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Abstract

We consider the homogenization of parabolic equations with large spatially-
dependent potentials modeled as Gaussian random fields. We derive the homoge-
nized equations in the limit of vanishing correlation length of the random poten-
tial. We characterize the leading effect in the random fluctuations and show that
their spatial moments converge in law to Gaussian random variables. Both results
hold for sufficiently small times and in sufficiently large spatial dimensions d ≥ m,
where m is the order of the spatial pseudo-differential operator in the parabolic
equation. In dimension d < m, the solution to the parabolic equation is shown to
converge to the (non-deterministic) solution of a stochastic equation in [2]. The
results are then extended to cover the case of long range random potentials, which
generate larger, but still asymptotically Gaussian, random fluctuations.
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1 Introduction

Let m > 0 and P (D) the pseudo-differential operator with symbol p̂(ξ) = |ξ|m. We
consider the following evolution equation in dimension d ≥ m:( ∂

∂t
+ P (D)− 1

εα
q
(x
ε

))
uε(t, x) = 0, x ∈ Rd, t > 0,

uε(0, x) = u0(x), x ∈ Rd.
(1)

Here, u0 ∈ L2(Rd) and q(x) is a mean zero stationary (real valued) Gaussian process de-
fined on a probability space (Ω,F ,P). We assume that q(x) has bounded and integrable
correlation function R(x) = E{q(y)q(x+ y)}, where E is the mathematical expectation
associated with P, and bounded, continuous in the vicinity of 0, and integrable power
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spectrum (2π)dR̂(ξ) =
∫

Rd e
−iξ·xR(x)dx in the sense that

∫
Rd\B(0,1)

R̂(ξ)|ξ|−mdξ < ∞.

The size of the potential is constructed so that the limiting solution as ε→ 0 is different
from the unperturbed solution obtained by setting q = 0. The appropriate size of the
potential is given by

εα =

{
ε

m
2 | ln ε| 12 d = m,

ε
m
2 d > m.

(2)

Therefore, α = m
2

except in dimension d = m where a logarithmic correction appears.

We still use the convenient notation εα in that case with α = α(ε) = m
2

+ 1
2

ln | ln ε|
| ln ε| .

The above equation may be seen as a continuous version of the parabolic Anderson
model, which is extensively studied as a model (typically for m = 2) where localization
and intermittency can develop; see e.g. [4]. This paper concerns the regime where uε is
well approximated by the solution to a deterministic (homogenized) equation.

The potential is bounded P-a.s. on bounded domains but is unbounded P-a.s. on
Rd. It is therefore unclear that (1) admits solutions a priori. By using a method based
on the Duhamel expansion, we obtain that for a sufficiently small time T > 0, the
parabolic equation (1) indeed admits a weak solution uε(t, ·) ∈ L2(Ω×Rd) uniformly in
time t ∈ (0, T ) and 0 < ε < ε0.

Homogenization theory. As ε→ 0, we show that the solution uε(t) to (1) converges
strongly in L2(Ω×Rd) uniformly in t ∈ (0, T ) to its limit u(t) solution of the following
homogenized evolution equation( ∂

∂t
+ P (D)− ρ

)
u(t, x) = 0, x ∈ Rd, t > 0,

u(0, x) = u0(x), x ∈ Rd,
(3)

where the effective (non-negative) potential is given by

ρ =


cdR̂(0) d = m,∫
Rd

R̂(ξ)

|ξ|m
dξ d > m.

(4)

Here, cd is the volume of the unit sphere Sd−1. We denote by Gρt the propagator for the
above equation, which to u0(x) associates Gρt u0(x) = u(t, x) solution of (3).

We assume that the non-negative (by Bochner’s theorem) power spectrum R̂(ξ) is
bounded by f(|ξ|), where f(r) is a positive, bounded, radially symmetric, and integrable
function f(r) ≤ τfr

−n for some 0 ≤ n < d − m in dimension d > m and n = 0 when
d ≤ m, with ρf := cd

∫∞
0
f(r)rd−m−1dr ∨ τf <∞. Here, a ∨ b = max(a, b).

Theorem 1 Let T > 0 such that 4Tρf < 1. Then there exists a solution to (1) uε(t) ∈
L2(Ω×Rd) uniformly in 0 < ε < ε0 for all t ∈ [0, T ]. Moreover, let us assume that R̂(ξ)
is of class Cγ(Rd) for some 0 ≤ γ ≤ 2 and let u(t, x) be the unique solution in L2(Rd)
to (3). Then, we have the convergence results

‖(uε − uε)(t)‖L2(Ω×Rd) . ε
β
2 ‖u0‖L2(Rd),

‖(uε − u)(t)‖L2(Rd) . εγ∧β‖u0‖L2(Rd),
(5)
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where a . b means a ≤ Cb for some C > 0, a ∧ b = min(a, b), where uε(t, ·) is a
deterministic function in L2(Rd) uniformly in time, and where we have defined

εβ =


| ln ε|−1 d = m,

εd−m m < d < 2m,

εm| ln ε| d = 2m,

εm d > 2m.

(6)

In (5), uε(t, x) is the Fourier transform of Uε(t, ξ) = e−i(|ξ|
m−ρε(ξ))û0(ξ), where ρε =∫

Rd

R̂(ξ1−εξ)
ξm
1

dξ1 when d > m and ρε = cdR̂(εξ) when d = m and where the Fourier

transform of the initial condition u0(x) is define as û0(ξ) =
∫

Rd e
−iξ·xu0(x)dx.

Note that the effective potential −ρ is non-positive. The above theorem thus shows an
exponential growth in time of the low-frequency components of uε, at least for sufficiently
small times. The method used below to prove the above theorem does not extend to
arbitrary times T <∞ fixed independent of ε.

Theory of random fluctuations. The error term uε− u is dominated by determin-
istic components when εγ∧β � ε

d−2α
2 and by random fluctuations when εγ∧β � ε

d−2α
2 .

In both situations, the random fluctuations may be estimated as follows. We show that

u1,ε(t, x) =
1

ε
d−2α

2

(
uε − E{uε}

)
(t, x), (7)

converges weakly in space and in distribution to a Gaussian random variable. More
precisely, we have

Theorem 2 Let M be a test function such that its Fourier transform M̂ ∈ L1(Rd) ∩
L2(Rd). Then we find that for all t ∈ (0, T )

(u1,ε(t, ·),M)
ε→0−−−→

∫
Rd

Mt(x)σdWx, Mt(x) =

∫ t

0

GρsM(x)Gρt−su0(x)ds, (8)

where convergence holds in the sense of distributions, dWx is the standard multiparam-
eter Wiener measure on Rd and σ is the standard deviation defined by

σ2 := (2π)dR̂(0) =

∫
Rd

E{q(0)q(x)}dx. (9)

This shows that the fluctuations of the solution are asymptotically given by a Gaussian
random variable, which is consistent with the central limit theorem. We may recast
the convergence in (8) as (u1,ε(t, ·),M) → (u1(t, ·),M), where u1 is the solution to the
following stochastic partial differential equation with additive noise

∂u1

∂t
+ P (D)u1 − ρu1 = σuẆ , (10)

with initial conditions u1(0, x) = 0. Here, Ẇ is spatial white noise. Let Gρ(t, x− y) be
the Green’s kernel of the limiting equation (3). Then, u1 is given by

u1(t, x) =

∫ t

0

∫
Rd

Gρ(t− s, x− y)u(s, y)σdWyds,

where the above is defined as a Wiener integral.
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Transition to stochasticity. We observe a sharp transition in the behavior of uε at
d = m. For d < m, the following holds. The size of the potential that generates an order
O(1) perturbation is now given by (see the last inequality in lemma 2.1)

εα = ε
d
2 .

Using the same methods as for the case d ≥ m, we may obtain that uε(t) is uniformly
bounded and thus converges weakly in L2(Ω × Rd) for sufficiently small times to a
function u(t). The problem is addressed in [2], where it is shown that u(t) is the
solution to the stochastic partial differential equation in Stratonovich form

∂u

∂t
+ P (D)u+ u ◦ σdW

dx
= 0, (11)

with u(0, x) = u0(x), σ defined as in (9), and dW
dx

d-parameter spatial white noise
“density”. The above equation admits a unique solution that belongs to L2(Ω × Rd)
locally uniformly in time. Stochastic equations have also been analyzed in the case where
d ≥ m (i.e., d ≥ 2 when P (D) = −∆), see [10, 13]. However, our results show that
such solutions cannot be obtained as a limit in L2(Ω × Rd) of solutions corresponding
to vanishing correlation length so that their physical justification is more delicate. In
the case d = 1 and m = 2 with q(x) a bounded potential, we refer the reader to [15] for
more details on the above stochastic equation.

Random fluctuations and long range correlations. The above theorems 1 and
2 assume short range correlations for the random potential. Mathematically, this is
modeled by an integrable correlation function, or equivalently a bounded value for
R̂(0). Longer range correlations correspond to correlation functions R(x) that decay
like |x|−(d−n) as |x| → ∞ for some 0 < n < d and may be modeled by unbounded power
spectra in the vicinity of the origin, for instance by assuming that

R̂(ξ) = h(ξ)Ŝ(ξ), 0 < h(λξ) = |λ|−nh(ξ), (12)

where h(ξ) is thus a positive function homogeneous of degree −n and Ŝ(ξ) is bounded
on B(0, 1). We assume that R̂(ξ) is still bounded on Rd\B(0, 1).

