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Abstract

We consider solutions of the Schrödinger equation with a weak time-dependent random poten-
tial. It is shown that when the two-point correlation function of the potential is rapidly decaying
then the Fourier transform ζ̂ε(t, ξ) of the appropriately scaled solution converges point-wise in ξ to
a deterministic limit, exponentially decaying in time. On the other hand, when the two-point cor-
relation function decays slowly, we show that the limit of ζ̂ε(t, ξ) has the form ζ̂0(ξ) exp(iBκ(t, ξ))
where Bκ(t, ξ) is a fractional Brownian motion.

1 Introduction and the main results

We consider solutions of the Schrödinger equation

i
∂φ

∂t
+

1
2
∆φ− γV (t, x)φ = 0, x ∈ Rd, (1.1)

φ(0, x) = φ0(x),

with a random potential V (t, x) in the spatial dimension d ≥ 1. Here γ � 1 is the small parameter
that measures the relative strength of the (weak) random fluctuations. The long time behavior of
the Wigner transform [13] of the solutions of (1.1) defined as

W (t, x, k) =
∫

eik·yφ(x− y

2
)φ∗(t, x +

y

2
)

dy

(2π)d

has been extensively studied in the past: it can be shown that a properly rescaled (to allow for long
distance and large time propagation) limit of E(W (t, x, k)) converges as γ → 0 to the solution of the
radiative transport equation [3, 4, 7, 8, 9, 14, 18, 24]

W̄t + k · ∇xW̄ =
∫

R̂(p− k,
p2 − k2

2
)(W̄ (t, x, p)− W̄ (t, x, k))dp. (1.2)

This result holds under the assumption that V (t, x) is a spatially and temporally homogeneous
mean-zero random field with the two-point correlation function

R(t, x) = E[V (s, y)V (t + s, x + y)],
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whose power spectrum

R̂(ω, k) =
∫

R(t, x)e−ik·x−iωtdxdt

appears in (1.2). In addition, it has been shown that the limit is often self-averaging, that is, given
any test function η(x, k) ∈ S(R2d), 〈W,η〉 → 〈W̄ , η〉 in probability [1, 2, 4, 5, 6, 20, 21]. However,
this result does not hold strongly, that is, point-wise in x and k. Here we denoted

〈W,η〉 =
∫

W (x, k)η(x, k)dxdk.

On the other hand, surprisingly, the solution φ(t, x) of (1.1) itself seems to be much less stud-
ied – an obvious reason for this is that φ(t, x) becomes highly oscillatory after propagation on long
distances while the Wigner transform is a macroscopic quantity. The goal of the present paper is
to understand the behavior of φ(t, x) after propagation over long distances and also to study the
effect of the slow spatial and temporal decay of the correlation function R(t, x) on the behavior of
solutions, long time limit and self-averaging properties.

We are interested in the long time, large propagation distances effect of the random inhomo-
geneities, so we consider temporal and spatial scales of the order t ∼ O(ε−1) and x ∼ O(ε−1) with
ε = ε(γ) � 1 a small parameter depending on γ, to be determined later. Finding an appropriate
length and time scale O(ε−1), on which one observes a non-trivial behavior, as functional of γ � 1 is
part of the problem. Let us recast (1.1) as an equation for the rescaled function φε(t, x) = φ(t/ε, x/ε):

iε
∂φε

∂t
+

ε2

2
∆φε − γV (

t

ε
,
x

ε
)φε = 0, (1.3)

φε(0, x) = φ0(x/ε).

In particular, we have φ̂ε(0, ξ) = εdφ̂0(εξ). We assume that the spatial power spectrum has the form

R̃(t, k) = e−g(k)|t|R̂(k), (1.4)

where R̂(k) ∈ L1(Rd), and

R̃(t, k) =
∫

e−ik·xR(t, x)dx.

The space-time power energy spectrum is then

R̂(ω, k) =
2g(k)R̂(k)
ω2 + g2(k)

. (1.5)

Rapidly decaying correlations. The first result of this paper is the following theorem con-
cerning the usually considered situation when the function R(t, x) is rapidly decaying.

Theorem 1.1 Assume that V (t, x) is a spatially homogeneous mean-zero Gaussian and Markovian
in time random field with the two-point correlation function R(t, x) and the spatial power spectrum
R̃(t, k) of the form (1.4) with ∫

R̂(p)dp

g(p)
< +∞. (1.6)

Let ε = γ2, and define

ζ̂ε(t, ξ) =
1
εd

φ̂ε(t, ξ/ε)ei|ξ|2t/(2ε). (1.7)
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Then, for each t ∈ R and ξ ∈ Rd fixed, ζ̂ε(t, ξ) converges in probability, as ε → 0, to

ζ̄0(t, ξ) = φ̂0(ξ)e−
1
2
Dξt, (1.8)

where

Dξ = 2
∫

R̂(p)
g(p)− i(ξ · p− |p|2/2)

dp

(2π)d
= 2

∫
R̂(ξ − p)

g(ξ − p) + i
( |p|2

2 − |ξ|2
2

) dp

(2π)d
. (1.9)

This result agrees with the qualitative predictions of the kinetic theory: roughly speaking, the field
ζ̂(t, ξ) captures the ballistic part of the solution of the radiative transport equation (1.2) that decays
exponentially in time. In the geometric optics regime (that is different from the weak coupling
regime considered here) a result similar to Theorem 1.1 could be deduced using [2, 5]. We stress
that, somewhat surprisingly, the phase has a deterministic limit after subtracting the fast phase
contribution ei|ξ|2t/ε. Moreover, the self-averaging limit holds point-wise in ξ: no averaging or
integration against a test function is required. This is different from the previous results in the
literature for the Wigner transform mentioned above where some averaging in phase space is always
required.

Slowly decaying correlations. Suppose now that the spatial power spectrum has the form

R̂(p) =
a(p)

|p|2α+d−2
(1.10)

and the spectral gap is
g(p) = µ|p|2β (1.11)

for some α < 1, 0 ≤ β ≤ 1/2, µ > 0, and a compactly supported, non-negative, bounded measurable
function a(p). We assume that a(p) is continuous at p = 0 and a(0) > 0. Observe that in order
for (1.6) to hold we need to assume that α + β < 1. Our second result concerns the case when the
correlation function decays slowly so that α+β > 1. This implies that α ∈ (1

2 , 1). Let us first define
the constants

K1(α, β, µ) = Ωd

∫ +∞

0
e−µρ2β dρ

ρ2α−1
, (1.12)

where Ωd is the surface area of the unit sphere in Rd, and

K2(ξ;α, µ) =
∫ +∞

0
e−µρ dρ

ρ2α−1

∫
Sd−1

ei|ξ|ρω·e1S(dω). (1.13)

Theorem 1.2 Assume that the two-point space-time correlation function R(t, x) has the form (1.4)
with R̂(p) and g(p) as in (1.10) and (1.11), and that α + β > 1, 1/2 < α < 1 and β ≤ 1/2. Let
ε = γ1/κ, with κ = (α + 2β − 1)/(2β) = 1 − 1−α

2β . Then, for each t ∈ R and ξ ∈ Rd fixed, ζ̂ε(t, ξ)
converges in law, as ε → 0 to the random variable

ζ̄0(t, ξ) = φ̂0(ξ)ei
√

D(ξ)Bκ(t), (1.14)

where Bκ(t; ξ) is a standard scalar fractional Brownian motion and its variance D is given by

D =
a(0)K1(α, β, µ)

2κ(2π)d
. (1.15)

when β < 1/2, and

D(ξ) =
a(0)K2(ξ;α, µ)

2α(2π)d
, (1.16)

when β = 1/2.
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We note that there are several important differences between the rapidly decorrelating case con-
sidered in Theorem 1.1 and the slowly decorrelating case in Theorem 1.2. First of all, the time
scale of ζ̂ε(t, ξ) now is not γ−2 but rather γ−1/κ. In particular, it is no longer universal but rather
depends on the parameters α and β when α + β > 1. On the other hand, if we fix the ratio ε
of the overall propagation distance and the correlation length of the medium, then the strength of
the heterogeneities γ = εκ = ε1−(1−α)/2β that produces a non-trivial effect also decreases when α
and β increase. This shows that weaker fluctuations generate a macroscopic effect in the presence
of long range (in space and time) correlations. The main qualitative difference between the two
regimes, however, is that the phase is no longer self-averaging: the limit is truly stochastic and has
a self-similar behavior.

Let us also point out a difference between the evolution of the energy and the phase of the wave:
while Theorems 1.1 and 1.2 show that the time scale on which the phase evolves depends very much
on the nature of the correlations of the random medium this does not seem to be the case for the
wave energy. Indeed, while the total scattering cross-section

Σ =
∫

R̂(p− k,
p2 − k2

2
)dp

is infinite in the regime of slowly decaying correlations, with the parameters α and β as in The-
orem 1.2, the transport equation (1.2) still makes sense because of the regularizing effect of the
difference W (t, x, p) − W (t, x, k) that appears in the right side of (1.2). Hence, we believe that
even in this range of parameters wave energy evolves on the time scale O(γ−2), as in the rapidly
decorrelating case. Thus, the slow decay of correlations leads to time-separation of the energy and
phase evolutions, a phenomenon we plan to address in detail elsewhere.

Let us mention that to the best of our knowledge the first study of wave propagation in random
media with slowly decaying correlations was done in the one-dimensional case [12, 19] where it
was shown that a pulse going through a random medium with long range correlations performs a
fractional Brownian motion around its mean position, as opposed to the regular Brownian motion
in the rapidly decorrelating case [11]. On the other hand, motion of particles in such random media
leading to fractional Brownian limits was considered in [10, 16, 17]. The main contributions of the
present paper are that, first, the full limit process of the wave field is identified (we are not aware
of any such results for waves in any regime in dimensions higher than one), and, second, it is shown
that slow decay of correlations may induce loss of self-averaging properties.

