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Abstract

We consider the theory of correctors to homogenization in stationary transport equations
with rapidly oscillating, random coefficients. Let ε � 1 be the ratio of the correlation length
in the random medium to the overall distance of propagation. As ε ↓ 0, we show that the
heterogeneous transport solution is well-approximated by a homogeneous transport solution.
We then show that the rescaled corrector converges in (probability) distribution and weakly
in the space and velocity variables, to a Gaussian process as an application of a central limit
result. The latter result requires strong assumptions on the statistical structure of randomness
and is proved only for random processes constructed by means of a Poisson point process.

1 Introduction

Partial differential equations with rapidly varying coefficients arise naturally in many important
applications, such as e.g. composite material sciences, nuclear sciences, porous media equations,
and Earth science as in e.g. climate modeling. It is often necessary to model such heterogeneous
structures at the macroscopic level because the computational costs at the fine structure are
prohibitive and because the microscopic structure is typically not well known. Macroscopic equa-
tions are derived usually for two types of heterogeneities: periodic heterogeneities and random
heterogeneities. In both cases, a single parameter ε � 1, the correlation length in the hetero-
geneous medium, models the size of the heterogeneities related to the overall size of observation
of the phenomenon. Under fairly generic ergodicity assumptions, the heterogeneous solution is
shown to converge to the solution of a homogeneous (homogenized) equation; see e.g. [12, 25]. At
this level, there is relatively little difference, except possibly at the mathematical level, between
homogenization in periodic media and homogenization in random media.

It is often important to understand the error caused by replacing a heterogeneous solution by a
homogenized approximation, for instance when such an error generates errors in the solution of an
estimation (inverse) problem; see e.g. [11]. At the level of correctors, modeling the heterogeneities
as random or periodic yields very different answers. Whereas correctors to homogenization are
often well understood (and are typically of order O(ε)) in the periodic setting [12], this is not
the case in the random setting, where random correctors can be arbitrarily larger than their
deterministic, periodic, counterparts. In spite of its importance, the theory of random correctors
to homogenization is rather poorly understood. For some of the available results in the setting of
elliptic equations, we refer the reader to [4, 5, 7, 15, 23, 33].

This paper concerns the theory of correctors to the homogenization of linear transport (linear
Boltzmann) equations. We consider the stationary case here although the results extend to the
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evolution equation as well. Homogenization theory for transport equations is well understood in
fairly arbitrary ergodic random media, see e.g. [22, 26, 28]; see also e.g. [1, 13] for homogenization
of transport in the periodic case. In this paper, we develop a theory for the random corrector.
We first provide a bound for the corrector in energy norm. We then show that weakly in space
and velocity variables, the random corrector converges in probability to a Gaussian field. This
result may be seen as an application of a central limit correction as in e.g. [5, 23]. The results are
shown for a specific structure of the random coefficients based on a Poisson point process. The
resulting random coefficients have then short-range interactions. Whereas the results should hold
for more general processes, it is clear that much more severe restrictions than mere ergodicity as
in [22] must be imposed on the random structure in order to obtain a full characterization of the
limiting behavior of the corrector. This is also the case for elliptic equations as may be seen in
e.g. [5, 7].

The rest of the paper is structured as follows. In section 2, we present our main assumptions
and the main results of the paper on the theory of the random corrector to homogenization.
Section 3 recalls results on the transport equation and Poisson point processes that are useful in
the derivation. The proof of the results is postponed to sections 4 for the error estimate in energy
norm and 5 for the random limit of the corrector. Some technical results are postponed to the
appendix.

2 Main results on the theory of random correctors

The linear transport equation finds applications in many areas of science, including neutron
transport [20, 29], atmospheric science [16, 27], propagation of high frequency waves [3, 30, 31]
and the propagation of photons in many medical imaging applications [2, 6]. In many settings,
the coefficients in the transport equation oscillate at a very fine scale and may not be known
explicitly. In such situations, it is necessary to model such coefficients as random [22, 26].

The density of particles uε(x, v) at position x and velocity v is modeled by the following
transport equation with random attenuation and scattering coefficients:

v · ∇xuε + aε(x, ω)uε −
∫

V
kε(x, v′, v;ω)uε(x, v′)dv′ = 0, (x, v) ∈ X × V,

uε(x, v) = g(x, v), (x, v) ∈ Γ−
(1)

Here X is an open, bounded, subset in Rd for d = 2, 3 spatial dimension, and V is the velocity
space, which here will be V = Sd−1, the unit sphere to simplify the presentation. The sets Γ±
are the sets of outgoing and incoming conditions, defined by

Γ± := {(x, v)|x ∈ ∂X, ±νx · v > 0} (2)

where ∂X is the boundary of X, assumed to be smooth, and the normal vector to X at x ∈ ∂X
is denoted by νx.

The constitutive parameters in the transport equation are the total attenuation coefficient
aε and the scattering coefficient kε. The above transport equation admits a unique solution in
appropriate spaces [8, 19, 29] provided that these coefficients are non-negative and attenuation is
larger than scattering (see below). When the coefficients are modeled as random, such constraints
need to be ensured almost surely in the space of probability. We assume here that aε and kε

are measurable random fields constructed on an abstract probability space (Ω,F ,P) where a
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stationary spatial Poisson point process is constructed. We call {yε
j} the points of the process

with intensity ε−dν. Properties of this process of importance in the paper are recalled in section
3. The intrinsic attenuation and scattering coefficients are constructed as follows:

arε(x,
x

ε
, ω) := ar0(x) +

∑
j∈N

ψ(
x− yε

j

ε
),

kε(x,
x

ε
, ω) := k0(x) +

∑
j∈N

%(
x− yε

j

ε
),

(3)

where ar0 and k0 are positive deterministic continuous functions and where ψ and % are smooth,
non-negative, compactly supported, functions in the unit ball (to simplify). The physical impor-
tance of this model is that the constitutive parameters consist of two parts: a continuous low
frequency background media and random inclusions that increase attenuation and scattering.

We thus assume that scattering in (1) is isotropic, i.e., that kε is independent of the velocities
v and v′ of the particles before and after collision. Here, arε is the intrinsic attenuation, cor-
responding to particles that are absorbed by the medium and whose energy is transformed into
heat. The total attenuation coefficient is defined as

aε(x) = arε(x,
x

ε
) + cdkε(x,

x

ε
, ω),

where cd is the volume of the unit sphere in dimension d.
Note that the above random coefficients are bounded in X P-a.s. since the probability of

infinite clustering of points in a given bounded domain is zero. However, clustering may occur
so that aε and kε are not bounded uniformly in the variable ω. By construction, since arε is a
positive function on X and aε and kε are positive and bounded P-a.s., classical theories [8, 19, 29]
of existence of unique solutions to (1) may be invoked P-a.s.

Let a := Eaε, k := Ekε, and ar := Earε where E is the mathematical expectation associated
to measure P. Let us then define u0 as the solution to (1) where aε and kε are replaced by their
averages a and k, respectively. Then, consistently with the results shown in [22], we expect uε

to converge to u0. Our first result is to obtain an error estimate for the corrector uε − u0 in the
“energy” norm L2(Ω, L2(X × V )). More precisely, we have the following result.

Theorem 2.1. Let dimension d ≥ 2. Suppose that the random coefficients aε, kε are constructed
as in (3) and that ar0 is bounded from above by a positive constant. Suppose also that g ∈ L∞(Γ−)
so that u0 ∈ L∞(X × V ). Then we have the following estimate(

E‖uε − u0‖2
L2

) 1
2 ≤ Cε

1
2 −→ 0, (4)

as ε goes to zero.

The above result shows that the corrector ζε := uε − u0 may be as large as
√
ε. It turns out

that the size of the corrector ζε very much depends on the scale at which we observe it. Point-
wise, ζε is indeed of size

√
ε. However, once it is averaged over a sufficiently large domain (in

space and velocities), then it may take very different values. Firstly, ζε needs to be decomposed
as uε − E{uε} plus E{uε − u0}. The latter term corresponds to deterministic correctors, which
may be larger than the random corrector. The next two theorems are devoted to the limits of
these correctors.
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Let δarε := arε−E{arε}, and let δkε = kε−k. By construction, they are mean zero, stationary
random fields. We can then define the autocorrelation function of δarε as

Raε(x) = E{δarε(y)δarε(y + x)}. (5)

By stationarity, the above right-hand side is independent of y. As we will show in Section 3, we
have

Raε(x) = Ra(
x

ε
), where Ra(x) = ν

∫
Rd

ψ(x− y)ψ(y)dy = νψ ∗ ψ(x). (6)

Similarly, we can define Rkε as the autocorrelation function of δkε, and define Rakε as the cross-
correlation function of the two fields, and they can be written as Rk(x

ε ) and Rak(x
ε ) respectively

where
Rk(x) = ν% ∗ %(x), and Rak(x) = νψ ∗ %(x). (7)

We also denote the integration over Rd of the autocorrelation functions Ra and Rk by

σ2
a =

∫
Rd

Ra(x)dx = ν
(∫

Rd

ψ(x)dx
)2
, σ2

k =
∫

Rd

Rk(x)dx = ν
(∫

Rd

ψ(x)dx
)2
, (8)

with σa and σk non-negative numbers. We then verify that the integration over Rd of the cross-
correlation functions Rak is σaσk. That is, the correlation of the fields is ρak = 1. This is not
surprising considering our construction, and (3) can be modified as in (15) below to yield ρak < 1.
For instance, if yε

j in the second line in (3) is replaced by zε
j , where the latter is another Poisson

point process independent of yε
j , then we find that ρak = 0. To simplify, we shall present all

derivations with the model (3) knowing that all results extend to more complex models such as
(15) below.

Consider a point x ∈ X, and v ∈ V and let us denote the traveling time from x to ∂X along
direction v (respectively −v) by τ+(x, v) (respectively τ−(x, v)) given by

τ±(x, v) = sup{t > 0 : x± tv ∈ X}.

Let x, y be two points in X, we define the amount of attenuation between x and y as

E(x, y) = exp{−
∫ |x−y|

0
a(x− s

x− y

|x− y|
)ds}.

We also define E(x, y, z) = E(x, y)E(y, z). Recall the definition of u0 and denote its angular
integral by ū0. Then we have the following limit for the deterministic corrector.

Theorem 2.2. Let dimension d = 2, 3. Under the same conditions of the previous theorem, we
have

lim
ε↓0

E{uε} − u0

ε
(x, v) = U(x, v) (9)

weakly, where U(x, v) is the solution of the homogeneous (deterministic) transport equation

v · ∇xU + a(x)U − k(x)
∫

V
U(x, v′)dv′ = q(x, v), (10)

with a volume source term q(x, v) given by:

q(x, v) =
∫

R

(
Ra(tv)u0(x, v)−Rak(tv)ū0(x)−

∫
V

(
Rak(tw)u0(x,w)−Rk(tw)ū0(x)

)
dw

)
dt. (11)
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The above theorem presents a convergence of the corrector weakly in space. Under mild
assumptions, we can show that the deterministic corrector is of order O(ε) also point-wise in
(x, v), and is thus independent of the scale at which it is observed. This is not the case for the
random corrector uε − E{uε}. Let εγ be the size of the latter term. Point-wise, this term is of
size

√
ε with γ = 1

2 (i.e., is a random variable of variance O(ε)). However, weakly in space and
velocities, this term is of order ε

d
2 with thus γ = d

2 in all dimensions, hence much smaller than its
point-wise value in dimension d ≥ 2.