Provided that d > m + n so that ρ defined in (4) is still bounded, the results of
theorems 1 and 2 may then be extended to the case of long range fluctuations. The
convergence properties stated in theorem 1 still hold with β replaced by β − n. The
random fluctuations are now asymptotically Gaussian processes of amplitude of order
ε

d−m−n
2 , which may conveniently be written as stochastic integrals with respect to some

multiparameter fractional Brownian motion in place of the Wiener measure appearing
in (8). More precisely, we have the following result:

Theorem 3 Let us assume that h(ξ) = |ξ|−n for n > 0 and m + n < d. We also impose
the following regularity on û0:∫

B(0,1)

|û0(ξ + τ)|2h(ξ)dξ ≤ C, for all τ ∈ Rd. (13)

Then theorem 1 holds with β replaced by β − n.
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Let us define the random corrector

u1,ε(t, x) =
1

ε
d−m−n

2

(
uε − E{uε}

)
(t, x). (14)

Then its spatial moments (u1,ε(t, x),M(x)) converge in law to centered Gaussian random
variables N (0,ΣM(t)) with variance given by

ΣM(t) = (2π)dŜ(0)

∫
R2d

Mt(x)ϕ(x− y)Mt(y)dxdy. (15)

Results for more general homogeneous functions h(ξ) are described in section 3.3. The
above theorem shows that u1ε converges weakly and in distribution to u1 solution of the
following SPDE with additive noise:

∂u1

∂t
+ P (D)u1 − ρu1 = σuẆH , (16)

where ẆH is the centered Gaussian field with covariance function

E{ẆH(x)ẆH(x+ y)} =
cn

|y|d−n
, cn =

Γ(d−n
2

)

(2nπ
d
2 Γ(n

2
))
.

Up to multiplication by a normalization constant, ẆH may be regarded as a multipa-
rameter fractional white noise with Hurst index defined by 2H = 1 + n

d
. The above

SPDE thus generalizes (10) to the case of long range correlations.

Outline. The rest of the paper is structured as follows. Section 2 recasts (1) as an
infinite Duhamel series of integrals in the Fourier domain. The cross-correlations of the
terms appearing in the series are analyzed by calculating moments of Gaussian variables
and estimating the contributions of graphs similar to those introduced in [6, 12]. These
estimates allow us to construct a solution to (1) in L2(Ω × Rd) uniformly in time for
sufficiently small times t ∈ (0, T ). The maximal time T of validity of the theory depends
on the power spectrum R̂(ξ). The estimates on the graphs are then used in section 3
to characterize the limit and the leading random fluctuations of the solution uε(t, x).
The extension of the results to long range correlations is presented in section 3.3. A
roadmap of the proof of the main theorems is presented in section 2.3.

The analysis of (1) and of similar operators has been performed for smaller potentials
than those given in (2) in e.g. [1, 7] when uε converges strongly to the solution of the
unperturbed equation (with q ≡ 0). The results presented in this paper may thus be seen
as generalizations to the case of sufficiently strong potentials so that the unperturbed
solution is no longer a good approximation of uε. The analysis presented below is
based on simple estimates for the Feynman diagrams corresponding to Gaussian random
potentials and does not extend to other potentials such as Poisson point potentials, let
alone potentials satisfying some mild mixing conditions. Extension to other potentials
would require more sophisticated estimates of the graphs than those presented here or
a different functional setting than the L2(Ω × Rd) setting considered here. For related
estimates on the graphs appearing in Duhamel expansion, we refer the reader to e.g.
[5, 6, 12].
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2 Duhamel expansion and existence theory

Since q(x) is a stationary mean zero Gaussian random field, it admits the following
spectral representation

q(x) =
1

(2π)d

∫
Rd

eiξ·xq̂(ξ)dξ, (17)

where q̂(ξ)dξ is the complex spectral process such that

E
{∫

Rd

f(ξ)q̂(ξ)dξ

∫
Rd

g(ξ)q̂(ξ)dξ
}

=

∫
Rd

f(ξ)ḡ(ξ)(2π)dR̂(ξ)dξ,

for all f and g in L2(Rd; R̂(ξ)dξ) with the power spectrum and correlation function of
q respectively defined by

0 ≤ (2π)dR̂(ξ) =

∫
Rd

e−iξ·xR(x)dx, R(x) = E{q(y)q(x+ y)}. (18)

Note that E{q̂(ξ)q̂(ζ)} = R̂(ξ)δ(ξ + ζ) and E{q̂(ξ)q̂(ζ)} = R̂(ξ)δ(ξ − ζ).

2.1 Duhamel expansion

Let us introduce q̂ε(ξ) = εd−αq̂(εξ), the Fourier transform of ε−αq(x
ε
). We may now

recast the parabolic equation (1) as( ∂
∂t

+ ξm
)
ûε = q̂ε ∗ ûε, (19)

with ûε(0, ξ) = û0(ξ), where

q̂ε ∗ ûε(t, ξ) =

∫
Rd

ûε(t, ξ − ζ)Q̂ε(dζ) ≡
∫

Rd

ûε(t, ξ − ζ)q̂ε(ζ)dζ.

Here and below, we use the notation ξm = |ξ|m. After integration in time, the above
equation becomes

ûε(t, ξ) = e−tξ
m

û0(ξ) +

∫ t

0

e−sξ
m

∫
Rd

q̂ε(ξ − ξ1)ûε(t− s, ξ1)dξ1ds. (20)

This allows us to write the formal Duhamel expansion

ûε(t, ξ) =
∑
n∈N

ûn,ε(t, ξ), (21)

ûn,ε(t, ξ0) =

∫
Rnd

n−1∏
k=0

∫ tk(s)

0

e−ξ
m
k ske−(t−

∑n−1
k=0 sk)ξm

n

n−1∏
k=0

q̂ε(ξk − ξk+1)û0(ξn)dsdξ. (22)

Here, we have introduced the following notation:

s = (s0, . . . , sn−1), tk(s) = t− s0 − . . .− sk−1, t0(s) = t, ds =
n−1∏
k=0

dsk, dξ =
n∏
k=1

dξk.
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We now show that for sufficiently small times, the expansion (21) converges (uni-
formly for all ε sufficiently small) in the L2(Ω × Rd) sense. Moreover, the L2 norm of
uε(t) is bounded by the L2(Rd) norm of û0, which gives us an a priori estimate for the
solution. The convergence results are based on the analysis of the following moments

Un,m
ε (t, ξ, ζ) = E{ûε,n(t, ξ)ûε,m(t, ζ)}, (23)

which, thanks to (22), are given by∫
Rd(n+m)

n−1∏
k=0

∫ tk(s)

0

m−1∏
l=0

∫ tl(τ )

0

e−skξ
m
k e−(t−

∑n−1
k=0 sk)ξm

n e−τlζ
m
l e−(t−

∑m−1
l=0 τl)ζ

m
m

E
{ n−1∏
k=0

m−1∏
l=0

q̂ε(ξk − ξk+1)¯̂qε(ζl − ζl+1)
}
û0(ξn)¯̂u0(ζm) dsdτdξdζ.

Let us introduce the notation sn(s) = tn(s) = t −
∑n−1

k=0 sk and τm(τ ) = tm(τ ) =
t−

∑m−1
l=0 τl. We also define ξn+k+1 = ζm−k and sn+k+1 = τm−k for 0 ≤ k ≤ m. Since qε

is real-valued, we find that

Un,m
ε (t, ξ0, ξn+m+1) =

∫ n+m+1∏
k=0

e−skξ
m
k E

{ n+m∏
k=0,k 6=n

q̂ε(ξk − ξk+1)
}
û0(ξn)¯̂u0(ξn+1)dsdξ,

where the domain of integration in the s and ξ variables is inherited from the previous
expression. Note that no integration is performed in the variables sn(s) and sn+1(τ ).
The integral may be recast as∫ n+m+1∏

k=0

e−skξ
2
kE

{ n+m∏
k=0,k 6=n

q̂ε(ξk − ξk+1)
}
û0(ξn)¯̂u0(ξn+1)δ(t−

n∑
k=0

sk)δ(t−
n+m+1∑
k=n+1

sk)dsdξ,

where the integrals in all the sk variables for 0 ≤ k ≤ n + m + 1 are performed over
(0,∞). The δ functions ensure that the integration is equivalent to the one presented
above. The latter form is used in the proof of lemma 2.3 below.

We need to introduce additional notation. The moments of ûε,n are defined as

Un
ε (t, ξ) = E{ûε,n(t, ξ)}. (24)

We also introduce the following covariance function

V n,m
ε (t, ξ, ζ) = cov(ûε,n(t, ξ), ûε,m(t, ζ)) = Un,m

ε (t, ξ, ζ)− Un
ε (t, ξ)Um

ε (t, ζ). (25)

These terms allow us to analyze the convergence properties of the solution ûε(t, ξ). Let
M̂(ξ) be a smooth (integrable and square integrable is sufficient) test function on Rd.
We introduce the two random variables

Iε(t) =

∫
Rd

|ûε(t, ξ)|2dξ (26)

Xε(t) =

∫
Rd

ûε(t, ξ)M̂(ξ)dξ. (27)
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2.2 Summation over graphs

We now need to estimate moments of the Gaussian process q̂ε. The expectation in
Un,m
ε vanishes unless there is n̄ ∈ N such that n + m = 2n̄ is even. The expectation

of a product of Gaussian variables has an explicit structure written as a sum over all
possible products of pairs of indices of the form ξk − ξk+1. The moments are thus given
as a sum of products of the expectation of pairs of terms q̂ε(ξk − ξk+1), where the sum
runs over all possible pairings. We define the pair (ξk, ξl), 1 ≤ k < l, as the contribution
in the product given by

E{q̂ε(ξk−1 − ξk)q̂ε(ξl−1 − ξl)} = εd−2αR̂(ε(ξk − ξk−1))δ(ξk − ξk−1 + ξl − ξl−1).

We have used here the fact that R̂(−ξ) = R̂(ξ).
The number of pairings in a product of n + m = 2n̄ terms (i.e., the number of

allocations of the set {1, . . . , 2n̄} into n̄ unordered pairs) is equal to

(2n̄− 1)!

