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Abstract

This paper concerns the asymptotic structure of the scintillation function in the sim-
plified setting of wave propagation modeled by an It6-Schrédinger equation. We show that
the size of the scintillation function crucially depends on the smoothness of the initial con-
ditions for the wave equation and on the size of the “array of detectors” where the wave
fields are measured. In many practical settings, we show that the estimates are optimal and
devise an equation for the appropriately rescaled scintillation function. The estimates are
based on a careful analysis of Wigner transforms and of linear kinetic equations involving
oscillatory integrals.

Keywords: Waves in random media, kinetic model, statistical stability, scintil-
lation function, It6 (Stratonovich) Schrédinger regime, Wigner transform

1 Introduction.

Wave propagation in heterogeneous media and over large distances compared to the wavelength
arise e.g. in geophysics with the propagation of seismic waves [24], telecommunications, un-
derwater acoustics, and propagation of light through turbulent atmosphere, see e.g. [25, 28].
Whereas the microscopic dynamics of the wave is fairly complex, macroscopic models may
sometimes be derived to simplify the description. These models depend on the relation be-
tween the correlation length of the random medium and the wavelength, and also on the
strength of the fluctuations. An important feature of many of these models is their statistical
stability, in the sense that they depend only on some general (macroscopic) characteristics
of the medium and not on its local fluctuations. This invocation of ergodicity is valid when
the strength of the fluctuations is weak, so that the localization phenomenon is avoided, see
[15, 25], for then wave may be trapped at some random location depending on the realization
of the random media and this will prevent any statistical stability. The so-called weak coupling
regime is the regime of interest in this paper.

When the wavelength and the correlation length are of same order and are small compared
to the typical distance of propagation, the macroscopic behavior of the wave can be described
by radiative transfer equations [11, 17]. The rigorous derivation of such a model from high-
frequency random wave equations is a challenging mathematical problem which has found
solutions only in some simplified settings. A formal derivation can be found for instance in
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[23] for acoustic, electromagnetic and elastic waves, while the kinetic limit for discrete wave
equations has been demonstrated in the recent paper [19]. In most cases, the rigorous analysis
is done within the parazial approzimation, see e.g. [27, 10], which occurs when the wave has
a privileged direction of propagation and backscattering effects can be neglected.

Let us assume that the beam mainly propagates along the z € R axis. Then, starting from
the standard scalar wave equation for the pressure potential p(t, x, z), where t is time, x € R?
(so that the overall spatial dimension is d 4 1), and ¢(x, 2z) is the (random) sound speed,

0%p

572 (1:%2) = (%, 2) (Ax + A2) p(t,x, 2),

with appropriate initial conditions, we formally obtain [3, 2] for the amplitude 9 (z, x, k) defined
by

1 .
p(t,x,2) = / em(zfcot)w(z,x, K)codk,
2T R

the following high-frequency random Schrédinger equation:

2
inaiwz(z,)(, K) = _%Axwﬁ(z’xv K) — \/>V ( 77) @bn(z X, k), (1)

augmented with an initial condition 9,(z = 0,x) = 1/12 (x). Above, ¢q is the background sound
speed assumed to be constant for simplicity, n < 1 is the rescaled transverse wavelength and
V' is the random potential related to the sound speed c. The variable x plays no role in the
analysis and will therefore be set to k = 1. When the sound speed has faster fluctuations in
the z direction than in the transverse direction x, the potential V' can formally be replaced
by a white noise in z, giving rise - after the appropriate Stratonovich correction -, to the
1t6-Schrodinger equation:

dipy(z,x) = %(inAx — R(0)) (2, x)dz + ithy (2, X)B(%, dz). (2)

Here, B(x,dz) is a standard (infinite dimensional) Wiener measure, whose statistics are de-
scribed by
E{B(x,2)B(y,?")} = R(x —y)z A 2/, (3)

where E is mathematical expectation with respect to the measure of an abstract probability
space (2, F,P) on which B(x,dz) is defined, z A 2/ = min(z,2’) and R is the correlation
function of the random medium. A rigorous passage from the wave equation to (2) can be
found in [1] when d = 2 and in stratified media. The radiative transfer equations are then
obtained from high-frequency asymptotics of (1) or (2) and the appropriate tool in the analysis
of such equations is the Wigner transform [29] of the wave function defined as

Wlunl(erx 30 = Wyexk) = g [ @9, (= )i (sx B )y, 4
where 1/77 denotes complex conjugation of v¢,. The Wigner transform W, is real-valued and
Jga Wy (t,x,k)dk = |t(x,t)|* by inverse Fourier transform so that W, may be seen as a
phase space (mlcrolocal) decomposition of the energy density, even though it is not always
positive. We refer the reader to [18, 16] for an extensive study of Wigner transforms with
applications to high-frequency limit of hyperbolic or Schrodinger equations. The rigorous
limit of the Schrodinger equation (1) to the radiative transfer equations has been investigated,
with various hypotheses on the random potential V' (e.g. Markovian with respect to time or



with finite-range time correlations), for instance in [3, 4, 13, 22, 26]. The main result is the
following: under appropriate conditions on the initial condition 1112, the ensemble average of
the Wigner transform a,, := E{WW,} converges weakly in an adapted functional setting to the
solution a of the following radiative transfer equation (or linear Boltzmann equation):

((,fz k- Vi + Ry — Q)a(z,x, kK)=0,  a(0,xk) = ag(x,k), (5)

where ag is the limit of the ensemble average of the Wigner transform of the initial condition
@Z)?I, Ro := (2m)?R(0) and the scattering operator Q reads

(Qa)(z,x,k) = » R(k — Ka(z,x,k')dK .

Here, R denotes the Fourier transform of R with the convention

R(k) = FR(k) = / ) e kX R(x)dx.
R
Since R(x) is a correlation function, R(k) is non-negative by Bochner’s theorem. The deriva-
tion of (5) from the It6-Schrodinger equation (2) is immediate since moments of the wavefunc-
tion satisfy closed-form equations. Starting from (2) and writing the stochastic equation for
the Wigner transform, a direct application of the It6 calculus yields that a, solves (5) with an
initial condition a,o := E{W), [1/12]}, see for instance [20]. It then suffices to pass to the limit
in the initial condition to obtain the convergence of a, to a.

Whereas the limit of E{W,} can be characterized in various settings, much less is known
about the limit of the whole process W,,. It is proved in [4], under additional hypotheses on
the Wigner transform (basically it is given by a mixed state so as to obtain L? estimates),
that W [4y], with ¢, the solution to (1), converges weakly and in probability to its average
E{W,[4y]}, that is

IP)<|<W,7(Z), o) — (ay(2), )| > 5) — 0, uniformly on compact intervals.

Above, ¢ is a test function in the Schwarz space S(R??) and (-, -) denotes the S’ — S duality
product, where S’ is the space of tempered distributions. The latter result means that the
Wigner transform is self-averaging. This is an important property for instance in the analysis
of the refocusing properties of time-reversed waves [4, 9, 21, 14| for which it is shown that
the quality of refocusing is independent of the local fluctuations of the random medium and
hence only depends on macroscopic characteristics. The statistical stability of waves is also
a fundamental requirement for applications to imaging or detection in complex media: a het-
erogeneous medium with unknown local variations is often modeled as a particular realization
of a random medium with given macroscopic quantities (that are known or to be estimated).
The inverse problem of the reconstruction of an inclusion embedded in the medium is then
done through radiative transfer equations derived from ensemble averages of observables and
not on a single realization, see [5, 6, 8]. It is thus important that these observables do not
differ significantly for two different realizations of the random medium.

In the It6-Schrodinger regime, the convergence of W, to its average can be made precise so
as to obtain information on the rate of convergence or on the size of the averaging domain that
is needed to obtain statistical stability (typically the size of the support of the test function
@), see e.g. [2, 7, 20]. This is rendered possible by the fact that the scintillation function J,
(or covariance function), defined as

']77(Z7X7k7y7 p) = E{WH(Z,X, k)WU(ZaY7p)} - E{W’V](Z7X7k>}E{WT](Z7y7 p)}7 (6)



solves the closed-form equation

)
(5, + T2+ 2Ro — Q2 = Ky )y = Kty @ ay, (7)

equipped with vanishing initial conditions J,(0,x,k,y,p) = 0 when the initial condition of
the Schrodinger equation is deterministic. Here, we have defined

75 = k'vx+p'vya
Qh = / (ﬁf(k ~K)3(p — ') + R(p — p')d(k - k’))h(x, K',y,p)dk'dp’,
R2d (8)

~ . (x—y)-u
Kyh = Z €€} R(u)e’ Toh (x, k + eiE,y,p + ejE) du.
6 emt1 R2d 2 2
1,65 —

Above, § is the Dirac distribution. Equation (7) is obtained by computing the fourth moment
of the wave function, see [2]. The analysis of (7) and of the highly oscillating operator IC,
shows that J,, converges weakly to zero, which implies the convergence of W, in probability
thanks to the Chebyshev inequality

B([(Wy(2), ¢) = (ay(2), )| 2 2) <

with (¢ ® ¢)(x,k,y,p) = ¢(x, k)¢(y, p).