In this paper, we concentrate on the size of the corrector taken as a distribution in the space,
velocity, and random, variables. Calculations in [8] shows the following behaviors for point-wise
values of the corrector.

1. For a fixed (x, v) ∈ X × V , the variance of the random variable ω → ζε(x, v;ω) is of order
ε for all dimensions d ≥ 2 so that γ = 1

2 . This property, which arises from integrating
random fields along (one-dimensional) lines, is quite different from the behavior of solutions
to elliptic equations considered in e.g. [5, 23].

2. For a fixed x ∈ X, let us consider the average of ζε over directions and introduce the random
variable Jε(x, ω) :=

∫
V ζε(·, v)dv. The variance of Jε(x) is of order ε2| log ε| in dimension

two (with εγ replaced by ε| log ε|
1
2 ), and ε2 in dimension d ≥ 3 with then γ = 1. Angular

averaging therefore significantly reduces the variance of the corrector.

3. Let us consider the random variable Yε(ω) as the average of Jε over all positions. The
variance of Yε is of order εd in dimension d ≥ 2 with then γ = d

2 . This is consistent with
the main result described below. Weakly in space and velocities, the random corrector is of
smallest size.

The scaling γ therefore depends on the scale at which the corrector is observed.
This paper considers uε − E{uε} as a random field and aims at characterizing its limit as

ε → 0 weakly in space and velocity. The correct scaling will be γ = d
2 . Let us consider a

collection of sufficiently smooth functions Ml, 1 ≤ l ≤ L, and we seek for the limit distribution of
〈Ml, uε − E{uε}〉 where 〈·, ·〉 denote the integration of a pair of Hölder conjugate functions.

Let M̃l be the solution of the following adjoint transport equation:

− v · ∇xM̃l + aM̃l −
∫

V
k(x, v, v′)M̃l(x, v′)dv′ = Ml, (x, v) ∈ X × V,

M̃l(x, v) = 0, (x, v) ∈ Γ+,

(12)

and define ml := (ml1,ml2)′, where

ml1 = −
∫

V
M̃l(x, v)u0(x, v)dv, and m2l = −cdml1 +

∫
V
u0(x, v)dv

∫
V
M̃l(x, v)dv.

The limiting distribution of the stochastic corrector weakly in space and velocity is shown to be
Gaussian. More precisely, we have the following theorem.

Theorem 2.3. Let dimension d = 2, 3. Under the same condition of Theorem 2.1, we have

〈Ml,
uε − E{uε}

ε
d
2

〉 D−→ Il :=
∫

X
ml(y) · dW (y). (13)
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The convergence here should be interpreted as convergence in distribution of random variables.
The two-dimensional multivariate Wiener process W (y) = (Wa(y),Wk(y))′ satisfies that

EdW (y)⊗ dW (y) = Σdy :=
(

σ2
a ρakσaσk

ρakσaσk σ2
k

)
dy. (14)

The notation ⊗ above denotes the outer product of vectors.

Remark 2.4. More general attenuation and scattering models. In the above construction
using (3), ρak = 1 as we mentioned so that in fact, Wk = σk

σa
Wa in distribution. The above theorem

generalizes to more complex models of attenuation and scattering. For instance, consider

arε(x,
x

ε
, ω) := ar0(x) +

L∑
l=1

∑
j∈N

ψl(
x− yε,l

j

ε
),

kε(x,
x

ε
, ω) := k0(x) +

L∑
l=1

∑
j∈N

%l(
x− yε,l

j

ε
).

(15)

Here, the profile functions ψl and %l for 1 ≤ l ≤ L < ∞ are smooth compactly supported non-
negative functions, and the Poisson point processes {yε,l

j }1≤l≤L are independent possibly with
different intensities ε−dνl. Physically, these Poisson point processes model different types of
inclusions that may absorb and/or scatter. The matrix Σ still takes the form above while σa, σk

and ρak now take the form:

σ2
a =

L∑
l=1

νl

(∫
Rd

ψl(x)dx
)2

, σ2
k =

L∑
l=1

νl

(∫
Rd

%l(x)dx
)2

,

ρak = (σaσk)−1
L∑

l=1

νl

∫
Rd

ψl(x)dx
∫

Rd

%l(x)dx.

To simplify the presentation, we shall only consider the model (3) of random media.
Remark 2.5. We can rewrite Il as

Il(ω) =
∫

X
σl(y)dW (y) :=

∫
X

√
ml ⊗ml : Σ dW (y) (16)

where : is the Frobenius inner product of matrices, and W (y) is the standard one dimensional
multivariate Wiener process. The equivalence of the two formulations is easily verified by com-
puting their variance. The formulation in (13) displays the linear dependence of the correctors in
δar, δk at the price of introducing two correlated Wiener measures as for elliptic equations [5].
Remark 2.6. Recall the adjoint transport equation of the form (12). Let G∗(x, v, y, v′) be the
Greens function of this equation, i.e., the solution when the source term is δy(x)δv′(v), and define

κa(x, v, y) :=
∫

V
G∗(x, v, y, v′)dv′u0(x, v)

κk(x, v, y) := cdκa +
∫

V
G∗(x, v, y, v′)dv′ū0(x).

(17)

The convergence in the theorem can be restated as
uε − Euε

ε
d
2

(x, v) =⇒
∫

(κa(x, v; y), κk(x, v; y)) · dW (y) (18)

where W (y) is as in the theorem. This convergence is weak in space and velocity and in distribu-
tion. As we remarked earlier, the convergence does not hold point-wise in (x, v).
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3 Transport equation and random structures

In the first part of this section, we recall and adapt classical results on linear transport equations.
We show that the solution operator is a continuous linear transform on Lp(X×V ) for all p ∈ [1,∞],
and that the operator norm can be bounded uniformly when the coefficients are not uniformly
bounded. This property is crucial to us because ‖aε‖L∞ , ‖kε‖L∞ are not uniform in ε (and ω) due
to possible clustering. We also show that sufficiently high orders of scattering admits bounded
Schwartz kernel, which simplifies the analysis greatly.

In the second part of this section, we derive useful features of the processes δaε, δkε introduced
earlier. We show that they are stationary, ρ-mixing, and that high-order statistical moments admit
explicit expressions.

3.1 Transport equations and regularity results

We observe that the corrector ζε satisfies

v · ∇xζε + aζε − k

∫
V
ζε(x, v′)dv′ = −δaεuε + δkε

∫
V
uε(x, v′)dv′, (19)

with vanishing conditions on Γ−. The mathematical theory for such an equation is well-established;
see [19, Chap. XXI] and [13, 17, 9, 32]. To simplify our presentation, we introduce the standard
notation:

T0f = v · ∇xf, A1f = af, A2f = −
∫

V
k(x, v, v′)f(x, v′)dv′.

T1 = T0 +A1, T = T1 +A2.

Let us also set
Wp := {f ∈ Lp(X × V ), T0f ∈ Lp(X × V )},

and define the following differential or integro-differential operators:

T1f = T1f, Tf = Tf, D(T1) = D(T) = {f ∈ Wp, f |Γ− = 0}.

The fact that a function in Wp has trace on Γ± is proved in [17, 19]. The transport equation with
volume source f(x, v) and vanishing boundary condition can be written in the following compact
form

Tu = f.

When (a, k) is replaced by (aε, kε), then the corresponding operators are denoted by Tε and Tε1.
We say the coefficients (a, k) are admissible if the following conditions are satisfied.

1. a, k ≥ 0, a.e. and a ∈ L∞.

2. k(x, v, v′) is integrable in v′ for a.e. (x, v) and is integrable in v for a.e. (x, v′).

We say the problem is subcritical if in addition

ar = a−
∫

V
k(x, v, v′)dv′ ≥ β > 0 and a−

∫
V
k(x, v′, v)dv′ ≥ β > 0. (20)

for some real number β > 0. When k is isotropic, the last condition is simply a− cdk ≥ β > 0.
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For the free transport equation T1u = f , an application of the method of characteristics yields
the following explicit solution:

u(x, v) = T−1
1 f =

∫ τ−(x,v)

0
E(x, x− tv)f(x− tv, v)dt.

We easily verify the following property for T−1
1 .

Proposition 3.1. Let the transport equation be subcritical with parameter β. Then the solution
operator T−1

1 is a bounded linear transform on Lp(X × V ) for all p ∈ [1,∞]. Moreover,

‖T−1
1 f‖Lp ≤ e−βδδ‖f‖Lp ,

where δ is the diameter of the domain X, i.e, δ := supx,y∈X |x− y|.

The full transport equation may be seen as a perturbation of free transport. It is proved in
[19] using semi-group techniques that T−1 is a bounded linear transform on Lp for all 1 ≤ p ≤ ∞.
We will need a more accurate descriptions of the transport solution operator written in integral
form and thus introduce the operators K and K as:

Ku := T−1
1 A2u = −

∫ τ−(x,v)

0
E(x, x− tv)

∫
V
k(x− tv, v, v′)u(x− tv, v′)dv′.

Ku := A2T−1
1 u = −

∫
V

∫ τ−(x,v′)

0
E(x, x− tv′)k(x, v, v′)u(x− tv′, v′)dtdv′

= −
∫

X

E(x, y)k(x, v, v′)
|x− y|d−1

u(y, v′)dy

with v′ = (x− y)/|x− y| above. Their importance may be understood from the relations

T−1 = (I +K)−1T−1
1 , and T−1 = T−1

1 (I +K)−1.

The two equalities are obtained in the L∞ and L1 settings by standard algebraic manipulations.
In [9], it is shown using this approach that the operator norm of K can be bounded by 1− e−βδ.
Hence by Proposition 3.1, T−1 is bounded by δ in the L1 setting while similar techniques apply in
the L∞ setting with K. Hence, we have the following result as an application of the Riesz-Thorin
interpolation.

Proposition 3.2. Let the transport equation be subcritical with parameter β. Then, the solution
operator T−1 is a bounded linear transform on Lp(X × V ) for all p ∈ [1,∞] and

‖T−1f‖Lp ≤ δ‖f‖Lp .

Remark 3.3. The above bound does not depend on the value of ‖a‖L∞ , ‖k‖L∞ . This ensures that
‖T−1

ε ‖Lp→Lp is uniformly bounded as long as the subcritical condition is satisfied with a uniform
bound β even when ‖aε‖L∞ , ‖kε‖L∞ are not uniformly controlled.