2n̄−1(n̄− 1)!
=

(2n̄)!

n̄!2n̄
= (2n̄− 1)!!.

There is consequently a very large number of terms appearing in Un,m
ε (t, ξ0, ξn+m+1).

In each instance of the pairings, we have n̄ terms k and n̄ terms l ≡ l(k). Note that
l(k) ≥ k + 1. We denote by simple pairs the pairs such that l(k) = k + 1, which thus
involve a delta function of the form δ(ξk+1 − ξk−1).

Figure 1: Graph with n = 3 and m = 1 corresponding to the pairs (ξ1, ξ3) and (ξ2, ξ5)
and the delta functions δ(ξ1 − ξ0 + ξ3 − ξ2) and δ(ξ2 − ξ1 + ξ5 − ξ4).

The collection of pairs (ξk, ξl(k)) for n̄ values of k and n̄ values of l(k) constitutes a
graph g ∈ G constructed as follows; see Fig.1 and [6]. The upper part of the graph
with n bullets represents ûε,n while the lower part with m bullets represents ûε,m.
The two squares on the left of the graph represent the variables ξ0 and ξn+m+1 in
Un,m
ε (t, ξ0, ξn+m+1) while the squares on the right represent û0(ξn) and ¯̂u0(ξn+1). The

dotted pairing lines represent the pairs of the graph g. Here, G denotes the collection
of all possible |G| = (2n̄−1)!

2n̄−1(n̄−1)!
graphs that can be constructed for a given n̄.

We denote by A0 = A0(g) the collection of the n̄ values of k and by B0 = B0(g) the
collection of the n̄ values of l(k). We then find that

E
{ n+m+1∏
k=1,k 6=n+1

q̂ε(ξk−1− ξk)
}

=
∑
g∈G

∏
k∈A0(g)

εd−2αR̂(ε(ξk− ξk−1))δ(ξk− ξk−1 + ξl(k)− ξl(k)−1).
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This provides us with an explicit expression for Un,m
ε (t, ξ0, ξn+m+1) as a summation over

all possible graphs generated by moments of Gaussian random variables. We need to
introduce several classes of graphs.

We say that the graph has a crossing if there is a k ≤ n such that l(k) ≥ n + 2.
We denote by Gc ⊂ G the set of graphs with at least one crossing and by Gnc = G\Gc

the non-crossing graphs. We observe that V n,m
ε (t, ξ0, ξn+m+1) is the sum over the

crossing graphs and that Un
ε (t, ξ0)Um

ε (t, ξn+m+1) is the sum over the non-crossing graphs
in Un,m

ε (t, ξ0, ξn+m+1).
The unique graph gs with only simple pairs is called the simple graph and we

define Gns = G\gs. We denote by Gcs the crossing simple graphs with only simple
pairs except for exactly one crossing. The complement of Gcs in the crossing graphs is
denoted by Gcns = Gc\Gcs.

As we shall see, only the simple graph gs contributes an O(1) term in the limit

ε → 0 and only the graphs in Gcs contribute to the leading order O(ε
1
2
(d−2α)) in the

fluctuations of ûε.
The graphs are defined similarly in the calculation of Un

ε (t, ξ0) in (24) for n = 2n̄ and
m = 0, except that crossing graphs have no meaning in such a context. A summation
over k ∈ A0(g) of all the arguments ξk − ξk−1 + ξl(k) − ξl(k)−1 of the δ functions shows
that the last delta function may be replaced without modifying the integral in Un

ε (t, ξ0)
by δ(ξ0 − ξn).

This allows us to summarize the above calculations as follows:

Un,m
ε (t, ξ0, ξn+m+1) =

∫ n+m+1∏
k=0

e−skξ
m
k û0(ξn)¯̂u0(ξn+1)

∑
g∈G∏

k∈A0(g)

εd−2αR̂(ε(ξk − ξk−1))δ(ξk − ξk−1 + ξl(k) − ξl(k)−1)dsdξ.
(28)

Similarly,

Un
ε (t, ξ0) = û0(ξ0)

∫ n∏
k=0

e−skξ
m
k

∑
g∈G∏

k∈A0(g)

εd−2αR̂(ε(ξk − ξk−1))δ(ξk − ξk−1 + ξl(k) − ξl(k)−1)dsdξ.
(29)

2.3 Roadmap for the proof of the main theorems

We are now ready to sketch the main steps in the proof of theorems 1, 2, and 3. Lemma
2.1 below presents the main result allowing us to estimate each of the terms in the
products in (28) and (29). These estimates are followed in section 2.5 by an analysis of
the crossing graphs, which are shown to be negligible in the limit ε→ 0. Non-crossing
graphs are also shown in section 2.6 to be negligible in the limit ε → 0 except for
the simple graph g. As a consequence, the random solution is well-approximated by a
still ε−dependent deterministic solution; see (63) below. The convergence of the latter
deterministic solution to its limit as ε → 0 is handled in section 3.1, which concludes
the proof of theorem 1. The theory of fluctuations is considered in section 3.2. There,
it is proved that the single crossing graphs are the ones that contribute most to the
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random fluctuations. These graphs are shown to involve those terms in the expansion
(22) that are linear in the potential q̂ε, i.e., the terms that have a Gaussian distribution;
see (76) below. Upon passing to the limit in the latter expression, we obtain theorem
2. Relatively minor modifications in the analysis of the Gaussian fluctuations allow us
to obtain theorem 3 in the presence of potentials with long range correlations.

2.4 Preliminary lemmas in the analysis of the graphs

The products appearing in (28) and (29) above are analyzed by means of estimates that
we state and prove in the following two lemmas.

Lemma 2.1 Let us assume that R̂ is bounded by a smooth radially symmetric, decreas-
ing function f(r). We also assume that f(r) ≤ τfr

−n for some 0 ≤ n < d − m in
dimension d > m and n = 0 when d ≤ m. Then we obtain the following estimates.
For d > m, we have∫

1

|ξk|m
R̂(ξk − y)dξk ≤ ρf := cd

∫ ∞

0

1

|ξ|m
f(|ξ|)|ξ|d−1d|ξ| ∨ τf ,

uniformly in y ∈ Rd, where cd = |Sd−1| and a ∨ b = max(a, b). Moreover,

∫
1

|ξk|m
R̂(ξk − y)

( εm

|ξk − z|m
∧ t

)
dξk ≤ C ρf


εm−n d > 2m− n

εm−n| ln ε| d = 2m− n

εd−m−n m < d < 2m− n,

for C a constant independent of y and z. For d = m, we define ρf = cdf(0) and have∫ ( εm

|ξk − z|m
∧ t

)l
R̂(ξk − y)dξk . ρf

{
εm| ln ε| l = 1

εm l = 2.

For d < m, we have ∫ ( εm

|ξk − z|m
∧ t

)l
R̂(ξk − y)dξk . εd, l ≥ 1.

Proof. Once R̂ is bounded above by a decreasing, radially symmetric, function f(r),
the above integrals are maximal when y = z = 0 thanks to lemma 2.2 below since
|ξ|−m and (εm|ξ|−m ∧ t) are radially symmetric and decreasing. The first bound is then
obvious and defines ρf . The second bound is obvious in dimension d > 2m since |ξk|−2m

is integrable.
All the bounds in the lemma are thus obtained from a bound for∫ ∞

0

(εm

rm
∧ t

)l
rd−1f(r)dr.

We obtain that the above integral restricted to r ∈ (1,∞) is bounded by a constant
times εmlρf for d ≥ m and by a constant times εml for d < m. It thus remains to bound
the integral on r ∈ (0, 1), which is equal to∫ εt−

1
m

0

tlrd−1f(r)dr +

∫ 1

εt−
1
m

εlm

rlm
rd−1f(r)dr.

10



Replacing f(r) by τfr
−n, we find that the first integral is bounded by a constant times

εd−n and the second integral by a constant times εd−n ∨ εlm when d − n − lm 6= 0 and
ε2m| ln ε| when d = 2m − n. It remains to divide through by εm when l = 2 to obtain
the desired results.

Lemma 2.2 Let f , g, and h be non negative, bounded, integrable, and radially sym-
metric functions on Rd that are decreasing as a function of radius. Then the integral

Iζ,τ =

∫
Rd

f(ξ − ζ)g(ξ − τ)h(ξ)dξ, (30)

which is well defined, is maximal at ζ = τ = 0.

Proof. In a first step, we rotate ζ to align it with τ . The first claim is that the
integral cannot increase while doing so. Then we send ζ and τ to 0. The second claim
is that the integral again does not increase.

We assume that the functions f , g, and h are smooth and obtain the result in the
general case by density. We choose a system of coordinates so that τ = |τ |e1, where
(e1, . . . , ed) is an orthonormal basis of Rd, and ζ = |ζ|θ̂ with θ̂ = (cos θ, sin θ, 0, . . . , 0).
Without loss of generality, we may assume that θ ∈ (0, π). Then Iζ,τ may be recast as
Iθ and we find that

Iθ =

∫ ∞

0

|ξ|d−1h(|ξ|)Jθ(|ξ|)d|ξ|,

where we denote h(|ξ|) ≡ h(ξ) with the same convention for f and g and define

Jθ(|ξ|) =

∫
Sd−1

f(|ξ|ψ − ζ)g(|ξ|ψ − τ)dψ.

It is sufficient to show that ∂θJθ ≤ 0. We find

∂θJθ =

∫
Sd−1

−θ̂⊥ · ∇f(|ξ|ψ − ζ)g(|ξ|ψ − τ)dψ,

with θ̂⊥ = (− sin θ, cos θ, 0, . . . , 0). We decompose the sphere as ψ = (ψ · θ̂, ψ̃) and find,
for some positive weight w(µ) that

∂θJθ =

∫ 1

−1

d(ψ · θ̂)(−f ′)(||ξ|ψ − ζ|)w(ψ · θ̂)
∫
Sd−2

(θ̂⊥ · ψ̃)g(|ξ|ψ − τ)dψ̃.