The paper is organized as follows: in Section 2 we consider the Duhamel expansion for (1.1)
that is the basis for our considerations. We prove Theorem 1.1 in Section 3 and Theorem 1.2 in
Section 4. In both proofs we first identify the limit of E(ζ̂ε(t, ξ)) by summing the Feynman diagrams
for the Duhamel expansion – this is the same strategy used in [7, 8, 9] to obtain the kinetic limit in
the rapidly decorrelating case. Here, however, the diagram estimation is simpler since the potential
is time-dependent. On the other hand, the new aspect in the case of slowly decaying correlations
is that all diagrams contribute to the limit and not only the ladder diagrams as in the rapidly
decorrelating case. The next step in the proofs of Theorems 1.1 and 1.2 is to identify the limit of the
higher moments of ζ̂ε(t, ξ). It suffices to consider the second moment in order to prove convergence
in probability in Theorem 1.1, while all moments have to considered in the proof of Theorem 1.2 to
identify the limit process since the limit is not deterministic.
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and ONR grant N00014-04-1-0224. This work has been also partly supported by Polish Ministry of
Science and higher Education Grant N 20104531. In addition T.K. aknowledges the support of EC
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2 The Duhamel expansion

We may re-write (1.3) as an integral in time equation

φ̂ε(t, ξ) = φ̂0(ξ)e−iε|ξ|2t/2 +
γ

iε

∫ t

0

∫
V̂ (s1/ε, dp1)

(2π)d
φ̂ε(s1, ξ −

p1

ε
)e−iε|ξ|2(t−s1)/2ds1.

Hence, the function ζ̂ε(t, ξ) given by (1.7) solves

ζ̂ε(t, ξ) = φ̂0(ξ) +
γ

iε

∫ t

0

∫
V̂ (s1/ε, dp1)

(2π)d
ζ̂ε(s1, ξ − p1)ei(|ξ|2−|ξ−p1|2)s1/(2ε)ds1, (2.1)

as ζ̂(0, ξ) = φ̂0(ξ). Iterating (2.1) leads to an infinite series expansion for ζ̂ε(t, ξ):

ζ̂ε(t, ξ) =
∞∑

n=0

ζ̂ε
n(t, ξ), (2.2)

with the individual terms of the form

ζ̂ε
n(t, ξ) =

[
γ

iε(2π)d

]n ∫
∆n(t)

ds(n)

∫
V̂ (

s1

ε
, dp1) . . . V̂ (

sn

ε
, dpn)φ̂0(ξ−p1−· · ·−pn)eiGn(s(n),p(n))/ε, (2.3)

with the phase

Gn(s(n),p(n)) =
n∑

k=1

(|ξ−p1−· · ·−pk−1|2−|ξ−p1−· · ·−pk|2)
sk

2
= An(s(n),p(n))−Bn(s(n),p(n)). (2.4)

Here we use the notation p0 = 0, s(n) = (s1, . . . , sn) ∈ Rn, p(n) = (p1, . . . , pn) ∈ Rnd, so that
ds(n) = ds1ds2 . . . dsn. We have also split the phase into

An(s(n),p(n)) =
n∑

m=1

(ξ · pm)sm, (2.5)

Bn(s(n),p(n)) =
n∑

m=1

smpm ·

m−1∑
j=1

pj

+
1
2

n∑
m=1

sm|pm|2.

Finally, ∆n(t) denotes the time simplex

∆n(t) = {(s1, s2, . . . , sn) : 0 ≤ sn ≤ sn−1 ≤ · · · ≤ s1 ≤ t}.

The next proposition shows that the series (2.2) converges almost surely and, moreover, one can
take the expectation term-wise for ε > 0 and γ > 0 fixed. This will allow us to work with term-wise
estimates for each E(ζ̂n

ε ) separately in the proof of Theorems 1.1 and 1.2.

Proposition 2.1 (i) The series (2.2) for the function ζ̂ε(t, ξ) converges almost surely for all values
of γ, ε ∈ (0, 1) and φ0 ∈ C∞

c (Rd). (ii) Moreover, for each (t, ξ) ∈ R1+d fixed, we have

Eζ̂ε(t, ξ) =
∞∑

n=0

Eζ̂ε
n(t, ξ). (2.6)
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Proof. We may assume without loss of generality that γ = ε = 1. Let θρ(p) = (1 + |p|2)ρ for any
ρ ∈ R, and set d∗ = [d/2] + 1. The right side of (2.3) can be rewritten as follows:

ζ̂ε
n(t, ξ) =

1
(2π)nd

∫
∆n(t)

ds(n)

∫ n∏
k=1

[
θ4d∗(pk)V̂ (sk, dpk)

]
φ̂0(ξ −

n∑
j=1

pj)eiGn(s(n),p(n))
n∏

k=1

θ−4d∗(pk)

=
∫

∆n(t)

ds(n)

∫ n∏
k=1

W (sk, xk)fn(−x1, . . . ,−xn)dx(n), (2.7)

where W (s, x) = (I −∆x)4d∗V (s, x), and

f̂n(p1, . . . , pn) = φ̂0(ξ −
n∑

j=1

pj)eiGn(s(n),p(n))
n∏

k=1

θ−4d∗(pk)

while dx(n) = dx1 . . . , dxn. We can further transform the utmost right side of (2.7) as follows

ζ̂ε
n(t, ξ) =

∫
∆n(t)

ds(n)

∫ n∏
k=1

[θ−d∗(xk)W (sk, xk)] gn(−x1, . . . ,−xn)dx(n), (2.8)

where

gn(x1, . . . , xn) =
n∏

k=1

[θd∗(xk)] fn(x1, . . . , xn) (2.9)

=
1

(2π)nd
F
{

(I −∆p1)
d∗ . . . (I −∆pn)d∗

[
f̂(p1, . . . , pn)

]}
(−x1, . . . ,−xn).

The following lemma can be concluded directly from (2.9) and the choice of d∗.

Lemma 2.2 There exists a constant M > 0 such that

‖gn‖∞ ≤ Mn, ∀n ≥ 1.

We now recall Theorem 3.2 of [22].

Lemma 2.3 Let W (t, x) be a stationary, continuous trajectory Gaussian field W (t, x) with a two-
point correlation function RW (h, x) = E(W (t, y)W (t + h, y + x)). Assume that there exist C > 0
and r > 0 such that |RW (h, x)−RW (0, 0)| ≤ C(|h|+ |x|)r for all |h|+ |x| ≤ 1. Then, for any γ > 1
there exists a positive random variable F such that

sup
t∈[0,T ]

|W (t, x;ω)| ≤ F (ω)(1 + log+ |x|)γ/2, ∀x ∈ Rd. (2.10)

In addition, there exists a constant C > 0 such that

P[F ≥ λ] ≤ Ce−λ2/C , ∀λ > 0. (2.11)

Combining the above two lemmas we can estimate the right hand side of (2.8) by

[CF (ω)]n

n!

{∫
θ−d∗(x)(1 + log+ |x|)γ/2dx

}n

, (2.12)

which proves part (i) of Proposition 2.1. Part (ii) follows from estimate (2.12) and the tail estimates
of random variable F given in (2.11). �
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3 Proof of Theorem 1.1

We now prove Theorem 1.1, that is, we consider the case when the two-point correlation function
decays sufficiently rapidly so that the phase obeys a deterministic limit. We shall assume in the
course of the proof of Theorem 1.1 that γ = ε1/2.

Outline of the proof

The proof is based on working with the Duhamel expansion (2.2) and, in particular, with the
series (2.6) for E(ζ̂ε(t, ξ)). The first step in the proof is the following uniform bound for the individual
terms of (2.6).

Proposition 3.1 For all T > 0, n ≥ 0 and all ξ ∈ Rd \ {0} there exists a constant C(T ) such that

sup
t∈[0,T ]

|Eζ̂ε
n(t, ξ)| ≤ Cn(T ; ξ)

n!
(3.1)

for all ε ∈ (0, 1].

As a consequence, we may interchange the limit ε ↓ 0 and the summation in n.

Corollary 3.2 We have

lim
ε↓0

Eζ̂ε(t, ξ) =
∞∑

n=0

lim
ε↓0

Eζ̂ε
n(t, ξ), (3.2)

for all t ∈ R and ξ ∈ Rd \ {0}.

Next, we identify the limit of the individual terms in the right side of (3.2).

Proposition 3.3 We have Eζ̂ε
n(t, ξ) = 0 when n is odd and

lim
ε↓0

Eζ̂ε
2n(t, ξ) = φ̂0(ξ)

(−tDξ)n

2nn!
(3.3)

for all t ∈ R, n ∈ N and ξ ∈ Rd \ {0}.

This implies convergence of the expectation:

Corollary 3.4 We have
lim
ε↓0

Eζ̂ε(t, ξ) = φ̂0(ξ)e−tDξ/2, (3.4)

for all t ∈ Rand ξ ∈ Rd \ {0}.

The final step is to establish the following result, which implies, in particular, Theorem 1.1.

Proposition 3.5 We have, for all t ≥ 0 and ξ 6= 0:

lim
ε↓0

E[ζ̂ε(t, ξ)]2 = [ζ̄0(t, ξ)]2. (3.5)
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Proof of Proposition 3.1

Of course, only the case of even n-s requires a proof as the expectation vanishes for n odd. Note
that

|Eζ̂ε
2n(t, ξ)| =

[
1

ε1/2(2π)d

]2n

∣∣∣∣∣∣∣
∫

∆2n(t)

ds(2n)

∫
E
[
V̂ (

s1

ε
, dp1) . . . V̂ (

s2n

ε
, dp2n)

]
φ̂0(ξ − p1 − · · · − p2n)

×eiGn(s(2n),p(2n))/ε
∣∣∣ ≤ Cn‖φ0‖∞

εn

∫
∆2n(t)

ds(2n)

∫ ∣∣∣E [V̂ (
s1

ε
, dp1) . . . V̂ (

s2n

ε
, dp2n)

]∣∣∣
=

Cn‖φ0‖∞
(2n)!εn

∫ t

0
. . .

∫ t

0
ds(2n)

∫ ∣∣∣E [V̂ (
s1

ε
, dp1) . . . V̂ (

s2n

ε
, dp2n)

]∣∣∣ . (3.6)

The last step above uses the symmetry of the integrand in s1, . . . , s2n that brings about the factorial
in the dominator. Using the relation

E
[
V̂ (t, dp)V̂ (s, dq)

]
= (2π)de−g(p)|t−s|δ(p + q)R̂(p)dpdq, (3.7)

and the rules of computing 2n-th joint moment of mean zero Gaussian random variables we conclude
that the right hand side of (3.6) can be estimated by

Cn‖φ0‖∞
(2n)!εn

∑
F

∫ t

0
. . .