We verify that T−1 admits the following Neumann series expansion:

T−1 = T−1
1 −T−1

1 K + T−1
1 K2 + · · · .

The analysis of T−1 can be done term by term. However, to avoid dealing with an infinite series,
we group the scattering contributions of sufficient large order together so as to analyze a finite
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sum of operators. This is done by showing that (I + K)−1Kd+1 has a bounded kernel so that
multiple scatterings of order at least d + 1 can be grouped together. To show this, we observe
that when acting on functions of the spatial variable only, K : L1(X) → L1(X) has the following
expression:

Kf(x) = −
∫

X

k(x)E(x, y)
|x− y|d−1

f(y)dy.

Then we have the following estimate on the kernel of (I +K)−1Kd+1.

Lemma 3.4. Let the coefficients (a, k) be subcritical, then the operator (I +K)−1Kd+1 admits a
Schwartz kernel that is a bounded function. That is to say,

(I +K)−1Kd+1f(x) =
∫

X
α(x, y)f(y)dy (21)

and ‖α(x, y)‖L∞(X×X) <∞.

Proof: The kernel of K is a function given by κ(x, y) = −k(x)E(x,y)
|x−y|d−1 , so that the kernel of Kd+1

is:
κd+1(x, y) = (−1)d+1

∫
Xd

k(x)lE(x, z1)k(z1)E(z1, z2) · · · k(zd)E(zd, y)
|x− z1|d−1|z1 − z2|d−1 · · · |zd − y|d−1

dz1 · · · dzd.

Thanks to the convolution lemma A.1, we see that this kernel is bounded.
For the kernel of (I +K)−1Kd+1, we first write it as Kd+1(I +K)−1 and denote it by L. Then

for any φ ∈ L1(X) and ψ ∈ L1(X), we verify the following.

〈Lφ, ψ〉X =
∫

X2

κd+1(x, y)
(
(I +K)−1φ

)
(y)ψ(x)dxdy ≤ ‖κd+1‖L∞‖(I +K)−1‖L1→L1‖φ‖L1‖ψ‖L1 .

The last inequality holds because the integration in x and y are separated. Therefore, we have
shown that

‖Lφ‖L∞ ≤ C0‖φ‖L1 , (22)

where C0 is the constant appearing in the preceding inequality. The Schwartz kernel theorem [24]
shows the existence of a distribution α on X×X such that 〈Lφ, ψ〉X = 〈α, φ⊗ψ〉X×X for smooth
functions φ and ψ in D(X). Moreover, thanks to (22), we obtain that α is a function in the x
variable and that

‖ sup
‖φ‖L1(X)=1

〈α(x, ·), φ〉X‖L∞
x (X) ≤ C0.

Thus for a.e. x ∈ X, sup‖φ‖L1(X)=1〈α(x, ·), φ〉X ≤ C0 so that for a.e. x ∈ X, the linear form
〈α(x, ·), φ〉 satisfies

〈α(x, ·), φ〉X =
∫

X
α(x, y)φ(y)dy,

with α(x, y) ∈ L∞y (X) by the Riesz representation stating that (L1(X))′ = L∞(X). This shows
that L may be represented as in (21) with α ∈ L∞(X ×X). �

An immediate corollary is the following.

Corollary 3.5. Under the same condition as above, we have the following decomposition.

T−1f = T−1
1 (f −Kf + K̃Kf) (23)

where K̃ is a weakly singular integral operator with a kernel bounded by C|x− y|−d+1, d = 2, 3.

9



Proof: It remains to rewrite the Neumann series as

T−1f = T−1
1 f −T−1

1 Kf + T−1
1 K2f + · · ·+ (−1)dT−1

1 LKf

= T−1
1 (f −Kf + (

d∑
j=1

(−1)j−1Kj + (−1)dL)Kf).
(24)

The lemma shows that L admits a bounded kernel. We are left with a finite number of operators
Kj , j = 1, 2, · · · , d to consider. The Schwartz kernels of these operators are explicit and can be
estimated using the convolution lemma A.1. They are all bounded by C|x− y|1−d, and so is the
kernel of K̃ :=

∑d
j=1(−1)j−1Kj + (−1)dL. �

The theories developed for the forward transport equation apply with no modification to the
adjoint transport equation, which we have used in the definition of M̃l in (12). We denote

T∗
1u = −T0u+A1u, T∗u = T∗

1u−A′2u, D(T∗
1) = D(T∗) = {u ∈ Wp, u|Γ+ = 0}. (25)

Here A′2 is of the same form as A2 with v and v′ switched in the function k. In our case, since k
is assumed to be isotropic, A′2 and A2 are the same. We obtain similar expressions for T∗−1

1 , K∗

and K∗. Under the same subcritical condition as before, we also have that T∗−1
1 and T∗−1 are

bounded linear transforms on Lp(X × V ) for all p ∈ [1,∞]. Also, for any pair of functions that
are Hölder continuous, we find that:

〈u,T−1w〉 = 〈T∗−1u,w〉. (26)

3.2 Random inclusions of attenuation and scattering kernel

In this section, we exhibit some useful properties of the random model (3). In the model, the de-
terministic functions ar0 and k0 are continuous and slowly varying, and satisfies the subcriticality
condition. The random part can be viewed as additional heterogeneous inclusions of attenuation
and scattering kernels. The centers of these inclusions are yε

j and they are distributed as a spatial
Poisson point process. The profiles of the inclusions are ψ and %, which are nonnegative smooth
functions compactly supported on the unit ball. Similar models have been considered [23, 10].

Let (Ω,F ,P) be some probability space. A stationary spatial Poisson point process with
intensity ν is a countable subset Yν := {yj} ⊂ Rd such that for any set A in the Borel algebra
B(Rd), the random variableN(A) defined as the cardinality of A∩Yν , satisfies Poisson distribution
with intensity ν|A|, i.e.,

P{N(A) ≤ m} =
e−ν|A|(ν|A|)m

m!
, (27)

where |A| is the Lebesgue measure of A. Further, for any positive integer n ≥ 2 and mutually
disjoint Borel sets A1, · · · , An, the random variables N(Ai), 1 ≤ i ≤ n are independent. The map
A 7→ N(A) is a counting measure on B(Rd) and is called the Poisson counting measure.
Stationary property. The stationarity of such a Poisson point process is due to the fact
that the distribution of N(A) depends only on |A| but not on the position of A. Therefore,
N(A1 + z), · · ·N(An + z) have the same distribution with N(A1), · · · , N(An) for any z ∈ Rd and
Ai ∈ B(Rd). By construction, the coefficients arε − ar0 and kε − k0 are also stationary.
Scaling property. Let Yν = {yj} be a Poisson point process with intensity ν, and Yε−dν = {yε

j}
be the one defined before with intensity ε−dν. Then ε−1Yε−dν has the same distribution as Yν .
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This is easily verified by:

P{
∑

j

χεA(yε
j ) ≤ m} = P{N(εA;Yνε−d)} =

e−νε−d|εA|(νε−d|εA|)m

m!
,

and that ε−d|εA| = |A|. As a result, if we define

ar
ν(x;ω) =

∑
j

ψ(x− yj(ω)), kν(x;ω) =
∑

j

%(x− yj(ω)), (28)

then ar
ν( ·ε) and kν( ·ε) have the same distribution with arε−ar0 and kε−k0 respectively. Therefore,

to derive moments formula for the latter, it suffices to derive them for the former and evaluate
the results at position ·

ε .
Mixing property. Recall that a random field q(x, ω) is said to be strong mixing if for any two
Borel sets A,B ⊂ Rd, the σ-algebra FA and FB generated by q|A and q|B respectively decorrelate
fast enough as the distance of the two sets increases. We refer the readers to [21] for more accurate
definition and quantitative characterization of varieties of mixing properties. For Poisson point
process, as long as A and B are disjoint, two random variables which depend only on points in
A and B respectively are independent. By construction, as long as A and B are separated more
than twice the support of the profile functions, the processes e.g., δar, restricted on A and B are
independent. Hence, the random model (3) is strong mixing, actually they are m-independent;
see [21].

3.2.1 Moments formulas for the random fields

Mean and autocorrelation functions. Since ar
ν is stationary, its mean is a constant. It can

be calculated conditioning on N(B1(x)) as follows.

Ear
ν = E

∑
j

ψ(x− yj) =
∞∑

m=1

P{N(B1(x) = m}E(
m∑

j=1

ψ(x− y′j)|N(B1(x)) = m).

Here, we denote the m points that land in B1(x) as y′j . Recall that conditioned on N(A) = m,
the m points y′j are independent, identically and uniformly distributed on A, see [18, pp. 47]. We
have

Ear
ν =

∞∑
m=1

e−ναd
(ναd)m

m!
m

∫
B1(x)

ψ(x− z)
dz

αd
= ν

∫
Rd

ψ(z)dz =: νψ̂(0).

Here, αd denotes the volume of the unit ball in Rd. Then it follows that Earε(x) = ar0(x)+νψ̂(0).
Recall the definition of δarε, we see it has the same distribution as δar

ν(x
ε ) := ar

ν(x
ε ) − νψ̂(0)

and is stationary and mean-zero. Similarly, Ekε = k0 + νψ̂, and δkε can be identified with
δkν(x

ε ) := kν(x
ε )− νk̂(0), and δaε with the combination of the two.

Now we calculate the autocorrelation function of δar
ν and then evaluate the result at ·

ε to get
the autocorrelation function of δarε. For simplicity, we will drop the superscript ν in the notation.
We have,

E(δar(x1)δar(x2)) = E
2∏

i=1

∑
j≥1

ψ(xi − yj)− (νψ̂(0))2.

11



Since ψ is compactly supported on the unit ball, only those yj ’s that are in the set A = ∪B(xi)
contribute to the product, and A is a bounded set. Again, we calculate the expectation condi-
tioning on N(A). The object is now:

∞∑
m=1

e−ν|A| (ν|A|)m

m!
E(

m∑
j=1

ψ(x1 − y′j)ψ(x2 − y′j) +
m∑

i,j=1,i6=j

ψ(x1 − y′i)ψ(x2 − y′j)|N(A) = m)

=ν
∫

B(x1)∩B(x2)
ψ(x1 − z)ψ(x2 − z)dz + (νψ̂(0))2

where we have used again the property that conditioned on N(A) = m, the m points are inde-
pendent and uniformly distributed in A. Hence, we also have

Ra(x− y) = E(δar(x)δar(y)) = νψ ∗ ψ(x− y).

We verify that this is a function of the variable x−y and it is compactly supported in this variable.
Now, the autocorrelation function of δarε is just Ra( ·ε). Similarly we can derive formulas for Rk

and Rak and verify that they are as given in Section 2.
Higher order moments of δarε and δkε. Our proof of the main results depends on the fact
that we have explicit expressions for moments (up to the eighth order for d = 2, 3) of the random
fields. A systematic formula for higher order moments of δar is derived in Appendix B. We cite
the results here.