We now observe that∫
Sd−2

(θ̂⊥ · ψ̃)g(|ξ|ψ − τ)dψ̃

=

∫
θ̂⊥·ψ̃>0

(θ̂⊥ · ψ̃)
(
g(||ξ|(θ̂ · ψθ̂ + ψ̃)− τ |)− g(||ξ|(θ̂ · ψθ̂ − ψ̃)− τ |)

)
dψ̃ ≤ 0,

as ||ξ|(θ̂ · ψθ̂ + ψ̃) − τ | ≤ ||ξ|(θ̂ · ψθ̂ − ψ̃) − τ | by construction. Indeed, we find that
||ξ|(θ̂ ·ψθ̂± ψ̃)− τ |2−|ξ|2−|τ |2 +2|τ ||ξ|θ̂ ·ψθ̂ · τ = ±2|τ ||ξ|ψ̃ · τ = ±2|τ ||ξ|θ̂⊥ · τ whereas
θ̂⊥ · τ = − sin θ|τ | < 0 by construction. This shows that |ξ|(θ̂ · ψθ̂ + ψ̃) is closer to τ
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than |ξ|(θ̂ · ψθ̂ − ψ̃) is, and since g(r) is decreasing, that ∂θJθ ≤ 0. This concludes the
proof of the first claim.

If β = 0 or τ = 0, we set b = 0 below. Otherwise, we may assume without loss of
generality that τ = −bζ for some b > 1. We still define ζ = |ζ|θ̂. We now define the
integral Ia = Iaζ,bζ , 0 ≤ a ≤ 1, and compute

∂aIa =

∫
Rd

−ζ · ∇f(ξ − aζ)g(ξ + bζ)h(ξ)dξ =

∫
Rd

−ζ · ∇f(ξ)g(ξ + (b− a)ζ)h(ξ + aζ)dξ.

Define l(ξ, ζ) = g(ξ+(b−a)ζ)h(ξ+aζ). Then because f is radially symmetric, we have

∂aIa =

∫ ∞

0

m(|ξ|)|ξ|d−1d|ξ|, m(|ξ|) = −f ′(|ξ|)
∫
Sd−1

θ̂ · ψ l(|ξ|ψ, ζ)dψ.

We recast

m(|ξ|) = −f ′(|ξ|)
∫
θ̂·ψ>0

(θ̂ · ψ)
(
l(|ξ|ψ, ζ)− l(−|ξ|ψ, ζ)

)
dψ ≤ 0,

since
∣∣|ξ|ψ + γζ

∣∣ ≥ ∣∣− |ξ|ψ + γζ
∣∣ by construction for all γ > 0 and thus for γ = a and

γ = b− a. This shows that ∂αIα ≤ 0 and concludes the proof of the second claim.

2.5 Analysis of crossing graphs

We now analyze the influence of the crossing graphs on Iε(t) and Xε(t) defined in (26)
and (27), respectively, for sufficiently small times. We obtain from (25) and (28) that

V n,m
ε (t, ξ0, ξn+m+1) =

∑
g∈Gc

∫ n+m+1∏
k=0

e−skξ
m
k û0(ξn)¯̂u0(ξn+1)∏

k∈A0(g)

εd−2αR̂(ε(ξk − ξk−1))δ(ξk − ξk−1 + ξl(k) − ξl(k)−1) ds dξ,
(31)

involves the summation over the crossing graphs Gc. Let us consider a graph g ∈ Gc

with M crossing pairs, M ≥ 1. Crossing pairs are defined by k ≤ n and l(k) ≥ n+ 2.
Denote by (ξqm , ξl(qm)), 1 ≤ m ≤ M the crossing pairs and define Q = maxm{qm}.

By summing the arguments inside the delta functions for all k ≤ n, we observe that the
last of these delta functions may be replaced when Q < n by

δ(ξ0 − ξn +
M∑
m=1

ξqm − ξqm−1) = δ(ξQ − ξQ−1 + ξ0 − ξn +
M−1∑
m=1

ξqm − ξqm−1). (32)

The above delta function will be used to integrate in the variable ξQ when Q < n.
Similarly, by summing over all pairs with k ≥ n+2, we obtain that when l(q) < n+m+1,
the last of these delta functions may be replaced by

δ(ξn+1 − ξn+m+1 +
M∑
m=1

ξl(qm) − ξl(qm)−1).

12



Using the last two independent δ functions, we thus obtain that the product of delta
functions in (31) involves in particular the following constraint:

δ(ξn+m+1 − ξn+1 + ξn − ξ0). (33)

The analysis of the contributions of the crossing graphs is slightly different for the energy
in (26) and for the spatial moments in (27). We start with the energy.

Analysis of the crossing terms in Iε(t). We evaluate |V n,m
ε (t, ξ0, ξ0)| in (31) at

ξn+m+1 = ξ0 and integrate in the ξ0 variable over Rd. Let us define A′ = A0\{Q}. For
each k ∈ A′ ∪ {0}, we perform the change of variables ξk → ξk

ε
. We then define

ξεk =

{
ξk k 6∈ A′ ∪ {0}
ξk
ε

k ∈ A′ ∪ {0}. (34)

Note that ξn = ξn+1 since ξn+m+1 = ξ0. This allows us to obtain that∫
Rd

|V n,m
ε (t, ξ0, ξ0)|dξ0 ≤

∑
g∈Gc

∫
e−(s0+sn+m+1)ε−mξm

0

n+m∏
k=1

e−sk(ξε
k)m|û0(ξn)|2∏

k∈A′(g)

ε−2αR̂(ξk − εξεk−1)δ(
ξk
ε
− ξεk−1 + ξl(k) − ξεl(k)−1)

ε−2αR̂(ξ0 − εξεn +
M−1∑
m=1

ξqm − εξεqm−1)δ(ξQ − ξQ−1 + ξl(Q) − ξl(Q)−1)dsdξ.

(35)

Here dξ also includes the integration in the variable ξ0. The estimates for V n,m
ε here

and in subsequent sections rely on integrating selected time variables. All estimates are
performed as the following lemma indicates.

Lemma 2.3 Let t > 0 given and consider an integral of the form

In−1 =
n−1∏
k=0

∫ tk(s)

0

( n−1∏
k=0

fk(sk)
) n−1∏
k=0

dsk, (36)

where 0 ≤ fk(s) ≤ 1 for 0 ≤ k ≤ n and assume that
∫ t

0
fn−1(sn−1)dsn−1 ≤ h ∧ t. Then

In−2 ≤ (h ∧ t)In−1. (37)

Moreover, let s be a permutation of the indices 0 ≤ k ≤ n− 1. Define Is
n−1 as In−1 with

fk replaced by fs(k). Then Is
n−1 = In−1.

Using the above result with the permutation leaving all indices fixed except s(n−1) =
K and s(K) = n− 1 for some 0 ≤ K ≤ n− 2 allows us to estimate In−1 by integrating
in the Kth variable.

Proof. The derivation of (37) is immediate. We also calculate

In−1 =

∫
Rn+1

+

( n−1∏
k=0

fk(sk)
)
δ
(
t−

n∑
k=0

sk
) n∏
k=0

dsk

=

∫
Rn+1

+

( n−1∏
k=0

fs(k)(ss(k))
)
δ
(
t−

n∑
k=0

ss(k)

) n∏
k=0

dsk

=

∫
Rn+1

+

( n−1∏
k=0

fs(k)(sk)
)
δ
(
t−

n∑
k=0

sk
) n∏
k=0

dsk = Is
n−1.
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Note that e−sn(s)(ξn
ε )m

and e−sn+1(s)(ξn+1
ε )m

are bounded by 1. We now estimate the in-
tegrals in the variables s0, sn+m+1, and sk for k ∈ A′ in (35). Note that n + 1 cannot
belong to A′ and that n does not belong to A′ either since either n = Q (last crossing)
or n ∈ B0 is a receiving end of the pairing line k → l(k). Each integral is bounded by:∫ τ∧t

0

e−sε
−mξm

ds ≤ εm

ξm
∧ t. (38)

The remaining exponential terms e−sk(ξε
k)m

are bounded by 1. Using lemma 2.3, this
allows us to obtain that∫

Rd

|V n,m
ε (t, ξ0, ξ0)|dξ0 ≤

∑
g∈Gc

( ∫
ds̃

) ∫
|û0(ξn)|2∏

k∈A′(g)

ε−2α
(εm

ξm
k

∧ t
)
R̂(ξk − εξεk−1)δ(

ξk
ε
− ξεk−1 + ξl(k) − ξεl(k)−1)

ε−2α
(εm

ξm
0

∧ t
)2

R̂
(
ξ0 − εξεn +

M−1∑
m=1

(ξqm − εξεqm−1)
)
δ(ξQ − ξQ−1 + ξl(Q) − ξl(Q)−1) dξ.

Here, ds̃ corresponds to the integration in the remaining time variables sk for k 6∈
A′ ∪ {0} ∪ {n+m+ 1}. There are 2n̄− (n̄+ 1) = n̄− 1 such variables. Note the square
on the last line, which comes from time integration in both variables s0 and sn+m+1.

We now estimate the above product. When Q < n, let us define k0 such that
n = l(k0). Define k1 such that l(k1) = n + m + 1. Assume first that Q < n and
l(Q) < n+m+ 1. For each k ∈ A′(g)\(k0 ∪ k1), we use lemma 2.1 to find the estimate∫

ε−2α
(εm

ξm
k

∧ t
)
R̂(ξk − εξεk−1)δ(

ξk
ε
− ξεk−1 + ξl(k) − ξεl(k)−1)dξkdξl(k) ≤ ρf . (39)

The integration in the ξl(Q) variable is estimated by using the above delta function.
The delta function for k = k0 ∈ A′(g) may be written thanks to (32) in the form
δ(ξQ − µ), where µ is a linear combination of the variables ξj with j 6= Q and is thus

used to integrate in the variable ξQ. The term R̂(ξk0 − εξεk0−1) is used to integrate in
the variable ξk0 . The integral in ξ0 is estimated using lemma 2.1 by∫

ε−2α
(εm

ξm
0

∧ t
)2

R̂
(
ξ0 − εξεn +

M−1∑
m=1

(ξqm − εξεqm−1)
)
dξ0 ≤ Cρfε

β.