∫ t

0
ds(2n)

∫
dp(2n)

∏
(k,l)∈F

e−g(pk)|sk−sl|/εδ(pk + pl)R̂(pk), (3.8)

where the summation extends over all Feynman diagrams formed over vertices 1, . . . , 2n. We recall
that a Feynman diagram for the set S = {1, 2, . . . , 2n} is a partition of S into n pairs of numbers
(lr), such that each element of S appears in exactly one of the pairs. If a pair (lr) is present in a
Feynman diagram F and l < r we say that l is a left vertex and r is a right vertex.

Changing variables s′k := sk/ε we obtain that expression (3.8) equals

Cn‖φ0‖∞
(2n)!

∑
F

∫
dp(2n)

∏
(k,l)∈F

[
ε

∫ t/ε

0

∫ t/ε

0
e−g(pk)|sk−sl|dskdsl

]
δ(pk + pl)R̂(pk) (3.9)

≤ Cntn‖φ0‖∞
(2n)!

∑
F

∫ ∏
(k,l)∈F

δ(pk + pl)
R̂(pk)
g(pk)

dp(2n) =
Cntn‖φ̂0‖∞

2nn!

[∫
R̂(p)
g(p)

dp

]n

.

In the last step above we used the fact that the total number of Feynman diagrams for a set of 2n
elements is (2n− 1)!!. Now, the conclusion of Proposition 3.1 follows. �

The above argument actually shows the following.

Proposition 3.6 There exists a constant C such that for all n ≥ 1, t > 0∑
F

∫
. . .

∫
∆2n(t)

ds(2n)

∫
dp(2n)

∏
(k,l)∈F

e−g(pk)|sk−sl|/εδ(pk + pl)R̂(pk) ≤
(Ctε)n

n!
, (3.10)

where the summation extends over all Feynman diagrams formed over {1, . . . , 2n}.
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Proof of Proposition 3.3

Let us introduce some terminology: the Feynman diagram (1, 2), . . . , (2n − 1, 2n) shall be called a
ladder diagram. For a given diagram F we let

Iε(t;F) :=
∫

∆2n(t)

ds(2n)

∫
dp(2n)

∏
(k,l)∈F

e−g(pk)|sk−sl|/εδ(pk + pl)R̂(pk). (3.11)

As a conclusion of Proposition 3.6, we obtain, in particular, that

I(F) = lim sup
ε↓0

sup
t∈[0,T ]

ε−nIε(t;F) < +∞, (3.12)

for any Feynman diagram F . We will now show that I(F) = 0 for all non-ladder diagrams, and then
identify the actual limit of ε−nIε(F) for the ladder diagrams completing the proof of Proposition 3.3.
We start with non-ladder diagrams.

Lemma 3.7 Suppose that F is not a ladder diagram. Then,

lim
ε↓0

sup
t∈[0,T ]

ε−nIε(t;F) = 0, (3.13)

for any T > 0.

Proof. This lemma shall be proved by induction on n – the number of edges of a Feynman diagram.
First, we verify it for n = 2. We have to consider then two diagrams F1 = {(1, 3), (2, 4)} and
F2 = {(1, 4), (2, 3)}. Start with the first one. Suppose that κ ∈ (0, 1) and consider the sets of the
following times: A1 = [|s1 − s3| ≥ εκ] and A2 = [|s2 − s4| ≥ εκ], as well as A3 = Ac

1 ∪ Ac
2. Consider

the expressions

Ii(ε) =
∫

∆4(t)∩Ai

ds1 . . . ds4

∫
dp1dp2 exp {−[g(p1)(s1 − s3) + g(p2)(s2 − s4)]/ε} R̂(p1)R̂(p2),

for i = 1, 2, 3, then

Iε(t;F1) ≤
3∑

i=1

Ii(ε).

We will see that I1(ε) and I2(ε) are small because the integrand is exponentially small in ε, while
I3(ε) because the domain of integration is small. Indeed, observe that

I1(ε) ≤
∫ t

0

∫ t

0
ds1ds3

∫
R

∫
R

ds2ds4

∫
dp1dp2e

−εκ−1g(p1)/2e−[g(p1)|s1−s3|+g(p2)|s2−s4|]/(2ε)R̂(p1)R̂(p2)

= (2tε)2
∫

e−εκ−1g(p1)/2 R̂(p1)dp1

g(p1)

∫
R̂(p2)dp2

g(p2)

and it follows from the Lebesgue dominated convergence theorem that

lim
ε↓0

sup
t∈[0,T ]

ε−2I1(ε) = 0. (3.14)

Similarly one can prove that (3.14) holds for I2(ε). On the other hand, we note that if 0 ≤ s1−s3 ≤ εκ

and 0 ≤ s2−s4 ≤ εκ (so that (s1, s2, s3, s4) ∈ A3) then (since 0 ≤ s3 ≤ s2), we have 0 ≤ s1−s4 ≤ 2εκ

as well. Hence,
I3(ε) ≤ Ctε3κ
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and (3.14) follows for I3(ε), provided that κ > 2/3. We have shown in this way that

lim
ε↓0

sup
t∈[0,T ]

ε−2I(t;F1) = 0.

A similar argument also yields an analogous statement for I(t;F2).
Assume now for the sake of the induction argument that (3.13) holds for some n ≥ 2 and for all

non-ladder diagrams with 2k vertices with k ≤ n. Let F be a non-ladder diagram consisting of n+1
edges. As before, we choose κ ∈ (0, 1) that shall be specified later. For a given edge e = (k0, l0) of a
diagram F set

A(e) = [|sk0 − sl0 | ≥ εκ] ⊆ ∆2n+2(t),

and A(e) =
⋃

e∈F Ac(e). Define also, again for e ∈ F ,

Ie(ε) =
∫

∆2n(t)∩A(e)

ds(2n+2)

∫
dp(2n+2)

∏
(k,l)∈F

e−g(pk)(sk−sl)/εδ(pk + pl)R̂(pk),

as well as

Ie(ε) =
∫

∆2n(t)∩A(e)

ds(2n+2)

∫
dp(2n+2)

∏
(k,l)∈F

e−g(pk)(sk−sl)/εδ(pk + pl)R̂(pk).

Note that for the first term, as in the computation for the diagram F1 with n = 2, we have

Ie(ε) ≤
∫ t

0
. . .

∫ t

0
ds(2n+2)

∫
dp(2n+2)e−g(pk0

)εκ−1/2
∏

(k,l)∈F

e−g(pk)|sk−sl|/(2ε)δ(pk + pl)R̂(pk)

≤
∫

dp(2n+2)e−g(pk0
)εκ−1/2

∏
(k,l)∈F

δ(pk + pl)R̂(pk)
∏

(k,l)∈F

∫ t

0
dsk

∫
R

dsle
−g(pk)|sk−sl|/(2ε)

= (2tε)n+1

[∫
R̂(p)dp

g(p)

]n ∫
e−g(p)εκ−1/2 R̂(p)dp

g(p)
,

thus the term in the exponent is very large and negative, whence

lim
ε→0

ε−(n+1)Ie(ε) = 0.

On the other hand, for Ie(ε) we have two possibilities: either it splits into a union of two sub-
diagrams or not. More precisely, either (1) there exists m0 such that F = F1 ∪ F2, where Fi,
i = 1, 2 are Feynman diagrams formed over {1, . . . , 2m0} and {2m0 + 1, . . . , 2n + 2} respectively, or
(2) there exists a sequence of edges ei = (ki, li), i = 1, . . . ,m such that k1 = 1, ki+1 < li < li+1, for
i = 1, . . . ,m− 1, and lm = 2n + 2. In the first case we have

Ie(ε) ≤
∫ t

0
ds1 . . .

∫ s2m0−1

0
ds2m0

∫
dp1 . . . dp2m0

∏
(k,l)∈F1

e−g(pk)(sk−sl)/εδ(pk + pl)R̂(pk)

×


∫

∆2(n+1−m0)(s2m0 )

ds2m0+1 . . . ds2n+2

∫
dp2m0+1 . . . dp2n+2

∏
(k,l)∈F2

e−g(pk)(sk−sl)/εδ(pk + pl)R̂(pk).

 .

Hence,
Ie(ε) ≤ Iε(t;F1)Iε(t;F2),
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and thus (3.13) holds in light of the induction hypothesis. In the second case, for s(2n+2) ∈ A(e) we
have 0 ≤ s1 − s2n+2 ≤ mεκ therefore

Iε(t;F) ≤ Ctε(2n+1)κ

and (3.13) holds (with n replaced by n + 1), provided that κ > (n + 1)/(2n + 1). �

The contribution of the ladder diagrams

The last step in the proof of Proposition 3.3 is to consider the contribution of the ladder diagrams.
We have shown so far that

lim
ε↓0

Eζ̂ε
2n(t, ξ) = Jn(t, ξ), (3.15)

where

Jn(t, ξ) = φ̂0(ξ) lim
ε↓0

(−1)n

[ε(2π)d]n

∫
∆2n(t)

ds(2n)

∫
dp(2n)

n∏
k=1

R̂(p2k−1)δ(p2k−1 + p2k)

×e−g(p2k−1)(s2k−1−s2k)/ε exp
{

iGn(s(2n),p(2n))/ε
}

(3.16)

where Gn(s(2n),p(2n)) is given by (2.4). For the ladder diagram, taking into account the delta-
functions, we have

Gn(s(2n),p(2n)) =
n∑

m=1

[
ξ · p2m−1 −

1
2
|p2m−1|2

]
(s2m−1 − s2m).

Hence, (3.16) can be written as

Jn(t, ξ) = φ̂0(ξ) lim
ε↓0

(−1)n

[ε(2π)d]n

∫
∆2n(t)

ds(2n)

∫
dp(2n)

n∏
k=1

R̂(p2k−1)δ(p2k−1 + p2k)e−Q(p2k−1)(s2k−1−s2k)/ε,

(3.17)
with

Q(p) = g(p)− i

(
ξ · p− 1

2
|p|2
)

.

Changing variables s′2m = (s2m−1 − s2m)/ε we obtain after dropping the primes:

Jn(t, ξ) = φ̂0(ξ) lim
ε↓0

(−1)n

(2π)nd

∫ t

0
ds1

∫ s1/ε

0
ds2

∫ s1−εs2

0
ds3 . . .

∫ s2n−3−εs2n−2

0
ds2n−1

∫ s2n−1/ε

0
ds2n

×
∫

. . .

