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Abstract

Adjoint methods form a class of importance sampling methods that are used to
accelerate Monte Carlo (MC) simulations of transport equations. Ideally, adjoint
methods allow for zero-variance MC estimators provided that the solution to an
adjoint transport equation is known. Hybrid methods aim at (i) approximately
solving the adjoint transport equation with a deterministic method; and (ii) use
the solution to construct an unbiased MC sampling algorithm with low variance.
The problem with this approach is that both steps can be prohibitively expen-
sive. In this paper, we simplify steps (i) and (ii) by calculating only parts of the
adjoint solution. More specifically, in a geometry with limited volume scattering
and complicated reflection at the boundary, we consider the situation where the
adjoint solution “neglects” volume scattering, whereby significantly reducing the
degrees of freedom in steps (i) and (ii). A main application for such a geometry
is in atmospheric remote sensing. Volume scattering is then incorporated using
an analog sampling algorithm (or more precisely a simple modification of analog
sampling called a heuristic sampling algorithm) in order to obtain unbiased es-
timators. In geometries with weak volume scattering (with a domain of interest
of size comparable to the transport mean free path), we demonstrate numerically
significant variance reductions and speed-ups (figures of merit).

Keywords:Linear Transport; Monte Carlo; Hybrid Methods; Importance Sam-
pling; Variance Reduction; Atmospheric Remote Sensing

1 Introduction

Forward and inverse linear transport models find applications in many areas of
science including medical imaging and optical tomography [1], radiative transfer in
the atmosphere and the ocean [4, 12, 14], neutron transport [6, 16], as well as the
propagation of seismic waves in the earth crust [15]. In this paper, we focus on the
solution of the forward transport problem by the Monte Carlo method with remote
sensing (an inverse transport problem) of the atmosphere as our main application.
Light is emitted from the sun and propagates in a complex environment involving
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absorption and scattering in the atmosphere and at the Earth’s surface before (a
tiny fraction of) it reaches a detector, typically mounted on a plane or a satellite.

The transport equation may be solved numerically in a variety of ways. Monte
Carlo (MC) simulations model the propagation of individual photons along their
path and are well adapted to the complicated geometries encountered in remote
sensing. Photons scatter and are absorbed with prescribed probability depending
on the underlying medium. The output from the simulation, e.g., the fraction
of photons that hit a detector, is the expected value of a well-chosen random
variable. These simulations are very easy to code, embarrassingly parallel to run,
and suffer no discretization error (in principle). The drawback is that they can
be very slow. Monte Carlo methods converge at a rate = (V arianceN−1/2) where
N is the number of simulations, and the variance is that of each shot fired. In
remote sensing, the (relative) variance is high in large part because the detector is
typically small and thus most photons are not recorded by the detector. In order
to be effective, MC methods must be accelerated.

Most efforts to speed MC simulations focus on reducing the variance of each
shot. See [16, 13] or the review of more recent work (on neutron transport) in
[9]. See also [20] for a thorough introduction to the MC techniques in computer
graphics. In problems with a small detector, this is achieved by directing pho-
tons toward that detector (and re-weighting to keep calculations unbiased). When
survival biasing is used, photons have their weight decreased rather than being
absorbed [16, 13]. Often, one uses some heuristic (such as proximity to the de-
tector), or some function to measure the “importance” of each region of phase
space. Splitting methods [16, 13], upon identifying that a photon is in a region of
high importance, split the photon into two or more photons. The weight of each
photon is then decreased. Propagating many photons with a low weight is not
desirable, therefore splitting is often accompanied by Russian roulette. Here, if
a photon enters a region of low enough importance, then the photon is killed off
with a certain probability (high chance of death if the weight is low). Typically a
weight window is used to enforce regions of low/high importance. Source biasing
techniques change the source distribution in order to more effectively reach the
detector. More generally, the absorption/scattering properties at any point can
be modified, provided shots are re-weighted correctly.

It has long been recognized that the adjoint transport solution is a natural
and optimal importance function [16, 13, 17, 18, 9, 19, 7]. One can use well-
chosen approximations of the adjoint solution (typically a rough deterministic
solution) to reduce variance. The result is a hybrid method (deterministic+MC).
The AVATAR method uses an adjoint approximation to determine weight windows
[19]. The CADIS scheme in [9] uses an adjoint approximation in both source bi-
asing and weight-window determination. An adaptive technique that successively
refines the solution in “important” regions (and uses to adjoint to designate such
regions) is described in [10, 11]. In [16, 17], a zero-variance technique is outlined
that uses the true adjoint solution to fire photons that all reach the detector with
the same weight (which happens to be the correct answer). This method is im-
practical since determining the exact adjoint solution everywhere is harder than
determining some integral of that solution. The LIFT method [17, 18] uses an
approximation of the adjoint solution to approximate this zero-variance method.

We adapt the zero-variance technique to the particular problem we have at
hand; see figure 1 for the type of geometry considered in this paper. The problem
we consider has a fixed, reflective, complex boundary, and relatively large mean-
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free-path (MFP) in the sense that a large fraction of the photons reaching the
detector have not scattered inside the atmosphere. The calculation of the approx-
imate adjoint solution used to approximate zero-variance techniques is difficult
and potentially very costly. What we demonstrate in this paper is that partial,
“localized” (in an appropriate sense) knowledge of the adjoint solution still offers
very significant variance reductions. More specifically, we calculate adjoint solu-
tions that accurately account for the presence of the boundary but do not account
for volume scattering (infinite MFP). The calculation of the adjoint solution thus
becomes a radiosity problem with much reduced dimensions compared to the full
transport problem. This, of course, can only reduce variance in proportion to the
number of “ballistic” photons that never interact with the volume. Moreover, an
adjoint solution that does not “see” volume scattering cannot be used alone as a
variance reduction scheme for otherwise volume scattering would be neglected and
the simulation biased, which is not allowed. When combined with simple rules
for allowing volume scattering and sending some photons directly from the vol-
ume to the detector, our hybrid method yields very significant variance reduction
at relatively minimal cost. Furthermore, the methodology studied is applicable
whenever any method is available to deterministically pre-calculate flux over any
subset of paths. For instance, complex propagation of light in clouds and its
importance could be pre-calculated locally and incorporated into the MC simula-
tions in a similar fashion. This modular approach to the description of the adjoint
solution is well-adapted to the remote sensing geometry and avoids complicated,
global, and hence expensive deterministic calculations of adjoint transport solu-
tions. Our treatment of the reflecting boundary described in detail in this paper
is a first step toward modular adjoint transport calculations and their variance
reduction capabilities in remote sensing.
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Figure 1: Mountain (1 − cos3 x shape), cloud, sky, and detector. Dot size indicates
relative adjoint flux strength. Large dots on right-hand-side are the detector (dot size is
down-scaled for detector). Dot size on mountain indicates that portions of the mountain
are shaded from the detector, and that the scattering albedo is non-constant.

The rest of the paper is structured as follows. Section 2 presents basic infor-
mation about the transport equation with reflecting boundary. Section 3 presents
our main theoretical results on hybrid acceleration of Monte Carlo by determin-
istic adjoint calculations. We adopt an importance sampling viewpoint [3] that
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is common in the statistical literature. This means we view the modifications
to absorption/scattering as a change of probability measure and the re-weighting
as a Radon-Nikodym derivative (Jacobian). This allows us to fit many methods
together under one framework. In particular, source-biasing, the zero-variance
scheme, our approximation of it, and our “heuristic” volume-to-detector adjust-
ment are put in this light. This allows us to obtain estimates of variance as a
function of scattering/absorption coefficients and the accuracy of the determinis-
tic solver.

Sections 3.1 and 3.2 recall the main ideas behind importance sampling and
the use of adjoint transport solutions. We recall how zero-variance chains can be
constructed and show how they can be approximated by small-variance chains.
In the absence of volume scattering, a small variance chain is constructed in
section 3.3. The modularity mentioned earlier in this section is implemented by
a regularization methodology introduced in (41) in section 3.4.1. The Surface
Adjoint Importance (SAI) method, used to incorporate the adjoint solutions that
accurately describe the surface defined in section 3.3 in a scheme that also handles
volume scattering, is described in detail in section 3.4. The variance reduction
and speedup that can be gained from the proposed methodology are presented in
section 4. Several details in the derivation and the proof of the results of section
3 and the numerical implementation of the simulations of section 4 are postponed
to Appendix A.

2 Transport with Reflecting Boundaries

Let X ⊂ Rd (d = 3 in practice and d = 2 in our numerical simulations) be
an open (spatial) domain with smooth boundary ∂X. Denote X ∪ ∂X by X̄.
For x ∈ X photons will have velocities v ∈ Sd−1, the unit sphere, and we call
the pair z = (x, v) ∈ Z. When x ∈ ∂X we separate directions into incoming
and outgoing. With νx the outward unit normal vector at x ∈ ∂X we have
Γ± := {(x, v) : x ∈ ∂X,±v · νx > 0}. Note that z always is interpreted as the
pair (x, v), and for example zj = (xj , vj).

Photons will be cast along rays, and travel until they hit the boundary. We
define the forward and backward propagation times as τ±(z) := mint>0{x± tv ∈
∂X}. We also define the forward and backward spatial and phase-space propaga-
tions x±(z) := x± τ±(z)v, z±(z) := (x±(z), v). The rays themselves are denoted
by a starting point and direction, r(z) := {x+ tv : 0 < t < τ+(z)}.

Define an integral over Z̄ := Z ∪ Γ− ∪ Γ+ by

∫

Z̄
f(z) dz : =

∫

Z
f(z) dz +

∫

Sd−1

∫

∂X
f(z)dµ(x)dv,

where dµ the surface measure on ∂X and an inner product by

〈f, g〉 =

∫

Z̄
f(z)g(z) dz.

Some functions are defined only, for example, on Γ−. In that case we extend the
function to Z̄ by setting it equal to zero off of Γ−.

Light traveling through X encounters an absorption cross section σa(x), scat-
tering kernel θ(x, v→v′), and scattering cross section σs(x) :=

∫

Sd−1 θ(x, v→v′) dv′,
which is assumed independent of v. The total cross section σ := σa + σs. The
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exponential of σ is denoted by

Eσ(x1, x2) : = e−
R |x1−x2|
0

σ(x1+tv1)dt,

where v1 = x̂2 − x1 := (x2−x1)|x2−x1|−1. We define Eσa , Eσs similarly. Once a
photon collides with the boundary, it is scattered with probability α(x). In that
case, the probability distribution Θ(x, v→v′) determines the new direction. This
implies

∫

νx·v′>0
Θ(x, v→v′) dv′ = 1.

We model photon flux density u in our medium with source s by

v · ∇xu(z) + σ(x)u(z) = Ku(z)

u
∣

∣

Γ−
(z) =

K(u|Γ+
)(z)

|νx · v|
+

s(z)

|νx · v|
,

(1)

where

Kf(z) =

∫

Sd−1

θ(x, v′→v)f |Z(x, v′) dv′, z ∈ Z

Kf(z) = α(x)

∫

νx·v′>0
Θ(x, v′→v)|νx · v′|f |Γ+

(x, v′) dv′ z ∈ Γ−.
(2)

Since the transport problem is linear, we normalize s so that

∫

Γ−

s(x, v)dµ(x)dv = 1. (3)

Multiplying the identity v · ∇xu(x− tv, v) + σ(x− tv)u(x− tv, v) = Ku(x− tv, v)
by the integrating factor Eσ(x, x − tv) and integrating t from 0 to τ−(z) we find
that u satisfies the following integral transport equation:

u = LKu+ Ls, so that u =
∞
∑

n=0

(LK)nLs = L
∞
∑

n=0

(KL)ns, (4)

where (with z ∈ Z ∪ Γ+)

Lf(z) : =

∫ τ−(z)

0
Eσ(x, x− tv)f |Z(x− tv, v) dt+

Eσ(x, x−(z))

|νx−(z) · v|
f |Γ−(z−(z)).

Then (4) motivates us to define ψo solving

ψo = KLψo + s, so that ψo =
∞
∑

n=0

(KL)ns and u = Lψo. (5)

The decompositions (4) and (5) of the transport solution into components cor-
responding to increasing orders of scattering is standard in forward and inverse
transport theory. We refer the reader to e.g. [2, 5, 16] for additional details.
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2.1 Coefficient assumptions and measurement setup

The function g(z) := g(x, v) describes the phase-space representation of the detec-
tor. We will see that the Monte Carlo detector is defined as ḡ(z) := g(z)|νx · v|−1.
We assume that the source/detector are nonzero only on the incoming/outgoing
boundaries: supp(s) ⊂ Γ−, supp(g) ⊂ Γ+. Finally, we assume that the detec-
tor is non-scattering, α(x) = 0 for (x, v) ∈ supp(g). We also have α ≡ 0 on
the sky and left/right sides to model photons that escape our domain. These
assumptions are satisfied for source radiation coming from the sun and detectors
on high-elevation planes or satellites. The methodology we present could easily
be adapted to detectors placed in the volume.