The delta function δ(ξk1−ξk1−1−ξn+m+1−ξn+m) is seen to be equivalent to δ(ξn−ξn+1)
thanks to (33), which handles the integration in the variable ξn+1. When Q = n or
l(Q) = n+m+1, then a simplified version of what we just described provides the same
estimates.

It remains to use the initial conditions to integrate in the last variable ξn and obtain
the bound∫

Rd

|V n,m
ε (t, ξ0, ξ0)|dξ0 ≤ C

∑
g∈Gc

( ∫
ds̃

)
ρn̄−1
f ‖û0‖2ρfε

β = C
∑
g∈Gc

( ∫
ds̃

)
ρn̄fε

β‖û0‖2.

(40)
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Using Stirling’s formula, we find that |Gc| < (2n̄−1)!
2n̄−1(n̄−1)!

is bounded by (2n̄
e

)n̄. It
remains to evaluate the integrals in time. We verify that

n−1∏
k=0

∫ tk(s)

0

ds0 · · · dsn−1 =
tn

n!
, tk(s) = t− s0 − . . .− sk−1. (41)

Let p̄ = p̄(g) be the number of sk for k ≤ n in s̃ and q̄ = q̄(g) be the number of sk for
k ≥ n+ 1 in s̃, with p̄+ q̄ = n̄− 1. Using (41), we thus find that( ∫

ds̃
)

=
tp̄

p̄!

tq̄

q̄!
=

tn̄−1

(n̄− 1)!

(
n̄− 1

p̄

)
≤ tn̄−1

( n̄− 1

2e

)−n̄+1

≤ tn̄−1n̄
( n̄

2e

)−n̄
using Stirling’s formula. This shows that

ρn̄f
∑
g∈Gc

( ∫
ds̃

)
≤ n̄

T
(4ρfT )n̄, (42)

uniformly for t ∈ (0, T ). We thus need to choose T sufficiently small so that 4ρfT < 1.
Then, for r such that 4ρfT < r2 < 1, we find that∫

|V n,m
ε (t, ξ0, ξ0)|dξ0 ≤ Crn+mεβ‖û0‖2, (43)

for some positive constant C. It remains to sum over n and m to obtain that∣∣E{Iε(t)} − ∫
Rd

E{ûε(t, ξ)}2dξ
∣∣ ≤ C

(1− r)2
εβ‖û0‖2. (44)

We shall analyze the non-crossing terms generating |E{ûε(t, ξ)}|2 shortly. Before doing
so, we analyze the influence of the crossing terms on Xε. We can verify that the error
term εβ in (44) is optimal, for instance by looking at the contribution of the graph with
n = m = 1.

Analysis of the crossing terms in Xε. It turns out that the contribution of the
crossing terms is smaller for the moment Xε than it is for the energy Iε. More precisely,
we show that the smallest contribution to the variance of Xε is of order εd−2α for graphs
in Gcs and of order εd−2α+β for the other crossing graphs.

We come back to (31) and this time perform the change of variables ξk → ξk
ε

for
k ∈ A′ only. We re-define

ξεk =

{
ξk k 6∈ A′

ξk
ε

k ∈ A′,
(45)

and find that

V n,m
ε (t, ξ0, ξn+m+1) =

∑
g∈Gc

∫ n+m+1∏
k=0

e−sk(ξε
k)m

û0(ξn)¯̂u0(ξn+1)∏
k∈A′(g)

ε−2αR̂(ξk − εξεk−1)δ(
ξk
ε
− ξεk−1 + ξl(k) − ξεl(k)−1)

εd−2αR̂(ε(ξQ − ξεQ−1))δ(ξQ − ξQ−1 + ξl(Q) − ξl(Q)−1)dsdξ.

(46)
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Note that neither n nor n+m+ 1 belong to A′(g). For each k ∈ A′(g), we integrate in
sk and obtain using (38) that

|V n,m
ε (t, ξ0, ξn+m+1)| ≤

∑
g∈Gc

∫ ∏
k 6∈A′(g)

e−skξ
m
k |û0(ξn)¯̂u0(ξn+1)|∏

k∈A′(g)

ε−2α
(εm

ξm
k

∧ t
)
R̂(ξk − εξεk−1)δ(

ξk
ε
− ξεk−1 + ξl(k) − ξεl(k)−1)

εd−2αR̂(ε(ξQ − ξεQ−1))δ(ξQ − ξQ−1 + ξl(Q) − ξl(Q)−1)ds̃dξ.

(47)

By assumption on R̂(ξ), we know the existence of a constant R̂∞ such that

εd−2αR̂(ε(ξQ − ξεQ−1)) ≤ εd−2αR̂∞. (48)

This is where the factor εd−2α arises. We need however to ensure that the integral in ξQ
is well-defined. We have two possible scenarios: either Q = n or n ∈ B0. When Q = n,
the integration in ξQ is an integration in ξn for which we use û0(ξn). When n ∈ B0,
we thus have n = l(k0) for some k0 and we replace the delta function involving ξn by
a delta function involving ξQ given by (32) In either scenario, we can integrate in the

variable ξQ without using the term R̂(ε(ξQ − ξQ−1)).
All the other variables are handled as in the analysis preceding (40) except that we

non longer have that ξn = ξn+1. Rather, we use the inequality

|û0(ξn)¯̂u0(ξn+1)| ≤
1

2

(
|û0(ξn)|2 + |û0(ξn − ξ0 + ξn+m+1)|2

)
, (49)

to obtain the bound

|V n,m
ε (t, ξ0, ξn+m+1)| ≤ εd−2αR̂∞

∑
g∈Gc

( ∫
ds̃

)
ρn̄−1
f ‖û0‖2. (50)

The bound is uniform in ξ0 and ξn+m+1. Using (42) and (43), we obtain

|V n,m
ε (t, ξ0, ξn+m+1)| ≤ εd−2αrn+m‖û0‖2. (51)

After summation in n,m ∈ N, we thus find that

E{(Xε − E{Xε})2} ≤ C

(1− r)2
εd−2α‖û0‖2‖M̂‖2

1. (52)

Similarly, by setting ξn+m+1 = ξ0, we find that∣∣∣E{∫
Rd

|ûε|2(t, ξ)ϕ(ξ)dξ
}
−

∫
Rd

|E{ûε(t, ξ)}|2ϕ(ξ)dξ
∣∣∣ ≤ C

(1− r)2
εd−2α‖û0‖2‖ϕ‖1, (53)

for any test function ϕ ∈ L1(Rd). This local energy estimate is to be compared with
the global estimate obtained in (44).
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Analysis of the leading crossing terms in Xε. The preceding estimate on Xε may
be refined as only the crossing graphs in Gcs have contributions of order εd−2α. We
return to the bound (47) and obtain that

|V n,m
ε (t, ξ0, ξn+m+1)| ≤ εd−2αR̂∞

∑
g∈Gc

∫ ∏
k 6∈A′(g)

e−sk(ξk)m|û0(ξn)¯̂u0(ξn+1)|∏
k∈A′(g)

ε−2α
(εm

ξm
k

∧ t
)
R̂(ξk − εξεk−1)δ(

ξk
ε
− ξεk−1 + ξl(k) − ξεl(k)−1)

δ(ξQ − ξQ−1 + ξl(Q) − ξl(Q)−1)ds̃dξ.

(54)

The n̄+ 2 variables in time left are s0, sQ, sl(Q), and the n̄− 1 variables sl(A′(g)).
Let g ∈ Gc. Let us assume that for some k = κ such that (ξk, ξl(k)) is not a crossing

pair, we have l(k) − 1 > k, i.e., g ∈ Gncs. The non-crossing pairs are not affected by
the possible change of a delta function involving ξn to a delta function involving ξQ. We
may then integrate in the variable sl(k) and obtain the bound for the integral

εd−2αR̂∞

∫
ds̃dξ|û0(ξn)¯̂u0(ξn+1)|δ(ξQ − ξQ−1 + ξl(Q) − ξl(Q)−1)

×
∏

k∈A′(g)\κ

ε−2α
(εm

ξm
k

∧ t
)
R̂(ξk − εξεk−1)δ(

ξk
ε
− ξεk−1 + ξl(k) − ξεl(k)−1)

×
(εm

ξm
κ

∧ t
)( εm

|ξκ − εξεκ−1 − εξεl(κ)−1|m
∧ t

)
R̂(ξκ − εξεκ−1)δ(

ξκ
ε
− ξεκ−1 + ξl(κ) − ξεl(κ)−1)

≤ Cεβεd−2α
( ∫

ds̃
)
R̂∞ρ

n̄−1
f ‖û0‖2,

thanks to lemma 2.1. The summation over all graphs in Gncs of any quantity derived
from V n,m

ε (t, ξ0, ξn+m+1) is therefore εβ smaller than the corresponding sum over all
graphs in Gc. We thus see that any non-crossing pair has to be of the form l(k)−1 = k,
i.e., a simple pair, in order for the graph to correspond to a contribution of order εd−2α.

