, that is, the smallest n > 1 such that S,, = 0. Define Z; =1 and

T—1

Z =Z 1{X, =k and X,,,; =k +1}.

n=0
In words, Z, is the number of times that the random walk X, crosses from k to k +1 before first
visiting 0.

(A) Prove that the sequence {Z}. } ;> is a Galton-Watson process, and identify the offspring dis-
tribution as a geometric distribution.

(B) Calculate the probability generating function of the offspring distribution, and observe that
itis a linear fractional transformation. (See Ahlfors, Complex Analysis, ch. 1 for the definition
and basic theory of LFTs. Alternatively, try the Wikipedia article.)

(C) Use the result of (B) to find out as much as you can about the distribution of Z;..

(D) Show that T = Z >1 Zk is the total number of individuals ever born in the course of the
Galton-Watson process, and show that 7 (the extinction time of the Galton-Watson process) is
the maximum displacement M from 0 attained by the random walk before its first return to the
origin. What does the result of problem 4, part (B), tell you about the distribution of M?

2. YULE’S BINARY FISSION PROCESS

2.1. Definition and Construction. The Yule process is a continuous-time branching model,
in which individuals undergo binary fission at random times. It evolves as follows: Each in-
dividual, independently of all others and of the past of the process, waits an exponentially
distributed time and then splits into two identical particles. (It is useful for the construction
below to take the view that at each fission time the fissioning particle survives and creates one
new clone of itself.) The exponential waiting times all have mean 1. Because the exponential
random variables are mutually independent, the probability that two fissions will occur simul-
taneously is 0.

AYule process started by 1 particle at time 0 can be built from independent Poisson processes
as follows. Let {N;(#)} jen be a sequence of independent Poisson counting processes. Since the
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interoccurrence times in a Poisson process are exponential-1, the jump times in the Poisson
process N;(¢) can be used as the fission times of the jth particle; at each such fission time, a
new particle must be added to the population, and so a new Poisson process Ni(¢) must be
“activated”. Thus, the time T, at which the mth fission occurs can be defined as follows: set
1o =0 and

m
(10) T,,=min{t > T,_, :Z(Nj(x)—Nj(Tm_l)):u.

j=1
Thus, T, is the first time after T,,_; that one of the first m Poisson processes jumps. The size
Z, of the population at time ¢ is then

(11) Zi=m for T, 1<t<T,.
A similar construction can be given for a Yule process starting with Z; = k > 2 particles: just

change the definition of the fission times T,,, to
m+k—1
(12) T, =min{t > T,_, : Z (N;(£)= Nj(Tp_1)) =1}
j=1
Alternatively, a Yule process with Z, = k can be gotten by superposing k independent Yule
processes Z; all with Z] =1, that is,

k
(13) Z,=> 7}
j=1

Problem 6. Show that by suitably indexing the Poisson processes in the first construction (12)
one can deduce the superposition representation (13).

Problem 7. Calculate the mean EZ; and variance var(Z,) of the population size in a Yule pro-
cess. For the mean you should get EZ; = e’. HINT: Condition on the time of the first fission.
2.2. Asymptotic Growth.

Theorem 7. Let Z, be the population size at time t in a Yule process with Zy=1. Then

(14) Z et S w

where W has the unit exponential distribution.

The proof has two parts: First, it must be shown that Z; /e’ converges to something; and
second, it must be shown that the limit random variable W is exponentially distributed. The
proof of almost sure convergence will be based on a careful analysis of the first passage times
T,, defined by (10). Convergence of Z, /e’ to a positive random variable W is equivalent to
convergence oflog Z;, —t to a real-valued limit log W. Since Z; is a counting process (that is, it
isnondecreasing in ¢ and its only discontinuities are jumps of size 1), convergence oflogZ, —t

is equivalent to showing that there exists a finite random variable Y = —log W such that for any
£>0,

(15) %i_l)lgo(Tm —logm)=Y.

To accomplish this, we will use the following consequence of the construction (10).
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Proposition 8. Let T,, be the fission times in a Yule process Z, with Zy = k. Then the interoccur-
rence times T, := T,, — T,,,_; are independent, exponentially distributed random variables with
expectations Et,,=1/(m+k—1).

Proof (Sketch). The random variable T,), is the first time after T,,_; at which one of the Poisson
processes N;(t), for 1 < j < m+k—1, has a jump. Times between jumps in a Poisson process
are exponentially distributed with mean 1, and jump times in independent Poisson processes
are independent. Thus, the time until the next jump in m independent Poisson processes is
the minimum of m independent exponentials, which is exponentially distributed with mean
1/m.