The objectives of the present paper are twofold: (i) refine and complement the convergence
estimates obtained in [7]; and (ii) characterize the dynamics of the statistical instabilities by
computing the limit of the first-order corrector of .J,, for practically useful (pure state) initial
conditions. This requires us to define a functional setting adapted to Wigner transforms and
to a precise analysis of (7) and of the oscillating operator ;. The outcome is a complete
characterization of the propagation of the statistical instabilities. We show that their dynam-
ics are driven by a transport equation with a non-vanishing initial condition or source term
depending on the singularities of the initial condition of the Schrédinger equation.

The paper is structured as follows. In section 2, we present our assumptions and describe
the main results. Theorem 1 gives a convergence rate of the scintillation function, while
theorem 2 shows that the obtained rate is optimal for particular initial conditions and provides
us with an asymptotic model for the propagation of the statistical instabilities. In section 3,
we introduce the functional setting adapted to the problem and prove preliminary results on
the operator K;, and on the well-posedness of both the 2-transport and 4-transport equations
(5) and (7), respectively. In section 4, we prove theorems 1 and 2.

L n(2) 0 ® ),

€

2 Main results.

We present in this section the main results of the paper. We give existence and uniqueness
results for the It6-Schrodinger equation (2), present our main assumptions, and state our main
results in theorems 2.1 and 2.2.

To be consistent with the usual notation for the time-dependent Schrodinger equation,
we relabel the variable z as t. We assume that the initial condition 1/12 is deterministic (i.e.,
independent of the random medium) and uniformly bounded with respect to 7 in L?*(R%).
We assume that our random medium has sufficiently short range correlations so that R e
LYR?) N L®(RY). In such a setting, it is proved in [12] that (2) admits a unique solution
Yn(t,x,w) € C°(]0,00), L*(R%)), P a.e., such that, V¢ > 0,

”wn(t’ ')HLQ(]Rd) < ||¢2”L2(Rd) <,
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with probability one for some constant C' independent of 7. Moreover, 1, admits moments of
arbitrary order so that its Wigner transform and related scintillation function are well-defined.
Let ano := E{W,[¢0]} = Wy[v)], where W, is defined in (4).

Let Fay,o be the Fourier transform of a,o and Fxa,o (resp. Fyano) be its partial Fourier
transform with respect to x (resp. k). Two important quantities are the L' norms of Fxano
and Fiano. Denoting by a < b the inequality a < Cb, where C' > 0 is some universal constant,
this leads us to make the following hypotheses on a,:

Hypotheses H: FVa,o € L®(R??), FVka,o € L (R*?), Fi Viayo € L1(R*), for p =0
or 1 (with the convention that Va,o := a,0) with the following estimates, for (o, 3) € R?
verifying 0 <a<land 0 < g < 1t

[ FVxanoll oo m2ay S n°°,
|1 FVEhanoll g gzay S 0~ P and || FVianol| g1 geay S m7 0P
For instance, when wg € S(R%), it follows from

u

1 .
fxan()(uv p) = Efwno <1;]) + 121> fwno <1;7) - 2> )
Fuano(x,€) = o (x+ 2€) to (x - 2¢).

that FVka,o € L®(R??), FVian € LY (R??), and FyViayo € L1(R??) for p = 0 or 1, though
the norms are not bounded uniformly in 7. The relevance of the above hypothesis is better
explained by looking at the following examples.

Typical initial conditions. Let us consider initial conditions v, (x, 0) oscillating at frequen-
cies of order n~! and with a spatial support of size n® for 0 < a < 1. The parameter «
quantifies the macroscopic concentration of the initial condition. The simplest example is a
modulated plane wave of the form:

1 X — X0\ ;&=xa)ko
P00 = —mx (Tt ) (9)
’]’]2

where ¥ € S(RY). The direction of propagation is given by k. Note that the above sequence
of initial conditions is indeed uniformly bounded in L?(R?), and that the related Wigner
transform reads

X — X k — k0>

na ? nl—cx

1
ano(x, k) = —agp (
" 7

(10)

where ag(x, k) is the Wigner transform of the rescaled initial condition wgl). Such an initial
condition then verifies hypotheses H with 5 =1 — a. The parameter o measures the concen-
tration of the initial conditions in the spatial variables while 3 measures that in the momentum
variables. We restrict o and 3 to be less than one to ensure that ! is the highest frequency
in the problem. Allowing for higher frequencies while still considering a Wigner transform
at the frequency 1! will lead to vanishing limiting Wigner transforms and would be of little
interest for then energy is lost when passing to the limit, see e.g. [16, 18].
As another example of initial conditions, we consider

Y@ (x) = MX<;>JO<I{OJI|X|)’ (11)

where Jj is the zero-th order Bessel function of the first kind. Such an initial condition is
supported in the Fourier domain in the vicinity of wavenumbers k such that |k| = |ko| so that



1/)7(72) emits radiation isotropically at wavenumber |ko|; see [5, 6] for more details. We again
verify that the above sequence of initial conditions is indeed uniformly bounded in L?(R¢) and

satisfies H with o = 1 — 3. For this, we use that Jy(z) = 1/ 2 cos(z — T) + O(2~%/2) and the

Tz

fact that Vya,o is the Wigner transform of

g (V) o ol

n

since Jo(|x]) = Jo(—|x|) so that the gradients of Jo(|x|) and Jo(|x|) cancel in the computation.

Since the scintillation function J,, is itself oscillatory, the limit depends at which scale it is
measured. We thus define localized test functions of the form:

1 x k—-k
¥n,s1,82 (x,k) = m@(ﬁv 2 1)? (12)
where (s1,52) € R? and k; € R? and ¢ € S(R??). In this paper, we do not optimize the
convergence rates as a function of s; and s9 so as to obtain statistical stability for averaging
domains as small as possible. We refer to [7] for such results, where it is shown for instance
that for initial conditions with large support, that is for & = 0, then we only need s; < 1 to
obtain statistical stability, which amounts to averaging the energy density over a domain of
typical size n'~%, with 6 > 0.
Our first main result is the following:

Theorem 2.1 Let d > 2 and assume that hypotheses H are satisfied. Then, the scintillation
function J,, verifies the following estimate, uniformly on compact intervals:

(Jn(t)a Pn,s1,82 & 9077,51,52> < 9a(n),

gd(n) — nd(lfa)72d(sl+52) [772(1704)751751\/52+(o¢7ﬁ)\/0] Vv 1717ﬁ+((afﬁ)VO)/\((dfl)(lfafﬁ)Jra)’ d> 3’
92(77) _ n2(1—a)—4(51+52) [772(1—&)—51—81VS2+(04—,6)V0] vV [,'71—5 (Tla—ﬁ(l + ‘ IOg na—ﬂ|)) A 1] .
Here, (-,-) denotes the S’ — S duality product, a A b = min(a,b), a Vb = max(a,b) and

(p®9)(x,k,y,p) == p(x,k)p(y,p)-

Theorem 2.1 is a refined version of the result of [7]. It is shown in theorem 2.2 that the
rate of convergence of J, is optimal when the test function ¢ is smooth (s; = sy = 0) and
for initial conditions of the form (9). Since the proof of theorem 2.1 does not depend on
the particular form of the initial conditions, we expect the rate to be optimal for any initial
conditions satisfying hypotheses H, although we do not have a proof for such a statement yet.
Our second result is as follows.

Theorem 2.2 Assume the initial condition 1/12 has the form (9). Then under the assumptions
and notations of theorem 2.1, we have, for 0 < a <1,

Jﬂ _ n(d+2)(1—a)+(204—1)\/0 ‘]clv + nd(l—a)+a([n2a—1fd(n)] A 1) ‘]c2v + T,

where fg =1 when d > 3 and fo = 1+ |logn®?|, where ry 15 negligible compared to the first
two terms in the L=°((0,T),S’(R*)) — % topology, and where we have defined

annng—i—Tn when o = 0, and Jn:nJll—i-Tn when o = 1.



Here, J} € C°([0,7T],2") when o < 1 and Ji € C°([0,T], Xs) and J2 € C°([0,T), X)) are
distributional solutions to the following 4-transport equation,
P . . . .
(a+oa+mh—gglyzx, Ji(t=0,-) = JiO, (13)
The spaces Z' and Xoo are defined in section 3. Fori = 1,2, we have S!, = 0 when o > % and

J&’O =0 when o < %, and

[

. . . . 1
St =17jo when 0<a< 3 and JO = 41(0,-)  when 5 <a< 1.
The source terms have different expressions when i =1 and i = 2.
e Fori =1, we have

Ja(t %k, y,p) = 8(x —x0—tk)d(y — x0 — tp) (V) (k — ko) M (t) (V6)(p — ko),

(M%(t))w = R(0) /]Rd FOx,a0 @ Oy ap(w,tw, —w, —tw) dw,

(@) = My=(MA0)y,  0=a<s,
(M*(0))y; = A?Mﬂmﬁﬁ %<a<L

The above matrices are well-defined and for 0 < a < 1, we have
(M) < R(O)]|Fy, aoll o oy (1500l 1 ey + [ Fiedsoll oy ) -

When o = 1, we have
J%’O(Xv k7 Yy, p) = <7T /d dWR<W)5(W ' (k - p))G(W7 k — kOa p— kO)
R
. A 1
+ zp.v./Rd dwR(w)mG(w, k —ko,p — kg)> d(x —y)d(x —xp)

W W W W
G(w,k,p) = {fan(_Wk + 5) — Fxao(—w, k — 5)] [fxao(% p+ 5) — Fxao(w,p — 5)].