Let us consider the graphs composed of crossings and simple pairs. We may delete
the simple pairs from the graph since they contribute integrals of order O(1) thanks to
lemma 2.1 and assume that the graph is composed of crossings only, thus with n = m
and Q = n after deletion of the simple pairs. Let us consider k < n with l(k) ≥ n + 1
so that the delta function

δ(
ξk
ε
− ξεk−1 + ξl(k) − ξl(k)−1)

is present in the integral defining V n,m
ε . We find for the same reason as above that

the contribution of the corresponding graph is of order εd−2αεβ by integration in the
variable sl(k). As a consequence, the only graph composed exclusively of crossing pairs
that generates a contribution of order εd−2α is the graph with n = m = 1. This concludes
our proof that the contribution of order εd−2α in V n,m

ε is given by the nm graphs in Gcs

when both n and m are odd numbers (otherwise, Gcs is empty). All other graphs in
Gc provide a contribution of order εβ smaller than what we obtained in (51). In other
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words, let us define

V n,m
ε,s (t, ξ0, ξn+m+1) =

∑
g∈Gcs

∫ n+m+1∏
k=0

e−skξ
m
k û0(ξn)¯̂u0(ξn+1)∏

k∈A0(g)

εd−2αR̂(ε(ξk − ξk−1))δ(ξk − ξk−1 + ξl(k) − ξl(k)−1)dsdξ.
(55)

We have found that

|V n,m
ε (t, ξ0, ξn+m+1)− V n,m

ε,s (t, ξ0, ξn+m+1)| . εd−2α+βrn+m‖û0‖2. (56)

2.6 Analysis of non-crossing graphs

We now apply the estimates obtained in the preceding section to the analysis of the
moments Un

ε (t) defined in (24) and given more explicitly in (29). Our objective is to
show that only the simple graph g contributes a term of order O(1) in (29) whereas all
other graphs in Gns contribute (summable in n) terms of order O(εβ). Note that n = 2n̄,
for otherwise, Un

ε (t) = 0. We recall that the simple graph is defined by l(k) = k + 1.
We thus define the simple graph contribution as

Un
ε,s(t, ξ0) = Unε (t, ξ0)û0(ξ0)

Unε (t, ξ0) =

∫ n∏
k=0

e−skξ
m
k

n̄−1∏
k=0

εd−2αR̂(ε(ξ2k+1 − ξ2k))δ(ξ2(k+1) − ξ2k)dsdξ,
(57)

and
Uε,s(t, ξ0) =

∑
n∈N

Un
ε,s(t, ξ0) := Uε(t, ξ0)û0(ξ0). (58)

For all k ∈ A0, we perform the change of variables ξk → ξk
ε

and (re-)define as before

ξεk =

{
ξk k 6∈ A0
ξk
ε

k ∈ A0.
(59)

This gives

Un
ε (t, ξ0) = û0(ξ0)

∑
g∈G

∫ n∏
k=0

e−sk(ξε
k)m

∏
k∈A0(g)

ε−2αR̂(ξk − εξεk−1)δ(
ξk
ε
− ξεk−1 + ξl(k) − ξεl(k)−1)dsdξ.

(60)

Assuming that l(k)− 1 > k for one of the pairings k = κ, we obtain as in the analysis
leading to (56) the following bound for the corresponding graph:

|û0(ξ0)|
∫ ∏

k∈A0(g)\κ

ε−2α
(εm

ξm
k

∧ t
)
R̂(ξk − εξεk−1)δ(

ξk
ε
− ξεk−1 + ξl(k) − ξεl(k)−1)

×ε−2α
(εm

ξm
k

∧ t
)( εm

|ξk − εξεk−1 − εξεl(k)−1|m
∧ t

)
×R̂(ξκ − εξεκ−1)δ(

ξκ
ε
− ξεκ−1 + ξl(κ) − ξεl(κ)−1) ds̃dξ

≤ εβ
( ∫

ds̃
)
ρn̄f |û0(ξ0)|.
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This shows that
|Un

ε (t, ξ0)− Un
ε,s(t, ξ0)| ≤ |û0(ξ0)|εβrn, (61)

so that

|E{ûε}(t, ξ)− Uε,s(t, ξ)| .
1

1− r
εβ|û0(ξ)|, (62)

at least for sufficiently small times t ∈ (0, T ) such that 4ρfT < 1. It remains to analyze
the limit of Uε,s(t, ξ) to obtain the limiting behavior of Xε and Iε,ϕ. This analysis is
carried out in the next section. Another application of lemma 2.1 shows that Uε,s(t, ξ) is
square integrable and that its L2(Rd) norm is bounded by ‖û0‖. In other words, we have
constructed a weak solution ûε(t) ∈ L2(Ω × Rd) to (19) since the series (21) converges
uniformly in L2(Ω× Rd) for sufficiently small times t ∈ (0, T ) such that 4ρfT < 1.

Collecting the results obtained in (44) and (62), we have shown that

‖(ûε − Uε,s)(t)‖L2(Ω×Rd) . ε
β
2 ‖û0‖L2(Rd), (63)

where Uε,s is the deterministic term given in (58). The analysis of Uε,s and Xε is carried
out in the following section.

3 Homogenized limit and Gaussian fluctuations

In this section, we conclude the proof of theorems 1 and 2.

3.1 Homogenization theory for uε

We come back to the analysis of Uε,s(t, ξ) defined in (57). Since only the simple graph
is retained in the definition of mean field solution Uε,s(t, ξ), the equation it satisfies
may be obtained from that for ûε by simply assuming the mean field approximation
E{q̂εq̂εûε} ∼ E{q̂εq̂ε}E{ûε} since the Duhamel expansions then agree. As a consequence,
we find that Uε,s is the solution to the following integral equation

Uε,s(t, ξ) = e−tξ
m
û0(ξ)

+

∫ t

0

e−ξ
ms

∫ t−s

0

e−ξ
m
1 s1

∫
εd−2αR̂(ε(ξ1 − ξ))Uε,s(t− s− s1, ξ)dξ1dsds1

= e−tξ
m
û0(ξ) +

∫ t

0

∫ v

0

e−ξ
m(v−s1)e−ξ

m
1 s1εd−2α

∫
R̂(ε(ξ1 − ξ))Uε,s(t− v, ξ)dξ1ds1dv

= e−tξ
m
û0(ξ) + εm−2α

∫ t

0

∫ v
εm

0

e−ξ
m(v−εms1)e−ξ

m
1 s1

∫
R̂(ξ1 − εξ)dξ1ds1Uε,s(t− v, ξ)dv

:= e−tξ
m
û0(ξ) + AεUε,s(t, ξ).

(64)
The last integral results from the change of variables εξ1 → ξ1 and s1ε

−m → s1. It
remains to analyze the convergence properties of the solution to the latter integral
equation. Note that ξ acts as a parameter in that equation. Let us decompose

AεU(t, ξ) = ρε

∫ t

0

e−ξ
mvU(t− v, ξ)dv + EεU(t, ξ), (65)

with ρε =
∫

Rd

R̂(ξ1−εξ)
ξm
1

dξ1 when d > m and ρε = cdR̂(εξ) when d = m. Then we have
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Lemma 3.1 Let ξ ∈ Rd and f(r) as in lemma 2.1. Then the operator Eε defined above
in (65) is bounded in the Banach space of continuous functions on (0, T ). Moreover, we
have

‖Eε‖L(C(0,T )) . εβ−n. (66)

Proof. We start with the case d > m so that and εm−2α = 1. Note that n in lemma
2.1 is defined such that d > m− n as well. With Bε = Aε − Eε in (65), we find that

BεUε,s(t, ξ) =

∫ t

0

e−ξ
mv

∫ ∞

0

∫
e−ξ

m
1 s1R̂(ξ1 − εξ)dξ1ds1Uε,s(t− v, ξ)dv.

The remainder Eε is then given by

EεUε,s(t, ξ) =

∫ t

0

∫ v
εm

0

∫
e−ξ

mv(eε
mξms1 − 1)e−ξ

m
1 s1R̂(ξ1 − εξ)dξ1ds1Uε,s(t− v, ξ)dv

−
∫ t

0

∫ ∞

v
εm

∫
e−ξ

mve−ξ
m
1 s1R̂(ξ1 − εξ)dξ1ds1Uε,s(t− v, ξ)dv.

The continuity of EεUε,s(t, ξ) in time is clear when Uε,s(t, ξ) is continuous in time.
Without loss of generality, we assume that Uε,s(·, ξ) is bounded by 1 in the uniform
norm. We decompose the integral in the s1 variable in the first term of the definition of
Eε into two integrals on 0 ≤ s1 ≤ v

2εm and v
2εm ≤ s1 ≤ v

εm . Because e−ξ
mv(eε

mξms1−1) ≤ 1,
the second integral is estimated as∫ t

0

∫ v
εm

v
2εm

∫
e−ξ

mv(eε
mξms1 − 1)e−ξ

m
1 s1R̂(ξ1 − εξ)dξ1ds1dv

≤
∫ t

0

∫
1

ξm
1

e−ξ
m
1

v
2εm R̂(ξ1 − εξ)dξ1dv ≤

∫
2

ξm
1

(εm

ξm
1

∧ t
)
R̂(ξ1 − εξ)dξ1 . εβ−nρf ,

thanks to lemma 2.1. The above bound is uniform in ξ. The last integral defining Eε on
the interval s1 ≥ v

εm is treated in the exact same way and also provides a contribution
of order O(εβ−n).

The final contribution involves the integration over the interval 0 ≤ s1 ≤ v
2εm . Using

e−ξ
mv(eε

mξms1 − 1) ≤ εmξms1e
− ξmv

2 on that interval, it is bounded by

I3 :=

∫ t

0

∫ v
2εm

0

∫
Rd

εmξms1e
− ξmv

2 e−ξ
m
1 s1R̂(ξ1 − εξ)dξ1ds1dv

≤ 2εmξm

ξm

(
1− e−

ξmt
2

) ∫ t
2εm

0

s1

∫
Rd

e−ξ
m
1 s1R̂(ξ1 − εξ)dξ1ds1,

by switching the variables 0 ≤ s ≤ v
2εm ≤ t

2εm . Using lemma 2.2, we may replace

R̂(ξ1 − εξ) by R̂(ξ1) in the above expression. This shows that

I3 ≤ 2εm

∫
Rd

∫ t
2εm

0

s1e
−ξm

1 s1ds1R̂(ξ1)dξ1.