∫ n∏
k=1

R̂(p2k−1)dp2k−1

n∏
k=1

e−Q(p2k−1)s2k . (3.18)

One can now compute the limit in (3.18):

Jn(t, ξ) = φ̂0(ξ)
(−1)n

(2π)nd

∫ t

0
ds1

∫ s1

0
ds3 . . .

∫ s2n−3

0
ds2n−1

∫
. . .

∫ n∏
k=1

R̂(p2k−1)
Q(p2k−1)

dp2k−1

= φ̂0(ξ)
(−1)ntn

(2π)ndn!

(∫
R̂(p)
Q(p)

dp

)n

= φ̂0(ξ)
(−tDξ)n

2nn!
, (3.19)

11



where

Dξ = 2
∫

R̂(p)
g(p)− i(ξ · p− |p|2/2)

dp

(2π)d
. (3.20)

Hence, we have

lim
ε→0+

Eζ̂ε
2n(t, ξ) = φ̂0(ξ)

(−tDξ)n

2nn!
. (3.21)

This completes the proof of Proposition 3.3. �

The limit of the second moment: the proof of Proposition 3.5

We now identify the limit of E
[
ζ̂ε(t, ξ)

]2
. Consider the expansion

[
ζ̂ε(t, ξ)

]2
=

∞∑
n1,n2=0

ζ̂ε
n1

(t, ξ)ζ̂ε
n2

(t, ξ), (3.22)

where each term ζ̂ε
n(t, ξ) is given by (2.3). Evaluating the expectation in (3.22) and using an argument

as in the proof of part (ii) of Proposition 2.1 gives

E
[
ζ̂ε(t, ξ)

]2
=

∞∑
n1,n2=0

Jε
n1,n2

(t, ξ), (3.23)

where
Jε

n1,n2
(t, ξ) = E

[
ζ̂ε
n1

(t, ξ)ζ̂ε
n2

(t, ξ)
]
, (3.24)

or, equivalently,

Jε
n1,n2

(t, ξ) = (−1)n

[
1

ε1/2(2π)d

]2n ∫ ∫
Dt

n1,n2

N∏
j=1

ds1ds2

∫ 2∏
j=1

[
φ̂0(ξ − pi1 − . . .− pini)e

iGnj (sj ,pj)/ε
]

×E
[
V̂ (

s11

ε
, dp11) . . . V̂ (

s1n1

ε
, dp1n1)V̂ (

s21

ε
, dp21) . . . V̂ (

s2n2

ε
, dp2n2)

]
,

where sj = (sj1, . . . , sjnj ), pj = (pj1, . . . , pjnj ) and Dt
n1,n2

:= ∆n1(t) × ∆n2(t). We evaluate the
expectation using the Feynman diagrams, as in (3.6), and get

Jε
n1,n2

(t, ξ) =
∑
F

Jε
n1,n2

(t, ξ;F). (3.25)

Here the summation extends over all Feynman diagrams formed over pairs of integers (jk), with
j = 1, 2, and k = 1, . . . , nj . We introduce a lexicographical ordering between pairs, that is, we say
that (jk) ≺ (j′k′) if j < j′, or if j = j′ then k ≤ k′. If (e, f) is an edge of a Feynman diagram we
say that e is a left vertex if e ≺ f . Also, given a vertex e = (jk) we will use the notation s(e) = sjk,
p(e) = pjk. The following analog of Proposition 3.1 holds.

Proposition 3.8 There exist constants Jn1,n2(t, ξ) such that

sup
t∈[0,t]

|Jε
n1,n2

(t, ξ)| ≤ Jn1,n2(T, ξ), ∀ ε ∈ (0, 1] (3.26)

and
+∞∑

n1,n2=0

Jn1,n2(T, ξ) < +∞.
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Proof. Estimates following (3.6) essentially hold without changes, that is, we start with

|Jε
n1,n2

(t, ξ)| ≤ Cn‖φ̂0‖2
∞

εn

∫ ∫
Dt

n1,n2

ds1ds2

×
∫ ∣∣∣E [V̂ (

s11

ε
, dp11) . . . V̂ (

s1n1

ε
, dp1n1)V̂ (

s21

ε
, dp21) . . . V̂ (

s2n2

ε
, dp2n2)

]∣∣∣
≤ Cn‖φ̂0‖2

∞
n1!n2!εn

∫ t

0

∫ t

0
ds1ds2

∫ ∣∣∣E [V̂ (
s11

ε
, dp11) . . . V̂ (

s1n1

ε
, dp1n1)V̂ (

s21

ε
, dp21) . . . V̂ (

s2n2

ε
, dp2n2)

]∣∣∣ ,
with 2n = n1 + n2. This can be estimated, as in (3.9), and we obtain

|Jε
n1,n2

(t, ξ)| ≤
Cn

T ‖φ̂0‖2
∞

n1!n2!
#(F),

where #(F) is the total number of the Feynman diagrams, and is equal to

#(F) = (n1 + n2 − 1)!! = (2n− 1)!!.

We conclude that

|Jε
n1,n2

(t, ξ)| ≤
Cn

T (2n− 1)!!
n1!n2!

‖φ̂0‖2
∞. (3.27)

On the other hand, we have

∞∑
n=0

∑
n1+n2=2n

Cn
T (2n− 1)!!

n1!n2!
=

∞∑
n=0

Cn
T 22n(2n− 1)!!

(2n)!
=

∞∑
n=0

(2CT )n

n!
< +∞,

and the conclusion of Proposition 3.8 follows. �
As a consequence of the above proposition, we may pass to the limit ε ↓ 0 term-wise in the

series (3.23):

lim
ε↓0

E
[
ζ̂ε(t, ξ)

]2
=

∞∑
n1,n2=0

∑
F

lim
ε↓0

Jε
n1,n2

(t, ξ;F), (3.28)

where Jε
n1,n2

(t, ξ;F) is given by

Jε
n1,n2

(t, ξ;F) =
(−1)n

[(2π)dε]n

∫ ∫
Dt

n1,n2

ds1ds2

∫
dp1dp2

∏
(jk,j′m)∈F

[
e−g(pjk)|sjk−sj′m|/εR̂(pjk)δ(pjk + pj′m)

]

×
2∏

j=1

[
eiGnj (sj ,pj)/εφ̂0(ξ − pj1 − . . .− pjnj )

]
, (3.29)

and we only need to study the limit of Jε
n1,n2

(t, ξ;F) for a fixed diagram F . Recall that in the case
of the first moment calculations that we addressed previously this limit did not vanish only for the
ladder diagrams. We claim that only those diagrams that are ladder ones when restricted to both
the first n1 vertices and separately to the final n2 vertices (thus both n1 and n2 must be even)
contribute to the limit.

Let Π be the set of all permutations of the vertices {(1; 1), (1; 2), . . . (2;n2)}. We divide the
domain of integration Dt

n1,n2
= ∆n1(t) × ∆n2(t) into the sets ∆(σ), σ ∈ Π as follows: a point
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(s11, . . . , s1n1 , s21, . . . , s2n2) ∈ ∆(σ), if sσ(1;1) ≥ sσ(1;2) . . . ≥ sσ(2;n2) and s ∈ D. This gives rise to a
decomposition

Dt
n1,n2

=
⋃
σ∈Π

∆(σ).

Note that the set ∆(σ) may be empty for some permutations σ because sjk ≤ sjk′ for all j = 1, 2
and k ≤ k′ if s ∈ Dt

n1,n2
, hence, for instance, s12 > s11 is impossible. We can write then

Jε
n1,n2

(t, ξ;F) =
∑
σ∈Π

Jε
n1,n2

(t, ξ;F , σ),

where Jε
n1,n2

(t, ξ;F , σ) corresponds to the integration over ∆(σ). By the same argument as in the
proof of Lemma 3.7 we can prove that that

lim
ε↓0

Jε
n1,n2

(t, ξ;F , σ) = 0,

unless F = Fσ := (σ(1; 1), σ(1; 2))(σ(1; 3), σ(1; 4)) . . . (σ(2;n2−1), σ(2;n2)), that is, for each domain
∆(σ) there is only one diagram that potentially may contribute to the limit, and such diagrams are
the analogs of the ladder diagrams introduced before. It follows that

J̄n1,n2(t, ξ;σ) =
∑
F

lim
ε↓0

Jε
n1,n2

(t, ξ;F , σ) = lim
ε↓0

Jε
n1,n2

(t, ξ;Fσ, σ).

Let (ē2k−1, ē2k), k = 1, . . . , n be the edges of a ladder diagram Fσ as above, that is, ē1 = σ(1; 1),
ē2 = σ(1; 2), and so on. We claim that in order for the diagram to contribute to the limit all its edges
must be of the form (ē2k−1, ē2k) = ((j; 2k − 1), (j; 2k)) for some j = 1, 2 and k = 1, . . . , [nj/2], that
is, no vertices corresponding to two different simplices should be paired. This, in fact, forces both
nj , j = 1, 2 to be even. To prove the claim it suffices only to show that all diagrams Fσ containing
an edge of the form (ē2k−1, ē2k) = ((1; i1), (2; i2)) satisfy

lim
ε↓0

Jε
n1,n2

(t, ξ;Fσ, σ) = 0. (3.30)

Suppose that the edge corresponds to the smallest values of such ”mixed” s, that is, all smaller
times come from the same simplex: s(ē2k−1) ≥ s(ē2k) ≥ sj,r ≥ . . . ≥ sj,nj . To fix our attention
we let j = 2 and s1n1 ≥ s2,r−1. The other cases can be argued in the same way. Note that then
n2 − r + 1 = 2n− 2k (recall that n1 + n2 = 2n) has to be even, and we should also have i2 = r − 1
and i1 = n1. Let us denote ds′j,m = dsj,1 . . . dsj,m, ds′′j,m = dsj,m . . . dsj,nj , with j = 1, 2, and

∆′
m(t;σ) = [t ≥ s(ē1) ≥ . . . s(ē2m) ≥ 0],

∆′′
m(t;σ) = [t ≥ s(ē2m) ≥ . . . s(ē2n) ≥ 0].
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Denote also Gm(s,p) the expression (2.4), where the range of summation has been restricted to
k = 1, . . . ,m and by G′

nm(s,p) := Gn(s,p)−Gm(s,p). Using (3.29) we can write

Jε
n1,n2

(t, ξ;Fσ) =
(−1)n

[(2π)dε]n

∫ n∏
m=1

[
R̂(pē2m−1)δ(pē2m−1 + pē2m)

]
dp1dp2

×
2∏

j=1

φ̂0(ξ − pj1 − . . .− pjnj )
∫

∆′
k−1(t;σ)

ds′1,n1−1ds
′
2,r−2

k−1∏
m=1

[
e−g(pē2m−1 )|sē2m−1−sē2m |/ε

]

×eiGn1−1(s1,p1)/εeiGr−2(s2,p2)/ε

∫ s(ē2k−2)

0
ds1,n1

∫ s1,n1

0
ds2,r−1e

−g(p1,n1 )(s1,n1−s2,r−1)/ε

× exp

{
i

[
ξ · p1,n1 +

1
2
|p1,n1 |2 − p1,n1 ·

(
n1∑

m=1

p1,m

)]
(s1,n1 − s2,r−1)/ε

}

× exp

{
ip1,n1 ·

(
−

n1∑
m=1

p1,m +
r−2∑
m=1

p2,m

)
s2,r−1/ε

}
Iε(s2,r−1,p2), (3.31)

where

Iε(s2,r−1,p2) :=
∫

∆′′
k−1(s2,r−1;σ)

eiG′
n2,r(s′′2,r,p2)/ε

(n2−r−1)/2∏
m=0

e−g(p2,r+2m)(s2,r+2m−s2,r+2m+1)/εds′′2,r.