Moreover, the initial condition Jll’o belongs to X, is real-valued, and the principal value
contribution vanishes when ag is even with respect to the variable x.
e Fori =2, we have

jzz)z(t7 x,k,y, p) = 2 5(X - y) (Ua(t? x, k- ko)é(p - k) - Ua(tv XP— pO)d(k - kO)

~on(t.x k= )3~ po) + 80k~ k)3 (b~ po) [ oa(tx k)
where the cross section o, depends on the value of o and on the spatial dimension:
oo(t,x,p) = (2m)" B*(p) /t dre” 2P| Feag(x — xo — kot — (t — T)%p, —7p)[%,
oo(t,x,k) = d(x—x0— tk(())) oa(t, k), a >0,

@m::ﬁw/ | Fao(w, tw — 7k)|*dwdr,
0 R4

g

N

1
(0.k), 0<a<g.

o
1
a(0.K) = / or(tK)d, L <<l d>3,
0

oa(t,k) = ok)=0c

1
2

~

& 1
0a(0,k) = R2(k)/0 y | Fao(tk, w)[2dwdr, 5 <ac< 1, d=2.

7



Moreover, oo € C°([0,T], LY (R? x RY)), 0a(t, k) € L' (R} x RY) for 0 < a < 3 and 04(0,k) €
LY (RY) for i <a < 1.

Theorem 2.2 indicates how the statistical instabilities propagate. Depending on the value
of a, either the first term or the second term dominates in the decomposition of .J,,. When
d > 3, the critical value of a is a* = %: when a < o*, then the term involving J2 is the leading
one, while the term involving J! dominates when o > o*; when o = a*, both terms are of the
same order. Both J! and J2 satisfy a 4-transport equation. Depending on whether a < % or
a > %, the instabilities are created either by a source term or by an initial condition. J} is the
most singular term as the corresponding data in the transport equation are proportional to
delta distributions both in space and momentum (when « < 1) whereas the data corresponding
to J2 are more regular in the momentum variables. Let us examine the different scenarios
depending on the value of «.

Case 0 < a < % The initial condition a,o is more singular in the momentum variables

than in the spatial variables, with comparable singularities when o = % The instabilities are
created by the ballistic part of the wave through the source term j2 supported at the spatial
points x =y = xg — tkg with four configurations for the momentum k and p: (i) k = p, the
amplitude of k is given by o1 (0,k — ko) when a < % and by U%(t,p — po) when a = %; (ii)
k = kg, the amplitude of p is given by o1 (0,p — po); (iii) p = po, the amplitude of k is given
by 01(0,k — ko); (iv) k = p = ko. Instazbilities are thus created along the wave propagation
in th2e direction of the initial condition kg but also in other directions.

Case % < «a < 1. The initial condition a,o is more singular in the spatial variables than

in the momentum variables. This results in a stronger localization of the instabilities, which
undergo more scattering and decrease exponentially with time. They are generated by an
initial condition given by jl(0,-) when a > o* and j2(0,-) when o < a*. When a < ao*,
instabilities are created at x = y = xp with the same momentum configuration as the case
O0<a< % When a > «o*, instabilities are still created at x = y = x¢ but with momentum
k = p = k. Note that these instabilities are fairly singular since they are defined in this case
by gradients of delta distributions.

Case a = 1. This the most unstable case since instabilities are of order n. Since in this
configuration the initial condition a,g is regular with respect to k, instabilities are created at
X =y = Xg in all directions, which can be seen from the definition of J11 ’0, which is more
regular in the momentum variables than Jo0 for o < 1.

Case o = 0. This is the most stable case since instabilities are of order n¢. The initial
condition is regular with respect to the spatial variables so that the source term jg is also
regular. The situation is essentially the same as the case 0 < a < % The main difference
is that the instabilities are created not only at the ballistic position at time ¢ (that is at

x = x09 — kt), but on a larger domain related to the spatial support of ag.

Finally, we remark that in the most stable configurations (when a < %), the instabilities persist
with time while they decrease for more unstable configurations (when o > %) When d = 2,
the situation is similar: only the values of o* and o, change. Both theorems are proved in
section 4. Section 3 concerns important preliminary results needed for the proof.

3 Functional spaces and preliminary results.

In this section, we introduce several functional spaces for the analysis of the operator K,
and of the 2-transport and 4-transport equations. We give some important estimates for K,



and present well-posedness results for the transport equations. The functional spaces are
constructed to fulfill several requirements: first, the operator norm of X, must be small with
respect to n < 1 in a space for which the 4-transport equation is stable, so that from a bound
on K, we can deduce a bound on the scintillation function J,; second, the spaces should be
large enough so that K, a, ® a, can be controlled by some norms of a,, well-adapted to Wigner
transforms. For the first requirement, a prototype space is X, introduced below, while for
the second, the Y}, spaces are adapted. In particular, the Wigner transform of a n-uniformly
L?-bounded function is bounded in Y, independently of 7.

3.1 Functional spaces.

To analyze the 4-transport equation, we define X, (for 1 < p < o0), and Z the spaces of
tempered distributions h in S’(R%?) such that

A%, = sup / sup |Fh(uw,€,v,¢)Pdu < 00, 1< p< oo
P v,CeRd JRd geRd
Illxe =  sup  |Fh(uév,Q)| < oo,
u,¢,v,E€R4
Iz = (2m) / (1, €,v, )| Fh(u, £, v, ¢)|dedudvic < o,
]R4d
W €,v,¢) = (1+ €]+ [€l[ul + [u2)(1+ |¢] + [¢IIv] + [v]?).

Here |u] is the Euclidean norm of the vector u. We denote by Z’ the dual of Z. Above, we
identified the Fourier transform of the distribution h with the function Fh. For the analysis
of the 2-transport equation, we introduce spaces of tempered distributions defined by

I = / sup |Fh(w, €)Pdu < so, 1< p< o
p RdgeRd
Iy = sup |Fhiu€)| < oo,
u,£cR4
lally = sup / Fh(w,€)ldu<oo,  [Hlly = sup / \Fh(u, €)]dé < .
£eRd JR ucRd JR4

Note the inclusion Y7 C Y. Using the fact the Lebesgue LP spaces are Banach and that the
Fourier transform is an isomorphism from &’ to &', it can be easily seen that the above spaces
are Banach.

3.2 [Estimates for K,.

The latter spaces are well-adapted to the estimation of the scintillation operator K,. More
precisely, we have the following result:

Lemma 3.1 Assume that R € L'(RY) N L(R%). Then for 1 < p < oo,

(1) K, is bounded in X, and )
1Knllecx,) < 4RI L ray- (14)

(i) Let pe€Y,, veY. Then

IKyp@viix, < 40| RllLeomalluly, vy, (15)



(177) Let i € Yoo, Vxpt € Yoo, v €Y, Vyv €Y. Then

Iy vlz < 2| R] @ IVxpllyVyvlly + 1 Vxpully.llvly
el IVyvlly + llully l7lly) - (16)

Proof. With obvious notation, we recast K; = Zei,e]- eiejK,i]j . Let h € X,,. Then we have
FKIh = / ™ (268435 R(w) Fh <u Vv Y ,c)
R4 n
so that using the Holder inequality with 1 = 1% + 1% and 1 < p < o0,

1K pl%, < sup / sup
v,CERE JR? gcRd

9 |R(w)fh(u — Y, £,v+ ﬂ, c) |dw‘pdu,

<RI gy sup / swp | [R(w)|[Fh(u = 7.6 v+ 7 ¢) dwdu < I1RI g 101,
v,(ERE JR? ¢cRd

The case p = oo is addressed similarly. This proves (i). Let now h := p® v. Upon performing
the change of variables w — nw, we have

FKipov = nd/ e G390 Rpw) Fpu @ v (u — w, €, v + w, () dw
Rd

so that
- ) P
i all, <ot sup [ sup | [ RGpw =) Fu v (v+u—wgw ) dw| du,
v,¢ccRd JRA gcRrd | JRE
P
< B 717 sup [ sup [ FuC e u = w P (w, ) fdwdu,
v,CER? JRE gcRd JRE

< 0| RIG e gy Il V115

which proves (ii). To prove (iii), we sum eiejK,éj over i and j and combine the exponentials to
find:

Fnow = =y [ (6.0 (w-€) (v ¢) Py (= w. vt w. ) dvw

where
sin (%nw-f) sin (%nw-(’)
(znw-€) (3nw-<)
We then decompose the product (w - &) (w - ¢) into fours terms:
(w—u)-E(wWH+v)-(—(w—u)-&v-(+u-E(wW+vVv)-(—u-&v-(.