We observe that ∫ τ

0

s1e
−ξm

1 s1ds1 .
1

ξ2m
1

∧ τ 2,
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so that

I3 . εm

∫ ∞

0

f(r)rd−1
(
r−2m ∧ τ 2

)
dr, τ =

t

2εm
∨ 1.

The integral over (1,∞) is bounded by εmρf . Using the assumption that f(r) . r−n,
we obtain that the integral over (0, 1) is bounded by a constant times∫ τ−

1
m

0

rd−1−ndr +

∫ 1

τ−
1
m

rd−1−n−2mdr . τ 2− d−n
m ∨ 1,

when d − n − 2m 6= 0 and | ln τ | when d = n + 2m. Since τ is bounded by a constant
times ε−m, this shows that I3 is bounded by εd−m−n when d − n − 2m 6= 0 and εd| ln ε|
when d = n + 2m. This concludes the proof when d > m− n.

We now consider the proof when d = m with n = 0. Then, εm−2α = 1
| ln ε| . The

leading term is given by Uε,s, which solves the integral equation:

Uε,s(t, ξ) = e−tξ
m
û0(ξ)

+

∫ t

0

e−ξ
ms

∫ t−s

0

e−ξ
m
1 s1

∫
1

| ln ε|
R̂(ε(ξ1 − ξ))Uε,s(t− s− s1, ξ)dξ1dsds1

= e−tξ
m
û0(ξ) +

1

| ln ε|

∫ t

0

∫ v
εm

0

e−ξ
m(v−εms1)e−ξ

m
1 s1R̂(ξ1 − εξ)dξ1ds1Uε,s(t− v, ξ)dv

= e−tξ
m
û0(ξ) + AεUε,s(t, ξ), Aε = Bε + Eε.

(67)
Here we have defined

BεU(t, ξ) = ρε

∫ t

0

e−ξ
msU(t− s, ξ)ds, ρε = cdR̂(εξ),

and Eε is the remainder. As in the case d > m, a contribution to | ln ε|Eε comes from∫ t

0

∫ v
εm

0

∫
e−ξ

mv(eε
mξms1 − 1)e−ξ

m
1 s1R̂(ξ1 − εξ)dξ1ds1Uε,s(t− v, ξ)dv.

We again decompose the integral in s1 into 0 ≤ s1 ≤ v
2εm and v

2εm ≤ s1 ≤ v
εm . We have∫ t

0

∫ v
εm

v
2εm

∫
e−ξ

mv(eε
mξms1 − 1)e−ξ

m
1 s1R̂(ξ1 − εξ)dξ1ds1dv

≤
∫

2

εm

(εm

ξm
1

∧ t
)2

R̂(ξ1 − εξ)dξ1 . ρf ,

according to lemma 2.1. Also,∫ t

0

∫ v
2εm

0

∫
e−ξ

mv(eε
mξms1 − 1)e−ξ

m
1 s1R̂(ξ1 − εξ)dξ1ds1dv . εm

( t

2εm
∨ 1

)
according to the calculations performed above on I3, which is uniformly bounded, and
thus provides a | ln ε|−1 contribution to Eε.

We are thus left with the analysis of

U(t, ξ) 7→
∫ t

0

e−ξ
mv

( 1

| ln ε|

∫
1− e−

ξm
1 v

εm

ξm
1

R̂(ξ1 − εξ)dξ1 − ρε

)
U(t− v, ξ)dv,
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as an operator in L(C(0, T )) for ξ fixed. Define R̂ε(ξ1) = R̂(ξ1 − εξ). The integral in ξ1
may be recast as ∫ ∞

0

1− e−
rmv
εm

r

( ∫
Sd−1

R̂ε(rθ)dµ(θ)
)
dr.

We observe that the integral on (1,∞) is bounded by ‖R̂‖1. Assuming that R̂ is of class
C0,γ(Rd) for γ > 0, we write R̂ε(ξ1) = R̂ε(0)+(R̂ε(ξ1)− R̂ε(0)). The second contribution
generates a term proportional to rγ in the integral and thus is bounded independent of
ε. It remains to estimate

cdR̂ε(0)

∫ 1

0

1− e−
rmv
εm

r
dr = cdR̂ε(0)

∫ v
1
m
ε

0

1− e−r
m

r
dr.

The latter integral restricted to (0, 1) is bounded. On r ≥ 1, e−r
m
/r is uniformly

integrable so that

cdR̂ε(0)

∫ 1

0

1− e−
rmv
εm

r
dr = cdR̂(εξ)| ln ε|+O(1).

This shows that Eε is of order 1
| ln ε| = εβ as an operator on C(0, T ) and concludes the

proof of the lemma.
Note that Aε may be written as

AεU(t, ξ) =

∫ t

0

ϕε(s, ξ)U(t− sξ)ds,

where ϕε(s, ξ) is uniformly bounded in s, ξ, and ε by a constant ϕ∞. The equation

(I − Aε)U(t, ξ) = S(t, ξ),

admits a unique (by Gronwall’s lemma) solution given by the Duhamel expansion and
bounded by

|U(t, ξ)| ≤ ‖S‖∞etϕ∞ .

As in the proof of lemma 3.1, let us define Bε = Aε − Eε. We verify that Uε(t, ξ),
the solution to

(I −Bε)Uε = e−tξ
m

û0(ξ),

is given by
Uε(t, ξ) = e−t(ξ

m−ρε(ξ))û0(ξ). (68)

The solution may thus grow exponentially in time for low frequencies. The error
Vε(t, ξ) = (Uε,s(t, ξ)− Uε(t, ξ)) is a solution to

(I − Aε)Vε = EεUε(t, ξ),

so that over bounded intervals in time (with a constant growing exponentially with time
but independent of ξ), we find that

|Uε,s(t, ξ)− Uε(t, ξ)| = |Vε(t, ξ)| . εβ|û0(ξ)|. (69)

22



The above inequality combined with (63) yields the first estimate in (5).
Up to an order O(εβ|û0(ξ)|), we have thus obtained that E{ûε(t, ξ)} is given by

e−t(ξ
m−ρε(ξ))û0(ξ),

which in the physical domain gives rise to a possibly non-local equation. It remains to
analyze the limit of the above term, and thus the error ρε(ξ)− ρ, which depends on the
regularity of R̂(ξ). For R̂(ξ) of class C2(Rd), we find that∣∣e−t(ξm−ρε(ξ)) − e−t(ξ

m−ρ)∣∣ ≤ teCte−ξ
mt

∣∣ρε(ξ)− ρ
∣∣ . eCte−ξ

mtε2tξ2.

The reason for the second order accuracy is that R̂(−ξ) = R̂(ξ) and ∇R̂(0) = 0 so
that first-order terms in the Taylor expansion vanish. For R̂(ξ) of class Cγ(Rd) with
0 < γ < 2, we obtain by interpolation that∣∣e−t(ξm−ρε(ξ)) − e−t(ξ

m−ρ)∣∣ . eCte−ξ
mtεγtξγ.

When m ≥ γ, the above term is bounded by O(εγ) uniformly in ξ and uniformly in time
on bounded intervals. When m ≤ γ, the above term is bounded by O(εm) uniformly in
ξ and uniformly in time on bounded intervals. This concludes the proof of theorem 1.
In terms of the propagators defined in (57), we may recast the above result as∣∣Uε(t, ξ)− U(t, ξ)

∣∣ . εγ∧β U(t, ξ) = e−(ξm−ρ)t, (70)

where the bound is uniform in time for t ∈ (0, T ) and uniform in ξ ∈ Rd. From this, we
deduce the second inequality in (5), which concludes the proof of theorem 1.

3.2 Fluctuation theory for uε

We now address the proof of theorem 2. The first term in the decomposition of ûn,ε
defined in (22) is its mean E{ûn,ε}, which was analyzed in the preceding section. The
second contribution corresponds to the graphs Gcs in the analysis of the correlation
function and is constructed as follows. Let n = 2p + 1, p ∈ N. We introduce the
corrector ûcn,ε given by

ûcn,ε(t, ξ0) =

∫ n∏
k=0

e−skξ
m
k

p∑
q=0

[ q∏
r=1

E{q̂ε(ξ2(r−1) − ξ2r−1)q̂ε(ξ2r−1 − ξ2r)}
]

q̂ε(ξ2q − ξ2q+1)
[ p∏
r=q+1

E{q̂ε(ξ2r−1 − ξ2r)q̂ε(ξ2r − ξ2r+1)}
]
û0(ξn)dsdξ.

(71)

In other words, all the random terms are averaged as simple pairs except for one term.
There are p+ 1 such graphs. We define

ûcε(t, ξ) =
∑
n≥1

ûcn,ε(t, ξ). (72)

We verify that

V n,m
ε,s (t, ξ0, ξn+m+1) := E{ûcn,ε(t, ξ0)¯̂ucn,ε(t, ξn+m+1)}
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is equal to the sum in V n,m
ε (t, ξ0, ξn+m+1) only over the graphs in Gcs. Indeed, the above

correlation involves all the graphs composed of simple pairs with a single crossing.
Now let us define the variable

Yε = (ûε − ûcε − E{ûε}, M̂). (73)

Summing over n,m ∈ N the inequality in (56) as we did to obtain (52), we have
demonstrated that

E{Y 2
ε } . εd−2α+β‖û0‖2‖M̂‖2

1, (74)

for sufficiently small times. The leading term in the random fluctuations of uε is thus
given by ucε. It remains to analyze the convergence properties of

Zε(t) =
1

ε
d−2α

2

(ûcε, M̂). (75)

We thus come back to the analysis of ûcε and observe that for n = 2p+ 1,

ûcn,ε(t, ξ0) =

∫ ( n∏
k=0

e−skξ
m
k

) p∑
q=0

[ q∏
r=1

εd−2αR̂(ε(ξ2r−1 − ξ0))δ(ξ2r − ξ0)
]

q̂ε(ξ0 − ξn)
[ p∏
r=q+1

εd−2αR̂(ε(ξ2r − ξn))δ(ξ2r−1 − ξn)
]
û0(ξn)dsdξ.