Observe that

G′
n2,r(s

′′
2,r,p2) =

(n2−r−1)/2∑
m=0

Cr,m(p2)(s2,r+2m − s2,r+2m+1),

where

Cr,m(p2) := (ξ · p2,r+2m)−

r−1∑
j=1

p2,j

 · p2,r+2m − 1
2
|p2,r+2m|2.

Performing the change of variables s′2,r+l = s2,r+l/ε, and then subsequently s′′2,r+2m+1 := s′2,r+2m −
s′2,r+2m+1, s′′2,r+2m := s′2,r+2m for the variables ”following” the edge (ē2k−1, ē2k), i.e. for l = r, . . . , n2,
we conclude that

Iε(s2,r−1,p2) = εn2−r+1

∫
∆n2−r+1(s2,r−1/ε)

(n2−r−1)/2∏
m=0

e[−g(p2,r+2m)+iCr,m(p2)]s2,r+2mds′′2,r

= ε2n−2k|∆(n2−r+1)/2(s2,r−1/ε)|


(n2−r−1)/2∏

m=0

[g(p2,r+2m)− iCr,m(p2)]


−1

+ o(1),

as ε � 1 and n2 − r + 1 = 2n− 2k. Hence,

Jε
n1,n2

(t, ξ;Fσ, σ) = J̃ε
n1,n2

(t, ξ;σ) + o(1),
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where

J̃ε
n1,n2

(t, ξ;σ) =
(−1)n

(2π)nd(n− k)!

∫
dp1dp2

n∏
m=1

δ(pē2m−1 + pē2m)R̂(pē2m−1) (3.32)

×


(n2−r−1)/2∏

m=0

[g(p2,r+2m)− iCr,m(p2)]


−1

2∏
j=1

φ̂0(ξ − pj1 − . . .− pjnj )Kε(t,p1,p2)

and

Kε(t,p1,p2) = ε−k

∫ ∫
∆′

t(σ)

ds1ds′2

k−1∏
j=1

e−g(pē2j−1 )|sē2j−1−sē2j |/εeiGn1 (s1,p1)/ε

×eiGr−2(s2,p2)/ε

∫ s(ē2k−2)

0
ds1,n1

∫ s1,n1

0
sn−k
2,r−1ds2,r−1e

−g(p1,n1 )(s1,n1−s2,r−1)/ε

× exp

{
i

[
ξ · p1,n1 + 1/2|p1,n1 |2 − p1,n1 ·

(
n1∑

m=1

p1,m

)]
(s1,n1 − s2,r−1)/ε

}

× exp

{
−ip1,n1 ·

(
n1∑

m=1

p1,m −
r−1∑
m=1

p2,m

)
s2,r−1/ε

}
.

Note that the expression in parentheses appearing in the last exponent equals 2
∑′ p1,m, where the

sum extends over all indices that correspond to the vertices (1;m) that appear in the edges of the
form ((1;m), (2; l)).

We conclude from the Lebesgue dominated convergence theorem that

lim
ε→0

J̃ε
n1,n2

(t, ξ;σ) :=
(−1)n

(2π)2nd(n− k)!

∫
dp1dp2

n∏
m=1

δ(pē2m−1 + pē2m)R̂(pē2m−1) (3.33)

×


(n2−r−1)/2∏

m=0

[g(p2,r+2m)− iCr,m(p1,p2)]


−1

2∏
j=1

φ̂0(ξ − pj1 − . . .− pjnj ) lim
ε↓0

Kε(t,p1,p2).

To compute limε→0 Kε(t,p1,p2) we change the s variables according to s′jm := sjm/ε and then let
again s′1,r−1 := s1,n1 , s′2,r−1 := s1,n1 − s2,r−1. We obtain that

Kε(t,p1,p2) = εn

∫
∆′

t/ε
(σ)

ds1ds′2

k−1∏
j=1

e−g(pē2j−1 )|sē2j−1−sē2j |eiGn1 (s1,p1)eiGr(s2,p2)

∫ s(ē2k−2)

0
ds2,r−1

×e−g(p1,n1 )s2,n1 exp

{
i

[
ξ · p1,n1 + 1/2|p1,n1 |2 − p1,n1 ·

(
n1∑

m=1

p1,m

)]
s2,r−1

}

×
∫ s(ē2k−2)

s2,r−1

(s1,n1 − s2,r−1)n−k exp
{

2ip1,n1 ·
(∑

′p1,m

)
(s1,n1 − s2,r−1)

}
ds1,n1 . (3.34)

Since for any a 6= 0, T > 0 and an integer m ≥ 0 we have an estimate

sup
0<A<B<T/ε

∣∣∣∣∫ B

A
smeiasds

∣∣∣∣ ≤ CT,aε
−m,
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where CT,a < +∞, the last integral on the right hand side of (3.34) can be estimated by C(p1,p2)εk−n,
with C(p1,p2) < +∞ except possibly for a set of zero measure and as a result we obtain that

Kε(t,p1,p2) ≤ εk

∫
∆′

k−1(t/ε;σ)

ds1ds′2

k−1∏
m=1

e−g(pē2m−1 )sē2m−1

∫ s(ē2k−2)

0
e−g(pē2k−1

)s2,n1ds2,r−1.

Thus Kε(t,p1,p2) ≤ C ′(p1,p2)ε, where constant C ′(p1,p2) < +∞ except possibly for a set of zero
measure and (3.30) follows.

We have shown therefore that

lim
ε↓0

Jε
n1,n2

(t, ξ;F) = Jn1(t, ξ)Jn2(t, ξ), (3.35)

where F is a Feynman diagram that is the union of two ladder diagrams formed over the sets
{(1; 1), . . . , (1;n1)} and {(2; 1), . . . , (2;n2)}. In all other cases

lim
ε↓0

Jε
n1,n2

(t, ξ;F) = 0.

4 Proof of Theorem 1.2

The overall steps in the proof of Theorem 1.2 are similar to that of Theorem 1.1: we expand ζ̂ε(t, ξ)
into the Duhamel expansion series (2.2) and then, first, use Proposition 2.1 to establish convergence
of E(ζ̂ε(t, ξ)), and, second, address convergence of the higher moments of ζ̂ε(t, ξ). The main difference
with the proof of Theorem 1.1 is that now not only the ladder diagrams contribute in the limit ε → 0
but rather all Feynman diagrams have a non-trivial contribution. This leads to a non-Markovian
limit. Moreover, the limit is no longer deterministic, hence one has to find the limit of E(ζ̂ε(t, ξ)N )
for all N ≥ 1.

4.1 Convergence of the expectation

We first establish the analog of Corollary 3.4.

Proposition 4.1 We have
lim
ε→0

Eζ̂ε(t, ξ) = φ̂0(ξ)E
[
eiBκ(t;ξ)

]
, (4.1)

for all t ∈ R and ξ ∈ Rd \ {0}. Here Bκ(t) is the fractional Brownian motion with the exponent
κ = (α + 2β − 1)/(2β) and the diffusion coefficient given by (1.15) for β < 1/2 and by (1.16) for
β = 1/2.

Outline of the proof

The strategy of the proof of Proposition 4.1 is similar to what we have done previously to arrive at
Corollary 3.4. First, we will establish the following uniform bound:

Proposition 4.2 For all T > 0, n ≥ 0 and all ξ ∈ Rd \ {0} there exists a constant C(T ; ξ) such
that

sup
t∈[0,T ]

|Eζ̂ε
n(t, ξ)| ≤ Cn(T ; ξ)

n!
(4.2)

for all ε ∈ (0, 1].
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As before, this allows us to interchange the limit ε → 0 and the summation in n.

Corollary 4.3 We have

lim
ε↓0

Eζ̂ε(t, ξ) =
∞∑

n=0

lim
ε↓0

Eζ̂ε
n(t, ξ), (4.3)

for all t ∈ R and ξ ∈ Rd \ {0}.

This corollary is an immediate consequence of the estimate (4.2). The last step in the proof of
Proposition 4.1 is to identify the limit of the individual terms in the right side of (4.3).

Proposition 4.4 We have

lim
ε↓0

Eζ̂ε
n(t, ξ) = φ̂0(ξ)E

[
(iBκ(t; ξ))n

n!

]
, (4.4)

for all t ∈ R and ξ ∈ Rd \ {0}.

This implies the conclusion of Proposition 4.1.

The proof of Proposition 4.2

We suppose that g(p) = µ|p|2β and R̂(p) = a(p)/|p|2α+d−2 for parameters µ, β, α and a function
a(·) as in the statement of Theorem 1.2. As in (3.6), we have the estimate

|Eζ̂ε
2n(t, ξ)| ≤ ‖φ̂0‖∞

(2n)!

[
γ

ε(2π)d

]2n ∫ t

0
. . .

∫ t

0
ds(2n)

∫ ∣∣∣E [V̂ (
s1

ε
, dp1) . . . V̂ (

s2n

ε
, dp2n)

]∣∣∣ (4.5)

≤ Cn‖φ̂0‖∞
(2n)!