Using this and the fact that (FVxp)(u,§) = iu(}"u)(u,ﬁ), we also decompose FIC,u ® v
accordingly into fours terms FKjp ® v, j = 1,--- ,4 that read:

f(w, €,¢) = R(nw).

FRbper = i [ w60 € (FVan® Vo (u - w v+ w,Q)) Caw,
Rd

FkGusy =~ [ w606 FUpm(a-w v+ w.) v G,
Rd

]-"IC%,u@u = ind+2/ 1w, &, u-EFu®@Vyr(u—w,§,v+w,(Q) - (dw,
Rd

Fiinoy = ' [ g u-eFnerasw by w o)y Caw.
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The term FVyxu®Vyv has to be understood as the matrix (FOy, it FOy,v); j=1,.. 4 and FVxpu®
v as the vector (FOy,pu Fv)i—1,.. 4. We start to estimate the first term FK} p®@v. To simplify
the notation, we introduce the matrix-valued function A(u, &,v,¢) := fRd 1w, & ¢)FVip®
Vyv(u—w,§,v+w,() dw. Let then ¢ be a test function in Z so that,

IC}7 PRV P dxdkdydp‘ = (2m)~ 4

FKy 1@ v Fo,dudédvdC

R4d R4d

— (27T)_4d17d+2

/R dudvdgdc € A(w,€,v,0) ¢ F(u v, ¢)|

IN

(2m) 2| Al oo aa) /thd €lICI1Fp(u, &, v, ¢)|dudédvdC < n™ || Al oo rany [l 2.
Since || f|| poo(msay < HRHLOO(Rd), following exactly the same lines as (ii), we find

[All Lo raay < 1R oo may [[Vy pllvee [[Vacr[ly-
Proceeding in the same way for IC%, 1 = 2, 3,4 and using the definition of the space Z to control

the different weights involving u, v, &, {, (16) then follows by duality. O

Remark 3.2 In items (ii) and (iii) of lemma 3.1, the roles of p and v are symmetrical so
that they can be interchanged in the above estimates. For instance, for p € Y and v € Yy, we
have

ICnn@vlx, < 40" IRl g vy, lely-

Item (ii) of lemma 3.1 states that when a, is regular enough, say a, € Y, N'Y with norms
not too singular in 7, then Kya, ® a, tends to zero in X, for instance. When the transport
equation (7) is well-posed in X, this implies that J, goes to zero as well and therefore we
obtain statistical stability. Item (iii) provides us with an optimal rate of convergence needed
to capture the behavior of the first-order corrector.

3.3 Well-posedness of the 4-transport equation.

In this section, we show that the 4-transport equation

0
(5; +T2+2R0— Q= Ky)a=S.  a(t=0.) = a, (17)

is well-posed in the X, spaces and prove related stability estimates. Here, Ry := (27)2R(0),
R e LY(RY) N L= (R%), where R is the correlation function defined in (3), and 73, Qs and Ky
are defined in (8). We show that when the operator K, vanishes, the equation is also stable
(in the sense that the homogeneity in 7 is the same as for the data) in Z’ while this is not the
case when I, is not zero. We first recast (17) as the integral equation

t
a(t) = e 2RlG2q 4 / e 2Rol=9G2 10, + K,la(s)ds + Si(t), (18)
0

where G? is the transport group defined as

Gia(x,p,y,q) = a(x —tp,p,y — tq,q), tER,
and

t
Si(t) = /0 e 2H(=5)G2 S(s)ds.

The existence and uniqueness of solutions to (18) is a consequence of the following lemma:

11



Lemma 3.3 Forte R, Qf and Q2 are continuous in X, and 7' with
1621l 2(x,) < 1, 1GE ]l 2(zry < 4(1 + )%, 1Q2ll(x,) < 2Ro, 1Q2llz(zy < 2Ro.
Proof. We have by Fourier transform:
FGlp = Fo(u,é+tu,v,¢+tv),
FQp = (2m)'R(E) + R(C)Fp(u.&v.0),
so that the continuity of Qf in X, follows by simple inspection. The same holds for Qs in X,

and Z' since Ry = (2m)?R(0) = (27T)d||R||Loo(Rd), recalling that R is a correlation function.
Regarding the continuity in Z’ for G2, we have for any p € Z, t > 0,

IG2llz = (27r>4d/R4d(1+!uP+\ul£!+!£I>(1+\vl2+lv|!<\+\cw
\fgo(u, E - tuv v, C - tV)’dﬁdUdde,

< /Ru(l +t 4 (L+20)[uf* + [ull€] + [€) (1 + ¢+ (L+2)[v]* + |vlI¢] + [C])

| Fo(u,&,v,¢)|dédudvd¢ (2m) ™" < A(1+1)*|¢]z,

which yields by duality that ||gt2||£(Z,) <4(1+1t)2% O
We can now state the following corollary:

Corollary 3.4 Assume that ag € X, and Sy € C°([0,T], X}), for any T >0 and 1 < p < oo.
Then, (18) admits a unique solution in C°([0,T], X,) such that:

GROTHSI

lallcoo.r1,x,) < llaollx, + e lleofo,17,x,) - (19)

When K, := 0, then (17) has a unique solution in C°([0,T],Z') such that

2
lallcoo.r,zry < 4(1+ T)?[laoll 27 + ¥F DSy [|eojo.77,27)- (20)

Proof. According to item (i) of lemma 3.1, ;) is continuous in X, so that using lemma
3.3, the operator

t
a / e 2R0t=)G2 10, + K,)a(s)ds
0

is also continuous in C°([0, 77, X,,). Existence and uniqueness then follow from standard fixed
point theorems while estimate (19) follows from the continuity of G? when S; := 0. When
ap := 0, (19) is an application of the Gronwall lemma, using the fact that [|KC;[z(x,) <

4|\ R L1 (rd) = 4R since R is a correlation function.
The well-posedness of the 4-transport equation in Z’ when K, := 0 and estimate (20) are
also easy applications of lemma 3.3, fixed point theorems and the Gronwall lemma. 0O

3.4 Well-posedness of the 2-transport equation.

That section deals with the classical kinetic equation:

0
87j+p'vxa+ROa = Qa+5a G(O,X,p):ao(X,p), (21)

(Qa)(t,x,p) = y R(p —pa(t,x,p’)dp’.

We show that (21) is well-posed in the spaces Y}, and Y and that the non-ballistic part of the
solution is more regular than its ballistic counterpart. We obtain additional estimates that will
be used to prove that the scintillation is dominated by the ballistic component of the wave.
We have the following lemma:

12



Lemma 3.5 Let E =Y, or Y and assume that ag € E and S € LY((0,T), E) for any T > 0
and 1 < p < oco. Then (21) admits a unique solution in C°([0,T], E) such that

lalleoo,r,) < llaolle + ISl i 0,1),5)- (22)

Let S := 0 and let a®(t,x, p) := ag(x — tp, p)e Tl be the ballistic part of a. Then, assuming
that Frag € L' (R??), ag € Y1 N Yoo, we have the following estimates for all t > 0:

(@ —a®)(t, )|y S+ / sup |Fao(v, &)|d€ < 74| Ficao | 11 (geay, (23)
R4 veRd

(@ — a®)(t)ly < (laollylaolly; /) A (¢ llaollys ), (24)

@ — a®)(t, )l S llaollv (25)

Proof. The proof is a direct application of the integral formulation of (21),

¢
a(t) = e f'Gyag + / e folt=)G,_ O(a(s) + S(s))ds,
0
where G; is the free transport semigroup given by

Gia(x,p) := a(x — tp,p).
The operators Q and G; are both continuous in E. Indeed, for ¢ € E, we have:
FGip=Fp(u,§+tu) and  FQp = R(§)Fp(u,§),
so that

1Gielle <llelle and Q¢ < [[Rpe®a)llelle-

Existence and uniqueness as well as (22) are deduced as in lemma 3.4 from standard fixed
point theorems and from separate applications of the maximum principle and the Gronwall
lemma.

For S = 0, we have the following Neumann series expansion in terms of multiple scattering;:

t
a”(t):/ e folt=9)G, . Qa"1(s)ds,
0

with the ballistic part a®(t,x, p) := e Folag(x — tp,p). By induction, we find the following
expression for the Fourier transform of a™:

Fa"(t,u, &) = _Rot// / R(E+ (t—sp)u)--

R(& + (sp—1 — sn)u)Fap(u, & + tu)dsy - - - dsy,. (26)

The change of variable £ + tu — k yields

e—Rot
")y < SR Fao(v, k)|dk,
0y < Rl e [ s Pt

e*Rot

nltd—n

IN

”RHzoo(Rd)H]:kGOHLl(R?d)'
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Summing over n > 1 gives (23). Regarding (24), we have from (26) and after the change of
variable t — s1 — s1:

Far(tu) <
Fa"(t,u,€)| <

(n—1)!
In order to control the Y norm, we first need to integrate with respect to u, either Fag or
R and to obtain a regularization effect, the natural choice is R. Therefore, for 0 < tg < s1,
for a typ € RT be set latter, we use R(£ + sju) after the change of variable syu — u and can
thus control ag in the Y., norm for which we expect uniform bounds when ag is a Wigner
transform. When 0 < s < tp, we cannot use R since the time singularity is not integrable
and have to control ap in Y7 norm instead which is more singular. Splitting the integral for
s1 € [0,t] and s; € [to,t] then leads to

Rl | Fan(u, € + tu) \/ s R+ sw)ds. (27)

" 6—Rot
[a™ (@, )lly < TR 7~

S ] (@ =17 e e = e R sy o e

L°° (R?)
| Rl oty ol )

Iy,

Setting tg = (||a0|| ||a0\ ) At and summing over n > 1 then gives

1/d 1-1/d 1/d 1-1/d
la(t, )y < laolls.llaolly; /* + (llaolls/llaolls: %) A (¢ llaolly:)-

From (27), we also have ||a(t,)|ly < tllaolly, so that taking the best estimate between the last
two ones gives (24). (25) is obtained by directly integrating R(§ + sju) w.r.t. £ in (27). O

4 Proof of the theorems.

In this section, we prove theorems 1 and 2. The rather long proof is split into several parts;
we first the outline the main ideas of the proof.