Using the propagator defined in (57), we verify that

ûcn,ε(t, ξ0) =

p∑
q=0

∫ 2q−1∏
k=0

e−skξ
m
k

[ q∏
r=1

εd−2αR̂(ε(ξ2r−1 − ξ0))δ(ξ2r − ξ0)
]

q̂ε(ξ0 − ξn)Un−2q−1
ε (t2q+1, ξn)û0(ξn)ds̃dξ̃

=

p∑
q=0

∫ t

0

∫
Rd

U2q
ε (t− t2q+1, ξ0)q̂ε(ξ0 − ξn)Un−2q−1

ε (t2q+1, ξn)û0(ξn)dt2q+1dξn

=

p∑
q=0

∫ t

0

∫
Rd

U2q
ε (t− s, ξ0)q̂ε(ξ0 − ξ1)Un−2q−1

ε (s, ξ1)û0(ξ1)dsdξ1.

Upon summing over n, we obtain

ûcε(t, ξ) =

∫ t

0

∫
Rd

Uε(t− s, ξ)q̂ε(ξ − ξ1)Uε(s, ξ1)û0(ξ1)dsdξ1. (76)

We can use the error on the propagator obtained in (70) to show that the leading order
of ûcε is not modified by replacing Uε by U . In other words, replacing Uε by U modifies

Zε in (75) by a term of order O(ε
1
2
(β∧γ)) in L2(Ω× Rd), which thus goes to 0 in law.

Note that ûcε(t, ξ) is a mean zero Gaussian random variable. It is therefore sufficient
to analyze the convergence of its variance in order to capture the convergent random
variable for each t and ξ. The same is true for the random variable Zε. Up to a
lower-order term, which does not modify the final convergence, we thus have that

(ûcε, M̂) =

∫ ∫ t

0

ŪM̂(t− s, ξ)q̂ε(ξ1)Uû0(s, ξ − ξ1)dsdξdξ1.
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We have defined Uf (t, ξ) = U(t, ξ)f(ξ) for a function f(ξ). As a consequence, we find
that, still up a vanishing contribution,

E{|Zε|2} =

∫ ∫ t

0

∫ t

0

ŪM̂(t− s, ξ)UM̂(t− τ, ζ)R̂(εξ1)δ(ξ1 − ζ1)

× Uû0(s, ξ − ξ1)Ūû0(τ, ζ − ζ1)d[sτζζ1ξξ1].

Here and below, we use the notation d[x1 . . . xn] ≡ dx1 . . . dxn. By the dominated
Lebesgue convergence theorem, we obtain in the limit

E{|Z|2} := R̂(0)

∫ ∣∣∣ ∫ ∫ t

0

UM̂(t− s, ξ)Uû0(s, ξ − ξ1)dξds
∣∣∣2dξ1.

Here, Z is defined as a mean zero Gaussian random variable with the above variance.
Let us define Gρt f(x), the solution at time t of (3) with f(x) as initial conditions, which
is also the inverse Fourier transform of Uf̂ (t, ξ). We then recognize in

∫ ∫ t

0
UM̂(t −

s, ξ)Uû0(s, ξ − ξ1)dξ1ds the Fourier transform of Mt(x) defined in (8) so that by an
application of the Plancherel identity, we find that

E{Z2} = (2π)dR̂(0)

∫
Rd

( ∫ t

0

Gρt−sM(x)Gρsu0(x)ds
)2

dx = (2π)dR̂(0)

∫
Rd

M2
t (x)dx. (77)

This shows that Z(t) is indeed the Gaussian random variable written on the right hand
side in (8) by an application of the Itô isometry formula. This concludes the proof of
theorem 2.

3.3 Long range correlations and correctors

We now consider long range correlations described by power spectra defined in (12). We
present a proof of theorem 3 and consider possible generalizations.

Proof. The proof of theorem 1 relies on three estimates: those of lemma 2.1 and
lemma 3.1 and the uniform bound in (48) for R̂. Lemmas 2.1 and 3.1 were written to
account for power spectra bounded by |ξ|−n in the vicinity of the origin. It thus remains
to replace (48) by

εd−mR̂(ε(ξQ − ξεQ−1)) ≤ εd−m−nh(ξQ − ξεQ−1)Ŝ∞,

when |ξQ − ξεQ−1| ≤ 1 while we still use (48) otherwise. We have defined Ŝ∞ as the

supremum of Ŝ(ξ) in B(0, 1). It now remains to show that the integration with respect
to ξQ in (47) is still well-defined. Note that either Q = n or ξQ − ξεQ−1 may be written
as ξn − ζ for some ζ ∈ Rd thanks to (32). Upon using (49), we thus observe that in all
cases, the integration with respect to ξQ in (47) is well-defined and bounded uniformly
provided that (13) is satisfied uniformly in τ . Using the Hölder inequality, we verify
that (13) holds e.g. when û0(· − τ) ∈ Lq(B(0, 1)) uniformly in τ for q > 2d

d−n
. This

concludes the proof of the first part of the theorem.
Let us now define

Z̃ε(t) =
1

ε
d−m−n

2

(ûcε, M̂) = ε
n
2Zε(t).
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We verify as for the derivation of E{Z2
ε} that

E{Z̃2
ε} =

∫ ∫ t

0

∫ t

0

UM̂(t− s, ξ)ÛM̂(t− τ, ζ)Ŝ(εξ1)h(ξ1)δ(ξ1 − ζ1)

× Uû0(s, ξ − ξ1)Ûû0(τ, ζ − ζ1)d[sτζζ1ξξ1].

The dominated Lebesgue convergence theorem yields in the limit ε→ 0

E{Z̃2} := Ŝ(0)

∫ ∣∣∣ ∫ t

0

∫
UM̂(t− s, ξ)Uû0(s, ξ − ξ1)h

1
2 (ξ1)dξ1ds

∣∣∣2dξ
= Ŝ(0)

∫
|M̂t(ξ)|2h(ξ)dξ,

where Mt is defined in (8). An application of the inverse Fourier transform yields (15).

Note that (15) generalizes (77), where ϕ(x) = δ(x), to functions Mt(x) ∈ L2
ϕ(Rd)

with inner product

(f, g)ϕ =

∫
R2d

f(x)g(y)ϕ(x− y)dxdy. (78)

For h(ξ) = |ξ|−n, we find that ϕ(x) = cn|x|n−d, with cn = Γ(d−n
2

)/(2nπ
d
2 Γ(n

2
)) a normal-

izing constant.
Following e.g. [8, 11], we may then define a stochastic integral with fractional Brow-

nian motion

Z =

∫
Rd

Mt(x)dW
H(x), (79)

where WH is fractional Brownian motion defined such that

E{ẆH(x)ẆH(x+ y)} =
cn

|y|d−n
, cn =

Γ(d−n
2

)

2nπ
d
2 Γ(n

2
)
.

We then verify that E{Z2} = ΣM so that the random variable Z is indeed given by the
above formula (79). When n = 0, we retrieve the value for the Hurst parameter H = 1

2

so that WH = W , the standard multiparameter Brownian motion.
In the analysis of stochastic equations [9, 14], the multiparameter fractional Brow-

nian motion is often defined as the centered Gaussian field BH with Hurst index
H = (H1, . . . , Hd),

1
2
< Hi < 1, and covariance

E{BH(x)BH(y)} =
1

2d

d∏
i=1

(
|xi|2Hi + |yi|2Hi − |xi − yi|2Hi

)
.

With this definition, we then find the correlation for the fractional white noise

E{ḂH(x)ḂH(y)} = ϕH(x− y) :=
d∏
i=1

Hi(2Hi − 1)|xi − yi|2Hi−2.

The above is then defined as the Fourier transform of

hH(ξ) =
d∏
i=1

Hi(2Hi − 1)

ci
|ξi|−ni ,

d∑
i=1

ni = n, 2Hi = 1 +
ni

d
, ci =

Γ(1−Hi)

2niπ
1
2 Γ(Hi − 1

2
)
.
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The results of theorem 1 and 3 may also be extended to this framework by slightly
modifying the proofs in lemmas 2.1 and 3.1.

Note that homogenization theory is valid as soon as d > m + n. When d < m + n,
generalizations of the work in [2] considered elsewhere show that the limit for uε is the
solution in L2(Ω× Rd) to a stochastic differential equation of the form (11) with white
noise replaced by fractional white noise.

The stochastic representation in (79) is not necessary since ΣM(t) fully characterizes
the random variable Z. However, the representation emphasizes the following conclu-
sion. Let ZH

1 and ZH
2 be the limiting random variables corresponding to two moments

with weightsM1(x) andM2(x) and a given Hurst parameterH. WhenH = 1
2
, we deduce

directly from (79) that E{Z
1
2
1 Z

1
2
2 } = 0 when M1(x)M2(x) = 0, i.e., when the supports

of the moments are disjoint. This is not the case when H 6= 1
2

as fractional Brownian
motion does not have independent increments. Rather, we find that E{ZH

1 Z
H
2 } is given

by (Mt,1,Mt,2)ϕ, where the inner product is defined in (78) and Mt,k is defined in (8)
with M replaced by Mk, k = 1, 2. Similar results were obtained in the context of the
one-dimensional homogenization with long-range diffusion coefficients [3].
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