γ2n

ε2n

∑
F

∫ t

0
. . .

∫ t

0
ds(2n)

∫
dp(2n)

∏
(k,l)∈F

e−µ|pk|2β |sk−sl|/εδ(pk + pl)
a(pk)

|pk|2α+d−2
,

where the summation extends over all Feynman diagrams formed over vertices {1, . . . , 2n}. Changing
variables p′k := pk/ε1/(2β) and setting κ = (α + 2β − 1)/(2β) we rewrite (4.5) as

|Eζ̂ε
2n(t, ξ)| ≤ Cn‖φ̂0‖∞

(2n)!

( γ

εκ

)2n∑
F

t∫
0

. . .

t∫
0

ds(2n)

∫
dp(2n)

∏
(k,l)∈F

e−µ|pk|2β |sk−sl| (4.6)

×δ(pk + pl)
a(ε1/(2β)pk)
|pk|2α+d−2

=
Cn‖φ̂0‖∞

2nn!

( γ

εκ

)2n
[∫ t

0

∫ t

0

∫
e−µ|p|2β |s1−s2|a(ε1/(2β)p)

|p|2α+d−2
ds1ds2dp

]n

.

We used the fact that the total number of the Feynman diagrams is (2n−1)!! in the last step above.
As ε = γ1/κ, we may recast (4.6) as

|Eζ̂ε
2n(t, ξ)| ≤ Cn‖φ̂0‖∞

n!

[∫ t

0

∫ t

0

∫
e−µ|p|2β |s1−s2|a(ε1/(2β)p)

|p|2α+d−2
ds1ds2dp

]n

≤ Cn‖φ̂0‖∞
n!

[∫ t

0
ds1

∫ s1

0
ds2

∫
e−µ|p|2βs2

|p|2α+d−2
dp

]n

=
Cn(M∗(t))n‖φ̂0‖∞

n!
, (4.7)

where

M∗(t) =
∫

e−µ|p|2βt − 1 + µ|p|2βt

µ2|p|2α+4β+d−2
dp < +∞

for α < 1 and α + β > 1. Estimate (4.2) now follows. �
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The proof of Proposition 4.4

We proceed now with the limit identification. As we have mentioned, the fundamental difference with
the rapidly de-correlating case considered in Section 3 lies in the fact that the terms corresponding
to an arbitrary Feynman diagram may have a non-vanishing limit, as ε ↓ 0 – recall that in the
previous case only those corresponding to the ladder diagrams have non vanishing limits. As before,
starting with (2.3) we have

Eζε
2n(t, ξ) = φ̂0(ξ)

∑
F
I(ε)

2n (t;F),

where

I(ε)
2n (t;F) =

[
γ

iε(2π)d/2

]2n ∫
∆2n(t)

ds(2n)

∫
dp(2n)

∏
(k,l)∈F

e−µ|pk|2β(sk−sl)/ε a(pk)δ(pk + pl)
|pk|2α+d−2

eiG2n(s(2n),p(2n))/ε.

(4.8)
Thanks to estimate (4.3) what remains yet to do is to identify the limits

I2n(t;F) = lim
ε↓0

I(ε)
2n (t;F).

An upper bound for the integrand

We now proceed to re-write Iε
2n(t;F) in such a form that the Lebesgue dominated convergence

theorem could be applied to the integrand in the limit ε ↓ 0. To begin, we make a change of
variables si =

∑2n
j=i τj . Consider the phase G2n(s(2n),p(2n)) and the decomposition (2.4)-(2.5). Note

that the terms corresponding to A2n and B2n, after the change of variables, equal, respectively,

Ã(τ (n),p(n)) =
n∑

m=1

ξ ·
m∑

j=1

pj

 τm, (4.9)

with τ (2n) = (τ1, . . . , τ2n) ∈ R2n and

B̃(τ (n),p(n)) =
n∑

m=1

τmQm(p(n)), (4.10)

where

Qm(p(n)) =
1
2

∣∣∣∣∣∣
m∑

j=1

pj

∣∣∣∣∣∣
2

. (4.11)

Using the new variables, and introducing an additional variable τ0, we can rewrite (4.8) in the
following way

I(ε)
2n (t;F) = et

[
γ

iε(2π)d/2

]2n ∫ +∞

0
. . .

∫ +∞

0
dτ (2n+1)

∫
dp(2n)δ(t− τ0 − . . .− τ2n) (4.12)

×
∏

(km)∈F

a(pk)
|pk|2α+d−2

δ(pk + pm) exp

−µ|pk|2β
m−1∑
j=k

τj/ε

 exp

−
2n∑

j=0

τj + iG̃2n(τ (2n),p(2n))/ε

 ,

where τ (2n+1) = (τ0, . . . , τ2n). Next, using the fact that

δ(t) =
∫

e−itz dz

2π
,
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we obtain

I(ε)
2n (t;F) =

(−1)net

2π

[
γ

(2π)d/2ε

]2n ∫ +∞

0
. . .

∫ +∞

0
dτ (2n+1)

∫
dp(2n)

∫
dze−izt (4.13)

×
∏

(km)∈F

 a(pk)
|pk|2α+d−2

δ(pk + pm) exp

−µ|pk|2β
m−1∑
j=k

τj/ε− (1− iz)
2n∑

j=0

τj + iG̃2n(τ (2n),p(2n))/ε


=

(−1)net

2π

[
γ

(2π)d/2ε

]2n ∫ +∞

0
. . .

∫ +∞

0
dτ (2n+1)

∫
dp(2n)

∫
dze−izt

 ∏
(km)∈F

a(pk)δ(pk + pm)
|pk|2α+d−2


× exp

−(1− iz)τ0 −
2n∑

j=1

 ∑
(km)∈F

1[k,m)(j)µ|pk|2β/ε + 1− iz

 τj + iG̃2n(τ (2n),p(2n))/ε

 .

Integrating out the τ -variables gives

I(ε)
2n (t;F) =

(−1)net

2π

[
γ

(2π)d/2ε

]2n ∫
dp(2n)

∫
e−iztdz

1− iz

 ∏
(km)∈F

a(pk)δ(pk + pm)
|pk|2α+d−2


×


2n∏

j=1

µ
∑

(km)∈F

1[k,m)(j)|pk|2β/ε + 1 + i

(
Q̃j(p(2n))/ε−

j∑
k=1

ξ · pk/ε− z

)
−1

. (4.14)

Substituting p′k := pk/ε1/(2β), as in the passage from (4.5) to (4.6), and using the relation γ = εκ

leads to

I(ε)
2n (t;F) =

(−1)net

(2π)nd+1

∫
dp(2n)

∫
e−iztdz

1− iz

∏
(km)∈F

a(ε1/(2β)pk)
|pk|2α+d−2

δ(pk + pm) (4.15)

×


2n∏

j=1

µ
∑

(km)∈F

1[k,m)(j)|pk|2β + 1 + i

(
Q̃j(p(2n))ε1/β−1 −

j∑
k=1

ξ · pkε
1/(2β)−1 − z

)
−1

.

Let us denote by L(F) the set of all left vertices of F , and for an edge e = (km) ∈ F set `(m) = k.
The expression under the multiple integral on the right side can be majorized by

‖a‖n
∞

(1 + |z|)|p`(2n)|2α+d−2
(
µ|p`(2n)|2β + 1 + |z|

) ∏
j∈L(F)

j 6=`(2n)

 1
|pj |2α+d−2

µ
∑

(km)∈F

1[k,m)(j)|pk|2β + 1

−1
≤ ‖a‖n

∞
(1 + |z|)|p`(2n)|2α+d−2

(
µ|p`(2n)|2β + 1 + |z|

) ∏
j∈L(F)

j 6=`(2n)

{
1

|pj |2α+d−2

[
µ|pj |2β + 1

]−1
}

. (4.16)

We used the simple fact that for a vertex j ∈ L(F) we have 1[k,m)(j) = 1 if we take the edge with
k = j in the summation over the edges of F above. Now, the expression in the right side of (4.16)
is integrable with respect to the measure dµ = dz

∏
j∈L(F) dpj , since α + β > 1 and α ∈ (1/2, 1).
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Computation of the limit of I(ε)
2n (t;F)

The integrability of expression (4.16) allows us to apply the dominated convergence theorem in the
expression (4.15) for I(ε)

2n (t;F) and pass to the limit under the integral sign, concluding that for
β < 1/2 we have, as both 1/β > 1 and 1/(2β) > 1:

I2n(t;F) = lim
ε↓0

I(ε)
2n (t;F) =

(−1)net

2π

[
a(0)
(2π)d

]n

φ̂0(ξ)
∫

dp(2n)

∫
e−iztdz

1− iz

∏
(km)∈F

δ(pk + pm)
|pk|2α+d−2

×


2n∏

j=1

µ
∑
(km)

1[k,m)∈F (j)|pk|2β + 1− iz


−1

, (4.17)

while for β = 1/2 we get

I2n(t;F) = lim
ε↓0

I(ε)
2n (t;F) =

(−1)net

2π

[
a(0)
(2π)d

]n

φ̂0(ξ)
∫

dp(2n)

∫
e−iztdz

1− iz

∏
(km)∈F

δ(pk + pm)
|pk|2α+d−2

×


2n∏

j=1

µ
∑

(km)∈F

1[k,m)(j)|pk|2β + 1− i

(
z +

j∑
k=1

ξ · pk

)
−1

. (4.18)

To unify the notation we introduce ζ(β) := 0 for β < 1/2 and ζ(1/2) := 1. Then, retracing our steps
above, we may re-write both (4.17) and (4.18) as (compare to (4.8))

I2n(t;F) =
[
−a(0)
(2π)d

]n ∫
∆2n(t)

ds(2n)

∫
dp(2n)

∏
(k,l)∈F

e−µ|pk|2β(sk−sl)
δ(pk + pl)
|pk|2α+d−2

eiζ(β)
∑2n

j=1 sjξ·pj . (4.19)

The case β < 1/2. Now, we relate expression (4.19) to the fractional Brownian motion. Consider
first the case β < 1/2. Then, after integrating out the p-variables (4.19) becomes

I2n(t;F) =
[
−a(0)K1(α, β, µ)

(2π)d

]n ∫
∆2n(t)

ds(2n)
∏

(k,l)∈F

|sk − sl|(α−1)/β , (4.20)

with

K1(α, β, µ) = Ωd

∫ +∞

0
e−µρ2β dρ

ρ2α−1
,

as in (1.12). Here Ωd is the surface area of the unit sphere in Rd. Let us recall the representation

∑
F

∏
(pq)∈F

|sp − sq|2κ−2 = c2n
κ E

 2n∏
p=1

∫ ∞

−∞

eikpsp

|kp|κ−1/2
w(dkp)

 , (4.21)

where w(dk) is a Gaussian white noise and cκ > 0 is given by

cκ =
(

Γ(2κ− 1) sin(πκ)
π

)1/2

. (4.22)

Then, (4.20) with
κ = (α + 2β − 1)/(2β), (4.23)
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can be restated as

∑
F
I2n(t;F) =

[
−a(0)K1(α, β, µ)c2

κ

(2π)d

]n ∫
∆2n(t)

ds(2n)E

 2n∏
p=1

∫ ∞

−∞

eikpsp

|kp|κ−1/2
w(dkp)

 . (4.24)

Taking into account the symmetry in the sj-variables of the expression in the right hand side of (4.24)
we obtain that

∑
F
I2n(t;F) =

1
(2n)!

