STATISTICS 251 HOMEWORK ASSIGNMENT 6 DUE FRIDAY NOVEMBER 3

Problem 1. Suppose that a particle is fired from the origin in the (x, y)-plane in a straight line in a direction at a random angle Θ to the *x*-axis. Assume that Θ has the uniform distribution on the interval $(-\pi/2, \pi/2)$, so that the particle will eventually cross the line x = 1. Let (1, Y) be the (random) point at which the particle crosses the line x = 1. NOTE: See Pitman, page 310 for a diagram.

(a) Show that *Y* has the *Cauchy* density

$$f_Y(y) = \frac{1}{\pi(1+y^2)}.$$

(b) Suppose now that Θ has the uniform distribution on the interval $(0, \pi/2)$, so that the point (1, Y) of intersection has a *positive y*-coordinate *Y*. What is *EY*?

Problem 2. Let U_1, U_2, \ldots be independent random variables all uniformly distributed on the unit interval.

(a) Show that for any positive number *t*,

$$\lim_{n \to \infty} P\{\min_{1 \le i \le n} U_i \le t/n\}$$

exists, and identify the limit. HINT: $x = e^{\log x}$.

(b) Assume that *n* is odd, and let M_n be the *sample median* of the random variables U_1, U_2, \ldots, U_n . Show that for any real number *t*,

$$\lim_{n \to \infty} P\{\sqrt{n}(M_n - \frac{1}{2}) \le t\}$$

exists, and find it.

Problem 3. Buses arrive at 116th and Broadway at the times of a Poisson arrival process with intensity λ arrivals per hour. These may either be M104 buses or M6 buses; the chance that a bus is an M104 is .6, while the chance that it is an M6 is .4, and the types (M6 or M104) of successive buses are independent.

(a) If I wait for an M104 bus, what is the chance that I will wait longer than *x* hours?

(b) What is the probability that two M6 buses and no M104 buses arrive in the first x hours?

(c) What is the expected number of hours until the third M6 arrives?

(d) What is the *variance* of the number of hours until the third M6 arrives?

Problem 4. Let $U_1, U_2, ...$ be independent random variables all uniformly distributed on the unit interval, and let *N* be the first integer $n \ge 2$ such that $U_n > U_{n-1}$. Show that for each real number $0 \le u \le 1$,

- (a) $P(U_1 \le u \text{ and } N = n) = \frac{u^{n-1}}{(n-1)!} \frac{u^n}{n!}.$ (b) $P(U_1 \le u \text{ and } N \text{ is even}) = 1 - e^{-u}.$
- (b) $T(C_1 \leq u$ and T(Seven) = 1 e(c) EN = e.

Problem 5. Let $m, n \ge 1$ be two positive integers, and let $X_0, X_1, X_2, \ldots, X_{m+n}$ be independent random variables all with the uniform density on the unit interval [0, 1]. Let A_m be the event that X_0 is the (m + 1)th largest number in the sample $X_0, X_1, X_2, \ldots, X_{m+n}$. (In other words, A_m is the event that there are exactly m values in the sample $X_1, X_2, \ldots, X_{m+n}$ such that $X_i \le X_0$.)

- (a) Without evaluating any integrals, evaluate $P(A_m)$.
- (b) Without using the answer to (a), show that

$$P(A_m) = \iint \dots \int_{F_m} 1 \, dx_1 dx_2 \dots dx_{m+n} dx_0$$

where F_m is the set of all points $(x_0, x_1, \ldots, x_{m+n})$ such that exactly m of the coordinates $x_1, x_2, \ldots, x_{m+n}$ are below x_0 .

(c) Show that for each value of x_0 , the inner (m + n)-fold integral in part (b) evaluates to

$$\binom{n+m}{m}x_0^m(1-x_0)^n.$$

(d) Use the results of (a), (b), (c) to evaluate the integral

$$\int_0^1 v^m (1-v)^n \, dv$$