4.1 Outline of the proof.

We start with the integral formulation of the 4-transport equation (7) in terms of the transport
semi-group (G2¢)(x,k,y,p) = p(x —tk,k,y — tq,q) and the scattering operator Qy. It reads

t t
B0 = [ e RIGE (ot k) ay(s)ds+ [ HUIGE Ky @ ()i (28)

Defining

t t
Tp(t) == /O e =G Qup(s)ds ;T e(t) = /0 e =G K p(s)ds,

t
Ty =T+ Tr}zc ; Jf;(t) = / eiQRD(tiS)gtz—sKnan ® a(s)ds,
0
we recast (28) as
Ty = Tandy + J0.

According to corollary 3.4, (28) admits a unique solution in X, for 1 < p < co. As a conse-
quence, the dynamics of .J;, is basically driven by that of Jg . Depending on how is singular in
7 the initial condition a,, the behavior of J, as n goes to zero can be very different. A first
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distinction is whether 8 > 0 or 8 = 0. By analogy with (9), the first case corresponds to initial
conditions localized in the momentum variables while the second corresponds to smooth initial
conditions in the momentum variables, regardless of the regularity with respect to the spatial
variables. The second case is the easier to treat since the dominant part of J,? converges in the
Xoo norm and we can pass directly to the limit in the equation on J;, since it is stable in X,
leaving alone the term TéCJn which requires a particular treatment. On the contrary, as soon
as the initial condition is singular in momentum, i.e. 3 > 0, Jg does not converge in X, any
longer but rather in the smaller Fourier weighted space Z’ so that its limit Jg involves some
derivatives in the physical space. We then cannot pass to the limit in the equation since it is
not stable in Z’, the highly oscillating operator K, having a norm of order ! in £(Z’). We
are thus lead to study the convergence of J, by setting .J, = Jg + J%, so that J% solves

Jy = TonJy + ToyJy.

The convergence of JS can be completely characterized in Z’ and is partly analyzed in section
4.2. Tt thus remains to analyze J%. To do so, we distinguish in the TgnJ,? source term the

smooth part Qs from the oscillating part K, by splitting J% as J,} = J% Q4 J%”C with

Jpe = Ty e+ T, (29)
Tk = Ty g+ T (30)

The limit of J% also depends on the singularities of the initial condition, which determine

whether J,}’Q or J% K is the leading term. As long as the initial condition remains sufficiently
singular in the momentum variables compared to the spatial variables, which is mathematically
expressed by the relation 5 > 2a — 1 when d > 3 (so that @ < o* = % when =1 — «), the
dominant term in J,, is given by J% X The condition when d = 2 is slightly more complicated
but the main ideas are the same. In the case f < 2a — 1, the dominant term is Jg + J%’Q.
When § = 2a — 1, both dynamics are of the same order and coexist. Another distinction is
whether o > [ or not, that is whether the initial condition is more singular in the spatial
variables than in the momentum variables. When a < 3, the source of scintillation is given
by a source term in the limiting equation for the rescaled J,,. When o > f3, it is given by an
initial condition. All cases can be treated within similar frameworks.

When the initial condition is singular in the spatial variables, i.e. a > 0, we show that
the dominant term in 7, ,’]CJ,? (which will be denoted by 7, T’]CJ,?O) is induced by the ballistic part
of a,, so that TqécJ,? can be replaced by TT’]CJ,(;0 for the X, strong topology in the equation

solved by J% K This requires the analysis of a double application of the operator ;. When
the initial condition is regular in the spatial variables, that is & = 0, the ballistic and scattered
parts in Jg are of the same order so the full Tf,],? has to be considered. The analysis of the

term T, T;CJ,(; is done in section 4.3. We show that the term TfJ,%’IC is higher order in X, so

that the dominant term in J%”C basically solves a 4-transport equation with IC, := 0 and a
source term Tf,]go or T, ,;CJSO for the particular case a = 0. It then suffices to compute the
limit of the source term in X, and pass to the limit in the equation. This is partly done in
section 4.4.

Regarding Jﬁ ’Q, we need to take the limit in Z’ since the source term TQJQ in (29) converges
in that space. This is not directly possible since the operator K, is not bounded in £(Z).
Nevertheless, we take advantage of the regularizing properties of the GZQy operator in the
term T' QJT? to prove that J,%’Q has enough regularity so that 7, T’]CJ%’Q is of higher order and
can thus be neglected. This step is not possible when considering the term J,? without the
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regularization of T<. Hence, the operator T: oy can be replaced by T2 and J,% Qs a morally a
solution to
1,9 _ 1Q 71,Q Q 70
Jp= =TIy~ +T=Jy,

which is stable in Z’ as proved in lemma 3.4 so that we can pass to the limit in the equation.
The term J%’Q is studied in section 4.5.

In sections 4.6 and 4.7, we give the proofs of theorems 1 and 2. One of the main math-
ematical tools used in the analysis is the dispersive properties of the transport semi-group
Gip(x,p) := p(x —tp,p). For instance, consider an initial condition of the form (9), applying
G; and Fourier transforming it gives e~*(xoutko:(§+tw) g0 (nay n'=2 (€ 4 tu)). To control the
Y, or Y norms, the latter expression needs to be integrated in u. When ¢ = 0, this gives
a homogeneity of order n~*¢ without any possible refinement. When t > 0, that order is

optimal as long as a < % When o > %, the change of variable u = t~!(z — ) offers a control

(a—1)d 2a—1

proportional to t~% , which becomes optimal as soon as t > n

First estimates for a,. We give here some preliminary estimates for the solution a,, of the
transport equation (5) with initial condition ap.

Lemma 4.1 Let a, be the solution to (5) with initial condition a,y. Assume hypotheses H
are satisfied and let

d d
Fy(t) = 0P| VEay(t)llva, + 1P VEay(8)lly; + 0P| VEan(t) 5,
or p = 0,1, with the convention that V%a := a. Then, for any T > 0
Jorp=0,1, x s Y ;

sup Fy(t) < F(0) S 1. (31)
te[0,7

Proof. The case p = 0 is a consequence of the definition of the different spaces, the stability
of the transport equation proved in lemma 3.5 and of the fact that a,, is the Wigner transform
of a regular L?-bounded function tpy. According to (22), we have, for ' =Y1, Y, YV

sup |lan(t)| e < |lay(0)] &,
te[0,T]

so that it remains to control ||a,(0)|z. We have
an(0,x,k) =E 1/ e®Yap (0, x — Qy W) (0,%x + Qy w)dy
n ) Xy (27T)d Rd n ) 2 ) n ) 2 ) )

with ||wn(0)”%2(RdXQ7dxX]P) =FE |:/]Rd wn(O,x,w)|2dx] < C, with C bounded independently of
7. Applying Fubini, we find, for the Fourier transform of a,,

faﬂ(07 u, €) = e_m%u.g £ [/ fwn(tv u-—yv, W)Fwn(t7 v, w)dv] )
Rd
so that the Fourier-Plancherel equality yields
llay (0)llyze S 195 (0) 72 (max0,axxry < €

which gives the bound in Y. For the other estimates in Y7 and 17, we have directly, according
to hypotheses H:

—ad
lan(O)llvi < [[Fxanollpr(raay S 07,

lagO)lly < I Fianoll i geay S 1%
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Regarding the case p = 1, it suffices to notice that Va,, satisfies the same transport equation
as a, but with an initial condition Vya,o, so that following the same lines as above yields the
result. D

4.2 The Jg term.

We recall that J,? and its ballistic part JSO read
t t
J0(t) = /0 MG K0 @ ag(s)ds,  JO(t) = /0 e 2R=9G2 K a0 © a(s)ds,

where a(,)] (t,x,k) = e Folg,o(x — tk, k) is the ballistic part of a, and a,o the initial condition.
The main result of the section is the following;:

Lemma 4.2 Assume hypotheses H are verified. Then, J,? and J7(7)0 satisfy the estimates, for
any T > 0:

d(l*O&)‘l’Oﬁi’ﬁ(d(a*ﬁ)*Oz)\/o when d > 3
sup (790 = I 0lxe S 4 Ty ayrar ases -0 (32)
t€[0,T] n (n |logn|) A1 when d =2,
sup (177 (0l xo + 720D x) S 7TV, (33)
t€[0,T]
d(lfa)+27a+ri1((d(ozfﬂ)fa)\/o when d >3
sup HJ,?(t) - Jgo(t)HZ’ S n2(1*0¢)+2704 a—2 — (34
t€[0,7] n (n |logn|) A1 when d =2,
sup (II77 ()l z + 17" (D) 21) S pldFUm BV, (35)
t€[0,T]
Here, a A b= min(a,b) and a V b = max(a,b).
Proof. We start with (32) and write
t
JO(t) — JO(t) = /0 e 2Ro=9g2 K, ((ay — al) ® ay(s) + a) @ (ay — al)) ds. (36)

We then apply item (ii) of lemma 3.1 with first p = ag and v = a, — ag, and secondly with

v=ay,and u=a,— ag according to remark 3.2, to find, for any s < T,

I11Cy ((ay — ap) @ an + ajy @ (ay — ap)) (s)llx.e S 1%11(ay — ap)(s)lly (lag(s)llvee + llapllve.) -

From lemma 4.1, we know that a,(s) is uniformly bounded in Y5, with respect to n for all
s < T, and so does aj). This leaves us with the norm of a, — a) in Y. According to (24) of
lemma 3.5, we have

1/d 1-1/d —d —ad —ad
@y = ap)()lly S (ol lanolly; ) A (sllanollys) S m= A (sn7%) S n=oU(n™ As),

since [|ano|ly. + 17%¢lanolly; is uniformly bounded according to estimate (31). Consequently,
for all t < T, owing the fact that the semi-group G? , is continuous in X, see lemma 3.3,

t
179t — I xe S 0 /0 e 21l=9) | (ay — a0) () ly (lan(s)llyoo + lladllvoo) ds,

S tnd(lfa)Jroz_i_nd(lfa)JrQoz. (37)
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This proves (32) when d(o — ) — a < 0. The estimate is not optimal for the remaining cases.
Therefore, instead of using (24) and to take advantage of the fact that the scattered part
ay — ag is smoother than the ballistic part ag, we use (23) to estimate a, — a?l and split the
time integral in the definition of Jf]) (t) — J1(7)0 into contributions in [0, tp] and [to,t]. For short
times, we proceed in the same manner as (37) and obtain the bound to @1 =)+ 4 pd(1—a)+2a

For times larger than ¢y, we apply (23) and finally obtain, for all ¢ < T and t > ty,

t
796 = IR xS 10 b0 U g Pl ey [ 5,
to

5 nd(l—a)+2a+t0nd(1—a)+a+hd(t0)nd(1—ﬁ) _{_nd(l—ﬁ)’

n~P% according to hypotheses H. Setting then ¢ty = nﬁ(d(a_ﬁ)_a) when d > 3 and tg =
ne=B)=|logn| when d = 2 gives (32) when ¢t > to. When t < ty, we simply use (37). We
proceed analogously to estimate J,?O. We first have:

where hg(to) = t27% when d > 3 and hg(tg) = |logto| if d = 2. Recall that | Fxanoll L1 (r2ay S

t
19O x. < 1 /0 =20 [0(s) [y [a(5) Iy s,

0

so that, since a,

is uniformly bounded in Y, and Vs < T,

lan()lly < llag(s)lIv <07,

we find, for t < T,
10| < ™)

The latter estimate is used for the case a < 3; when 3 < o we need to split the time integral
over s in [0, to] and [to,t]. Using the fact that

o)y < sup [ 1Fong(u &+ wldn
S

IN

5 / Sup | Faan (2, w)|du < 5~ Fieano| 11 ey < 5=,
R4 zcRd

we have for all ¢t < T,

< nd(l—oc)-‘,—a—,@’

~

179°(0) 1 x5 tom ) 4 10

by setting to = 7* . This gives (33) for the JSO part. Regarding the Jg part, we simply
remark that, for any a,3 > 0, Jg — Jgo is of order higher or equal than J,?O. Thus (33) is
proved.

The proof of (34) goes along the same lines as above, so that we just underline the differ-
ences. We start from (36) and use the stability of G in Z’ proved in lemma 3.3. Moreover,
item (iii) of lemma (3.1) gives

d
Iy (an —ap) @ agllzr < 0™ (IVx(ay — ap)lly [ Vxanlvee + [V(an — ap)llyllag|lvee
lay — aplly [ Vxayllyae + llay = apliyllayllvz.) -

The leading term in the latter expression is the first one since it involves two derivatives
Vx(ay — ag) and Vxa, and is thus expected to be at least a factor ™% greater than the other
terms (see lemma 4.1) which we subsequently neglect. We then proceed exactly as for (32) by
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splitting the time integration for short and long times. The function Vya, is solution to the
same transport equation as a, with the initial condition replaced by Vxa,, and so we can use
(23) and (24) to find, for s > 0,
0 1—d 1-d, —dB—
IVx(ay —ap)(s)lly S 8" UFuVxagollprgoay S 8",

1/d 1-1/d —da -
1Vx(an = aD@ly S (1IVxanoly I Vxanoly; /) A (s Vxanollva) S 071 A 7)),

thanks to lemma 4.1 and hypotheses H. This finally yields, together with n®||Vxa,(t)|v. <1
according to (31), for any ¢ < T,

t
|’J2(t)—JgO(t)|’Z/ < nd(l—a)+2+t0nd(1—a)+2—a+nd(1—,6)+2(1—a)/ Sl_dds,
to

5 nd(l—a)—l—?+t0nd(1—a)+2—a+(hd(to)+1)nd(1—ﬁ)+2(1—a),

where hg is the same as before. Setting ¢ty = nﬁ(d(afﬁ)fa) when d > 3 and tg = nz(o‘*ﬁ)*oﬂ log |
when d = 2 gives (34). Regarding (35), using the estimates of lemma 4.1, we find

t
17° Ol 2 < nd“/o IV () lly | Vxaty(5)llysods

< t0n(d+2)(1fa)+t(1)—dnd(1fﬂ)+2(1fa)7

and setting tg = n® P yields the estimate on JT?O in (35). Regarding J,?, it suffices to notice

that Jg = Jg — JSO + Jgo and that for any «, 8 > 0, Jg — J,(]]O is at best the same order as JSO.
This concludes the proof of the lemma. 0O
4.3 The terms T,’]CJ,?.

We recall that T7I;CJ7(7) reads
t
TT;CJP](t) — /0 eiZRO(t*s)QE,SKnJS(S)dS,

t s
N /0 /0 eiQRO(tiT)thszngiT Kyay @ an(7)dsdr, (38)

and involves a double application of the operator K, that needs to be treated carefully in order
to find optimal estimates. The Fourier transform of T, fjg is given by

t S
(FTF I (¢t €, v, ¢) =t / / / dsdrdwdw' e 2f00=7) R(w')R(nw) (39)
0 Jo JR2d

xg(t,s, T,u,€&, v, C,W,w')]-"a,7 ® an(T, u—w— nflw',
E+(t—Tu—n's—nW,v+w+n W, (+Et—T)v+n (s —7)W)
with

g(t,s, 7,0, &, v, ¢, w,w') =16 sin(w' - (€ + (t — s)u)/2)sin(w' - (¢ + (t — s)v)/2)
xsin(nw - (€4 (t —T)u—n"1(s — )W) /2) xsin(nw - (¢ + (t = 7)v + 7L (s — 7)w')/2).

The term Fa, ® ay, (T, u,§, v, ) stands for Fa,(7,u,§)Fay(r,v,{). The Fourier transform is
obtained by using that

(FKyh)(u,&,v,¢) = —4nd/ sin (17w2£> sin <7’V\;C> R(nw)]—"h(u—w,&,v+w,€)dw,
Rd
(FGEh)(w,&,v,¢) = Fh(u, & +tu,v,{ +1tv),
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see the proof of lemma 3.1 for the first relation and that of lemma 3.3 for the second. Let us
consider functions of the form

t s
- / /0 e 2Ro=1)G2 K, G2 Kby @ cy(T)dsdr,  t<T,

for two functions b, and ¢, with ¢, satisfying the estimate (31) of lemma 4.1. The following
result will be used several times in the forthcoming sections:

Lemma 4.3 Let b, and ¢, be two functions in C°([0,T],Y1 N Yoo N }7) with ¢, satisfying (31)
forp=0. Then, for any 0 <t <n®,

1

3 -3 [e] —a
Gy (Ol xee S (nd“ sup {|by(s)[[5 sup by (s)lly d) v <n2 P2 sup ||b77(2)H}7>’

s€[0,7 s€[0,7 z€[0,T]

and for any n® <to <t < T, ||Gy(t)|x. S A(t) A B(t, to) AN C(t), where

~

—Q l_l o -«
A(t) = (“IdH sup |[|by (s )H~ sup |[by(s)lly d) v (7577 24079 sup an(Z)Hf/),

s€[0,7T s€[0,T z€[0,T]

B(t,to) = A(to) + n?1~ a/t/ b, (s )|y sdsdr

+7 7 (ha(to) V ha(t)) sup [lby(2)5

z€[0,T7]
C(t) =t*n" sup_|[by(2)]ly,
z€[0,T]

where for x > 0, hg(z) = 22~¢ when d > 3, hq(z) = |logz| when d =2, a A b = min(a,b) and
a Vb= max(a,b).