[
−a(0)K1(α, β, µ)c2

κ

(2π)d

]n t∫
0

. . .

t∫
0

ds(2n)E

 2n∏
p=1

∫ ∞

−∞

eikpsp

|kp|κ−1/2
w(dkp)


=

1
(2n)!

[
−a(0)K1(α, β, µ)c2

κ

(2π)d

]n

E

 2n∏
p=1

∫ +∞

−∞

eikpt − 1
ikp|kp|κ−1/2

w(dkp)

 . (4.25)

Using the harmonizable representation of the standard fractional Brownian motion, see Proposi-
tion 7.2.8, p. 328 of [23], we deduce that (4.25) can be reformulated as

∑
F
I2n(t;F) =

1
(2n)!

[
−a(0)K1(α, β, µ)c2

κd2
κ

(2π)d

]n

EB2n
κ (t).

Here Bκ(t) is the standard (that is, of zero mean and variance one) fractional Brownian motion with
the Hurst exponent κ and

dκ =
(

π

κΓ(2κ) sin(κπ)

)1/2

=
(

π

2κ2Γ(2κ− 1) sin(κπ)

)1/2

.

Observe that, fortunately, cκdκ = 1/(
√

2κ). To summarize, we we have shown that for β < 1/2

lim
ε↓0

Eζ̂ε(t, ξ) = φ̂0(ξ)Eei
√

DBκ(t), (4.26)

where
D =

a(0)K1(α, β, µ)
2κ(2π)d

. (4.27)

The case β = 1/2. For β = 1/2 the calculation is very similar. Then, the Hurst exponent κ
given by (4.23) is equal to α, and the right side of (4.25) equals∑

F
lim
ε↓0

I(ε)
2n (t;F) =

1
(2n)!

E[i
√

D(ξ)Bα(t)]2n

and
D(ξ) =

a(0)K2(ξ;α, µ)
2α(2π)d

, (4.28)

with

K2(ξ;α, µ) =
∫ +∞

0
e−µρ dρ

ρ2α−1

∫
Sd−1

ei|ξ|ρω·e1S(dω),

as in (1.13). This finishes the proof of Proposition 4.4. �
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The limit of the higher moments

The last step in the proof of Theorem 1.2 is to show that

lim
ε↓0

E[ζ̂ε(t, ξ)]N = [φ̂0(ξ)]NEeiN
√

D(ξ)Bκ(t) (4.29)

for all integers N ≥ 1. Consider the expansion[
ζ̂ε(t, ξ)

]N
=

∞∑
n1,...,nN=0

ζ̂ε
n1

(t, ξ) . . . ζ̂ε
nN

(t, ξ), (4.30)

where each term ζ̂ε
n(t, ξ) is given by (2.3). Evaluating the expectation in (4.30) and using an argument

as in the proof of part (ii) of Proposition 2.1 gives

E
[
ζ̂ε(t, ξ)

]N
=

∞∑
n1,...,nN=0

Jε
n1,...,nN

(t, ξ), (4.31)

where
Jε

n1,...,nN
(t, ξ) = E

[
ζ̂ε
n1

(t, ξ) . . . ζ̂ε
nN

(t, ξ)
]
, (4.32)

or, equivalently,

Jε
n1,...,nN

(t, ξ) = (−1)n

[
γ

ε(2π)d/2

]2n ∫
∆n1 (t)

. . .

∫
∆nN

(t)

N∏
j=1

ds1 . . . dsN (4.33)

×
∫

E
[
V̂ (

s11

ε
, dp11) . . . V̂ (

s1n1

ε
, dp1n1) . . . V̂ (

sN1

ε
, dpN1) . . . V̂ (

sNnN

ε
, dpNnN

)
]

×φ̂0(ξ − p11 − . . .− p1n1) . . . φ̂0(ξ − pN1 − . . .− pNnN
)

N∏
j=1

eiGnj (sj ,pj)/ε,

where sj = (sj1, . . . , sjnj ) and pj = (pj1, . . . , pjnj ). We evaluate the expectation using the Feynman
diagrams and get

Jε
n1,...,nN

(t, ξ) =
∑
F

Jε
n1,...,nN

(t, ξ;F). (4.34)

Here the summation extends over all Feynman diagrams formed over pairs of integers (jk), with
j = 1, . . . , N , and k = 1, . . . , nj . We introduce a lexicographical ordering between pairs, that is, we
say that (jk) ≺ (j′k′) if j < j′, or if j = j′ then k ≤ k′. If (e, f) is an edge of a Feynman diagram we
say that e is a left vertex if e ≺ f . Also, given a vertex e = (jk) we will use the notation s(e) = sjk,
p(e) = pjk. The following bound holds.

Proposition 4.5 There exist constants Jn1,...,nN (t, ξ) such that

sup
t∈[0,t]

|Jε
n1,...,nN

(t, ξ)| ≤ Jn1,...,nN (T, ξ), ∀ ε ∈ (0, 1] (4.35)

and
+∞∑

n1,...,nN=0

Jn1,...,nN (T, ξ) < +∞.

23



Proof. Using the relation ε = γ1/κ in (4.33), dropping the phases and symmetrizing gives

|Jε
n1,...,nN

(t, ξ)| ≤ Cn‖φ̂0‖N
∞

n1! . . . nN !
1

ε2n(1−κ)

∫ t

0
. . .

∫ t

0

N∏
j=1

ds1 . . . dsN

×
∣∣∣∣∫ E

[
V̂ (

s11

ε
, dp11) . . . V̂ (

s1n1

ε
, dp1n1) . . . V̂ (

sN1

ε
, dpN1) . . . V̂ (

sNnN

ε
, dpNnN

)
]∣∣∣∣ .

The right hand side can be estimated essentially in the same way as in (4.6) and (4.7) and we obtain
that

|Jε
n1,...,nN

(t, ξ)| ≤ ‖φ̂0‖N
∞

n1! . . . nN !
Cn
∗ ‖a‖n

∞

for any n1, . . . , nN such that n1 + . . . + nN = 2n. The right hand side is summable over nj-s. Thus,
we conclude that the conclusion of Proposition 4.5 holds. �

Proposition 4.5 leads to the following.

Corollary 4.6 We have

lim
ε↓0

E[ζ̂ε(t, ξ)]N =
∞∑

n1,...,nN=0

lim
ε↓0

Jε
n1,...,nN

(t, ξ). (4.36)

Hence, it remains only to evaluate the individual limits of Jε
n1,...,nN

(t, ξ) as ε ↓ 0.

Computation of limε↓0 Jε
n1,...,nN

(t, ξ)

In order to re-write limε↓0 Jε
n1,...,nN

(t, ξ) in a form more convenient for the subsequent analysis we
will once again use the variables τj , with si =

∑n
j=i τj to express ζ̂ε(t, ξ). Then the phase function

G̃ = Ã − B̃ with Ã and B̃ as in (4.9)-(4.11). Then the domain of integration in the τ -variables is
the set

Dn(t) = {(τ1, . . . , τn) : τj ≥ 0 for all 1 ≤ j ≤ n and τ1 + · · ·+ τn ≤ t}.

We will also use the spectral representation of the stationary field V (t, x):

V (t, x) =
∫

ei(ωt+p·x) V̂ (dω, dp)
(2π)d+1

,

where V̂ (dω, dp) is a Gaussian spectral measure with the structure measure given by

E[V̂ (dω, dp)V̂ ∗(dω′, dp′)] = (2π)d+1δ(ω − ω′)δ(p− p′)
2µa(p)|p|2β

(ω2 + µ|p|4β)|p|2α+d−2
.

We can now transform expression (2.3) into

ζ̂ε
n(t, ξ) =

( γ

iε

)n
∫

Dn(t)

dτ (n)

∫
V̂ (dω1, dp1)V̂ (dω2, dp2) . . . V̂ (dωn, dpn)

(2π)(n+1)d
φ̂0(ξ − p1 − p2 − · · · − pn)

×ei[ω1(τ1+···+τn)+ω2(τ2+···+τn)+···+ωnτn]/εeiG̃n(τ (n),p(n))/ε, (4.37)
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and further rewrite (4.37) in the following way:

ζ̂ε
n(t, ξ) = et

( γ

iε

)n
∫ +∞

0
. . .

∫ +∞

0
dτ0 . . . dτn

∫
δ(t− τ0 − . . .− τn)ei

∑n
j=1 τj(

∑j
k=1 ωk)/ε

× V̂ (dω1, dp1)V̂ (dω2, dp2) . . . V̂ (dωn, dpn)
(2π)n(d+1)

φ̂0(ξ − p1 − . . .− pn)e−
∑n

j=0 τjeiG̃n(τ (n),p(n))/ε.

Since
δ(t− τ0 − . . . τn) =

∫
R

e−iz(t−τ0−...τn) dz

2π
,

integrating out the τ variables we obtain:

1
in

∫ ∞

0
. . .