Our measurement is the phase space integral 〈g, u〉. All numerical methods
employed will approximate this integral. When g(z) = νx ·v (for x on the support
of the detector), the detector is measuring photon flux. This corresponds to
counting Monte Carlo photons that pass through the support of ḡ.

2.2 Adjoint solutions and operator decomposition

We will see that it is the adjoint operator (and its kernel) that is needed to
define the Markov chain transition kernels in MC simulations. We denote adjoint
operators by ∗, and adjoint is defined with respect to the inner product 〈·, ·〉. The
methods used in this paper rely on a decomposition of the operator (LK)∗ into
C∗ (ray Casting) and S∗ (Scattering) operators. We have

C∗f(z1) : =

∫ τ+(z1)

0
Eσ(x1, x1 + tv1)f |Z(x1 + tv1, v1) dt+ Eσ(x1, x+(z1))f |Γ+

(z+(z1)),

when z1 ∈ Z ∪ Γ−, and

S∗f(z1) : =















∫

Sd−1

θ(x1, v1→v2)f |Z(x1, v2) dv2, z1 ∈ Z

α(x1)

∫

νx1
·v2<0

Θ(x1, v1→v2)f |Γ−(x1, v2) dv2, z1 ∈ Γ+.

While C∗ 6= L∗, we still have C∗S∗ = (KL)∗, which implies of course that
SC = KL. We also note that C∗ḡ = L∗g. The notation x1, v1, z1, and x2, v2, z2
is suggestive of the fact that these variables will later represent photon posi-
tions/velocities at the first, second, third, etc. . . position.

Define the adjoint ψ∗
o by

ψ∗
o = C∗S∗ψ∗

o + C∗ḡ, so that ψ∗
o =

∞
∑

n=0

(C∗S∗)nC∗ḡ = C∗
∞
∑

n=0

(S∗C∗)nḡ. (6)

Then definitions of ψo, ψ
∗
o imply 〈s, ψ∗

o〉 = 〈C∗ḡ, ψo〉, and therefore

〈s, ψ∗
o〉 = 〈C∗ḡ, ψo〉 = 〈L∗g, ψo〉 = 〈u, g〉. (7)

In other words, the adjoint solution ψ∗
o(z) is a weight giving the “importance” of a

source at point z on our measurement 〈u, g〉. This is the first fundamental reason
for the use of the adjoint solution in Monte Carlo transport; see e.g. [16, 17] and
also Theorem 3.1 below. Note that ψ∗

o can be shown to solve

−v · ∇xψ
∗
o + σψ∗

o = S∗ψ∗
o ,

ψ∗
o |Γ+

= S∗(ψ∗
o |Γ−) + ḡ.

(8)
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The relation in (6) motivates us to define ψ∗
i solving

ψ∗
i = S∗C∗ψ∗

i + ḡ, so that ψ∗
i =

∞
∑

n=0

(S∗C∗)nḡ.

We also have the relations

ψ∗
o = C∗ψ∗

i , ψ∗
i = S∗ψ∗

o + ḡ. (9)

Both ψ∗
i and ψ∗

o appear naturally in Monte-Carlo transport. When construct-
ing transition kernels (that determine casting/direction changes), one will be a
normalization constant for the other (implicitly or explicitly). We make the dis-
tinction explicit due to the following heuristics. We may think of ψ∗

i (z1) as the
incoming importance at z1. To it we associate an arrow directed into point x1 with
direction v1. ψ

∗
o(x1, v1) is the outgoing importance at (x1, v1) since it is the inte-

gral of incoming importance at all possible points (x2, v1) along the ray x1 + tv1.
Likewise, away from the support of g, ψ∗

i = S∗ψ∗
o , meaning that the incoming

importance at x in direction v is the integral of all importance exiting x.
It is important to note that all chains described here alternate casts with

direction changes. Casts move particles from a point (x1, v1) to a point (x1 +
tv1, v1) on a one-dimensional line segment while direction changes move particles
from a point (x2, v1) to a point (x2, v2) on a (d − 1)−dimensional sphere. One
could alternatively try devising a scheme that moves zj → zj+1 directly. This
significantly increases computational cost since, given z1, z2 may lie anywhere on
the d dimensional manifold {x1 + t1v1 : 0 < t < τ+(z1)} × Sd−1. Thus, sampling
z2 directly would require handling a d dimensional data structure rather than a
1 dimensional and a (d − 1) dimensional data structures for alternate casts and
direction changes. This is our main motivation for introducing the operators C∗

and S∗ rather than directly working with (LK)∗.

2.3 Transport when σ = 0

When σ ≡ 0 (the “surface” regime), we have C∗ = Cs (with kernel kCs), S∗ = Ss

(with kernel kSs) where

Csf(z1) : =

∫ τ+(z1)

0
f |Z(x1 + tv1, v1) dt+ f |Γ+

(z+(z1)),

Ssf(z1) : =







0, z1 ∈ Z
α(x1)

∫

νx1
·v2<0

Θ(x1, v1→v2)f |Γ−(x1, v2) dv2, z1 ∈ Γ+

We then define ψs
i as the solution to

ψs
i = SsCsψs

i + ḡ,

and let ψs
o := Csψs

i . Since ψs
i |Z ≡ 0,

ψs
o(z) = ψs

i (z+(z)), z ∈ Z ∪ Γ−,

and for z ∈ Γ+,

SsCsψs
i (z1) = α(x1)

∫

νx1
·v2<0

Θ(x1, v1→v2)ψs
i (z+(x1, v2)) dv2.

In other words, we can solve for ψs
i by paying attention only to the boundary, and

then propagate it to compute ψs
o.
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3 Monte Carlo with Reflecting Boundaries

Monte Carlo consists of simulating transport one photon at a time. Photons
propagate along straight lines until they interact with the underlying medium,
where they are either absorbed or scattered into another direction, or reach the
detector where they are collected. It can be shown that photon paths terminate
(with probability one) after finitely many collisions. Following [16], paths will be
written ω = (z0, . . . , zτ−1, (xτ , d)). So the initial point z0 = (x0, v0) ∈ Z̄, and
subsequently we choose x1 by casting a ray, then v1 by changing direction, then
x2, then v2 and so on until absorption. At this stopping time τ , xτ is chosen, and
then vτ is set equal to d, the “dead velocity.” The chain is now terminated. Let

Ω : = {((x0, v0), . . . , (xτ−1, vτ−1), (xτ , d)) : vj = ̂xj+1 − xj}.

All casts and direction changes (including “death”) are made by drawing ran-
dom variables. We thus introduce a probability measure on the set of paths Ω.
We note that {ω ∈ Ω : τ(ω) = n} = {τ = n} is the set of paths terminating after
n− 1 scattering events.

A probability measure on Ω is a map P from the (measurable) subsets of Ω into
[0, 1]. It corresponds to a method of choosing paths. Given a set A ⊂ Ω of possible
paths, P[A] is the probability that a path lies in A. P[τ = n] := P[{ω : τ(ω) = n}]
is the probability that the chain terminates at step n. Let D denote the paths
that end up hitting the detector. Then P[D] is the probability of hitting the
detector. With the indicator function 1D(ω) defined as 1D(ω) = 1 if ω ∈ D and
zero otherwise, we have the notation

P[D] =

∫

D
dP(ω) =

∫

Ω
1D(ω)dP(ω) = E {1D} .

Here, E {} denotes mathematical expectation (ensemble averaging) w.r.t. P.

3.1 Monte Carlo and Importance Sampling

The analog measure Pa closely follows the physics of photon propagation (at least
one reasonable physical model for photon propagation). Monte Carlo simulations
based on this measure have very large (relative) variance because most of the
photons do not reach the detector. Several standard methods exist to modify
the measure to steer more photons toward the detector in an unbiased way, i.e.,
in a way that does not modify the detector reading 〈u, g〉. We start with a
presentation of the analog chain and then present the main ideas of importance
sampling to reduce variance in MC simulations. We also present the (standard)
survival biasing chain, which forms a basis for comparison and a component in
our composite SAI chain.

3.1.1 Analog Sampling

We first define the analog transition kernels ka
C∗ and ka

S∗ , associated to the oper-
ators C∗ and S∗. The analog ray casting transition kernel is

ka
C∗(z1 → x2) : =

[

δr(z1)(x2)σ(x2) + δ(x2 − x+(z1))
]

Eσ(x1, x2).

Above, δr(z1)(x2) is the “delta function” in Rd concentrated along the ray r(z1).
It forces x2 to be along the path x1 + tv1, t > 0. δ(x2 − x+(z1)) forces x2 to be
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on the boundary at x+(z1). Since

d

dt
(1− Eσ(x, x+ tv)) = σ(x+ tv)Eσ(x, x+ tv), (10)

we have
∫

X̄ ka
C∗(z1 → x2) dx2 = 1. This means that the probability of termination

during an analog casting event,

pa
C∗(z1) : = 1−

∫

X̄
ka

C∗(z1 → x2) dx2 = 0.

Next, the direction change kernel is given by

ka
S∗((x2, v1)→ v2) : =

{

θ(x2, v1→v2)σ(x2)
−1, x2 ∈ X

α(x2)Θ(x2, v1→v2), x2 ∈ ∂X.

We find that the probability of termination during a direction change is given by

pa
S∗(x2) =

{

σa(x2)/σ(x2), x2 ∈ X
1− α(x2), x2 ∈ ∂X.

These kernels lead to the standard algorithm 1 [16]: we sample z0 from the
normalized source s (written z0 ∼ s), then cast according to ka

C∗ . Then particle is
absorbed with probability pa

S∗ . If the photon is not absorbed, we change direction
using a pdf proportional to ka

S∗ (ka
S∗ doesn’t integrate to one, so it is not a pdf).

Then we cast again and so on until we are absorbed. This defines the chain ω =
((x0, v0), . . . , (xτ−1, vτ−1), (xτ , d)). At this point, we define the random variable
modeling detector reading:

ξa(ω) : =
ḡ(Xτ , Vτ−1)

pa
S∗(Xτ )

. (11)

Note that our assumptions on α imply pa
S∗ ≡ 1 on the support of ḡ. The simplest

Algorithm 1 Analog
1: Draw z0 ∼ s, set j ← 0
2: while vj 6= d do
3: Draw xj+1 ∼ ka

C∗(zj → ·)
4: With probability pa

S∗(xj+1, vj), vj+1 = d

5: if vj+1 6= d then
6: Draw vj+1 from a distribution ∝ ka

S∗((xj+1, vj)→ ·)
7: end if
8: j ← j + 1
9: end while

10: Record ξa(ω) = ḡ(xj, vj−1)

example is when the detector measures flux through the surface. In this case
ḡ(z) ≡ 1 on supp(g) and we simply count MC photons hitting the detector. Chains
generated using algorithm 1 induce the analog probability measure

dPa(ω) = s(z0)k
a
C∗(z0 → x1)k

a
S∗((x1, v0)→ v1)

× · · · × ka
C∗(zτ−2 → xτ−1)k

a
S∗((xτ−1, vτ−2)→ vτ−1) (12)

× ka
C∗(zτ−1 → xτ )p

a
S∗(xτ , vτ−1) dz0 · · · dzτ−1 dxτ .
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It is instructive to write this out in the case where photons only interact with the
volume, and then reach the detector. In this case (keeping in mind that pa

S∗ ≡ 1
on the detector, and ignoring the dz0 · · · dxτ ), dPa becomes

s(z0)δr(z0)(x1)Eσ(x0, x1)θ(x1, v0→v1) · · · δr(zτ−1)(xτ )Eσ(xτ−1, xτ ). (13)

We recall the normalization (3) from which we deduce that
∫

Ω dPa = 1. Note first
that the above chain is terminated with a cast and use of ka

C∗ . Second, note that
the measure above is a multiplication of singular measures and must be carefully
defined. E.g. recall that we must fix z1 in order for ka

C∗(z1 → x2) to be well
defined; see the proof of theorem 3.1 (in the appendix) for details.

The next theorem shows that the chain ξa(ω) is indeed unbiased.

Theorem 3.1. With Ea {·} denoting expectation under the measure Pa, we have

Ea {ξa} = 〈u, g〉.

This result is standard in the absence of a boundary; see e.g. [16]. Its proof is
sketched in the appendix. Algorithm 1 is a method for producing one draw (shot)
ξa(ω) from Pa. As is “always” done with Monte Carlo techniques, we produce N
draws {ξa(ωi)}Ni=1 in an identical fashion, then estimate

〈u, g〉 = Ea {ξa} ≈
1

N

N
∑

i=1

ξa(ω
i).