We denote the set {1, 2, · · · , n} by [n]. An array (n1, n2, · · · , nk) satisfying that
∑k

i=1 ni = n
and 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk is called a partition of n. If such a partition satisfies further that
n1 ≥ 2, then we say it is non-single. Let Pn be the set of all partitions of n, and let Gn be the set
of non-single partitions of n. Then for δk (and similarly for other coefficients), we have

E{
n∏

i=1

δk(xi)} =
∑

(n1,··· ,nk)∈Gn

C
n1,··· ,nk
n∑

`=1

k∏
j=1

Tnj (x(`,nj)
1 , · · · , x(`,nj)

nj ). (29)

For a given (n1, · · · , nk) ∈ Gn, the index ` represents the choice of dividing [n] (hence {xi}, 1 ≤
i ≤ n) into disjoint groups of size ni. The label `, nj on x represents the particular choice of
partition. The functions T k

ε (·) are defined as:

Tnj (x1, · · · , xnj ) := ν

∫ nj∏
i=1

ψ(xi − z)dz. (30)

Then for δkε, we just need to evaluate the above formula at ·
ε .

In particular, the fourth order moments of the random model, say δkε, is given by

E{
4∏

i=1

δkε(xi)} = ν

∫ 4∏
i=1

%(
xi

ε
− z)dz

+Rε(x1 − x2)Rε(x3 − x4) +Rε(x2 − x3)Rε(x1 − x4) +Rε(x1 − x3)Rε(x2 − x4).

(31)

Here and below, we will use the notation that Tnj
ε = Tnj ( ·ε) and Rε = R( ·ε).
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3.2.2 Lp boundedness of the random fields

From the construction of arε, kε, we see that they are not uniformly bounded due to the possible
(though rare) clustering of yj ’s in a small set. Nevertheless, when the Lp norm is considered, the
random fields are bounded uniformly in ε. In fact, we have

Lemma 3.6. The random fields such defined are in Ln(Ω, Ln(X)) for n ≥ 1:

E‖arε‖n
Ln + E‖kε‖n

Ln ≤ C(n)

where C(n) does not depend on ε.

Proof: Since the result for n odd follows from the result for n+1, which is even, we set n = 2m
and have

E{‖δkε‖2m
L2m} =

∫
X

E(δkε(x))2mdx.

We use the formula for high order moments, and since in our case all the 2m variables are the
same, we need to evaluate the terms T j in (29) at 0. Since we assumed that the function % is
C∞

c , all the integrals are finite. Therefore, we obtain a bound independent of ε. Control of the
attenuation coefficient is obtained in the same way. �

In the next two sections, we prove the main results with the random field model (3). However,
the same procedure of proof applies to more general random models. The main required features of
the process are: (i) arε and kε are nonnegative, stationary, and P-a.s bounded; (ii) The mean-zero
process arε − E{arε} and kε − E{kε} have the same distribution as δar( ·ε) and δk( ·ε) respectively
for some stationary random fields δar and δk; (iii) The random fields δar and δk have correlation
functions {Ra, Rak, Rk} that are integrable in all directions and over the whole domain; (iv) The
random fields δar and δk admit explicit expressions for their moments up to the eighth order
(assuming d = 2, 3); see the proofs below for a more quantitative statement.

4 Proof of Theorem 2.1 and homogenization theory

In this section, we prove Theorem 2.1, which states that the solutions to the random equations
converge in energy norm to the solution of the homogenized equation. We show that the corrector
can be decomposed into two parts. The leading part satisfies a homogeneous transport equation
with a random volume source, and the other part is much smaller. This theorem works for all
dimension d ≥ 2.

We can now view (19) as Tζε = Aεuε where Aε is an operator defined by Aεf = −δaεf+δkεf̄ .
Let χε = T−1Aεu0 and we verify that

ζε = χε + zε,

where Tεzε = Aεχε. Hence, we introduce the following key lemmas on solutions of transport
equations with interior source of the form Aεq, and Aεχε and vanishing boundary conditions.

Lemma 4.1. Assume d ≥ 3. Let q(x, v) ∈ L∞(X × V ) and define

χε(x, v) =
∫ τ−(x,v)

0
E(x, x− tv)(−δaε(x− tv)q(x− tv, v) + δkε(x− tv)q̄(x− tv))dt,
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the solution to T1χε = Aεq. Then for any integer n ≥ 1, we have

E‖χε‖n
Ln ≤ Cnε

n
2 ‖q‖n

L∞ , E‖χ̄ε‖n
Ln ≤ Cnε

n‖q‖n
L∞ . (32)

Further, solving the equation T1u = δaεχε yields

E‖T−1
1 δaεχε‖n

Ln ≤ Cnε
n‖q‖n

L∞ . (33)

When d = 2, the term εn in the second and third estimates should be replaced by εn| log ε|
n
2 .

Proof: Since the domain X × V is bounded, we only need to consider the case n even.
1. Control of χε without averaging. We can rewrite χε as a sum of integrals of aε and kε.

Using Minkowski’s inequality, it is sufficient to control them separately and the proof for both
terms is handled similarly. We consider

I1 =
∫

X×V

(∫ τ−(x,v)

0
E(x, x− tv)δaε(x− tv)q(x− tv, v)

)n

dxdv.

Taking expectation, we have

EI1 =
∫

X×V

∫ τ−

0
dt1 · · ·

∫ τ−

0
dtn

(
n∏

i=1

E(x, x− tiv)q(x− tiv, v)

)
E

n∏
i=1

δaε(x− tiv)dxdv

where τ− ≡ τ−(x, v). Recall that we have an expression for the n−th order moments:

E
n∏

i=1

δaε(x− tiv) =
∑

(n1,··· ,nk)∈Gn

C
n1,··· ,nk
n∑

`=1

k∏
j=1

Tnj (
t
`,nj

2 − t
`,nj

1

ε
v, · · · ,

t
`,nj
nj − t

`,nj

1

ε
v)

This expression is a sum of integrable functions. Hence, for each (`, nj), we change variable
(t`,nj

i − t
`,nj

1 )/ε→ t
`,nj

i , and assume that u0 is uniformly bounded. Then we have

EI1 ≤ C

∫
X×V

∑
(n1,··· ,nk)∈G

Cn
n1,··· ,nk∑

`=1

k∏
j=1

εnj−1

∫ τ−

0
dt

`,nj

1

∫
Rnj−1

Tnj (t`,nj

2 v, · · · , t`,nj
nj v).

Since Tnj is integrable in all directions, we see that all the integrals above are finite and hence
we find that

EI1 ≤ Cn‖q‖n
L∞εmink(n−k).

From the definition of non-single partition of n, we know k ≤ n
2 to make sure that nj ≥ 2, j =

1, · · · , k. Hence mink(n− k) = n
2 . This yields the first estimate. We mention that Cn depends on

n through p′n and on the size of X.
2. Control of the average of χε. Again, we consider the aε term only. Recall the change of

variable ∫
V

∫ τ−(x,v)

0
f(x− tv, v)dtdv =

∫
X

f(y, v)
|x− y|d−1

∣∣
v= x−y

|x−y|
dy. (34)

We rewrite the term as∫
V

∫ τ−

0
E(x, x− tv)(−δaε(x− tv))q(x− tv, v)dtdv = −

∫
X

E(x, y)δaε(y)
|x− y|d−1

q(y,
x− y

|x− y|
)dy.

14



The term we wish to analyze is now

I2 =
∫

X

(∫
X

E(x, y)δaε(y)
|x− y|d−1

q(y,
x− y

|x− y|
)dy
)n

dx

=
∫

X
dx

∫
Xn

(
n∏

i=1

E(x, yi)
|x− yi|d−1

q(yi,
x− yi

|x− yi|
)

)
n∏

i=1

δaε(yi)d[y1 · · · yn].

Here and in the sequel, d[y1 · · · yn] ≡ dy1 · · · dyn. Upon taking expectation, we have

EI2 ≤ C‖q‖n
L∞

∫
X

∫
Xn

n∏
i=1

1
|x− yi|d−1

E
n∏

i=1

δaε(yi)

Now we use the formula for high-order moments again and obtain

EI2 ≤ C
∑

(n1,··· ,nk)∈G

C
n1,··· ,nk
n∑

`=1

∫
X

k∏
j=1

∫
Xnj

Tnj (y
`,nj
2 −y

`,nj
1

ε , · · · ,
y

`,nj
nj

−y
`,nj
1

ε )

|x− y
`,nj

1 |d−1 · · · |x− y
`,nj
nj |d−1

.

There are many terms to estimate, which are all analyzed in the same manner. We consider a
term with fixed k, nj and `. For each Tnj , it is a function of y`,nj

i − y
`,nj

1 . Hence, we change
variables

y
`,nj

i − y
`,nj

1

ε
→ y

`,nj

i , x− y
`,nj

1 → y
`,nj

1 , i = 1, · · · , nj , j = 1, · · · , k.

Then the integral of this term becomes∫
X
dx

k∏
j=1

εd(nj−1)

∫
x−X

dy
`,nj

1

∫
(X/ε)nj−1

Tnj (y`,nj

2 , · · · , y`,nj
nj )

|y`,nj

1 |d−1
∏nj

i=2 |εy
`,nj

i − y
`,nj

1 |d−1
d[y`,nj

2 · · · y`,nj
nj ].

We will call this term Inj . We need to control the k integrals inside the product sign, which are
controlled in the same manner. We use the so-called Voronoi diagram of points. Let us consider
one of integral with (`, nj) fixed and denote y`,nj

i as y′i to simplify the notation. Now we only
need to control ∫

2X
dy′1

∫
Rd(nj−1)

Tnj (y′2, · · · , y′nj
)

|y′1|d−1
∏nj

i=2 |y′1 − εy′i|d−1
.

For almost all y′2, · · · , y′nj
, we can consider the Voronoi diagram formed by εy′2, · · · , εy′nj

. For any
fixed i, when y′1 is inside the cell of εy′i,

|y′1 − εy′l| ≥
1
2
|εy′i − εy′l|, ∀l 6= i.

Then if we replace y′1 − εy′l by ε(y′i − y′l)/2, the integral increases. Hence we have:

Inj ≤ εd(nj−1)

nj∑
i=1

∫
2X

1
|y′1|d−1|y′1 − εy′i|d−1

dy′1

∫
R(nj−1)d

Tnj (y′2, · · · , y′nj
)∏

l 6=1,i(2−1ε)d−1|y′i − y′l|d−1
d[y′2 · · · y′nj

].

(35)
When d = 3, after integrating in y′1, we thus obtain the bound

Cε(nj−1)d−(nj−2)(d−1)−(d−2)

∫
R(nj−1)d

Tnj (y′2, · · · , y′nj
)

|y′i|d−2
∏

l 6=1,i |y′i − y′l|d−2
d[y′2 · · · y′nj

], (36)
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Here, we used Lemma A.1 for the integral over y′1. Hence this term is of order εnj once we obtain
that the integral is bounded. Recalling the definition of Tnj , we can rewrite this integral as∫

Rnjd
ψ(z)

ψ(z − y′i)
|y′i|d−2

nj∏
l 6=1,i

ψ(z − y′l)
|y′i − y′l|d−1

dzd[y′2 · · · y′nj
]

=
∫

Rd

dzψ(z)
∫

Rd

dy′i
ψ(z − y′i)
|y′i|d−2

∏
l 6=1,i

∫
Rd

ψ(z − y′i − y′l)
|y′l|d−1

dy′l.