Proof. For a given time to € [, t], we split the integral over [0, ¢] into the two parts [0, to]
and [to,t] and denote by G1 and G2 the corresponding terms. When ¢ty = ¢, we only need to
treat G1 since G2 vanishes. ThlS Wlll give the A(t) part of the lemma. When tg # ¢, we need
to estlmate G2 as well and obtain the B(t to) part of the estimate. The C(t) part is direct
consequence of the continuity of G? in Xo

First part: G717. Starting from (39), we make the change of variables w = u — wy — n~'w’

and 7 = s — 11n® to get:

to A .
(Fetw & v &) =1 / / / dsdridwdw' e 2Rot=s+1°7) R(w/ ) R(n(u — wy) — w')
R2d
X g(t $ 8777 71, U, Eav Cau W1 *77_1W/ W,) fb ®Cn(8f77 1, W1,
E+(t—s+n*nu—n*rw,viu-— WlaC+(t_5+77 TV + 0" rw)

to t1 to
:/ / d8d71+/ / dsdﬁ—{—/ / dsdry = I+ 11+1I1.
n t1

for a constant 0 < ¢; <1 to be fixed later. Since |g| < 16 uniformly in all variables, we find

~ to a1 ~
sup |I] < 16nd+a||R”Loo(Rd)/ / sup/ dsidrdwidw’ R(w')
[0,T] x R4d pe Jo o =<7 Jr2d

‘fbn @ ¢y (Z7W17£ + (t -5+ ?70‘T1)u — nailTW/j
Vihu—wy, (s ntn)v 4 gt inw)|
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< 1640ty | Rllpoe ey | Bllprrty sup [155()ly sup lle(2)lvee S totan®™sup_ 15,(2)lly
z€[0,T] z€[0,T] z€[0,T)

since ¢; is uniformly bounded in Y, as it satisfies lemma 4.1. Concerning /I, we perform the

change of variable w' = f(w}) == 0!~ H(~w| + &+ (t — s +n°m)u) and wy = v +u—w

so that:

to s«
II(t,u,€,v,¢) = ptretdize) / / / dsdrdwdw] e~ 2Roli=stn"m) 7 d
A . n® Jt R2d
XR(f(Wll))R(n(W — V- f(Wi))g(t, 5,8 — 77a717 u, 57 v, C7 W —V — Uilf(Wll), f(Wll))

XxFby ® cy(s —n*m,v4+u—w,wi,w,{+ &€+ (t— s+ %) (v+u) —w).

We then find, since sn™® > 1 and t; <1, fntg tjn‘“ deTlTl_d < t%_dto, so that,

. to psnT®
sup |II] < 16nd+a+d(1—a)HRH%m(Rd)/ / sup/ dsdr dwdw) Tl_d
[0,T] x R4 n* Jt 2<T JR

‘}"bn®cn(z,v+u—w,w’1,w,c+£+(t—s+n°‘rl)(v+u) —Wll)‘

St ton™ T sup by(2)ly sup len(2)lly; St ton® PN sup by(2) 5,

~

z€[0,T] z€[0,T) z€[0,T

since [|c,(2)[ly; S~ for 2 < T by lemma 4.1. Setting

=

n= (s Il)" (s )

z€[0,T 2€[0,T)

gives:

_ 1 1—1
swp (141 S (tn™ sup [by(s)E sup [y %)
[0,T]xR4d s€[0,T7] s€[0,T7]

v (to 2= o 6 (2)ll5)- (40)

z€[0

It remains to treat I11. After the change of variable s = n%s1, we find

t1 S1 1 t1 1 S1
77_&[[[:/ / (-)dsldTl—l—/ / (')dsldﬁ—}—/ / (-)dsldTl,IZ I+ 111+ 1113,
0 0 t1 JO t1 Jt1

for the t; defined earlier. 11y and IIl5 are treated as I and 1113 as I1. This yields

sup [IIL] S 9™ sup ||y (2)lly,

[0,T]xR4d z€[0,T]

sup |ITL| < tin™® sup [|by(2)]y,
[0,7]xR4d 2€[0,7]

sup |III] < 417 207 sup b, (2) |5
[0,T] x R4d 2€[0,T)

We then find the estimate:

1 1—1
sup (111] 5 (0™ sup [by(s)[12 sup [en(s)lly *)
[0,T]xR4d s€[0,T] s€[0,T]

V(P sup [l (2)]l5). (41)
2€[0,T]

Therefore, I11 is either negligible compared to I 4+ I] or is of the same order when @ = 0. We
turn now to the second part.
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Second part: G%. Starting from a similar expression as (39), we make the change of variable
7=5(1-n'""%7) and find

t 1704 1 -
(FG)(t,u,€,v,¢) = n™H17) / / / dsdmdwdw! e=2Folt=s(=n'"2m))
to JO R2d

XR(W,)R(UW)Sg(t> S, 8(1 - 771_a71)7 u, 57 v, C7 w, W/) (42)
X Fby @ cp(s(1 — o) u—w—n 7w €+ (t—s(1 =t 7%))u — n Ysmw,
v+ w+ 77_1w', C+(t—s(l— nl_O‘Tl))v + 17_0‘57'1W').
We split the integral over 71 in [0,1] and [1,7%"!] and denote by I; and Iy the associated
terms. Regarding I, we make the change of variable w = —w; +u —n~'w’. We then control

¢y by its Yo norm, b, by its ¥ norm and integrate R with respect to w’. This yields the
following bound for I, with g uniformly bounded in all variables:

S T INRY oy | Rll 1ty suplen(2)lvac
[0,7]x R4d 2€[0.7]

t 1
x// b (s(1 = 7)) |y sdsdr,
to JO

sup || 3

t 1
S 0 [ (s = gty sdsdn, (43)
to JO

since ¢, is uniformly bounded in Y. Regarding now I3, we perform in (42) (with the second
time integral replaced by [1,7%7!]) the change of variables w = w; — v — n~'w’ and w' =
n*(st1)"H—wi + &€+ (t — s(1 —n'=%m))u). Controlling ¢, by its ¥; norm and b, by its Y
norm we find the estimate

o —a) || D ! — OodTl
sup B S R ) s @l s [l [ st [0
[0,7] xR4d z€[0,T) z€[0,T to 1

o
< (ha(to) V ha(t)) n*+ (=) P 1 (2) [l (44)
z€|0,

since supcpo,7) llen(2)llvy S n~2. Above, hg(z) is the same as before.

Last part: the C term. Starting from the definition of G,, using the continuity of G,
together with item (ii) of lemma 3.1, we obtain, uniformly in ¢:

1Gy()llxe S 0 sup [by(2)lly sup [leg(2) v < 80T sup by (2)lly-
z€[0,T) z€[0,T) z€[0,T)

Conclusion. Setting first tg = t > n® so that G% vanishes yields the A(t) and C(t) part of
the result thanks to (40), (41) and the estimate above. The second part when n® <ty <t <T
is obtained by gathering (40), (41), (43) and (44). When ¢t < n®, the estimate is obtained
along the same lines as for (41). This ends the proof. O

We now state the main result of this section, which provides us with an estimate, which will
be shown to be optimal for certain initial conditions, for T,QC J7(7)0 and shows that the non-ballistic
part is higher order.

Proposition 4.4 We have the following estimates:

sup [T T2 (0)lx.e S 0078 ([0 falm)| A1) v (pldD0me0re) (a5
t€[0,T]
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nd(lfoz)+1+(afdfdlﬂ)\/0 when d > 4,
sup HT’C( JOO)(t)HXoo S Pt (e v (|lognn?*38)) A1, whend =3, (46)
e 2= (2 (| logn| Vi P AL, whend =2,
Above, fi(n) =1 when d > 3 and fo(n) = 14| logn®~%|, aAb = min(a, b) and aVb = max(a,b).
Proof. We first separate the ballistic part from the scattered part by writing
K 70 _ K 700 K¢ 70 00
Ty Jdy =T,y + Ty (T, — ),

and estimate the ballistic part T,’]CJSO.