This is not quite a complete argument, because the “start” times 7T},, are random. However,
it is not difficult (exercise!) to turn the preceding into a rigorous argument by integrating out
over the possible values of T, and the possible choices for which Poisson processes jump at
which times. O

The family of exponential distributions is closed under scale transformations: In particular,
if Y is exponentially distributed with mean 1 and a > 0 is a scalar, then aY is exponentially
distributed with mean a. Since the variance var(Y') of a unit exponential is 1, it follows that the
variance var(aY) of an exponential with mean « is a?. Consequently, if 7, = T,, — T,,_; is the
time between the (1 — 1)th and the mth fission times in a Yule process with Z; =1, then

(16) ETpm=m' and var(t,.)=m">2,
and so
m m
17) ETpa=» k' ~logm and var(Tp. )= > k?—{(2)<oo
k=1 k=1

as m — oo, where {(2) = ZZ; k2. In particular, the variance of T}, remains bounded as
m — o0, and so the distribution of T, remains concentrated around log m. In fact, 7,, —logm
converges, to a possibly random limit, by the following general result about random series of
independent random variables:

Theorem 9. Let X; be independent random variables with mean E X; = 0 and finite variances
var(X;) = a?. Then

oo
(18) ZO‘?Z=O‘2<OO = lim X;j:=S§

exists and is finite with probability one, and the limit random variable S has mean zero and
variance 0.

A proof of Theorem 9, based on Wald’s Second Identity, is given in section 3 below. Modulo
this, we have proved (15), and hence that W = lim,_,o, Z, /e’ exists and is finite and strictly
positive with probability 1.
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2.3. Characterization of the Exponential Distributions. Itremains to show that the limit ran-
dom variable W is exponentially distributed with mean 1. For this, we appeal to self-similarity.
Let T = T; be the time of the first fission. At this instant, two identical offspring particles are
produced, each of which engenders its own Yule process. Thus,

(19) Z,=1 ift<T and
Zi=Z,_ +Z , ift>T

where Z and Z are independent Yule processes — and independent of the fission time T —
each started with Z; = Z)' = 1 particle. Divide each side by e’ and let t — co to get

(20) W=e (W +W")=UW +W")

where T is a unit exponential and W’, W” are independent replicas of W, both independent
of T. Note that U = e~ is uniformly distributed on the unit interval.

Proposition 10. If W is a positive random variable that satisfies the distributional equation
(20) then W has an exponential distribution. Conversely, there exist (on some probability space)
independent unit exponential random variables T, W/, W" such that the random variable W
defined by (20) also has the unit exponential distribution.

Proof. The converse half is easy, given what we know about Poisson processes: Take a unit-
intensity Poisson process N, and let v be the time of the second occurrence. Then v is the
sum of two independent unit exponentials. Furthermore, we know that the time of the first
occurrence is, conditional on v, uniformly distributed on the interval [0, v]. Thus, if we multiply
v by an independent uniform-[0,1], we obtain a random variable whose distribution coincides
with that of the time of the first occurrence in a Poisson process. (Note: The random variable
U v so obtained is not the same as the time of first occurrence in N;, but its distribution must
be the same.)

The direct half is harder. I will show that if W is a positive random variable that satisfies (20)
then its Laplace transform

@1 @(0):=Ee W

must coincide with the Laplace transform of the exponential distribution with mean «, for
some value of @ > 0. By the Uniqueness Theorem for Laplace transforms, this will imply that
W has an exponential distribution. The strategy will be to take the Laplace transform of both
sides of (20), and to split the expectation on the right side into two, one for the event {U < 1—¢}
and the other for {U > 1—¢}. Letting ¢ — 0 will then lead to a first-order differential equation
for ¢(0) whose only solutions coincide with Laplace transforms of exponential distributions.
The sordid details: equation (20) and the independence of U, W/, W” imply that for any & > 0
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and every 6 >0,

1
@(0)=Ee " = f Ee 0 W" gy
0

1—¢ 1
:f Ee—u@(W’+W”)du+f Ee—uG(W’+W”)du
0 1

—€
1 1
= f Ee 00 WY gy (1 —g) +f Ee “OW g0 gy
0

1—-¢
1

=(1—£)¢(9—9£)+J o(ubPdu

1—¢

Subtract ¢(8(1— ¢€)) from both sides and divide by ¢ to get

1
so(e)—sow—ee):_w_eg)%f p(ubRdu.
1

£ —&€

Now take £ — 0 and use the continuity and boundedness of ¢(8) together with the Fundamen-
tal Theorem of Calculus to conclude that

(22) —0¢'(0)=—p(0)+p(6)*.

It is easily checked that for any a > 0 the Laplace transform ¢,(68) = a/(a¢+8) of the exponential
distribution with mean 1/a > 0 is a solution of the differential equation (22). This gives a one-
parameter family of solutions; by the uniqueness theorem for first-order ordinary differential
equations, it follows that these are the only solutions. g

3. CONVERGENCE OF RANDOM SERIES

This section is devoted to the proof of Theorem 9. Assume that X;, X,,... are independent
random variables with means E X; = 0 and finite variances 05 = EX?, and foreachn=0,1,2,...
set

n
(23) S$u= > X;.
=1

Wald’s Second Identity . For any bounded stopping time T,

T
(24) ES{=E o,
j=1

Proof. Since T is a stopping time, for any integer k > 1 the event {T > k} ={T > k—1} depends
only on the random variables X; for i < k, and hence is independent of X;.. In particular, if j < k
then EX; X 1{T > k} = EX;1{T > k}E X} = 0. Now suppose that T is a bounded stopping time;



BRANCHING PROCESSES 13

then T < m almost surely for some integer m > 1. Thus,

m 2
ES:=E (ZXkl{T > k})

k=1

EX2U{T >k} +2 Z EX; X 1{T > k}

1<j<k<m

EX;U{T >k}

EX;El{T >k}

M= TV TV TM:

oL E{T > k}

s
Il

1
T
=E (Z O'i) .
k=1
O

Corollary 11. (L?> Maximal Inequality) Assume that the total variance o? := Z;’il 0% < oo.
Then for any a >0,

o2
(25) P{sup|S,|> a} < —.
n>1 a?