3.1.2 Importance sampling

Here we give a quick introduction to importance sampling and show how it relates
to our scheme. Given the analog probability measure dPa, we can use a different

measure dP̃ for sampling. With ξa defined as in (11), and ξ̃ := ξa

∣

∣

∣

dPa

d ˜P

∣

∣

∣
,

〈u, g〉 = Ea {ξa} =

∫

Ω
ξa dPa =

∫

Ω
ξa

∣

∣

∣

∣

dPa

dP̃

∣

∣

∣

∣

dP̃ = E

{

ξ̃
}

P̃
,

where the Radon-Nikodym derivative
∣

∣

∣

dPa

d ˜P

∣

∣

∣
(the Jacobian) must be defined on

supp(ξa). This happens precisely when, for any measurable A ⊂ Ω such that
Pa(A) > 0, we also have P̃(A) > 0. In this case we say that Pa (or dPa) is
absolutely continuous with respect to P̃ (or dP̃). Then we can estimate the mea-
surement in one of two ways:

1. 〈u, g〉 ≈ 1
N

∑N
i=1 ξa(ωi), where ωi are sampled according to Pa

2. 〈u, g〉 ≈ 1
N

∑N
i=1 ξ̃(ωi), where ωi are sampled according to P̃.

For uncorrelated samples, the variance in either case (ξ = ξa or ξ = ξ̃) is

Var

{

1

N

N
∑

i=1

ξ(ωi)

}

=
Var {ξ}
N

.

So it will suffice to study Var {ξ} and the time needed per sample to calculate
speedup. Here are a few expressions for variance of a random variable ξ : Ω→ R:

Var {ξ} =

∫

Ω
(ξ − E {ξ})2 dP =

∞
∑

n=0

∫

τ=n
(ξ − E {ξ})2 dP = E

{

ξ2
}

− E {ξ}2 .
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The behavior of g puts some fundamental limits on variance for the analog
chain. Let D ⊂ Ω be the set of paths that reach the detector, and suppose
the “real life” detector measures flux through the surface, g(z) = νx · v (on its
support). Then ḡ ≡ 1 on the support of g so that ξa(ω) = 1D(ω) and the Monte
Carlo detector acts as a photon counter. Then, for Pa[D]≪ 1,

√

Var {ξa}
〈u, g〉 =

√

Pa[D](1− Pa[D])

Pa(D)
≈ 1
√

Pa[D]
.

So for a small detector, the relative variance of analog MC is quite large. Since
both methods are unbiased, variance is reduced if and only if

0 < Ea

{

ξa
2
}

− E

{

ξ̃2
}

P̃
=

∫

Ω
ξa

2

[

1−
∣

∣

∣

∣

dPa

dP̃

∣

∣

∣

∣

]

dPa.

The goal of importance sampling is thus to make dP̃ ≫ dPa on as much of

supp(ξa) as possible. However, dP̃ must integrate to one and we must have
∣

∣

∣

dPa

d ˜P

∣

∣

∣

defined on D (which we don’t have a priori access to).
We now describe some simplified importance sampling situations. They serve

to bring intuition to our model. Suppose first that we devise an algorithm whose
corresponding chain has measure

dP̃(ω) =

{

G dPa(ω), ω ∈ D
1−GPa[D]
1−Pa[D] dPa(ω), ω /∈ D, (14)

with 1 ≤ G ≤ Pa[D]−1. Now ξ̃ = 1D/G and

Var {ξa}
Var

{

ξ̃
} =

1− Pa[D]

G−1 − Pa[D]
.

Theoretically, we can set G = Pa[D]−1 and achieve infinite variance reduction,
i.e., find a zero-variance method which gives the right result with probability 1.
Assuming knowledge of Pa[D] of course means we know the desired integral we
are attempting to measure and thus is not practical. Moreover, practically, we
cannot know how to increase dP̃ uniformly (and exclusively) for the a priori
unknown ω ∈ D, and thus some error is made. But this simple argument shows
the possibility of achieving zero-variance MC. This will be utilized later in this
section after we introduce importance sampling based on the adjoint transport
calculations.

More practically, we may still devise schemes that increase the draws from
some known, controlled, set B ⊂ Ω, “stealing” them from Ω \B. In the simplified
case where we change the measure on B by a multiplicative constant b and on
Ω\B by an appropriate constant so that mass is preserved, we obtain that

dP̃(ω) =

{

bdPa(ω), ω ∈ B
1−bPa[B]
1−Pa[B] dPa(ω), ω ∈ Bc,

ξ̃(ω) =

{

1
b ξ(ω), ω ∈ B

1−Pa[B]
1−bPa[B]ξ(ω), ω ∈ Bc.

(15)

Here, we have defined Bc = Ω \ B. Then, assuming that ξ = 1D (i.e., that the
detector counts photons),

E

{

ξ̃2
}

P̃
=

1

b
Pa[D ∩B] +

1− Pa[B]

1− bPa[B]
Pa[D ∩Bc]. (16)

11



Let us now optimize the choice of b to maximize variance reduction. Variance is
significantly reduced when B is a good approximation of D, i.e., when Pa[D∩B] is
relatively close to Pa[D]. How good an approximation we need may be quantified
as follows. We recall that Pa[D∩B] = Pa[D]Pa[B|D]. We remind the reader that
P[B |D] is the conditional probability of the event B given D. In other words, it
is the probability that ω ∈ B given that the path ω reaches the detector.

Let us introduce the factors

β = bPa[D], γ =
Pa[B]

Pa[D]
, a =

(1− γPa[D])

Pa[B|D]

(1− Pa[B|D])

Pa[D]
. (17)

Starting from (16), some algebra shows that

Var
{

ξ̃2
}

= Pa2[D]
(

Pa[B|D]
( 1

β
+

a

1− γβ
)

− 1
)

.

Minimizing the above expression allows us to maximize the variance reduction.
We find that for the optimal value of βopt equal to (

√
γ(
√
γ+
√
a))−1, the minimal

variance is given by

Var
{

ξ̃2
}

min
= Pa2[D]

(

Pa[B|D](
√
γ +
√
a)2 − 1

)

.

This shows that the maximal variance reduction is given by

Var
{

ξ2
}

Var
{

ξ̃2
}

∣

∣

∣

∣

max

=
1− Pa[D]

Pa[D]

1

Pa[B|D](
√
γ +
√
a)2 − 1

. (18)

When B ≡ D, we find that γ = 1 and a = 0. In that case, we find again that the
above value is +∞ and that the chain ξ̃ has zero variance.

In practice however, it is unlikely that a will be small. Since Pa[D] is small, we

find that a is approximated by 1−Pa[B|D]
Pa[B|D]Pa[D] . Since Pa[D]≪ 1 for small detectors,

a is likely to be large even for reasonable approximations of D by B. It turns out
that even in that case, we can still expect good variance reductions. When a≫ 1
and γ close to 1, we observe that

Var
{

ξ2
}

Var
{

ξ̃2
}

∣

∣

∣

∣

max

≈ 1

1− Pa[B|D]
, βopt ≈

1√
aγ
≈
( Pa[B|D]Pa[D]

γ(1− Pa[B|D])

)
1

2

. (19)

We observe that for a choice of b close to Pa[D]−1βopt, we obtain very reasonable
variance reduction when B is chosen so that 1−Pa[B|D]≪ 1 but not necessarily
a . 1 which is equivalent to 1 − Pa[B|D] . Pa[D] and imposes constraints on B
that are not practical. We use the notation a . b to denote “a ≤ Cb for some
C < ∞.” In figure 2, we show the variance reduction (18) for several values of
Pa[B|D] (left) and its approximation by (19) (right), which works quite well when
a is large and not so well when a is small as expected from theory. In all plots,
Pa[D] = 0.002, which is close to our actual simulations in section 4.

Note that (15) may be improved as follows when we know the existence of a
set C such that C∩D = ∅. Paths in C do not reach the detector and thus we want
to give them a vanishing weight. The measure in (15) then needs to be modified
as

dP̃(ω) =











bdPa(ω), ω ∈ B
0, ω ∈ C

1−bPa[B]
1−Pa[B]−Pa[C] dPa(ω), ω ∈ (Ω \ C) \B.

(20)
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Figure 2: Variance reduction by importance sampling. Left: The ratio

V RR(b,Pa[B |D]) := Var {ξ} /Var
{

ξ̃
}

is plotted vs. bPa[D] for a number of differ-

ent Pa[B |D]. Right: maxb>0 V RR(b,Pa[B |D]) is plotted versus Pa[B |D]. In both
cases variance is calculated in the regime (16).

This leads to

E

{

ξ̃2
}

P̃
=

1

b
Pa[D ∩B] +

1− Pa[B]− Pa[C]

1− bPa[B]
Pa[D ∩Bc]. (21)

The situation (21) is preferable to (16) when Pa[C] > 0. The optimal value
for b is obtained as before with 1 − γPa[D] in the definition of a replaced by
1− Pa[C]− γPa[D].

3.1.3 Modular importance sampling

Finding the “right” set B is a difficult task: photons making it to the detector may
undergo complicated interactions with the volume scatterers and the reflecting
boundary. Moreover, in most settings of importance sampling, the derivative
∣

∣

∣

dPa

d ˜P

∣

∣

∣
(ω) does not take only two values as in the simplified setting (15). B should

be replaced by one or several subsets B = B1∪B2∪ . . . where the weight
∣

∣

∣

dPa

d ˜P

∣

∣

∣
(ω)

should be allowed to vary.
The modularity that we mention in the introduction consists of choosing sets B

by appropriate approximations to the adjoint transport solution that are relatively
simple to calculate and have a large intersection with D, the set of paths reaching
the detector. For instance, a subset B1 could correspond to particles reaching the
detector after interacting with the boundary, B2 to particles reaching the detector
after one scattering event in a cloud, and so forth.

The importance sampling schemes considered in this paper are all based on

changes of measure of the form
∣

∣

∣

dPa

d ˜P

∣

∣

∣
(ω) that generalize that seen in (16) or (21).

We summarize them here.

The survival biasing method defined in section 3.1.4 below eliminates the
volume and surface absorption of photons. Hence it “steals” shots from a subset
of photons that were absorbed before reaching the detector, and moves them into
some subset of D. We are therefore in the regime (21) (at least approximately as
∣

∣

∣

dPa

d ˜P

∣

∣

∣
(ω) is not constant on B); see also theorem 3.2 below.
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The heuristic volume scattering method defined in section 3.1.5 below
scatters (with probability < 1) photons in the volume directly toward the detector
(rather than using the phase function θ). It has measure dPheu,qv

uniformly larger
than dPsb on the set of paths that scatter once in the volume then hit the detector.
It modifies the measure (often increasing it) on the set of paths that have their
last interaction in the volume, then reach the detector. It steals shots from the
set that interact last with the boundary, then hit the detector. A very rough
approximation would put us in the regime (16) with Bheu = {ω ∈ D : xτ−1 ∈ X}.

The ideal zero-variance chain derived in section 3.2.1 below sends all pho-
tons to the detector. It uses an exact calculations of the adjoint solution to sample
only from D, and is in the regime (14) with G = Pa[D]−1; see theorem 3.3 be-
low. When only approximate expressions for the adjoint solution are available,
the zero-variance chain may be modified to yield small variance chains. However,
in practice, the calculation of both the adjoint solution (step (i) in the abstract)

and of the change of measure
∣

∣

∣

dPa

d ˜P

∣

∣

∣
(ω) (step (ii) in the abstract) is prohibitively

expensive.

The SAI method defined in detail in section 3.4 below is our main example
of a modular approach to importance sampling. In that method, we devise a
subset B = B1 ∪ B2, where B1 corresponds to particles that do not undergo any
volume scattering and where B2 corresponds to photons that are sent straight to
the detector after undergoing volume scattering. We will see that the method
involves the calculation of an adjoint solution in the absence of volume scattering

and that the calculation of
∣

∣

∣

dPa

d ˜P

∣

∣

∣
(ω) on B1, B2, and Ω\(B1 ∪ B2) is relatively

straightforward. Moreover, we will see B1 ∪ B2 is a good approximation of D
when volume scattering is not too large although B1 and B2 individually are not
necessarily good approximations of D. In the simplified calculations in (19) and in
Fig.2, we observe that for Pa[B1|D] = 0.45 and Pa[B2|D] = 0.45, we may ideally
have Pa[B1∪B2|D] = 0.9, with a potential variance reduction of order 10 whereas
the variance reduction from B1 or from B2 alone would at best be a factor 2.

3.1.4 Survival Biasing

Here we define a classical chain where no photons are absorbed in X, although
some are possibly in ∂X (for use in our application where we have perfectly
absorbing boundaries). This will be related to the analog chain via importance
sampling. Define

ksb
C∗(z1 → x2) : =

[

δr(z1)(x2)σs(x2) + δ(x2 − x+(z1))
]

Eσs(x1, x2),

ksb
S∗((x2, v1)→ v2) : =







θ(x2, v1→v2)
σs(x2)

, x2 ∈ X
αsb(x2)Θ(x2, v1→v2), x2 ∈ ∂X,

with αsb(x) = 1 when α(x) > 0 and αsb(x) = 0 when α(x) = 0. We then have:

psb
C∗(z1) = 0 and psb

S∗(x2, v1) =

{

0, x2 ∈ X
1− αsb(x2), x2 ∈ ∂X.