(37)

The integrals inside the product sign are bounded uniformly in z − y′i since∫
|y′l|≤1

ψ(z − y′i − y′l)
|y′l|d−1

dy′l +
∫
|y′l|>1

ψ(z − y′i − y′l)
|y′l|d−1

dy′l ≤ ‖ψ‖L∞cd + ‖ψ‖L1 .

Thus we need to estimate∫
R2d

ψ(z)ψ(z − y′i)
|y′i|d−1

dy′idz =
∫

Rd

ψ(z)
(
ψ ∗ 1

| · |d−1

)
(z)dz.

This integral is clearly bounded since ψ ∗ | · |−d+1 is bounded and ψ is compactly supported.
Hence each Inj is of order εnj and therefore I2 is of order εn. In the case when n = 2, by

Lemma (A.1), the integral over y′1 above should be replaced by a logarithm function, and each
Inj has a contribution of εnj | log ε|; therefore, I2 is of order εn| log ε|max k. Again, k ≥ n

2 for all
the non-single partitions. Hence, I2 is of order εn| log ε|

n
2 .

3. Proof of the third estimates. The third estimate is a consequence of the first two. First we
can write T−1

1 Aεχε as

T−1
1 δaεT−1

1 δaεq −T−1
1 δaεT−1

1 δkεq̄ + T1δkε(χ̄ε).

The first two terms are analyzed as in 1. While considering the Ln norm of this term, we have
2n terms of δaε, δkε, which all yield contributions of order εn. For the third term, we use the
inequality that

E‖T−1
1 δkεχ̄ε‖n

Ln ≤ C[E‖δkε‖2n
L2n ]

1
2 [E‖χ̄ε‖2n

L2n ]
1
2

and the fact that E‖kε‖2n
L2n is bounded. Application of the second estimate completes the proof.

�

We can generalize these estimates to the case when T1 is replaced by T above. For T−1AεT−1Aεq,
we have:

Corollary 4.2. Under the same condition, replace T1 in previous lemma by T. Then for any
integer n ≥ 1, we have that when d ≥ 3,

E‖T−1Aεq‖n
Ln ≤ Cnε

n
2 ‖q‖n

L∞ , E‖T−1Aεq‖n
Ln ≤ Cnε

n‖q‖n
L∞ (38)

and if we iterate again,
E‖T−1AεT−1Aεq‖n

Ln ≤ Cnε
n‖q‖n

L∞ . (39)

In dimension two, εn in the second and third estimate is replaced by εn| log ε|
n
2 .
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Proof: First, we have

T−1 = T−1
1 −T−1K = T−1

1 −T−1A2T−1
1 . (40)

Since T−1A2 is bounded Ln → Ln, we can replace T1 by T in the first estimate and in the first
instance where T appears in third estimates. For the second estimate, we have

T−1Aεq = T−1
1 Aεq −T−1KAεq.

The first term above is exactly the third item in the previous lemma. The second term above is
bounded by C‖KAεq‖Ln and it is exactly the second estimate in the previous lemma.

For the replacement of second T1 in the third estimate, we first write

T−1
1 AεT−1Aεq = T−1

1 AεT−1
1 Aεq −T−1

1 AεT−1KAεq.

The first term is that in the lemma, and the second terms is estimated as follows:

‖T−1
1 AεT−1KAεq‖Ln ≤ ‖T−1

1 ‖Ln→Ln(‖δaε‖L2n + ‖δkε‖L2n)‖T−1‖L2n→L2n‖KAεq‖L2n .

Then we use the inequality (a + b)n ≤ Cn(an + bn) for a, b ≥ 0, take the expectation and apply
the Cauchy-Schwarz inequality to get the result. �

Remark 4.3. All the results hold when T is replaced by T∗ in the lemmas.

We are now ready to prove the first main result.
Proof of Theorem 2.1: We assume that d ≥ 3. Only slight modifications left to the reader
are needed when d = 2. Assume u0 ∈ L∞ which is verified when g ∈ L∞(Γ−). Let χε = T−1Aεu0.
We write ζε = χε + zε and E‖χε‖2

L2 ≤ Cε by the previous lemmas, and it remains to analyze zε,
which can be rewrite as the sum of of z1ε := −T−1

ε δaεχε and z2ε := T−1
ε δkεχ̄ε. From the previous

lemma and the fact that δkε is in L4, we conclude that

E‖kεχ̄ε‖2
L2 ≤ [E‖kε‖4

L4 ]
1
2 [E‖χ̄ε‖4

L4 ]
1
2 ≤ Cε2.

Then we recall that T−1
ε is a bounded linear transform on L2 and the bound is uniform in ε as

long as we have a uniform subcriticality condition, which can be verified if ar0 > β. Therefore,
we have

E‖T−1
ε kεχ̄ε‖2

L2 ≤ ‖T−1
ε ‖2

L2→L2E‖kεχ̄ε‖2
L2 ≤ Cε2.

To control z1ε, first we observe that

z1ε = T−1(−δaε)χε + (T−1
ε −T−1)(−δaε)χε = z11ε + z12ε.

For z11ε, we use the third estimate in Corollary 4.2 and E‖z11ε‖2
L2 ≤ Cε2. For the z12ε term, we

notice that it satisfies the equation
Tεz12ε = Aεz11ε.

We then control the L2 norm of z12ε by that of Aεz11ε. We have

E‖z12ε‖2
L2 ≤ C‖T−1

ε ‖2
L2→L2 [E‖aε‖4

L4 + E‖δkε‖4
L4 ]

1
2 [E‖z11ε‖4

L4 ]
1
2 ≤ Cε2.

Hence we have shown that E‖zε‖2
L2 ≤ Cε2. The proof is now complete. �
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5 Proof of Theorem 2.2 and 2.3: a weak CLT result

The main steps of the proof are as follows. As an application of the central limit theorem, we
expect the fluctuations to be of order ε

d
2 with thus a variance of order O(εd). Any contribution

smaller than the latter order can thus be neglected. However, there are deterministic corrections
of order larger than or equal to ε

d
2 . We need to capture such correctors explicitly.

The deterministic and random correctors are obtained by expanding (19) as Tζε = Aεu0+Aεζε
in powers of Aε. The number of terms in the expansion depends on dimension. We first consider
the simpler case d = 2 and then address the case d = 3. Higher-order dimensions could be handled
similarly but require tedious higher-order expansions in Aε which are not considered here.

The derivation of the results are shown for random processes based on the Poisson point
process described earlier for simplicity. As will become clear in the proof, what we need is that
moments of order 2+2d (i.e., 6 in d = 2 and 8 in d = 3) of the random process be controlled. Any
process that satisfies similar estimates would therefore lead to the same structure of the correctors
as in the case of Poisson point process. Such estimates are however much more constraining than
assuming statistical invariance and ergodicity, which is sufficient for homogenization [22]. For
similar conclusions for elliptic equations, we refer the reader to e.g. [5, 7, 23].

5.1 The case of two dimensions

As outlined above, we have the iteration formula:

ζε = T−1Aεu0 + T−1AεT−1Aεu0 + T−1AεT−1Aεζε. (41)

Let M by a test functions on X × V , say continuous and compactly supported on X. After
integration against this function on both sides of the expansion, we have

〈ζε,M〉 = 〈Aεu0,m〉+ 〈AεT−1Aεu0,m〉+ 〈AεT−1Aεζε,m〉. (42)

Here we define m = T∗−1M . We need to estimate the mean and variance of each term on the right
hand side. We will show that in two dimensions, this expansion suffices. Weakly, the first term
is mean-zero but is the leading-order term for the variance. The second term has a component
whose mean is of order ε and converges to U as in Theorem 2.2. The other components of the
second and third terms are shown to be smaller than ε

d
2 both in mean and in variance (weakly).

The following lemmas prove these statements.
Let us call the terms in (42) as J1, J2 and R1, respectively. Since u0 is deterministic, and δaε

and δkε are mean-zero, we obtain that J1 is mean-zero. Its variance is easily seen to be of order
εd and will be investigated later in detail. For the term J2, we use the decomposition of T−1 and
recast it as

J2 = 〈AεT−1
1 Aεu0,m〉+ 〈AεT−1

1 KAεu0,m〉+ 〈AεT−1
1 KK̃Aεu0,m〉,

and call the terms J21, J22, and J23. Then we have the following estimates for them.

Lemma 5.1. Assume the same condition of Theorem 2.1 hold. Let d = 2. Then we have
(i) The mean of J21 is of order ε and more precisely,

E〈AεT−1
1 Aεu0,m〉 = ε〈U,M〉+ o(ε) (43)
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where U(x, v) is the solution to (10).
(ii) For the variance of J21, we have

Var {J21} ≤ Cεd+2| log ε| � εd. (44)

(iii) For J22 and J23, we have

EJ2
22 ≤ Cε2d| log ε|2, EJ2

23 ≤ Cε2d. (45)

Hence E|J2j | for j = 2, 3 are much smaller than ε
d
2 .

In dimension three, (i) is similar, and the logarithm in (ii) and (iii) can be dropped.

Proof: (1) The mean of J21. This term has an explicit expression.

J21 =
∫

X×V
m(x, v)

∫ τ−(x,v)

0

[
E(x, x− tv)

(
δaε(x)δaε(x− tv)u0 − δaε(x)δkε(x− tv)ū0

)
+
∫

V

∫ τ−(x,w)

0
E(x, x− sw)

(
− δkε(x)δaε(x− sw)u0 + δkε(x)δkε(x− sw)ū0

)
dw
]
dtdvdx.

After taking expectation, we need to estimate

EJ21 =
∫

X×V
m(x, v)

∫ τ−(x,v)

0

[
E(x, x− tv)

(
Ra(

tv

ε
)u0(x− tv, v)−Rak(

tv

ε
)ū0(x− tv)

)
+
∫

V

∫ τ−(x,w)

0
E(x, x− sw)

(
−Rak(

sw

ε
)u0(x− sw,w) +Rk(

sw

ε
)ū0(x− sw)

)
dw
]
dtdvdx.

Then we change variables t
ε to t and s

ε to s and obtain the following limit:

lim
ε→0

ε−1EJ21 =
∫

X×V
m(x, v)

∫
R

[
Ra(tv)u0(x, v)−Rak(tv)ū0(x)

)
+
∫

V

(
−Rak(tw)u0(x,w) +Rk(tw)ū0(x)

)
dw
]
dtdvdx.

The right hand side above is exactly 〈M,U〉 by definition.
(2) The variance of J21. The moments and cross-correlations of the random coefficients δaε

and δkε satisfy similar estimates. In the analysis of J21, we therefore focus on the term that
is quadratic in δaε knowing that the other three terms involving δkε are estimated in the same
manner. We call I1 the term quadratic in δaε to simplify notation, and using the change of
variables (34), rewrite it as

I1 =
∫

X×V
m(x, v)δaε(x)

∫ τ−(x,v)

0
E(x, x− tv)δaε(x− tv)u0(x− tv, v)dtdxdv

=
∫

X2

m(x,
x− y

|x− y|
)E(x, y)

δaε(x)δaε(y)
|x− y|d−1

u0(y,
x− y

|x− y|
)dtdxdy.