Proof. Define T to be the first n such that |S,,| > a, or +00 if there is no such n. The event
of interest, that sup|S,,| > @, coincides with the event {T < oo}. This in turn is the increasing
limit of the events {T' < m} as m — oo. Now for each finite m the random variable T A m is a

bounded stopping time, so Wald’s Identity implies

TAm
2 _ 2 2
EST/\m_E E o <o°.
j=1

Hence,
&’P{T <m}<ES;, WT<m}<ES;, <o’
O

Convergence of Random Sequences: Strategy. Let {s,},>; be a sequence of real (or complex)
numbers. To show that the sequence s,, converges, it suffices to prove that it is Cauchy; and for
this, it suffices to show that for every k > 1 (or for all sufficiently large k) there exists an integer
n; such that

(26) [$p, — Snl < 27% foralln > n,.

Now suppose that the sequence S,, is random. To prove that this sequence converges with prob-
ability one, it suffices to exhibit a sequence of integers 7 such that the complements G, of the
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events
@7 Gy :={|Snk_sn|S2_kVn2nk}

occur only finitely many times, with probability one. For this, it is enough to prove that

oo o
(28) D P(GH=E D 15 <00,
k=1 k=1

because if the expectation is finite then the random count itself must be finite, with probability
one. This is the Borel-Cantelli criterion for convergence of a random series.

Proof of Theorem 9. Assume then that the random variables S,, are the partial sums (23) of

independent random variables X; with means E X; =0 and variances EX ]2 = a? such that the

total variance 02 =Y’ j 0'? < 00. Then for every k > 1 there exists n; < 0o such that

oo
Z oi<g*,

J=nk
By the Maximal Inequality,
P(G{)=P{sup|S,—S, |>27*}<g7F/a7F =27F
n=ny

Since > ;. 27% < 00, the Borel-Cantelli criterion is satisfied, and so the sequence S,, is, almost
surely, Cauchy, and therefore has a finite limit S. Exercise: If you know the basics of measure
theory, prove that ES =0 and ES? = o2. Hint: First show that S,, — S in L2, and conclude that
the sequence S,, is uniformly integrable.

O

4. THE POLYA URN

4.1. Rules of the game. The Polya urn is the simplest stochastic model of self-reinforcing be-
havior, in which repetition a particular act makes it more likely that the same act will be re-
peated in the future. Suppose that every afternoon you visit a video-game arcade with two
games: MS. PAC-MAN and SPACE INVADERS. On the first day, not having played either game
before, you choose one at random. With each play, you develop a bit more skill at the game you
choose, and your preference for it increases, making it more likely that you will choose it next
time: In particular, if after n visits you have played Ms. PAC-MAN R,, times and SPACE INVADERS
B, = n— R, times, then on the (n + 1)st day the chance that you decide to put your quarter in
SPACE INVADERS is
__B,+1
" on42]

It is natural to ask if after a while your relative preferences for the two games will begin to sta-
bilize, and if so to what?

It is traditional to re-formulate this model as an urn model. At each step, a ball is chosen at
random from among the collection of all balls (each colored either RED or BLUE) in the urn, and
is then replaced, together with a new ball of the same color. More formally:
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Definition 3. The Polya urn is a Markov chain (R, B,)) on the space N x N of positive integer
pairs (7, b) with transition probabilities

29) p((r,b),(r+1,b))=r1/(r +b),
p((r,b),(r,b+1))=b/(r +Db).

The defaultinitial stateis (1, 1). The associated sampling process is the sequence X,, of Bernoulli
random variables defined by X,, =1ifR,,,; =R, +1and X,, =0if R,,;; = R,,.

4.2. The Polya urn and the Yule process. Hidden within the Yule binary fission process is a
Polya urn. Here’s how it works: Start two independent Yule processes YtR and YtB , each having
one particle at time 0 (thus, YOR = YOB =1). Mark the particles of the process YtR “red”, and those
of the process Y,® “blue”. Set

Y, =Y +Y"
then Y; is itself a Yule process, with initial state Y, = 2.

Start the Yule process with two particles, one RED, the other BLUE. (Or, more generally, start
itwith ry red and by blue.) Recall that at the time T;,, of the mth fission, one particle is chosen at
random from the particles in existence and cloned. This creates a new particle of the same color
as its parent. Thus, the mechanism for duplicating particles in the Yule process works exactly
the same way as the replication of balls in the Polya urn: in particular, the sequence of draws
(RED or BLACK) made at times T;, T,... has the same law as the sampling process associated
with the Polya urn.

(To be continued.)