The Radon-Nikodym derivative is obtained by formally dividing dPa by dPsb,
where dPa is defined in (12), and dPsb is defined analogously. Since, for (xτ , vτ−1) ∈
supp(g), α(xτ ) = αsb(xτ ) = 0, the Radon-Nikodym derivative, restricted to

14



{ω : xτ ∈ πxsupp(g)} is

∣

∣

∣

∣

dPa

dPsb

∣

∣

∣

∣

= Eσ−σs(x0, x1, . . . , xτ )γa,sb(x1) · · · γa,sb(xτ−1),

γa,sb(x) : =

{

1, x ∈ X,
α(x)/αsb(x), x ∈ ∂X.

(22)

Defining

ξsb : = ξ

∣

∣

∣

∣

dPa

dPsb

∣

∣

∣

∣

,

we have

Esb {ξsb} = Ea {ξa} = 〈u, g〉.

Theorem 3.2 (Variance reduction by eliminating absorption). We have

Var {ξsb} ≤ Var {ξa}

with equality if and only if absorption is zero (with probability = 1) on analog
paths that reach the detector.

Proof. Since both methods are unbiased, it will suffice to consider the expected
value of the random variable squared. Since Eσ−σs(x, y) ≤ 1, (with equality if
and only if σ = σa along the path from x to y), and for j < τ , γa,sb(xj) ≤ 1 (with
equality if and only if α(xj) = 1),

E
{

ξsb
2
}

Psb
= E

{

ξa
2

∣

∣

∣

∣

dPa

dPsb

∣

∣

∣

∣

}

Pa

≤ E
{

ξa
2
}

Pa ,

with equality occurring only under the specified conditions.

Note that since photons are not absorbed, their path length could be much
longer than in standard analog sampling. This could result in a decrease in our
figure of merit (see section 4). In nuclear reactor applications, the multiplication
of particles with very small weights becomes a real issue and several techniques
such as Russian roulette have been developed to address this [17, 9]. In remote
sensing applications with a reasonably large mean free path, and the chance of
escape into the atmosphere, this is much less of an issue and thus is not considered
in this paper.

3.1.5 Heuristic volume scattering adjustment

In this section, we present a very simple (and classical) direction change kernel
to be used as part of any modular scheme to handle volume scattering (we use it
as part of SAI). We modify the volume scattering kernel in order to direct pho-
tons toward the detector. When a large fraction of photons reach the detector
with only zero or one volume scattering event (i.e. when σs is small), this is a
reasonable method. Although better methods do exist, we include this to demon-
strate our modular variance reduction paradigm. We introduce a regularization
parameter qv ∈ (0, 1]. We draw from our modified method a fraction of the time
approximately proportional to 1− qv.
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Let xd0
be the midpoint of the detector (assume one detector). For qv ∈ [0, 1],

x2 ∈ X, put

qheu(x2, v1) : = (qv − 1)
θ(x2, v1→ ̂xd0

− x2)

‖θ(x2, v1→·)‖L∞
+ 1. (23)

For x2 ∈ X, let fV (x2 → v2) be uniform on {v ∈ Sd−1 : r(x2, v)∩πxsupp(g) 6= ∅}.
We define the heuristic scattering adjustment direction change kernel by

kheu
S∗ ((x2, v1)→ v2)

:=

{

[1− qheu(x2, v1)]fV (x2 → v2) + qheu(x2, v1)k
sb
S∗((x2, v1)→ v2), x2 ∈ X

ksb
S∗((x2, v1)→ v2), x2 ∈ ∂X.

So we are aimed toward the detector via fV with probability 1− qheu. The ratio
of θ to its L∞ norm in (23) is proportional to the analog probability of heading
toward the detector; certainly we don’t want to send particles toward the detector
when the analog chain would never do that (the Radon-Nikodym derivative would
be zero in this case).

For convenience, we calculate here the change of measure associated to the
chain that uses survival biasing on the boundary and volume, as well as heuristic
direction changes in the volume. This is the heuristic chain
∣

∣

∣

∣

dPheu,qv

dPsb

∣

∣

∣

∣

= γheu,sb(x1, z2) · · · γheu,sb(xτ−2, zτ−1),

γheu,sb(x1, z2) =







(1− qheu)fV (x2 → v2)σs(x2) + qheuθ(x2, v1 → v2)

θ(x2, v1 → v2)
, x2 ∈ X

1, x2 ∈ ∂X.
(24)

To produce one draw ω from the heuristic chain, we follow algorithm 2. This
could then be used to estimate 〈u, g〉. In this paper, we combine the heuristic
chain with an adjoint-based method. See section 3.4.

3.2 Adjoint-based importance sampling

In this section, we first show how knowledge of the exact adjoint transport so-
lution allows us to devise a zero-variance method. This generalizes to the case
of transport with boundaries well-known results for volume scattering [16, 17].
When the adjoint solution is approximated, e.g., by a deterministic calculation,
we show how a non-analog MC chain may be generated. We show that when the
approximation of the adjoint solution is of order h for a “mesh” size h≪ 1, then
the MC variance is of order h2 in ideal circumstances (and larger in more complex
geometries). We will present in section 3.4 a hybrid method that only calculates
important parts of the adjoint solution at a minimal computational cost while still
offering sizable variance reductions.

3.2.1 The zero-variance chain

Here we describe a chain that uses an exact adjoint solutions (ψ∗
i , ψ

∗
o) and has zero

variance. We show that draws from the chain can be made in a manner similar to
analog, with modified scattering cross-sections. Obtaining ψ∗

i , ψ
∗
o is more difficult

than solving our original problem (they must be obtained everywhere), hence as
we mentioned earlier this method is impractical.
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Algorithm 2 Heuristic scattering adjustment
1: Draw z0 ∼ s, set j ← 0
2: while vj 6= d do
3: if x2 ∈ X then
4: Compute qheu(xj+1, vj) using (23). With probability 1− qheu set switch←true
5: if switch then
6: Draw v2 ∼ fV (x2 → ·)
7: else
8: Draw v2 ∼ ksb

S∗((x2, v1)→ ·)
9: end if

10: else
11: With probability psb

S∗(x2) = 1− αsb(x2), vj+1 ← d

12: end if
13: if vj+1 6= d then
14: Draw vj+1 from a distribution ∝ ka

S∗((xj+1, vj)→ ·)
15: end if
16: j ← j + 1
17: end while
18: Record ξheu(ω) = ḡ(xj, vj−1)

Our Markov chain formulation phrases the use of the adjoint in terms of transi-
tion kernels. This was done explicitly in [16] and implicitly in [17]. Unlike [16] we
explicitly write out the modified ray-casting and direction-change kernels. Unlike
either scheme, we explicitly use both the incoming ψ∗

i and outgoing ψ∗
o adjoint

solutions. In [16] ψ∗
i was used (implicitly) and in [17] both were used (implicitly).

Define

k∗C∗(z1 → x2) : =
[

δr(z1)(x2) + δ(x2 − x+(z1))
]

Eσ(x1, x2)
ψ∗

i (x2, v1)

ψ∗
o(z1)

,

k∗S∗((x2, v1)→ v2) : =















θ(x2, v1→v2)
ψ∗

o(x2, v2)

ψ∗
i (x2, v1)

, x2 ∈ X,

α(x2)Θ(x2, v1→v2)
ψ∗

o(x2, v2)

ψ∗
i (x2, v1)

, x2 ∈ ∂X.

So we modify the casting by the ratio of the importance of the point we will enter
to the importance of the point we are exiting. We modify direction changes by
the ratio of the importance entering x2 to that exiting.

Using the equations defining the adjoint solutions, we have

p∗C∗(z1) : = 1−
∫

X̄
k∗C∗(z1 → x2) dx2 = 1− C∗ψ∗

i (z1)

ψ∗
o(z1)

= 0,

p∗S∗(x2, v1) : = 1−
∫

Sd−1

k∗S∗((x2, v1)→ v2) dv2 = 1− S∗ψ∗
o(x2, v1)

ψ∗
i (x2, v1)

(25)

=
ḡ(x2, v1)

ψ∗
i (x2, v1)

=

{

1, (x2, v1) ∈ supp(ḡ)
0, otherwise.

The last equality used the fact that ψ∗
i = ḡ on the support of ḡ (since α = 0

there). So all photons reaching the detector are collected.
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We also define a new (normalized) source

s∗ : =
sψ∗

o

〈s, ψ∗
o〉
.

In other words, we bias the photons leaving the source so that they leave in
directions with high importance.

Note that sampling is done by alternately casting along a line, then changing
direction, just as in an analog scheme. Since (off the detector) both k∗C∗ and k∗S∗

integrate to one, they are probability densities. To sample from k∗C∗(z1 → x2) it
therefore suffices to cast along the ray r(z1) and integrate k∗C∗ as we go. Once
the integral is greater than some uniform random number u ∼ U [0, 1], we scatter.
The relation (10) along with algorithm 1 show that this same procedure is done
in standard analog Monte Carlo. Sampling from k∗S∗ may also be done just as in
analog Monte Carlo.

We define dP∗ in the same manner as dPa. This yields,

dP∗(ω) = s∗(z0)k
∗
C∗(z0 → x1)k

∗
S∗((x1, v0)→ v1) · · · k∗C∗(zτ−1 → xτ )p

∗
S∗(xτ , vτ−1)

× dz0 · · · dxτ .

It is instructive to see that most terms involving ψ∗ cancel in the calculation of

the Radon-Nikodym derivative
∣

∣

∣

dPa

dP∗

∣

∣

∣
. Restricting ourselves to paths that do not

interact with the boundary and ignoring dz0 · · · dxτ , dP∗(ω) takes the form:

s(z0)ψ
∗
o(z0)

〈s, ψ∗
o〉

δr(z0)(x1)Eσ(x0, x1)
ψ∗

i (x1, v0)

ψ∗
o(z0)

θ(x1, v0→v1)

× δr(z1)(x2)Eσ(x1, x2)
ψ∗

i (x2, v1)

ψ∗
o(z1)

· · · ḡ(xτ , vτ−1)

ψ∗
i (xτ , vτ−1)

= 〈s, ψ∗
o〉−1s(z0)δr(z0)(x1)Eσ(x0, x1)θ(x1, v0→v1)δr(z1)(x2)Eσ(x1, x2) · · · ḡ(xτ , vτ−1).

This easily combines with (13) to yield (26) below for the Radon-Nikodym deriva-

tive
∣

∣

∣

dPa

dP∗

∣

∣

∣
restricted to paths that do not interact with the boundary.

More generally, for all paths, which account for both volume and boundary
interactions, we verify (after careful algebra) that the Radon-Nikodym derivative
(restricted to the set D) is still given by

∣

∣

∣

∣

dPa

dP∗

∣

∣

∣

∣

=
〈s, ψ∗

o〉
ḡ(xτ , vτ−1)

. (26)

Since (for (xτ , vτ−1) ∈ supp(ḡ)), pa
S∗(xτ , vτ−1) = 1, the appropriate random vari-

able to measure is

ξ∗ : =

∣

∣

∣

∣

dPa

dP∗

∣

∣

∣

∣

ξa =

∣

∣

∣

∣

dPa

dP∗

∣

∣

∣

∣

ḡ(xτ , vτ−1)

pa
S∗(xτ , vτ−1)

= 〈s, ψ∗
o〉.

In the event of highly scattering media, it would be advantageous to use a
scheme that would reduce the number of scattering events seen by a photon.
More generally, we would hope that a less expensive route to the detector could
be taken. Unfortunately, the next theorem shows that the zero-variance scheme
cannot do this. Fortunately, it also shows that the modified chain does not take a
more expensive route to the detector. We remind the reader that P[A |D] is the
conditional probability of the event A givenD. In other words, it is the probability
that ω ∈ A given that we reach the detector.
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Theorem 3.3 (Identical Paths). Let A ⊂ Ω be measurable, and let D ⊂ Ω denote
the paths that end with (xτ , vτ−1) ∈ supp(g), then

P∗[A] =

∫

A ḡ(Xτ , Vτ−1) dPa

〈ψ∗
o , s〉

.

In the special case ḡ ≡ 1 on supp(g), then P∗[A] = P∗[A |D] = Pa [A |D] . In other
words, the paths taken to the detector in the modified scheme are the exact same
as in the analog scheme.

The following corollary follows by letting A = {τ = n}.

Corollary 3.4 (Constant Collision Ratios).

P∗[τ = n] =

∫

τ=n ḡ(Xτ , Vτ−1) dPa

〈ψ∗
o , s〉

.

In the special case ḡ = 1supp(g), then P∗[τ = n] = Pa [τ = n |D] . In other words,
the number of collisions photons have before hitting the detector is the same in the
analog or zero-variance scheme.

These results show that the zero-variance chain (when the MC detector counts
photons) is precisely in the regime (14) with G = Pa[D]−1. In other words, we
increase the measure uniformly (an optimum amount) on the set of paths that
reach the detector.

Proof of theorem 3.3.

P∗[A] =

∫

A

∣

∣

∣

∣

dP∗

dPa

∣

∣

∣

∣

dPa =
1

〈s, ψ∗
o〉

∫

A
g(Xn, Vn−1) dPa.

This proves the first part. When ḡ ≡ 1 on supp(g), the above becomes

P∗[A] =
Pa [A ∩D]

〈s, ψ∗
o〉

.