Then Var (I1) = E(I1 − EI1)2 can be written as∫
X4

m(x, v)m(x′, v′)u0(y, v)u0(y, v′)E(x, y)E(x′, y′)
|x− y|d−1|x′ − y′|d−1

(E[δaε(x)δaε(y)δaε(x′)δaε(y′)]− E[δaε(x)δaε(y)]E[δaε(x′)δaε(y′)])d[x′y′xy].
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Now recalling the formula (31) for the fourth-order moment, we see that in the three choices of
pairing the four points, the one that pairs x with y and x′ with y′ is the most singular term. Indeed,
it is precisely EI2

1 and we’ve shown it is of order ε2. However, this terms does not contribute to
the variance, where only smaller terms appear.

Indeed, assuming that m and u0 are uniformly bounded, we have

Var (I1) ≤ C

∫
X4

1
|x− y|d−1|x′ − y′|d−1

(
|T 4(

y − x

ε
,
x′ − x

ε
,
y′ − x

ε
)|+

|R(
x′ − x

ε
)R(

y′ − y

ε
)|+ |R(

x′ − y

ε
)R(

y′ − x

ε
)|
)
.

We estimate the three integrals. For the first integral, we change variables (y − x)/ε → y,
(x′ − x)/ε→ x′, and (y′ − x)/ε→ y′. Then the integral becomes

ε3d−2(d−1)

∫
X
dx

∫
(X−x

ε
)3

|T 4(y, x′, y′)|
|y|d−1|x′ − y′|d−1

d[yx′y′].

We replace the integration domain of [y, x′, y′] to R3d. The resulting integral is finite:∫
R3d

|T 4(y, x′, y′)|
|y|d−1|x′ − y′|d−1

d[yx′y′] ≤
(∫

ψ(z)ψ ∗ 1
|y|d−1

(z)dz
)2

.

The first integral gives a contribution of order εd+2 to the variance.
The other two integrals are handled in a similar way. Noting the symmetry between x′ and

y′, we consider only the second integral. We change variables (x−x′)/ε→ x, (y− y′)/ε→ y, and
(x′ − y)/ε→ x′. Then, we have∫

X4

|R(x−x′

ε )R(y−y′

ε )|
|x− y|d−1|x′ − y′|d−1

d[x′y′xy] =
∫

X4

|R(x−x′

ε )R(y−y′

ε )|
|x′ − y + (x− x′)|d−1|x′ − y + (y − y′)|d−1

d[x′y′xy]

≤
∫

X
dy′
∫

R2d

|R(x)R(y)|d[xy]ε2d

∫
2X

1
|x′ + εx|d−1|x′ + εy|d−1

dx′.

For the integral in x′, we use the convolution lemma A.1. In dimension two, the integral is
bounded by C(| log |x− y||+ | log ε|). Hence, the above integral is bounded by

C|X|
(
ε2d| log ε|

∫
R2d

|R(x)R(y)|dxdy + ε2d

∫
R2d

|R(x)R(y) log |x− y||dxdy
)
.

Again, the integrals are bounded. The first one is trivial. The second one is again a convolution
of a compactly supported function with a locally integrable function. This yields a contribution
of order ε4| log ε| in dimension two and εd+2 in dimension three.

Observe that 2d = d+ 2 in dimension two. We conclude that

Var {I1} ≤ C|X|‖u0m‖2
L∞εd+2| log ε|.

(3) The absolute mean of J22. We recast J22 as∫
X×V

m(x, v)δaε(x)
∫ τ−(x,v)

0
E(x, x− tv)

∫
X

E(x− tv, y)δaε(y)
|x− tv − y|d−1

u0(y,
x− tv − y

|x− tv − y|
)d[ytx]

=
∫

X3

m(x,
x− y

|x− y|
)

δaε(x)δaε(y)
|x− z|d−1|z − y|d−1

u0(y,
z − y

|z − y|
)d[xzy].
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Using the decomposition of the fourth order moments, the problem reduces to estimating similar
integrals as was done before. Since there is another integration in z, this term is more regular
than the ballistic part and the mean square of this term is negligible compared to the random
fluctuations. We have

EJ2
22 ≤C

∫
X6

(
|T 4(

y − x

ε
,
z − x

ε
,
y′ − x

ε
)|+ |R(

x− y

ε
)R(

x′ − y′

ε
)|+ |R(

x− y′

ε
)R(

x′ − y

ε
)|

+ |R(
x− x′

ε
)R(

y − y′

ε
)|
) 1
|x− z|d−1|z − y|d−1|x′ − z′|d−1|z′ − y′|d−1

d[xyzx′y′z′].

We integrate over z and z′ first. Using the convolution lemma, we obtain

EJ2
22 ≤C

∫
X4

(
|T 4(

y − x

ε
,
x′ − x

ε
,
y′ − x

ε
)|+ |R(

x− y

ε
)R(

x′ − y′

ε
)|+ |R(

x− x′

ε
)R(

y − y′

ε
)|

+ |R(
x− y′

ε
)R(

x′ − y

ε
)|
)
| log |x− y| log |x′ − y′||d[xyx′y′].

The most singular term arises when the correlation function and the logarithmic functions have
the same singularity. These most singular terms are treated as follows. For the integral∫

X4

|R(
x− y

ε
)R(

x′ − y′

ε
)|| log |x− y| log |x′ − y′||d[xyx′y′],

we change variables (x− y)/ε→ y and (x′ − y′)/ε→ y′ and the integral is bounded by

ε2d| log ε|2
∫

X2

d[xx′]
(∫

Rd

|R(y)|dy
)2

.

The integral is finite for the same reasons as before.
The other contributions in the variance of J22 are negligible compared to this contribution.

For the third integral, which is identical with the fourth integral, we need to control∫
X4

|R(
x− x′

ε
)R(

y − y′

ε
)|| log |x− y| log |x′ − y′||d[xyx′y′].

We first change variables (x − x′)/ε → x′, (y − y′)/ε → y′, and x − y → y, and then use the
convolution lemma A.1 in the integral in y. Observe that the integral of the product of log
functions on bounded domains is uniformly bounded. Hence we find that this term is of order
ε2d.

For the first integral involving T 4, after changing variables, we need to consider

C|X|
(
ε3d| log ε|2

∫
|T 4(y, x′, y′)d[yx′y′] + ε3d|T 4(y, x′, y′) log |y| log |x′ − y′||d[yx′y′]

)
and the integrals converge as before. Hence, the contribution to the variance is of order ε3d| log ε|2.
To summarize, we have obtained that

Var (J22) . ε2d, EJ2
22 . ε2d| log ε|2.

In dimension three, the logarithm terms can be eliminated.
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(4) The absolute mean of J23. This term has the following expression:∫
X×V

m(x, v)δaε(x)
∫ τ−(x,v)

0
E(x, x− tv)

∫
X

Θ(x− tv, z)
∫

X

E(z, y)δaε(y)
|z − y|d−1

u0(y, v)d[yztxv]

=
∫

X4

m(x, v)E(x, ξ)Θ(ξ, z)E(z, y)u0(y, v′)
|x− ξ|d−1|z − y|d−1

d[xξzy],

where v = (x− ξ)|x− ξ|−1 and v′ = (z − y)|z − y|−1. Assume that m and u0 are bounded. Then
EJ2

23 can be bounded by

C

∫
X8

E[δaε(x)δaε(y)δaε(x′)δaε(y′)]
|x− ξ|d−1|ξ − z|d−1|z − y|d−1|x′ − ξ′|d−1|ξ′ − z′|d−1|z′ − y′|d−1

d[xξzyx′ξ′z′y′].

The analysis of this term is exactly as in (ii). We integrate over ξ, ξ′ first and then z, z′. Then all
potentials disappear in two dimensions and integrable logarithm terms emerge in three dimensions
and hence we find that

Var (J23) . ε2d, EJ2
23 . ε2d.

This completes the proof when d = 2. In three dimensions, the only change needed is to discard
the logarithm terms in part (2) above. �

Next we consider the remainder term R1. Recall that ζε = χε + zε. We see that R1 can be
written as

R1 = 〈AεT−1AεT−1Aεu0,m〉+ 〈AεT−1Aεzε,m〉

We will call them R11 and R12 respectively. We have the following estimates.

Lemma 5.2. Assume the same conditions as in the previous lemma. Then we have:
(i) The absolute mean of R12 is smaller than ε

d
2 . More precisely, we have

E|〈AεT−1Aεzε,m〉| ≤ Cε
3
2 | log ε|

1
2 � ε

d
2

in dimension d = 2.
(ii) The absolute mean of the term R11 is also smaller than ε

d
2 . More precisely, we have

E|〈AεT−1AεT−1Aεu0,m〉| ≤ Cε2| log ε| � ε
d
2 ,

in dimension d = 2. When d = 3, the size is ε2.

Proof: (1) The term R12. Use the duality relation we can write this term as 〈zε, AεT∗−1Aεm〉.
Then we have

E|R12| ≤ C{E‖zε‖2
L2}

1
2 {E(‖δaε‖4

L4 + ‖δkε‖4
L4)}

1
4 {E‖T∗−1Aεm‖4

L4}
1
4 .

Using lemma 3.6 and corollary 4.2, and the fact that E‖zε‖2
L2 ≤ Cε2| log ε| derived in the proof of

Theorem 2.1, the three terms on the right-hand side above are of size ε| log ε|
1
2 , order O(1), and

ε
1
2 , respectively.

(2) The term R11. Write this term as 〈AεT−1Aεu0,T∗−1Aεm〉, and use the decomposition of
T and T∗. Then we have

R11 = 〈AεT−1
1 Aεu0,T∗−1

1 Aεm〉 − 〈AεT−1
1 Aεu0,T∗−1K∗Aεm〉 − 〈AεT−1KAεu0,T∗−1Aεm〉.
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We will call them I1, I2 and I3 respectively. Then I2 and I3 are of the same form and can be
controlled as follows:

E|I2| ≤ C{E‖T−1AεT−1
1 Aεu0‖2

L2}
1
2 {E(‖δaε‖4

L4 + ‖δkε‖4
L4)}

1
4 {E‖K∗Aεm‖4

L4}
1
4 .

We then use lemma 3.6 and corollary 4.2 again to obtain the desired control for I2 and similarly
for I3.

For I1, we only need to consider the term 〈T∗−1
1 Aεm, δaεT−1

1 Aεu0〉 because the other com-
ponent is as I2 and is controlled in the same manner. We still call this term I1 and it has the
expression: ∫

X×V

(∫ τ+

0
E(x, x+ tv)δaε(x+ tv)m(x+ tv, v)dt

)
δaε(x)

(∫ τ−

0
E(x, x− sv)δaε(x− sv)u0(x− sv, v)ds

)
dxdv

where τ± are short for τ±(x, v). Assume that m and u0 are uniformly bounded. The mean square
of I1 is bounded by

C

∫
X2×V 2

∫ τ+

0

∫ τ−

0

∫ τ+

0

∫ τ−

0
E[δaε(x+ tv)δaε(x)δaε(x− sv)

δaε(x′ + t′v′)δaε(x′)δaε(x′ − s′v′)]d[s′t′stx′v′xv].