∫ ∞

0
dτ0 . . . dτne−(1−iz)(τ0+···+τn)ei

∑n
m=1 τm(

∑m
j=1[(ξ·pj)+ωj ]−Qm(p(n))/2)/ε

=
1

1− iz

n∏
m=1

i + z +
1
2ε

2
m∑

j=1

[(ξ · pj) + ωj ]−Qm(p(n))


−1

,

so that (4.37) becomes

ζ̂ε
n(t, ξ) = et

(γ

ε

)n
∫

dze−izt

∫
V̂ (dp1, dω1)V̂ (dp2, dω2) . . . V̂ (dpn, dωn)

(2π)n(d+1)+1
φ̂0(ξ − p0 − . . .− pn)

× 1
1− iz


n∏

m=1

z +
1
2ε

2
m∑

j=1

[(ξ · pj) + ωj −Qm(p)

+ i


−1

. (4.38)

This expression for ζ̂ε
n(t, ξ) will be the starting point for our analysis of Jε

n1,...,nN
(t, ξ), that is,

Jε
n1,...,nN

(t, ξ) is given by

Jε
n1,...,nN

(t, ξ) =
(−1)netN

(2π)2n(d+1)+1

(γ

ε

)2n
∫

. . .

∫ N∏
j=1

{
exp {−itzj}

1− izj

}
dz1 . . . dzN

×
∫

E
[
V̂ (dω11, dp11) . . . V̂ (dω1n1 , dp1n1) . . . V̂ (dωN1, dpN1) . . . V̂ (dωN,nN

, dpNnN
)
]

×ζ̂0(ξ − p11 − . . .− p1n1) . . . ζ̂0(ξ − pN1 − . . .− pNnN
)

×
N∏

j=1

{ nj∏
m=1

[
zj +

1
2ε

{
2

m∑
k=1

[(ξ · pjk) + ωjk]−Qm(pj)

}
+ i

]}−1

,

with 2n =
∑N

j=1 nj . We evaluate the expectation above using Feynman diagrams and get

Jε
n1,...,nN

(t, ξ) =
(−1)netN

(2π)n(d+1)+1

(γ

ε

)2n∑
F

∫
dp1 . . . dpN

∫
dω1 . . . dωN (4.39)

×
∏

(jk,j′m)∈F

2µ|pjk|2β+2−2α−da(pjk)
ω2

jk + µ2|pjk|4β
δ(pjk + pj′m)δ(ωjk + ω′j′m)

×ζ̂0(ξ − p11 − . . .− p1n1) . . . ζ̂0(ξ − pN1 − . . .− pNnN
)

×
∫

dz
N∏

j=1

exp {−itzj}
1− izj

nj∏
m=1

[
zj +

1
2ε

[
2

m∑
k=1

(ξ · pjk + ωjk)−Qm(pj)

]
+ i

]−1
 .
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Here dpm := dpm1 . . . dpmnm and, once again, the summation extends over all Feynman diagrams
formed over elements that are pairs of integers (jk), j = 1, . . . , N , k = 1, . . . , nj .

We change variables setting p′ = p/ε1/(2β), ω′ = ω/ε and using the relation γ = εκ we get, after
dropping the primes

Jε
n1,...,nN

(t, ξ) =
(−1)netN

(2π)n(d+1)+1

∑
F

∫
dp1 . . . dpN

∫
dω1 . . . dωN (4.40)

×
∏

(jk,j′m)∈F

2µ|pjk|2β+2−2α−da(ε1/(2β)pjk)
ω2

jk + µ2|pjk|4β
δ(pjk + pj′m)δ(ωjk + ω′j′m)

×ζ̂0(ξ − ε1/(2β)(p11 + . . . + p1n1)) . . . ζ̂0(ξ − ε1/(2β)(pN1 + . . . + pNnN
))

×
∫

dz
N∏

j=1

exp {−itzj}
1− izj

nj∏
m=1

[
zj +

1
2

[
2

m∑
k=1

(ξ · pjkε
1/(2β)−1 + ωjk)−Qm(pj)ε1/β−1

]
+ i

]−1
 .

One can majorize the integrand above by an integrable function, when α + β > 1, as we did in the
proof of Proposition 4.4, and obtain that:

lim
ε↓0

Jε
n1,...,nN

(t, ξ) =
(−1)netN (ζ̂0(ξ))N (2µa(0))n

(2π)n(d+1)+1

∑
F∈F(2n)

∫
dp1 . . . dpN

∫
dω1 . . . dωN

×
∏

(jk,j′m)∈F

|pjk|2β+2−2α−d

ω2
jk + µ2|pjk|4β

δ(pjk + pj′m)δ(ωjk + ω′j′m) (4.41)

×
∫

dz
N∏

j=1

{
exp {−itzj}

1− izj

nj∏
m=1

[
zj +

m∑
k=1

(ζ(β)(ξ · pjk) + ωjk) + i

]}−1

.

Recall that ζ(β) = 1 for β = 1/2 and ζ(β) = 0 for β < 1/2. Now, we need to relate the right side of
(4.41) to the fractional Brownian motion. We do it separately for β < 1/2 and β = 1/2.

The case β < 1/2. When β < 1/2 the limit in (4.41) equals

Jn1,...,nN (t, ξ) =
(−1)netN (2µa(0))n[ζ̂0(ξ)]N

(2π)n(d+1)+1

∑
F∈F(2n)

∫
dp1 . . . dpN

∫
dω1 . . . dωN (4.42)

×
∏

(jk,j′m)∈F

|pjk|2β+2−2α−dδ(pjk + pj′m)δ(ωjk + ω′j′m)

ω2
jk + µ2|pjk|4β

∫
dz

N∏
j=1

exp {−itzj}
1− izj

nj∏
m=1

[
zj +

m∑
k=1

ωjk + i

]−1
 .

Integrating out the z and ω variables and reverting back to the s-variables time we obtain that

Jn1,...,nN (t, ξ) =
(−1)nan(0)[ζ̂0(ξ)]N

(2π)nd

∑
F

∫
dp1 . . . dpN

∫
∆n1 (t)

. . .

∫
∆nN

(t)
ds1 . . . dsN

×
∏

(jk,j′m)∈F

e−µ|pjk|2β |sjk−sj′m|

|pjk|2α+d−2
δ(pjk + pj′m). (4.43)

Integrating out also the p variables gives

Jn1,...,nN (t, ξ) =
[−a(0)K1(α, β, µ)]n

(2π)nd
[ζ̂0(ξ)]N

∑
F

∫
∆n1 (t)

. . .

∫
∆nN

(t)
ds1 . . . dsN |sjk − sj′m|(α−1)/β

(4.44)
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It remains now to relate J̄n1,...,nN (t, ξ) to the fractional Brownian motion and sum all these terms.
Note that the function

f(s1, . . . , s2n) :=
∑
F

∏
k̂m∈F

|sk − sm|2α−2

is symmetric in all of its arguments, that is, f(s1, . . . , s2n) = f(sπ(1), . . . , sπ(2n)), where π is an
arbitrary permutation of {1, 2. . . . , 2n}. Using this fact we can rewrite (4.44) in the form

J̄n1,...,nN (t, ξ) =
[−a(0)K1(α, β, µ)]n[ζ̂0(ξ)]N

(2π)ndn1! . . . nN !

∑
F

∫ t

0
. . .

∫ t

0︸ ︷︷ ︸
n1-times

ds1 . . .

∫ t

0
. . .

∫ t

0︸ ︷︷ ︸
nN -times

dsN

∏
(jk,j′m)∈F

|sjk−sj′m|2α−2.

(4.45)
Recall that, as (4.21),

∑
F

∏
(jk,j′m)∈F

|sjk − sj′m|2κ−2 = c2n
κ E

 N∏
j=1

nj∏
m=1

∫ ∞

−∞

eikjmsjm

|kjm|α−1/2
w(dkjm)

 ,

where w(dk) is a Gaussian white noise and cκ > 0 is given by (4.22). Hence,

J̄n1,...,nN (t, ξ) =
(−1)n[ζ̂0(ξ)]N (a(0)K1(α, β, µ)c2

κ)n

(2π)ndn1! . . . nN !
(4.46)

×
∫ t

0
. . .

∫ t

0︸ ︷︷ ︸
n1-times

ds1 . . .

∫ t

0
. . .

∫ t

0︸ ︷︷ ︸
nN -times

dsNE

 N∏
j=1

nj∏
m=1

∫ ∞

−∞

eikjmsjm

|kjm|α−1/2
w(dkjm)

 .

Performing the integrations with respect to si and then subsequently the summation over n1, . . . , nN

we obtain
+∞∑

n1=0,...,nN=0

J̄n1,...,nN (t, ξ) = [ζ̂0(ξ)]NE
[
exp

{
iND1/2Bκ(t)

}]
, (4.47)

where Bκ(t) is the fractional Brownian motion with the Hurst exponent κ and variance 1.
The case β = 1/2. The computation for β = 1/2 is very similar to that for β < 1/2. Here the

limit in (4.41) equals

Jn1,...,nN (t, ξ) =
(−1)n(2µ)an(0)[ζ̂0(ξ)]NetN

(2π)n(d+1)+1

∑
F∈F(2n)

∫
dp1 . . . dpN

∫
dω1 . . . dωN (4.48)

×
∏

(jk,j′m)∈F

|pjk|3−2α−dδ(pjk + pj′m)δ(ωjk + ω′j′m)

ω2
jk + µ2|pjk|2

×
∫

dz
N∏

j=1

exp {−itzj}
1− izj

nj∏
m=1

[
zj +

m∑
k=1

(ξ · pjk + ωjk) + i

]−1
 .

Integrating out the z and ω variables and reverting to s coordinates for time we obtain that

Jn1,...,nN (t, ξ) =
(−1)nan(0)[ζ̂0(ξ)]N

(2π)nd

∑
F∈F(2n)

∫
dp1 . . . dpN

∫
∆n1 (t)

. . .

∫
∆nN

(t)
ds1 . . . dsN

×
∏

(jk,j′m)∈F

|pjk|2−2α−de−µ|pjk||sjk−sj′m|+iξ·pjk(sjk−sj′m)δ(pjk + pj′m). (4.49)
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Integrating out the p variables we obtain that

Jn1,...,nN (t, ξ) =
[−a(0)K2(ξ;µ)]n[ζ̂0(ξ)]N

(2π)nd

∑
F

∫
∆n1 (t)

. . .

∫
∆nN

(t)
ds1 . . . dsN |sjk − sj′m|2(α−1), (4.50)

with the constant K2 as in (1.13). From here on we conduct the calculation as in the previous case.
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