This leads to

Pa[D] =
∞
∑

n=0

Pa [(τ = n) ∩D] = 〈s, ψ∗
o〉

∞
∑

n=0

P∗[τ = n] = 〈s, ψ∗
o〉.

The result then follows from the definition of conditional probability.

3.2.2 Approximations of the zero variance chain

After seeing the zero-variance chain, one immediately gets the idea of using ap-
proximations to ψ∗

i , ψ
∗
o in a variance reduction method. Assuming one can gener-

ate these approximations (e.g., by using a deterministic solver), it still remains to
construct a bona fide chain (a probability density integrating to 1) and to sample
from the corresponding chain (this is step (ii) in the abstract). We show here that
an arbitrarily coarse adjoint approximation can be used in an approximation of
the zero-variance scheme.

The approximation dPh of dP∗ can be used in the so-called “asymptotic
regime” where ψh

o ≈ ψ∗
o . In this setting, the calculation of the adjoint solu-

tions and the sampling from the measure dPh may be prohibitively expensive as
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the number of degrees of freedom necessary to adequately represent the adjoint
solution is typically very large.

This approximation can also be used to guide photons along paths to the
detector. There, it only needs to perform sufficiently well and no longer needs
to be very accurate. In this case we draw from dPh (a “not-necessarily-good”
approximation of dP∗) only an optimized fraction of the time, while e.g. using
the analog measure to sample from the rest of the time. In many cases good
speedup is obtained. The latter methodology is implemented by the SAI chain in
section 3.4.

Assume one has ψh
i ≈ ψ∗

i , and ψh
o ≈ ψ∗

o . Then, following the recipe of the
zero-variance chain, we could set

kh
C∗(z1 → x2) : =

[

δr(z1)(x2) + δ(x2 − x+(z1))
]

Eσ(x1, x2)
ψh

i (x2, v1)

ψh
o (z1)

,

kh
S∗((x2, v1)→ v2) : =















θ(x2, v1→v2)
ψh

o (x2, v2)

ψh
i (x2, v1)

, x2 ∈ X,

α(x2)Θ(x2, v1→v2)
ψh

o (x2, v2)

ψh
i (x2, v1)

, x2 ∈ ∂X.
(27)

However, many difficulties arise. For example, it is not clear that ψh
i , ψh

o are
nonzero whenever ψ∗

i , ψ
∗
o are. In this case, the modified chain will not send

photons along all paths that the analog chain does, and the result will be biased.
Assuming we take care of this problem, a more insidious issue arises: What are the
values of the integrals

∫

X kh
C∗ dx,

∫

kh
S∗ dv? If both integrate to one (away from

the detector), then, as in the zero variance chain, we use them as pdfs and sample
directly from them (say with an accept-reject method, or by pre-calculating a cdf).
If they integrate to less than one, this gives us a probability of absorption, and we
need to know this. If they integrate to more than one (very possible), then one
can still sample from a pdf proportional to them. However, this proportionality
constant must be known when the Radon-Nikodym derivative is calculated.

To formalize this, we propose modified kernels of the form

ka
Ch(z1 → x2) : =

[

δr(z1)(x2) + δ(x2 − x+(z1))
]

Eh
σ(x1, x2),

kh
Ch(z1 → x2) : = ka

Ch(z1 → x2)
ψh

i (x2, v1)

ψh
o (z1)

,

ka
Sh((x2, v1)→ v2) : =

{

θh(x2, v1→v2), x2 ∈ X,
αh(x2)Θ

h(x2, v1→v2), x2 ∈ ∂X.

kh
Sh((x2, v1)→ v2) : = ka

Sh((x2, v1)→ v2)
ψh

o (x2, v2)

ψh
i (x2, v1)

.

(28)

The new coefficients (Eh
σ , θ

h, αh,Θh) are chosen such that the kernels integrate
to one or less. In most cases, away from the detector, one would choose the
integrals to be one (so particles are not absorbed). We also assume that we
have approximations of the detector and source, ḡh ≈ ḡ, sh ≈ s. Note that the
calculation of such coefficients may prove to be quite expensive numerically (this
is step (ii) introduced in the abstract). In some sense, the coefficients in (28) may
be seen as normalized versions of the coefficients introduced in (27). However,
finding rules to calculate this normalizing constants efficiently is non-trivial. We
will address this issue in the following section in the simplified setting where
volume scattering is absent.
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Note that such normalizing constants would easily be calculated if ka
Ch and

ka
Sh were the kernels of operators Ch and Sh, respectively, and ψh

o and ψh
i were

obtained by solving the equations ψh
o = ChShψh

o +Chḡh and ψh
i = ShChψh

i + ḡh.
Indeed as in (25), we would then obtain that

1−
∫

X̄
kh

Ch(z1 → x2) dx2 = 1− Chψh
i (z1)

ψh
o (z1)

= 0,

1−
∫

Sd−1

kh
Sh((x2, v1)→ v2) dv2 = 1− Shψh

o (x2, v1)

ψh
i (x2, v1)

. (29)

However, such operators Sh and Ch would preserve the singularities of the trans-
port equation (primarily propagation along straight lines) and are therefore cannot
be discrete. Their kernels in (28) are infinite dimensional and cannot be reduced
to (finite dimensional) matrices. Any reduction to a matrix form involves approx-
imations that will modify the structure of the singularities in (28) and render the
integrals in (29) more complicated to estimate.

In any case, assuming that our construction (28) defines a bona fide change
of measures (i.e. Pa is absolutely continuous with respect to Ph) so that the
Radon-Nidodym derivative restricted to {ω : zτ ∈ supp(ḡ)} is well defined, then
the latter is given by:

∣

∣

∣

∣

dPa

dPh

∣

∣

∣

∣

=
〈sh, ψh

o 〉
ḡh(xτ , vτ−1)

s(z0)

sh(z0)
βa,h(x0, . . . , xτ )γa,h(z1, . . . , zτ−1),

γa,h(z1, z2) : =

{

θ(x2,v1→v2)
θh(x2,v1→v2)

, x2 ∈ X
α(x2)Θ(x2,v1→v2)

αh(x2)Θh(x2,v1→v2)
, x2 ∈ ∂X,

γa,h(z1, . . . , zn) := γa,h(z1, . . . , zn−1)γa,h(zn−1, zn).

βa,h(x1, x2) : =
Eσ(x1, x2)

Eh
σ(x1, x2)

,

βa,h(x0, . . . , xn) := βa,h(x0, . . . , xn−1)βa,h(xn−1, xn).

(30)

Since (θ,Θ, α, Eσ) 6= (θh,Θh, αh, Eh
σ) a priori, the telescopic cancellations in (26)

no longer occur in (30). We then set

ξh : = ξa

∣

∣

∣

∣

dPa

dPh

∣

∣

∣

∣

, so that Eh

{

ξh
}

= 〈u, g〉.

When ψh
o ≈ ψ∗

o we expect Var
{

ξh
}

≪ 1. The rate of convergence is studied
here in the ideal setting where the following assumptions are satisfied:

Assumptions 3.1. Assume there exist ρ, C > 0 such that, for all small enough
h,

(i) |〈sh, ψh
o 〉/〈u, g〉 − 1| ≤ Ch,

(ii)

∣

∣

∣

∣

ḡ

ḡh
− 1

∣

∣

∣

∣

+
∣

∣

∣

s

sh
− 1
∣

∣

∣
+ |γa,h(z1, z2)− 1| + |βa,h(x1, x2)− 1| ≤ Ch

(iii) Ph[τ = n] ≤ Ce−ρn

(iv) supp(ψ∗
o) = supp(ψh

o ), and supp(ψ∗
i ) = supp(ψh

i )
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Assumptions (i) and (ii) follow if all approximations are O(h) in the uniform
norm, all coefficients are bounded below (on their support), and the support of
the true and approximate coefficients are the same. The third assumption (iii) is
standard in the transport regime with not-too-small mean free path and simply
indicates that long-distance, multiple-scattering paths are improbable. Assump-

tions (ii), (iv) ensure
∣

∣

∣

dPa

dPh

∣

∣

∣
exists everywhere.

Verifying assumptions (i) and (ii) is extremely constraining. However, in this
idealized setting, we have the following theorem, whose proof is postponed to
section A.2.

Theorem 3.5 (Convergence in the asymptotic regime). Assume that we meet
Assumptions 3.1. Then as h→ 0,

Var
{

ξh
}

≤ 〈u, g〉2C ′h2,

for some C ′ > 0 depending on C and ρ.

This result shows that importance samplings with small variance can be achieved
provided that accurate approximations to adjoint transport solutions are available.

The aim of all remaining sections and the introduction of the SAI method is
precisely an attempt at using an adjoint approximation that (i) is inexpensive to
calculate; and (ii) generates a measure that is both easy to sample from and has
small variance.

3.3 Reflecting boundaries without volume scattering

Here we discretize the operator appearing in section 2.3. This operator arises in
the limit of zero volume interactions (σ → 0). We first present a discretization of
the adjoint solution in section 3.3.1 and then show how the adjoint solution can
be used to obtain a non-analog MC algorithm with small variance in section 3.3.2.

3.3.1 Surface-limit adjoint problem

In this limit, we have ψ∗
i → ψs

i . Here, at discretization level h, we approximate
ψh

i ≈ ψs
i and ψh

o ≈ ψs
o. In this section we assume the boundary is sufficiently

smooth (of class C3).
To simplify computation of our numerical solution we make the assumptions

Θ(x, v→v′) = 1νx·v>0(x, v)κ(x, v
′), g(z) = |νx · v|g0(x),

so that ḡ(z) = g0(x). We recall that 1A is the “indicator” function of the set A.
The result is that ψs

i is then a function of position only. This significantly improves
the speed of solving the adjoint problem, as well as the memory requirements for
using it. Theoretical results in this paper do not need this assumption, which we
make here as a matter of convenience.

We will now discretize the coefficients and approximate the operator appearing
in section 2.3. For z1 ∈ Γ+,

SsCsψs
i (z1) = α(x1)

∫

νx1
·v2<0

κ(x1, v2)ψ
s
i (z+(x1, v2)) dv2.
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Notice that SsCsf is function depending only on x, and in fact only on the
boundary values of f . Since ḡ depends only on x, ψs

i =
∑∞

k=0(S
sCs)kḡ will

depend only on x. We thus define

ϕ(x) : = ψs
i

∣

∣

Γ+
(x, v).

We find that ϕ : ∂X → R satisfies the equation

ϕ = Qϕ+ g0, Qf(x1) := α(x1)

∫

νx1
·v2<0

κ(x1, v2)f(x+(x1, v2)) dv2.

In discretizing this operator, and integrals over directions in general, we use
the change of variables,

∫

νx·v<0
f(z+(x, v)) dv =

∫

∂X
f(x′, v)∂νN(x, x′) dµ(x′),

∂νN(x, x′) :=
νx · (x′ − x)
|x′ − x|d .

(31)

The term ∂νN is normal derivative (at x) of the free-space Green’s function for
the Laplacian. One can show (see e.g. the section on double-layer potentials in
[8]) that for x, x′ ∈ ∂X, νx ·(x′−x) . |x′−x|2. Therefore it is in fact an integrable
function. When d = 2 we have more.

Lemma 3.1. When d = 2, if ∂X is Ck+2, then ∂νN(x, x′) is Ck(∂X × ∂X).

The proof is postponed to Appendix A.3. We now discretize the operator
Q. First split the boundary into non-overlapping segments {∂Xj}Np−1

j=0 with ∂Xj

centered at xj , with measure |∂Xj | ≤ h. Denote byRf the (orthogonal) projection
of f onto the space of piecewise constant functions (constant on each segment
∂Xj). We also think of Rf as a vector in RNp and Rfj its components. Then,
after the change of variables (31) we have (at gridpoint xi)

Qf(xi) = α(xi)

∫

∂X
κ(xi, x̂− xi)∂νN(xi, x)f(x) dµ(x)

≈ α(xi)
∑

0≤j≤Np−1
j 6=i

|∂Xj |κ(xi, x̂j − xi)∂νN(xi, xj)f(xj)

:=
∑

j

Qh
ijRfi.

(32)

This implicitly defines the matrix Qh. So long as ∂X is C2, the above integrand
L1 (bounded in two dimensions), hence we are justified in approximating it as
such.

We now define our discrete approximation to ϕ as the piecewise constant func-
tion (vector) ϕh solving

ϕh = Qhϕh +Rḡ. (33)

We then define approximations ψh
i ≈ ψ∗

i , ψ
h
o ≈ ψ∗

o by

ψh
i (x, v) : = ϕh(x), ψh

o (z−(x, v)) := ψh
i (x, v), (x, v) ∈ Γ+. (34)

The next proposition is used to apply convergence theorems to the SAI chain.
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Proposition 3.1. Suppose d = 2, ‖α − αh‖L∞ . h, ‖κ − κh‖L∞ . h. Then as
operators : L1(∂X)→ L∞(∂X), we have

‖Q−Qh‖ . h.