We use the high-order moment formula again, and then need to control several integrals involving
Tnj ’s. The analysis is exactly the same as the previous lemma although there are more terms.

Let us divide the six-point set into two categories: the first one consists of x, x + tv, x − sv
and the second one consists of x′, x′ + t′v′, x′ − s′v′. The non-single partitions of a six-point set
include group of (2,2,2), (2,4) and (3,3). Among these groupings, there is one term where only
points from the same category are grouped together; it is the following:

C

∫
X2×V 2

∫ τ+

0

∫ τ−(x,v)

0
T 3(

tv

ε
,−sv

ε
)dtds

∫ τ+

0

∫ τ−(x′,v′)

0
T 3(

t′v′

ε
,−s

′v′

ε
)dt′ds′d[xx′vv′].

Change variable and recall that T 3 is integrable along all directions. We see this term is of order
ε4.

For all other partitions except some terms in the pattern (2,2,2) which we will discuss later,
there is at least one point from the first category and one from the second category that are
grouped together; without loss of generality we can assume x and x′ are grouped together. In
the (3,3) grouping pattern, there is another point from the same category of either x or x′ that
is grouped with them. This yields a term of the form T 3(x−x′

ε , tv
ε ) and after routine change of

variables, the integration of x′ yields a term of size εd and the integration of t yields another
multiplication by a term of order ε so that the whole integral is no larger than order εd+1.
Similarly, if x and x′ are grouped together in a (2,4) pattern, the same analysis holds and we still
have enough variables to integrate and the term is no larger than εd+1.

For the pattern (2,2,2), the terms of the form

C

∫
X2×V 2

∫ τ−

0

∫ τ−′

0

∫ τ+

0

∫ τ+′

0
R(
x− x′

ε
)R(

x− x′ − tv + t′v′

ε
)

×R(
x− x′ + sv − s′v′

ε
)
)
d[xyvwtst′s′],
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needs separate consideration. For this term, we can use change of variables in tv − t′v′ to an
integration over a two-dimension region and integration over 1

sin θ for some angular variable. In
two dimension, this is of order εd+2| log ε|, and in dimension three this is of order εd+2. The
lemma is proved. �

Now we are ready to prove the last two main theorems in the case of d = 2. However, we will
postpone it after briefly discussing the case of d = 3.

5.2 Extension to dimension three

The analysis for J2 still holds in dimension three. However, the estimate on R1 is not sufficient
and we need to push the iteration to have one additional term:

〈ζε,M〉 = 〈Aεu0,m〉+〈AεT−1Aεu0,m〉+〈AεT−1AεT−1Aεu0,m〉+〈AεT−1AεT−1Aεζε,m〉. (46)

Let us call the third above term J3 and the fourth R2. Then J3 is precisely the first component
of R1 in dimension two and has been estimated in Lemma 5.2. Now it suffices to estimate R2.
We first rewrite this term as

R2 = 〈AεT−1AεT−1AεT−1Aεu0,m〉+ 〈AεT−1AεT−1Aεzε,m〉.

Call them R21 and R22 respectively and we have the following lemma.

Lemma 5.3. Under the same condition of previous lemmas, let d = 3. We have
(i) For the absolute mean of R22, we have E|R22| ≤ Cε2 � ε

d
2 .

(ii) For the term R21, we have E|R21| ≤ Cε2 � ε
d
2 .

Proof: (1) The term R22. We can write this term as 〈Aεzε,T∗−1AεT∗−1Aεm〉. Then it is
controlled as follows.

E|R22| ≤ C{E‖T∗−1AεT∗−1Aεm‖4
L4}

1
4 {E‖δkε‖4

L4 + E‖δaε‖4
L4}

1
4 {E‖zε‖2

L2}
1
2 ≤ Cε2.

(2) The term R21. We can write this term as 〈AεT−1AεT−1Aεu0,T∗−1K∗Aεm〉. Using the
decomposition of T and T∗ we can break this term into four components. The same analysis as
in Lemma 5.2 applies and we only need to consider the term 〈δaεT−1

1 δaεT−1
1 Aεu0,T∗−1

1 Aεm〉. It
has the expression:∫

X×V

∫ τ−(x,v)

0

∫ τ−(x−tv,v)

0

∫ τ+(x,v)

0
δaε(x)

(
u0E(x, x− tv)δaε(x− tv)u0

× E(x− tv, x− tv − t1v)δaε(x− tv − t1v)u0E(x, x+ sv)δaε(x+ sv)
)
d[tsxv].

Then ER2
21 is bounded by

C

∫
X2×V 2

∫ τ−1

0

∫ τ−2

0

∫ τ+

0

∫ τ−′
1

0

∫ τ−′
2

0

∫ τ+′

0
E{δaε(x)δaε(x− tv)δaε(x− tv − t1v)δaε(x+ sv)

δaε(y)δaε(y − t′w)δaε(y − t′w − t′1w)δaε(y + s′w)
)
d[xyvwtst1t′s′t′1].

Then we use the eighth order moments formula.
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For non-single partitions of eight points, the patterns are (2,2,2,2), (2,2,4), (2,3,3), (2,6), (3,5)
and (4,4). Again, we divide the points into two categories, the first one including x, x − tv, x −
tv− t1v, x+ sv, and the second including x′, x′− t′v′, x′− t′v′− t′1v′, x′ + s′v′. Now the partitions
when only points from the same category are grouped together yields the following term:

C

(∫
X×V

∫ τ−

0

∫ τ+

0
E{δaε(x)δaε(x− tv)δaε(x− tv − t1v)δaε(x+ sv)d[tt1sxv]

)2

.

We have seen that this term is of order (ε2)2. For all other partitions, x and x′ are grouped
together, and except for some terms in the pattern (2,2,2,2) which we will discuss later, there is
another independent t variable that can be integrated over. Therefore, these terms are of order
no larger than εd+1.

In the pattern (2,2,2,2), the terms of the form

C

∫
X2×V 2

∫ τ−1

0

∫ τ−2

0

∫ τ+

0

∫ τ−′
1

0

∫ τ−′
2

0

∫ τ+′

0
R(
x− x′

ε
)R(

x− x′ − tv + t′v′

ε
)

×R(
x− x′ − tv − t1v + t′v′ + t′1v

′

ε
)R(

x− x′ + sv − s′v′

ε
)
)
d[xyvwtst1t′s′t′1],

need separate consideration. As in the previous lemma, we can change variable in tv− t′v′. These
terms are of order εd+2. Hence the lemma is proved. �

5.3 Limit of the deterministic corrector

With the results above, the proof of Theorem 2.2 is immediate.
Proof of Theorem 2.2: In dimension 2 and 3, consider the expansion (42) or (46), we see
the only term whose contribution to E{ζε} is larger than ε

d
2 is 〈AεT−1

1 Aεu0,m〉 and its limit is
already derived in Lemma 5.1. �

5.4 Limit distribution of the random corrector

The following result follows immediately from the lemmas proved earlier in this section.

Lemma 5.4. Under the same conditions as in Theorem 2.1, let d = 2, 3. We have

E|〈ϕ, ζε − Eζε
ε

d
2

− ε−
d
2 T−1Aεu0〉| . ε

1
2 | log ε|

1
2 −→ 0. (47)

This lemma states that (ζε − Eζε)ε−
d
2 converges to ε−

d
2 T−1Aεu0 weakly and in mean (root

mean square), which implies convergence weakly and in distribution. Therefore, we seek the
limiting distribution of:

〈ϕ, ε−
d
2 T−1Aεu0〉 = −ε−

d
2 (〈T∗−1ϕ, δarεu0〉+ 〈T∗−1ϕ, δkε(−ū0 + cdu0)〉).

When ϕ is taken to be Ml, 1 ≤ l ≤ L as in the section on main results, the resulting random
variables are

Ilε = ε−
d
2

∫
Rd

ml · (δar(
x

ε
), δk(

x

ε
))dx, (48)
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where m is defined in Section 2.
As in Remark 2.5, proving Theorem 2.3 is equivalent to prove that {Ilε} converge in distri-

bution to mean zero Gaussian random variables {Il(ω)}, whose covariance matrix of the random
variables Il is given by

EIiIj =
∫
m1im1jσ

2
a + (m1im2j +m2im1j)ρakσaσk +m2im2jσ

2
kdx =

∫
mi ⊗mj : Σdx. (49)

Here, the covariance matrix Σ is defined in (14).
Note that Ilε is an oscillatory integral. Convergence of such integrals to a Gaussian random

variable can be seen as a generalization of the Central Limit Theorem which is classically stated for
independent sequences of random variables. Generalizations to processes on lattice points which
are not independent but “independent in the limit”, usually shown through mixing properties of
the process, are done in the probability literature; see e.g. [14]. Generalizations to oscillatory
integrals are done in [5] under similar mixing conditions. We will follow the procedure of the
latter paper, to which we refer the reader for omitted details.
Proof of Theorem 2.3: For simplicity we assume that u0 and hence ml are continuous.

1. Observe that if we approximate ml by piece-wise constant functions mlh, which we define
in the next step, the corresponding integrals Ilhε approximate Ilε in mean square and uniformly
in ε, that is,

E(Ilhε − Ilε)2 ≤ C‖mlh −ml‖2
L∞ . (50)

This is due to the fact that Ra, Rk, Rak are integrable. Hence we can consider the limit distribution
of Ilhε.

2. Now we explicit our choice of mlh. We use a uniform mesh of size h to divide the domain
into small cubes of size h. On each cube that is contained in X (and the cubes that intersect with
the boundary will be omitted), we replace ml in the integral Ilε by its value at the grid point, say
the center point. That is,

Ilhεj =
∫
Ch

j

mlhj ·
1

ε
d
2

(δar(
y

ε
, ω), δk(

y

ε
, ω))′dy

where Ch
j is the j-th cube and h is its size (size of its sides). The vector mlhj is the vector function

ml evaluated at the center of Ch
j . Neglecting small boundary contributions, Ilhε =

∑J
j=1 Ilhεj

where J is the total number of cubes and is of order h−d.
3. Then we can show that the variables Ilhεj are independent in the limit ε ↓ 0, so the limiting

distribution of Ilhε is the sum of the limiting distribution of Ilhεj .
4. Without loss of generality, let us consider the limit distribution of Ilhε0 which corresponds

to the cube around 0 (which we assume is inside X). We divide the cube further into N = h
ε

smaller cubes uniformly. We find

Ilhε0 =
(
h

N

) d
2
∫
CN

q(y, ω)dy =
(
h

N

) d
2 ∑

i∈Zd∩CN

∫
Ci

q(y, ω)dy = h
d
2

1

N
d
2

∑
i∈Zd∩CN

q̂i. (51)

Here, CN is the cube of size N and Ci’s are the unit cubes in CN . Hence i runs over a part of Zd

that belongs to CN . For simplicity, we used the notation

q̂i =
∫
Ci

q(y)dy, q(y) = mlh0 · (δar(y, ω), δk(y, ω))′.
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We also use the fact that δarε, δkε are stationary hence we can assume the cubes are centered at
lattice points on Zd.