Furthermore, assuming ‖Q‖ < 1, ‖Qh‖ < 1, then we have

‖ψh
i − ψs

i ‖L∞(Γ+) . h.

Proof. The first inequality follows by a bound on the coefficients ofQ−Qh, keeping
in mind that the apparent singularity is actually a bounded function in dimension
2. The second follows from ϕ =

∑∞
n=0Q

nRḡ, ϕh =
∑∞

n=0(Q
h)nRḡ, and repeated

application of relations similar to ab− ãb̃ = (a− ã)b+ ã(b− b̃).

In our implementation, we have chosen to represent angular integrals as in-
tegrals over the boundary. This works for two reasons. First, as our adjoint
solution depends only on position it is convenient to evaluate these sums. Second,
if instead a discretization were chosen that was uniform in angle, then (with only
finitely many angles) one would often miss the (small) detector in evaluation of
the integral.

3.3.2 Surface-adjoint approximations and non-analog chains

The SAI chain makes use of the approximate surface adjoint solutions ψh
i , ψh

o from
(34). They are used almost exactly as in the zero-variance scheme.

We define the transition kernels following the zero-variance recipe (section
3.2.1). Keeping in mind ψh

o (z−(x, v)) = ψh
i (x, v), we have

kh
Ch(z → x) : = δ(x− x+(z)),

so photons are cast from one boundary point to another with no absorption,
exactly as they are in the continuous case. No discretization error occurs with
casting. To define the scattering kernel k∗

Sh we first recall the zero-variance kernel,
which, since ψs

o(z−(x, v)) = ψs
i (x, v) = ϕ(x), takes the form:

k∗S∗((x, vin)→ v) = α(x)κ(x, v)
ϕ(x+(x, v))

ϕ(x)
.

We now discretize directions on every segment ∂Xj . We recall that xj is the
center of ∂Xj . Let Vij be the set of directions best approximated by vij := x̂j − xi

Vij :=
{

v ∈ S
d−1 : arg min

k
|v − x̂k − xi| = j

}

. (35)

With |Vij | the measure of this set, we see that, roughly speaking, N(xi, xj) ≈
|Vij |/|∂Xj |. With this in mind, we present our method for selecting direction.
Suppose we are at x′i ∈ ∂Xi, with incoming direction vin. First we select a target
region ∂Xj using using the discrete pdf

j 7→ α(xi)κ(xi, vij)∂νN(xi, xj)|∂Xj |
ϕh(xj)

ϕh(xi)
. (36)

Notice that we use the grid center-point xi instead of x′i. So, for fixed x′i ∈ ∂Xi

we may calculate the pdf by taking the component-wise product of the ith row of
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Q with ϕh, and then divide by (ϕh)i. Because of this and (33), the above discrete
function does indeed sum (over j) to one, so it is a pdf. In a second step, v is
selected from a uniform distribution on Vij . This defines a direction leaving xi,
pointed into the domain, and toward ∂Xj . Note though that a shot leaving x′i in
direction v may not point into the domain since the normal vectors to ∂X at x′i
and xi are not exactly equal. To correct for this, we introduce a family of rotation
operators {Rx,y : (x, y) ∈ ∂X × ∂X}, such that Rxi,x′

i
(v) = v′, where v′ is a

rotation of v that points from x′i into the domain. In two dimensions, the obvious
choice (which we use) of v′ will ensure v′ ·νx′

i
= v ·νxi

. In three dimensions another
reference vector (besides the normal) must be pre-selected at each point. Since
both xi and x′i belong to ∂Xi, the operator Rxi,x′

i
is close to the identity operator

(this generates a “small” rotation).
We may now define our scattering transition kernel at arbitrary points by

referring back to the kernel at grid-points. For x′i ∈ ∂Xi, v
′
j ∈ Vij , our scattering

transition kernel is

kh
Sh((x′i, vin)→ v′j) = kh

Sh((xi,R−1
xi,x′

i
(vin))→ R−1

xi,x′
i
(v′j)),

where for v ∈ Vij

kh
Sh((xi, vin)→ v) : = α(xi)κ(xi, vij)∂νN(xi, xj)

|∂Xj |
|Vij |

ϕh(x+(xi, vij))

ϕh(xi)
.

(37)

To put ourselves in the framework (30) we define the discretized coefficients:

αh : = Rα, ḡh := Rh, Eh
σ = Eσ ≡ 1, (38)

Θh(x2, v1→v2) : = kh
Sh((x2, v1)→ v2)

1

αh(x2)

ϕh(x2)

ϕh(x+(x2, v2))
. (39)

Notice that if we ignore the rotation R, we have (for x′i ∈ ∂Xi, v
′
j ∈ Vij),

Θh(x′i, w→v′j) : = κ(xi, vij)∂νN(xi, xj)
|∂Xj |
|Vij |

.

However, in general, the ratio of ϕh will not cancel due to rotation. The Radon-

Nikodym derivative
∣

∣

∣

dPa

dPh

∣

∣

∣
is then given by (30).

The next lemma shows that this transition kernel is a pdf.

Lemma 3.2.
∫

νx′
i
·v′<0

k∗Sh((x′i, v)→ v′) dv′ = 1−Rḡ(xi).

Proof. For x′i ∈ ∂Xi,

∫

νx′
i
·v′<0

k∗Sh((x′i, vin)→ v′) dv′ =

∫

νx′
i
·v′<0

k∗Sh((xi,R−1
xi,x′

i
(vin))→ R−1

xi,x′
i
(v′)) dv′

=

∫

νxi
·v<0

k∗Sh((xi,R−1
xi,x′

i
(vin))→ v) dv.

This follows since rotations preserve measure and {v′ : νx′
i
· R−1

xi,x′
i
(v′) < 0} =

{v : νxi
· v < 0} by our choice of R. To integrate the last term, we notice that
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k∗
Sh((xi, w)→ v) is constant for v ∈ Vij . Therefore, using (33),

∫

νxi
·v<0

k∗Sh((xi, w)→ v) dv =

Np−1
∑

j=0

α(xi)κ(xi, vij)∂νN(xi, xj)|∂Xj |
ϕh(xj)

ϕh(xi)

=

∑Np−1
j=0 Qijϕ

h
j

ϕh
i

= 1−Rḡ,

independent of the incoming direction w.

In the best of cases, the SAI chain meets the hypothesis of theorem 3.5.

Theorem 3.6. Assume that for h small enough, there exist C, ρ > 0 such that

(i) We have the bounds |α/αh − 1| ≤ Ch, |Θ/Θh − 1| ≤ Ch
(ii) The boundary ∂X is C3 and strictly convex

(iii) Ph[τ = n] ≤ Ce−ρn for some ρ > 0

(iv) supp(ϕ) ⊂ supp(ϕh)

Then the hypothesis of Theorem 3.5 are met and

Var
{

ξh
}

. h2. (40)

The proof of the theorem can be found in Appendix A.3.

Remark 3.1. Assumptions (i) and (ii) are here to simplify the derivation of the
result, which may hold in more general settings. In general, assumptions (i),
(iv) (which together imply supp(ϕh) = supp(ϕ)) require our discrete mesh to be
chosen to coincide well with the support of the coefficients. Moreover, assumption
(i) requires that the rotation caused by R causes little change in the value of ϕh.
Smoothness assumptions on ϕ would provide this. Assumption (iii) means that
multiple scattering is not dominant and holds in our model cases since we have
α ≡ 0 on the left/right sides and the sky.

Remark 3.2. Often physical coefficients such as the detector support are discon-
tinuous and do not match up exactly with the grid. If ḡh ≡ 1 on its support,
ϕh has a very large jump at the boundary of this support. This means that the
mismatch in ϕh due to rotations will sometimes be large. Also, a non-convex
boundary will cause issues at points where the curvature changes sign. These
difficulties all occur at a finite number of points, and lead to an error contribution
of O(h) in (40).

Remark 3.3. Note that when Θ(x, v→v′) = 0 for v or v′ a grazing angle (i.e.,
|v · νx| or |v′ · νx| close to 1), we verify that the rotations R can be set to identity
for small h and one can verify that kh

Sh((xi, vin)→ v) in (37) also generates a pdf
for x′i close to xi.

3.4 The Surface Adjoint Importance (SAI) method

The SAI method is a modular method using the surface-adjoint approximation.
In the absence of volume interaction, SAI becomes the zero-variance technique
when h → 0 that we saw in Theorem 3.6. In the presence of limited amounts of
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volume scattering, we will show that SAI properly modified (a “heuristic module”
is added) can be used for significant variance reduction and speedup.

For the rest of the paper, we define dPh as the measure obtained by approx-
imating the zero-variance chain in the absence of volume scattering, i.e. with
setting σ = 0. It is thus defined via (30) with the coefficients given in (38). As
we saw in section 3.3.1, solving the radiosity equation for the adjoint solution in
the absence of volume interaction is much less costly than solving a full transport
equation accounting for volume scattering.

When σ > 0, neglecting volume scattering as we did in our definition of dPh

causes problems and
∣

∣

∣

dPa

dPh

∣

∣

∣
does not always exist. This occurs due to the fact that

the analog chain sends some photons to the detector after experiencing volume
interactions, but the chain generated by dPs does not. Thus dPs, or its approxi-
mation dPh, cannot be used directly for variance reduction as they provide biased
estimates of 〈g, u〉.

3.4.1 SAI-Heuristic Importance Sampling Scheme

For these reason, we propose the following regularized scheme: For q = (qv, qs),
with qv ∈ (0, 1], qs ∈ [0, 1], construct the measure

dPq : = (1− qs) dPh + qs dPheu,qv
. (41)

This means we will fire photons using heuristic (replacing the latter by any unbi-
ased scheme would work) with probability qs, and use dPh ≈ dPs with probability
1 − qs. When qs = 0 we do not account for volume scattering and thus cannot
obtain an unbiased estimator. When qv = 1 we are using the SAI approximation
combined with survival biasing.

The algorithm based on (41) is our main example of modular calculation of the
adjoint solution. Here, volume and boundary scattering are uncoupled. When few
particles undergo both volume and boundary scattering, then the above measure
can have a very small variance. Here, we have defined dPh as an approximation to
the zero-variance measure dPs if only surface scattering were present. The volume
scattering dPheu,qv

is still handled in a very crude fashion. A more accurate
calculation of the adjoint solution accounting for volume scattering would provide
larger variance reductions. In the presence of highly scattering clouds for instance,
dPheu,qv

would have to be replaced by a more accurate approximation of volume
scattering. Yet, the structure of (41) would remain the same.

We then see that three parameters need to be chosen: h, qs, and qv. The
regularizing parameters qs, qv should be chosen as a function of the mean free
path. Ideally we could choose qs = 0 (qv has no effect then) when the MFP is
infinite. With finite MFP we must use qs > 0 (in fact close to one, even when
MFP≈ 16 times the domain diameter). As MFP decreases, both qs and qv should
decrease to allow for more analog shots that account for complex volume or volume
+ boundary interactions. The parameter h should then be chosen to maximize
the figure of merit: Small values of h generate large computational cost (due
to the expense of the deterministic solve) for limited variance reductions since a
significant variance comes from shots that interact with the volume. Simulations
show that very small values of h yield no measurable improvement in variance.

Note that the asymptotic regime is no longer a good description of the above
method. Instead, different subsets of paths to the detector are chosen, and dif-
ferent methods are used to increase the probability of their occurrence. Figure
3 shows both boundary and volume photons being directed toward the detector.
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Figure 3: Boundary and volume interactions handled by different modules

The boundary photon was directed using dPh. The relative size of the adjoint
solution on the boundary is indicated by relative dot size. Note that the adjoint
solution allows us to account for complex boundary interactions.

The details of the SAI algorithm are as follows. First we produce N draws
{ωi}Ni=1 from Pq using algorithm 3, then estimate 〈u, g〉 ≈ N−1

∑N
i=1 ξ

q(ωi) where

ξq = ξa

∣

∣

∣

dPa

dPq

∣

∣

∣
(expression derived below). When we draw from k∗

Sh , kh
Ch in algo-

rithm 3, shots are never absorbed until they reach the support of the discretized
detector ḡh.

Algorithm 3 SAI

1: With probability 1− qs, set switch←true
2: if switch then
3: Draw z0 from a density ∝ s(z)ψh

o (z)
4: while xj /∈ supp(ḡh) do
5: Draw xj+1 ∼ kh

Ch(zj → ·) (In this case we simply set xj+1 ← x+(zj))
6: Draw vj+1 ∼ k∗

Sh((xj+1, vj)→ ·) ∝ Θh(xj+1, vj→·)ψh
o (xj+1, ·)

7: Set j ← j + 1
8: end while
9: Set vj ← d

10: else
11: Draw ω ∼ dPheu,qv

using algorithm 2
12: end if

We now derive an expression for
∣

∣

∣

dPa

dPq

∣

∣

∣
. Whenever dPh = 0 (say the photon

had a volume interaction),
∣

∣

∣

dPa

dPq

∣

∣

∣
(restricted to (xτ , vτ−1) ∈ supp(ḡ)) is given by

∣

∣

∣

∣

dPa

dPq

∣
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∣

∣

=
1

qs

∣
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∣

∣

dPa

dPheu,qv
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∣

∣

∣

=
1

qs

∣

∣
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dPa

dPsb
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dPheu,qv

dPsb
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,

where
∣

∣

∣

dPa

dPsb

∣

∣

∣
is given by (22), and

∣

∣

∣

dPheu,qv

dPsb

∣

∣

∣
is given by (24). When dPh 6= 0,
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we have

∣
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∣
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dPa

dPq
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∣
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∣
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dPa

dPh
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∣

(1− qs) + qs
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∣
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dPheu,qv

dPh
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∣
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=
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dPa

dPh
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(1− qs) + qs

∣
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dPh
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.

So we need expressions for
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∣
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dPa

dPh

∣
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and
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dPsb

dPh
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∣
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=
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∣

∣

dPsb

dPa
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∣

dPa

dPh
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. Note that
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dPa

dPh

∣
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∣

is given by (30), but simplifies since Eh ≡ 1, and the fact that when dPh 6= 0 we
have necessarily taken a path such that all xi ∈ ∂X, which makes the expression

for γa,h (a term in
∣

∣

∣

dPa

dPh

∣

∣

∣
) “simple”. Also note that

∣
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∣

dPsb

dPa

∣
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is given by (22) and

that γa,sb is “simple” for the same reason γa,h was. We therefore have

∣

∣
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dPa

dPh

∣
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∣
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=
〈sh, ψh

o 〉
ḡh(xτ , vτ )

s(z0)

sh(z0)
Eσ(x0, · · · , xτ )

× α(x1)Θ(x1, v0→v1) · · ·α(xτ−1)Θ(xτ−1, vτ−2→vτ−1)

αh(x1)Θh(x1, v0→v1) · · ·αh(xτ−1)Θh(xτ−1, vτ−2→vτ−1)
,

∣
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dPsb

dPh

∣
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=
〈sh, ψh

o 〉
ḡh(xτ , vτ )

s(z0)

sh(z0)
Eσs(x0, · · · , xτ )

× αsb(x1)Θ(x1, v0→v1) · · ·αsb(xτ−1)Θ(xτ−1, vτ−2→vτ−1)

αh(x1)Θh(x1, v0→v1) · · ·αh(xτ−1)Θh(xτ−1, vτ−2→vτ−1)
.

Even though these expressions are complicated to write explicitly, we empha-
size that their computational cost is rather minimal compared to the overall cost
of solving a transport equation by Monte Carlo.

3.4.2 Optimal parameter selection

Here we outline two procedures to pick values of qs close to optimal. To simplify,
we assume that qv is fixed in the heuristic module with dPheu,qv

. As before, we
assume that ḡ ≡ 1 on its support so that ξ = 1D although general ḡ could be
handled with additional hypotheses.

Note that
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∣

]−1

,

and that the quantity to minimize with respect to qs is thus

Eq

{

(ξq)2
}

= Eq

{

12
D

∣

∣

∣

∣

dPa

dPq

∣

∣

∣

∣

2
}

=

∫

Ω
1D

∣

∣

∣

∣

dPa

dPq

∣

∣

∣

∣

dPa.

We split the above into integrals over B and D \ B, where B is the set of paths
of particles that reach the detector without undergoing volume scattering (but
can have many interactions with the boundary). We assume for simplicity that
supp(Ph) = B, i.e., that discretization effects do not significantly modify the
support of Ps (otherwise, B should be thought as the support of Ph).

On B, we find that for any subset B′ ⊂ B, we have Ph(B′) ≫ Pheu,qv
(B′) =

Pa(B′) (at least when neglecting discretization effects). The reason is that the
paths reaching the detector after interacting with the boundary have very high
probability density dPh (this is exactly the role of dPh: sending particles in-
teracting with the boundary toward the detector). However, for such paths,
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Pheu,qv
(B′) = Pa(B′) since heuristic sampling only modifies those paths that

undergo volume scattering. For ω ∈ B, we thus find that

∣

∣

∣

∣

dPa

dPq

∣

∣

∣

∣

(ω) =
1

1− qs

∣

∣

∣

∣

dPa

dPh

∣

∣

∣

∣

(ω)− ε(ω),

with 0 ≤ ε(ω)≪ 1. On D \B, dPh = 0 since paths with volume scattering have
vanishing weight under the boundary measure dPh. As a consequence, we have
that

Eq

{

(ξq)2
}

≈ 1

1− qs

∫

B∩D

∣

∣

∣
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dPa

dPh
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∣

∣

∣

dPa +
1
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∣

∣

∣

∣

dPa

dPheu,qv

∣

∣

∣

∣

dPa. (42)

The above can be optimized over qs once the two integrals are known. Since they
are both expectations (with respect to dPa), we can estimate them with an analog
simulation, or send particles using dPq, and use importance sampling. In this way
our optimal choice of qs can be refined as more particles are sent. We find

(qs)opt,1 ≈
√
α

1 +
√
α
, α :=

(

∫

D\B

∣

∣

∣

∣

dPa

dPheu,qv

∣

∣

∣

∣

dPa

)

(
∫

B∩D

∣

∣

∣

∣

dPa

dPh

∣

∣

∣

∣

dPa

)−1

.

Alternatively, and because calculating the integrals in the definition of α is
still difficult, we may obtain another guess using only a priori estimates of Pa[D]
and Pa[B |D]. This can be done in the simplified importance sampling framework
of section 3.1.2, specifically the regime (16).

First we define b ∈ R as the constant that makes Pq[B] = bPa[B]. Second, we
recall that Pa[B] = Pheu,qv

[B]. Thus, using (41), we find

bPa[B] = Pq[B] = (1− qs)Ph[B] + qsP
a[B].

Using the approximation Ph[B] ≈ 1 (neglecting discretization effects), we have

b ≈ 1− qs
Pa[B]

+ qs,

and thus

qs ≈
1− bPa[B]

1− Pa[B]
=

1− (bPa[D])Pa[B |D]

1− Pa[D]Pa[B |D]
. (43)

Assuming that dPq(ω) = bdPa(ω) on B, we are approximately in the regime (15).
We thus choose bopt = Pa[D]−1βopt minimizing (16) with βopt = (

√
γ(
√
γ+
√
a))−1,

where a and γ are defined in (17). Then, we find (qs)opt,2 in terms of bopt using
(43). See section 4.3 for an implementation of this algorithm.

4 Numerical Results

In this section, we implement the scheme described in the preceding section and
sample chains numerically based on the measure dPq for several values of q and h.
We compare the variance of the method with the survival biasing measure dPsb.
Several details of the implementation are described in section A.4.

The rotation R described in section 3.3.2 were found to have an extremely
limited effect on the calculated solutions. Even with coarse grids, neglecting the
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rotations (setting them to the identity matrix) led to less than 0.1% bias (the bias
was so small that it could have been error due to not firing enough shots). See
also remark 3.3. So the presented results are obtained with the rotations set to
identity.

We first introduce the notion of speedup (a.k.a. figure of merit) in section 4.1.
We consider two speedups depending on whether the cost of the deterministic
adjoint solution is included or not. Then in section 4.2, we show the influence of
the discretization parameter h on the convergence of the variance to 0 (and the
speedup to infinity) in the absence of volume scattering (σ ≡ 0) and compare the
numerical results with theoretical predictions. Finally, in section 4.3, we include
volume scattering and obtain significant variance reductions by appropriate choice
of the regularization parameters (qs, qv). Moreover, we show that large speedups
are obtained for a relatively large band of values of (qs, qv), whose optimal values
very much depends on geometry/scattering/absorption and has to be obtained
fairly empirically.

4.1 Speedup (figure of merit)

For all of these methods, define the approximation after N random draws

IN (ξ) : =
1

N

N
∑

n=1

ξ(ωn).

The RMS estimation error ε is given by

ε(ξ) : =
√

E {|IN (ξ)− 〈u, g〉|2} =

√

Var {ξ}
N

.

For a given error level ε, the required number of MC draws is then N(ε, ξ) :=
Var {ξ} /ε. The required simulation time T (ε, ξ) for one estimation of E {ξ} is
given by

T (ε, ξ) : = T0(ξ) + τ(ξ)N = T0(ξ) +
τ(ξ)Var {ξ}

ε2
,

where T0(ξ) is the time needed to compute the deterministic adjoint solution (e.g.
at level h when ξ = ξh), and τ(ξ) is the expected time for one draw using the
appropriate measure for the random variable ξ. We foresee the use of SAI in
situations where the boundary remains fixed, but the volume changes (due to
e.g. moving clouds over a fixed surface). We therefore consider the time for m
simulations using one boundary,

T (ε, ξ,m) : = T0(ξ) +mτ(ξ)N = T0(ξ) +m
τ(ξ)Var {ξ}

ε2
,

Then we compare schemes through the “Speedup.”

Speedup(ξ1, ξ2, ε,m) : =
T (ε, ξ1,m)

T (ε, ξ2,m)
=
ε2T0(ξ1) +mτ(ξ1)Var {ξ1}
ε2T0(ξ2) +mτ(ξ2)Var {ξ2}

.

For a deterministic approximation of ψs
i , we expect T0(ξ) ≈ C(ξ)h−2(d−1). We

in fact measure (with d = 2) T0(ξ
h) ≈ 0.017h−2. Our “benchmark” scheme is

survival biasing. Since ξsb requires no deterministic solution, the relevant ratio is

Speedup(ξsb, ξ
q, ε,m) =

mτ(ξsb)Var {ξsb}
(

ε
h

)2
C +mτ(ξq)Var {ξq}

.

We measured speedup when either m = 10 or m =∞ (“Ignoring deterministic
solve”).
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4.2 Variance reduction without volume interactions

When the volume mean-free-path is infinite, we can show that the variance ap-
proaches zero as h→ 0.

First consider the case of a flat boundary. Photons leave the sky, hit the
boundary, then either reach the detector or are “absorbed” by the sky or sides.
Neglecting edge/detector overlap we are in the regime of assumptions 3.1. There-
fore, combining lemma 3.1 with theorem 3.5 we expect approximately O(h2) con-
vergence. In practice we observed O(h1.6) convergence. See figure 4.
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Figure 4: O(hα) variance behavior. Complicated cos3 mountain results in slower con-
vergence.

Second, when the more complex cos3 boundary of figure 3 is used, we require
qs > 0 for the following reason: Suppose a photon finds itself at the point x =
(−0.4, 1 + cos3 0.4). On a fine boundary, there is a point nearby that has a direct
line to the detector. Therefore, when Θh(x, v′→v) will allow for shots directly to
the detector. One can see this by noticing that in figure 4.2 the point (−0.4, 1 +
cos3 0.4) is shaded darkly in the fine boundary (right), indicating that it sees direct
illumination from the detector. On a coarse boundary (left) this is not the case.
In practice we observed a major contribution to variance due to these effects, and
O(h) convergence overall. See figure 4 and also Remark 3.2. Also, (not pictured)
we observe that with a flat boundary and fine discretization is used, the optimal
regularization parameter is qs = 0. When a coarse discretization or cos3 boundary
is used, the optimal qs 6= 0.

4.3 Variance reduction with volume interactions

To analyze the variance of the SAI chain in the presence of volume interactions,
we adopt the modularity viewpoint explained in section 3.1.2. Note that even
when the error 〈u, g〉 − 〈ψh

o , s
h〉 is high, we still get good variance reduction. See

figure 6. This emphasizes the point that the quality of the deterministic solve is
not so important in a modular scheme.

Our implementation swept both qs and qv. As expected, we see decreasing
speedup with increasing volume scattering strength σ. See figure 7.

It is important to note that use of adjoint-enhanced surface scattering, and
heuristic volume scattering (qs < 1, qv < 1) together is especially helpful. In fact,
even with a small MFP=1.3xDiameter, we realize good speedup when qs = 0.9,
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Figure 5: Boundaries discretized on coarse (left) and fine (right) scales. Dots indicate
adjoint flux at mesh points. Size is relative to flux strength.
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Figure 6: |〈u, g〉 − 〈sh, ψh
o 〉|/〈u, g〉 is generally lower for smaller h. However, speedup

is still very good even for large h.

qv < 1. Note that if either qs = 1 or qv = 1 (so no use of dPh or heuristic scatter-
ing adjustment), speedup almost disappears. Following the setting described in
section 3.1.2 and the discussion at the end of section 3.1.3, this may be explained
as follows. Assuming that D is well approximated by B1 ∪ B2 where B1 and B2

have approximately the same size and B1 ∩ B2 ≈ ∅. Then the maximal variance
obtained by choosing only B1 or only B2 in the importance sampling is roughly
a factor 2 whereas the maximal variance obtained by choosing both of them is
very large. When the computational cost of the deterministic solve is taken into
account, we obtain the results in figure 7, which show that both boundary and
volume scattering need to be accelerated in order to obtain significant speedups.