5. Then we recall CLT for mixing processes parameterized by lattice points, which states that

1

σN
d
2

∑
i∈Z∩CN

q̂i −→ N (0, 1), (52)

in distribution asN →∞, whereN (0, 1) is the standard normal distribution, and σ2 =
∑

i∈Zd E(q̂0q̂i).
Therefore, we have Ilhεj → N (0, σ2

jh
d) where

σ2
j =

∑
i∈Zd

E(q̂j
0q̂

j
i ) =

∑
i∈Zd

E
∫
C0

mlhj · (δar, δk)(y)dy
∫
Ci

mlhj · (δar, δk)(z)dz

= mlhj ⊗mlhj

∫
C0

dy

∫
Rd

dzE[(δar, δk)(y)⊗ (δar, δk)(z)]

= mlhj ⊗mlhj :
(

σ2
a ρakσaσk

ρakσaσk σ2
k

)
.

(53)

Then we see Ilhε →
∑

j N (0, σ2
j ) = Ilh, which is a Gaussian random variable with variance∫

mlh ⊗mlh : Σdy.
6. Then we pass to the limit h→ 0 to get the result. �

Remark 5.5. The CLT of oscillatory integral developed in [5] assumes that the function ml is
continuous. Generalization to the case when ml is in L2 is straightforward since continuous
functions are dense in L2. We cannot generalize this further because for the resulted Gaussian
variable to have a bounded variance, we need m ∈ L2.

Remark 5.6. From the estimates on the mean and variance of the terms on the right hand side of
the expansion, we see that E{ζε} in the theorem can be replaced by the mean of T−1AεT−1

1 Aεu0

because other terms have contributions to the mean of size smaller than the random fluctuations.
Furthermore, when Ra and the other correlations decay fast so that rR is integrable in each
direction, which is the case in our model, then E{ζε} can be replaced by εU(x, v).

Remark 5.7. Anisotropic scattering kernel. For simplicity, we assumed that scattering kε was
isotropic. All the results presented here generalize to the case kε(x, v′, v) = kε(x)f(v, v′), where
f(v, v′) is a known, bounded, function and kε is defined as before. All the required L∞ estimates
used in the derivation are clearly satisfied in this setting.

Generalization to scattering kernels of the form

kε(x, v′, v) =
J∑

j=1

kεj(x)Yj(v, v′)

where J is finite and Yj ’s are the spherical harmonics and the terms kεj are defined as kε(x) above
is also possible. In this case, we need to deal with a finite system of integral equations and the
analysis is therefore slightly more cumbersome.

Acknowledgment: We would like to thank Alexandre Jollivet for discussions on the theory
of transport. The work was supported in part by NSF Grants DMS-0554097 and DMS-0804696.
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A Estimates of convolution of potentials

Lemma A.1. Let X be an open and bounded subset in Rd, and x 6= y two points in X. Let α, β
be positive numbers in (0, d). We have the following convolution results.

1. If α+ β > d, then ∫
X

1
|z − x|α

· 1
|z − y|β

≤ C
1

|x− y|α+β−d
(54)

2. If α+ β = d, then ∫
X

1
|z − x|α

· 1
|z − y|β

≤ C(| log |x− y||+ 1) (55)

3. If α+ β < d, then ∫
X

1
|z − x|α

· 1
|z − y|β

≤ C. (56)

The convolution of logarithms with a weak singular potential turns out to be finite as follows:∫
X
| log |z − x|| 1

|z − y|α
. 1. (57)

The above constants do not depend on the distance between x and y.
Proof: Let ρ = |x−y|. Let the Cx, Cy be spheres with radius ρ centered at x and y respectively,
and Bx, By the balls enclosed. The common section of the two balls divide their union into two
symmetric parts, one containing x and the other containing y. Let D1, D2 denote the two parts
respectively and D3 the remaining part in X. On D1, |z − x| ≥ ρ/2, hence∫

D1

1
|z − x|α

1
|z − y|β

dz .
1
ρβ

∫
Bx

1
|z − x|α

dz .
1

ρα+β−d
.

Similarly we have the same conclusion on D2. On D3, it is clear that |z−x|/2 ≤ |z−y| ≤ 2|z−x|,
and hence we have ∫

D3

1
|z − x|α

1
|z − y|β

dz .
∫

D3

1
|z − x|α+β

dz.

In the case of α + β > d, the last integral is bounded by ρ−α−β+d; in the case of α + β < d,
the integral is bounded since the domain is bounded; in the case of α + β = d, the last integral
is bounded by | log ρ| plus some constant depending on the diameter of X. However, we are
interested in x close to y and hence the logarithm term dominates. This completes the first part
of the lemma.

Using the same procedure and the fact that∫ R

0

log r
rδ−1

dr ≤ CR,δ

for all bounded R and δ > 0, the second part is similarly proved. �
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B Higher order moments of random fields

As remarked in section 3, it suffices to derive the statistics of processes of the form

b(x, ω) =
∞∑

j=1

φ(x− yj(ω)), (58)

where Y = {yj} is a Poisson point process with intensity ν. We denote by δb the mean-zero
process b − Eb. We develop a systematic formula for the n-th order moment of b and δb. The
moments and cross-moments of the random model (3) then follows.

The moments of b are expectations of product of sums. We recall that [n] denotes the set
{1, 2, · · · , n}, that Pn is the set of all partitions of n, i.e., the set of arrays (n1, n2, · · · , nk) satisfying
that

∑k
i=1 ni = n and 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk, and that Gn is the set of non-single partitions of

n, i.e., n1 ≥ 2. Define a partition of [n] to be a collection of nonempty mutually disjoint subsets
{Ai} such that ∪Ai = [n]. The total number of all possible partitions of [n] is finite and they are
exhausted by first finding all partitions of n, and then for any fixed (n1, · · · , nk) ∈ Pn, finding all
possible ways to divide the set [n] into different groups of size ni, i = 1, · · · , k. Observe also that
for any given {x1, · · · , xn}, it can be identified with [n] under the obvious isomorphism. Hence,
these two steps also exhaust all possible ways to divide the set {xi}, 1 ≤ i ≤ n into different
groups. For a generic term among these grouping methods, a point can be labeled as x(`,nj)

i where
nj , 1 ≤ j ≤ k comes from the partition of n; once {nj} fixed, ` counts the way to divide [n] (hence
{xi}) into groups with size nj , and it runs from 1 to Cn1,··· ,nk

n ; i is the natural order inside the
group.

Now, we calculate E
∏n

i=1 b(xi) conditioning on N(A) where A = ∪B(xi). We have,

E
n∏

i=1

b(xi) =
∞∑

m=1

e−ν|A| (ν|A|)m

m!
E
[ n∏

i=1

m∑
j=1

φ(xi − yj)|N(A) = m
]
.

The product of sums can be written as

n∏
i=1

m∑
j=1

φ(xi − yj) =
∑

(n1,··· ,nk)∈Pn

P k
m∑

p=1

C
n1,··· ,nk
n∑

`=1

k∏
j=1

nj∏
i=1

φ(x`,nj

i − yp
j ). (59)

Here P k
m,m ≥ k counts the number of way to choose k different numbers from [m]. It corresponds

to choosing k different points from the m Poisson points in the set A and assign them to the k
groups, and yp

j represents the choice. The expectation of the product of sums are calculated as
follows.

∞∑
m=1

e−ν|A| (ν|A|)m

m!
E[

∑
(n1,··· ,nk)∈Pn

pk
m∑

p=1

C
n1,··· ,nk
n∑

`=1

k∏
j=1

nj∏
i=1

φ(x`,nj

i − yp
j )
∣∣N(A) = m]

=
∑

(n1,··· ,nk)∈Pn

C
n1,··· ,nk
n∑

`=1

k∏
j=1

ν

∫ nj∏
i=1

φ(x`,nj

i − z)dz

=
∑

(n1,··· ,nk)∈Pn

C
n1,··· ,nk
n∑

`=1

k∏
j=1

Tnj (x`,nj

1 , · · · , x`,nj
nj ).

(60)
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We verify that this function only depends on the relative distance between the points xi. This
is due to the stationarity of the Poisson point process.

To derive higher order moments of δb, we observe that

n∏
i=1

δb(xi) =
n∏

i=1

[b(xi)− νφ̂(0)] =
n∑

m=0

(−νφ̂(0))m
Cn−m

n∑
s=1

n−m∏
i=1

∞∑
j=1

φ(xs,n−m
i − yj). (61)

Here s numbers the ways to choose n−m points from the xi’s and the chosen points are labeled
by s, n−m with (relative natural) order i. Then we have the following formula.

Lemma B.1. Let Gn be defined as before. For the mean-zero process δb, we have

E{
n∏

i=1

δb(xi)} =
∑

(n1,··· ,nk)∈Gn

C
n1,··· ,nk
n∑

`=1

k∏
j=1

Tnj (x`,nj

1 , · · · , x`,nj
nj ). (62)

The only difference of this formula with that of the higher order moments of b is the change
from Pn to Gn. This is due to the fact that all the T 1 terms, i.e., terms with νφ̂(0), cancel out
and we are left with the terms Tnj with nj ≥ 2. The proof below follows this observation.
Proof: Combining the formula for E

∏∑
φ(xi − yj) and the expression of

∏
b(xi), we observe

that the moment E
∏
b(xi) consists of terms of the form:

±(νφ̂(0))l
k∏

j=1

Tnj (63)

where nj ≥ 2, k ≤ n − l and
∑
nj = n − l. The terms with l = 0 are exactly those in (62). We

show that all the other terms with l ≥ 1 vanish. Without loss of generality, we consider the term

(νφ̂(0))lTn1(x1, · · · , xn1)T
n2(xn1+1, · · · , xn2) · · ·Tnk(xnk−1+1, · · · , xnk

). (64)

This term corresponds to the partition that groups the points with indices between nl−1 + 1 and
nl together for 1 ≤ l ≤ k (with n0 = 0). The last l points contribute the term (νφ̂(0))l.

This term appears in the expectation of the right hand side of (61) with m = 0, 1, · · · , l. It is
counted once in the expectation of the term with m = 0. It is counted C1

l times in the expectation
of terms with m = 1. The reason is as follows. For the m = 1 term, first we choose a point which
contributes (νφ̂(0)), then we partition the set with n − 1 points. There are C1

l ways to choose
this point, and view the other l − 1 points as coming from the partition of the n − 1 points. By
the same token, this term is counted C2

l times in (61) with m = 2, and so on. It is counted C l
l

times with m = l. Note also that for different values of m, the signs of the term alternate. Now
recall the combinatoric equality

l∑
k=0

(−1)kCk
l = 0. (65)

Hence the term we are considering vanishes. In general, all terms with l 6= 0 vanish. This com-
pletes the proof. �
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