4.4 Optimization of the parameter qs

We now compare the a priori estimates of an optimal qs (computed using the
methodology in section 3.4.2) with the observed optimal values (from figure 7).
To compute the a priori estimates we need estimates for Pa[D], Pa[B |D]. First we
assume Pa[B |D] ≈ 1−Pa[V ], where the set V are the photons that had a volume
interaction before dying. Since Pa[V ] is rather large, it is easy to estimate with a
very short analog simulation. We found that MFP = 16×Diameter corresponded
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Figure 7: Speedup when using both surface adjoint approximation ψh
o (with parameter

qs) and heuristic volume scattering (with parameter qv)
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Figure 8: A priori Optimal qs (a priori estimate and observed) for qs is plotted for a
variety of Pa[B |D].

to Pa[V ] = 1/21, and MFP = (8, 2.7, 1.3)× Diameter corresponded to Pa[V ] =
(1/11, 1/4, 1/2.35) respectively. This gives us estimates of Pa[B |D]. Now we need
an estimate of Pa[D]. The true values lie in the range [0.002325, 0.002484]. This
can be estimated fairly quickly (to within 10% RMS error) using 25,000 survival
biased shots. In figure 8 we plot the a priori optimal qs versus MFP/Diameter
using the above estimate for Pa[B |D] and setting Pa[D] = 0.0024 (10% errors in
Pa[D] make very little difference).
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A Appendix

This section collects details left out in the preceding sections.

A.1 Proof of theorem 3.1

Proof of theorem 3.1. For a proof of the theorem in the absence of a boundary,
we refer the reader to [16]. The analog probability density is defined in (12). If
Y : Ω→ R is a random variable, then

Ea {Y } =

∞
∑

n=1

∫

τ=n
Y dPa =

∞
∑

n=1

Ea {Y 1τ=n} , (44)

where, following the structure in algorithm 1, we have

Ea {Y 1τ=n} = Ea {Ea {Y 1τ=n |Zn−1}}
= Ea {Ea {Ea {Y 1τ=n |Zn−1, Zn−2} |Zn−2}}
= Ea {· · ·Ea {Ea {Y 1τ=n |Zn−1, · · · , Z0} |Zn−2, · · · , Z0} · · · |Z0} .

Using (5), (7), and (44), it will suffice to show

Ea {ξa1τ=n} = 〈C∗ḡ, (KL)n−1s〉, n = 1, 2, . . .

First note that (since g is a boundary source extended to be zero off of Γ+)

Ea {ξa1τ=n |Zn−1} =

∫

X̄

ḡ(xn, Vn−1)

pa
S∗(xn)

ka
C∗(Zn−1 → xn)pa

S∗(xn) dxn

= ḡ(x+(Zn−1), Vn−1)Eσ(Xn−1, x+(Zn−1)) = C∗ḡ(Zn−1).

So when n = 1, we have

Ea {ξa1τ=1} = Ea {Ea {ξa1τ=1 |Z0}}

= Ea {C∗ḡ(Z0)} =

∫

Z̄
s(z0)C

∗ḡ(z0) dz0 = 〈C∗ḡ, s〉Γ− .

Next note that for m < τ ,

Ea {f(Zm) |Zm−1} =

∫

Z̄
f(z)ka

T ∗(Zm−1 → zm) dzm = C∗S∗f(Zm−1).

So when n > 1, we have

Ea {ξa1τ=n} = Ea {Ea {ξa1τ=n |Zτ−1}} = Ea {C∗ḡ(Zτ−1)}
= Ea {Ea {C∗ḡ(Zτ−1) |Zτ−2}} = Ea {(C∗S∗)C∗ḡ(Zτ−2)}
...

= Ea

{

(C∗S∗)n−1C∗ḡ(Z0)
}

=

∫

Z̄
s(z0)(C

∗S∗)n−1C∗ḡ(z0) dz0

= 〈s, (C∗S∗)n−1C∗ḡ〉 = 〈(KL)n−1s, C∗ḡ〉.

This proves the theorem.
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A.2 Proof of theorem 3.5

We note that

ξh = ḡ(xτ , vτ−1)

∣

∣

∣

∣

dPa

dPh

∣

∣

∣

∣

= 〈u, g〉(1 + εh),

1 + εh(ω) : =
〈sh, ψh

o 〉
〈u, g〉

ḡ(xτ , vτ−1)

ḡh(xτ , vτ−1)

s(z0)

sh(z0)
βa,h(x0, . . . , xτ )γa,h(z1, . . . , zτ−1).

We now bound the coefficient error εh. First, assumptions 3.1 (i), (ii) give us

(1− Ch)τ+1 ≤ 1 + εh ≤ (1 + Ch)τ+1.

Using the binomial theorem, we have (for x > 0, m ∈ N)

1−mxemx ≤ (1− x)m ≤ (1 + x)m ≤ emx.

Therefore

(1− Ch)τ+1 ≤ 1 + εh ≤ (1 + Ch)τ+1,

and thus

|εh| ≤ hC[τ + 1]ehC[τ+1].

Since we assume Ph[τ = n] ≤ Ce−ρn, we have

Var
{

ξh
}

=

∞
∑

n=0

∫

τ=n
(ξh − 〈u, g〉)2 dPh = 〈u, g〉2

∞
∑

n=0

∫

τ=n
|εh|2 dPh

≤ 〈u, g〉2h2C2
∞
∑

n=0

[τ + 1]2e−(ρτ−2hC[τ+1]).

So that, for h < ρ/(2C) the above series converges and the result is proved.

A.3 Proof of some technical results

Proof of Lemma 3.1. Clearly ∂νN is Ck+2 when |x′ − x| > 0, so we may restrict
our attention to |x′ − x| < ε. We prove the lemma then for x′, x both in an ε
neighborhood of some point. After possibly shrinking ε, we may assume that in
this neighborhood ∂X is the graph of a Ck+2 function f . In other words, with
x = (x1, x2), and after a rotation and/or translation, this neighborhood is the set
{(x1, f(x1)) : −ε < x1 < ε}.

We then have

νx =
(−f ′(x1), 1)
√

1 + (f ′(x1))2
, x− x′ = (x1 − x′1, f(x1)− f(x′1)),

and also

f(x′1) = f(x1) + f ′(x1)(x
′
1 − x1) +R(x1, x

′
1),

R(x1, x
′
1) : =

∫ x′
1

x1

∫ s

x1

f ′′(t) dt ds = (x′1 − x1)
2

∫ 1

0

∫ s

0
f ′′(t(x′1 − x1)) dt ds.
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We notice that

R(x1, x
′
1)(x

′
1 − x1)

−j ∈ Ck(∂X × ∂X), j = 0, 1, 2.

This is all we need since

νx · (x′ − x) =
R(x1, x

′
1)

√

1 + (f ′(x1))2
,

|x− x′|2 = (x1 − x′1)2
[

1 +

(

f ′(x1) +
R(x1, x

′
1)

x′1 − x1

)2
]

,

∂νN(x, x′) : =
νx · (x− x′)
|x− x′|2 .

Proof of theorem 3.6. Our setup so far puts us in the regime of section 3.3.1 with

Eh
σ = Eσ ≡ 1, ḡh = Rḡ, αh = Rα,

Θh(x′i, v→v′ij) = κ(xi, vij)∂νN(xi, xj)
|∂Xj |
|Vij |

, for x′i ∈ ∂Xi, v
′
ij ∈ Vij .

Assumptions (iii), (iv) are the same above and in assumptions 3.1. Using
assumption (i) above along with proposition 3.1, we have assumption 3.1 (i). It
remains to prove that assumptions 3.1 (ii) is met. Due to assumption (i) above,
it will suffice to show

1− C ′h ≤ |Vij |
|∂Xj |

1

∂νN(xi, xj)
≤ 1 + C ′h. (45)

Due to strict convexity of ∂X, ∂νN is bounded below. Now the differentiability
of ∂νN (lemma 3.1) implies that there exists C ′ > 0 such that when x′ ∈ ∂Xj ,

1− C ′h ≤ ∂νN(xi, x
′)

∂νN(xi, xj)
≤ 1 + C ′h. (46)

Therefore, since

|Vij | =
∫

∂Xj

∂νN(xi, x
′) dµ(x′) = ∂νN(xi, xj)

∫

∂Xj

∂νN(xi, x
′)

∂νN(xi, xj)
dµ(x′),

(46) now implies (45) and the proposition is proved.

A.4 Parameter choices in numerical simulations

In the simulations performed with σ = 0 (no volume interactions), we used both
a flat surface (so that our domain was [−π, π] × [2, 4]) and a cos3 surface (figure
3). We swept h, with 0.002 < h < 0.2. We did not use any heuristic scattering
adjustment (qv = 1.0). In all cases

Θ(x, y, v→v′) =

{

(νx · v′)/2, νx · v′ < 0, |x| < 2.5
0, otherwise.

The source was mono-directional v = −π/2 and given by

s(x,−π/2) =

{

1 |x| < 2.5,
0 |x| ≥ 2.5.
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In the simulations involving volume interactions (σ > 0), we used a cos3 type
surface. We computed speedup in a variety of cases. The mean-free-path MFP=
σ−1 was varied as well as qs, h, and qv. We swept 0.002 < h < 0.15. In all
cases the volume scattering coefficients were constant with σs = 2σa. The volume
scattering was given by

θ(x, v→v′) = 1 + (v · v′)2.

The other coefficients were chosen to have features (in this case oscillations) on
a scale coarser than the fine values of h, and finer than the coarse values. The
surface scattering coefficient was given (on the mountain) by

Θ((x, y), v→v′) = (νx · v′)







0 x > 2.5,
0.75 + 0.25 sin(2πx/0.05) 1 < x < 2.5,
0.35 + 0.25 sin(2πx/0.05) −2.5 < x < 1,

when νx · v′ > 0, and 0 when νx · v′ ≤ 0. Off the mountain there was no scattering
(perfectly absorbing). The source was mono-directional v = −π/2 and given by

s(x,−π/2) =

{

1 + 0.25 sin(2πx/0.07) |x| < 2.5,
0 |x| ≥ 2.5.

Acknowledgment

The authors would like to thank Anthony Davis for many useful discussions. This
work was supported in part by DOE grant DE-FG52-08NA28779 and NSF grant
DMS-0804696.

References

[1] S. R. Arridge. Optical tomography in medical imaging. Inverse Problems,
15:R41–R93, 1999.

[2] G. Bal. Inverse transport theory and applications. Inverse Problems,
25:053001, 2009.

[3] R. E. Caflisch. Monte carlo and quasi-monte carlo methods. Acta Numerica,
pages 1–49, 1998.

[4] S. Chandrasekhar. Radiative Transfer. Dover Publications, New York, 1960.

[5] R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods
for Science and Technology. Vol.6. Springer Verlag, Berlin, 1993.

[6] B. Davison and J. B. Sykes. Neutron Transport Theory. Oxford University
Press, 1957.

[7] J. D. Densmore and E. W Larsen. Variational variance reduction for particle
transport eigenvalue calculations using monte carlo adjoint simulation. J. of
Comp. Physics, 192:387–405, 2003.

[8] G. Folland. Introduction to partial differential equations. Princeton University
Press, Princeton New Jersey, 1995.

[9] A. Haghighat and J. C. Wagner. Monte carlo variance reduction with deter-
ministic importance functions. Prog. in Nuclear Energy, 42 (1):25–53, 2003.

38



[10] Ambrose M. Kong, R. and J. Spanier. Efficient, automated monte carlo meth-
ods for radiation transport. Journal of Computational Physics, 227:9643–
9476, 2008.

[11] R. Kong and J. Spanier. A new proof of geometric convergence for general
transport problems based on sequential correlated sampling methods. Journal
of Computational Physics, 227:9762–9777, 2008.

[12] K. N. Liou. An introduction to atmospheric radiation. Academic Press, San
Diego, CA, 2002.

[13] I. Lux and L. Koblinger. Monte Carlo Particle Transport Methods: Neutron
and Photon Calculations. CRC Press, Boca Raton, 1991.

[14] A. Marshak and A. B. Davis. 3D Radiative Transfer in Cloudy Atmospheres.
Springer, New-York, 2005.

[15] H. Sato and M. C. Fehler. Seismic wave propagation and scattering in the
heterogeneous earth. AIP series in modern acoustics and signal processing.
AIP Press, Springer, New York, 1998.

[16] J. Spanier and E. M. Gelbard. Monte Carlo principles and neutron transport
problems. Addison-Wesley, Reading, Mass., 1969.

[17] S. A. Turner and E. W Larsen. Automatic variance reduction for three-
dimensional monte carlo simulations by the local importance function
transform–i: Analysis. Nuclear science and engineering, 127:22–35, 1997.

[18] S. A. Turner and E. W Larsen. Automatic variance reduction for three-
dimensional monte carlo simulations by the local importance function
transform–ii: Numerical results. Nuclear science and engineering, 127:36–
53, 1997.

[19] K. A. Van Riper et al. Avatar - automatic variance reduction in monte carlo
calculations. 1997.

[20] E. Veach. Robust monte carlo methods for light transport calculations. PhD
dissertation, Stanford, 1997.

39