The ballistic part. The expression of T}/ K Iy 00 is given by (38) with a,, replaced by a (t x, k) =
e fotq,0(x — tk, k), where a,q is the inltlal condltlon The ballistic part a77 tr1v1ally satisfies
estimate (31). In particular, we have
sup_(n*?ay(t)ly, + ")) S 1
te[0,7
We now apply lemma 4.3 to the case ag = b, = ¢,. Controlling the ¥ norm of a% by its Y1
norm, it comes from the first estimate of the lemma for ¢t < n™:

Sfup HT’CJSO(t)HXoo 5 nd(l—a)—f—l—ﬁ—f—a V n2o¢+2d(1—a)—dﬁ' (47)
tel0

For longer times t > n®, we use first the A(t) part of the lemma. It comes, Vt € [n*, T1:
[T St 01 y (et adi-e) -, (18)

~

That estimate is optimal 5 > «, that is when the initial condition is more singular in the
momentum variables than in the spatial variables. It is not optimal in the reverse setting when
«a > 3, for which we need to use the “B” term in lemma 4.3. For this, setting n® < ¢y <t
and assuming « > (3, we control the different terms in B according to n to obtain the leading
contribution. Since A(tg) has already been estimated before, the only remaining term is

// Ha (1 —n""%))|ly sdsdr
to

— //e_Ros(l_nlaTl)sdsdﬁ sup/ |ano(u, & + s(1 —n' =% )u)|du,
to JO R4

£eRrd

t 1
/ sl_dds/ (1—171_0‘71)_dd7'1/ sup | Fano(z,u)|du,
to 0 R? zcRd
S hd(to) V hd(t) /Qd ]fkang(x, u)\dxdu SJ hd(to) V hd(t) n_dﬁ,
R

IN

since || Fxanoll L1 (r2ay S n~P% according to the hypotheses H. Above, for z > 0, hg(z) = 2>~¢
when d > 3 and ho(x) = |logz|. Let tog = n® . Then using (48) and the B part of lemma
4.3, we find

e ITEIC Ol S (ton™ = F170) v (2ot 20070709 g (1) 0= 1,
€lto,

~

< (nd(l—a)+1—ﬁ+a—ﬁfd(n)) V. (n2a+2d(1—a)—dﬁ+a—ﬂ)' (49)

Above, f4(n) =1 when d > 3 and fa(n) = 14 |logn®~"|. Using (48), we finally verify that the
contribution of times n* < t < ty is included in the previous cases. Selecting the best estimate
between the latter, (47), (48) and (49) then ends the proof of estimate (45) for the ballistic
part.
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The non-ballistic part. The proof follows along the same lines as that for the ballistic part
so that we simply underline the key differences in the analysis. We have, Vt € [0, T:

T (0 — Tt / / e 2UNGE K6,
((an — a) ® ay + ay ® (ay — ay)) dsdr = Ty + T.

Since a, and ag have the same homogeneity in 7 in the various spaces needed to estimate T}

and Ty (i.e., Yoo, Y and )N/), the two terms 77 and 75 are treated in the same manner and
we consider only T7. We use lemma 4.3 with b, = a, — a% and ¢, = a,. This requires us to

estimate a, — a in Y and Y. From estimate (25), we have for all ¢ < T,

n
I(ay — a)®lly < llagollvee S 1,

and moreover ||(a, — ag)(t)Hy < |[(an — an)( My, < n7¢ according to (31). Assume first that
t > n“. Then, the A part of lemma 4.3 gives for such t’s:

Slild) |T1(t)| 5 (Ud(l_a)+1t) V (t772a+2d(1_a)) _ nd(l_a)+1t. (50)
R

The above result is not optimal for all possible values of a and (. To refine it, we use the B
part of lemma 4.3. Assume first that d = 2 or d = 3. Then, for n® <ty <t, (23) gives

t 1
| ey = asta = -emply sasn

/ ol / ) dr / | Frano(x,u)ldxdu < [ig(to) Via(t)n~ %,
to R2d
where for > 0, ia(z) = = and i3(z) = |logz|. When d = 2, we can use lemma 4.3 with

to = n®~ 28 together with (50). This yields, Vt € [n®, T],
sup [Ti(t)] ton® 1 4 (ia(to) V iz (1)) 4 ha (o) 0
R

< PO (728 4 log n|n®).

The latter result gives, together with (50), estimate (46) for times ¢ > n“ when d = 2. When
d = 3, we choose tg = n“ and obtain with the B part of lemma 4.3, together with (50):

sup [T (1)| S n* = (5" + [log nls* 7).
R

Along with (50), this proves (46) when d = 3 and ¢t > n®. Consider now the case d > 4. Still

using (23), we rather estimate a,, — a% inY as, for n® <tg <t,

t 1
| e = a)ista =ty sdsin
to
/ 2 d/ 1 ddTl’ /Qd |Jfka7]0 (X7 u)’dXdu S.z (t - t()) hd(to) T,idﬂ’
to R

so that lemma 4.3, yields with (50) and ¢y = nafﬁﬁ
_ __d
slg) ITh(t)] < tond(l—a)-H + hd(to)nd(l—ﬁ)ﬂ—a + hd(to)ﬂd+1_a < 77d(1 @)+lta— g4 8
R

This proves (46) when d > 4 and t > n®. It remains to treat the times t < n® and n® <t <ty
for any dimension d > 2. In the latter case, we use (50) with ¢ < ¢y for the different values of
to defined earlier when d = 2,3 and d > 4. The obtained results are included in the previous
case to < t. When t < n®, we use lemma 4.3 and find a bound of order n¢1—®)+1+e which is
higher order than the other terms. This concludes the proof. O
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4.4 The term J%”C

We recall that J%”C = TQHJ#K + 1T ,’,CJS, so that its homogeneity in 7 is basically given by that

of the source term Tf,]g.

The ballistic part gives the leading order. Using the results of the preceding section
on TfJg , we first show that the leading order in J%”C is given by that of TéchO. Let J,%”C =

J%’K + Jg’”c, where J,?’IC and Jf;’”c solve
Tl =Ty 2+ TN I =Ty N+ T () — T0).

In the sequel, A negligible compared to B in X means the norm of A in X verifies an estimate
with higher degree in n than does B. We say they are of the same order when the degree of n
is the same for both estimates. We have the following proposition:

Proposition 4.5 JS’K is negligible compared to J,%K in CY([0,T], Xoo) when B > 0. When
g =0, JS”C is of the same order for any « € [0, 1].

Proof. When 8 > 0 and for any d > 2, the term JS”K is negligible in X, compared to Jg’lc
since the corresponding source term in the integral equation is higher order. Indeed, on the

one hand the stability of the 4-transport equation in X, expressed through (19) and estimate
(46) yield

gl AVO  hen 4> 4,
sup 5@l 9 a2 (lognlp* ) AL, whend =3, (51)
el P ([logn| vy *%)) AL, whend =2.

On the other hand, (45) gives

sup (1250 xS 00 ([P falm)| A1) v (@D BEe) o (5g)
t€[0,T]
with fy(x) = 1 when d > 3 and fo(z) = 1+ |logz®~P|. It is enough to show that the order
of Jg’lc is higher than nd(1-®)+1-68 [no‘_ﬁfd(n)] A 1. Assume therefore that the order of Jg’lc is
ptd-e)+1-4 [na*ﬁfd(n)] A 1. Under the hypotheses 0 < o <1 and 0 < 8 < 1, let us compare
the orders in 7 of Jg”c and JS’K. Assume first that d > 4. When a < 3, the order of Jg”c is
d(l1 —a) +1— 8 and that of JS’K is d(1 — o) + 1 so that the order of Jg”’c is always greater
since # > 0. When f < a < d%'llﬁ, the orders are d(1 —a) + 1+« — 20 and still d(1 —«) + 1.
JS’,’K is thus negligible when « < 23 which is the case in this configuration since a < %ﬁ,
with d > 4. When 743 < a, the orders are d(1 —a) + 1 +a—2B and d(1 —a) + 1 + a — ;43
so that the order of Jf;”K is always greater when 3 > 0 since d > 3. Assume now that d = 3.
The case a@ < 3 is the same as for d = 4. Suppose that 3 < a < %ﬁ. The orders are
3(1—a)+1+a—208 and still 3(1 —a)+ 1. Since a < %5 < 203, the ballistic part dominates. It
remains the case o > % 8. Aslong as a < 20, we are in the same configuration as before, when
a > 28 > 0, the scattered part is of order 3=+ (n> v (|logn|n?*~3%))) which is greater
than n31-®)+1+e=28 when ¢ > 26 > 0. Assume now that d = 2. The case a < 3 is similar
to the treatment above. When 3 < a < 283, J2X is of order n2(1=@)+1+a=28| 165 | and Jo™* of
order n?(1=+1 Since n < n't*=28|log 7|, Jg’}c dominates. When a > 24, the ballistic part
is of order p2(1—)+1+ea=28| 155 | > y2(1=)+1+a=28 which is the order the scattered part.
In all cases, the contribution of Jf;’”c is negligible as soon as 8 > 0. When § = 0, a simple
examination shows that JSZ’ K and Jg”c have the same order for any d > 2 O
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The TfJg”C term is higher order. We show now that the term T,;CJg”C can be neglected

when computing the limit. We first decompose Jg K into J#’K + J;? K where

I = T LT, (53)
Tk = TQJS Kpriak, (54)

We have the following proposition:

Proposition 4.6 When d > 3, J;;”’C is negligible in C°([0,T], Xoo) compared to Jﬁ”c as soon
asoz—|—ﬁ>d 3 3:% Whena+ﬁ<%cmda:10r
0 =1, both terms are of the same order. When d = 2, Jg’lc and JS’K are of the same order
when 8 =1 or when o = 1 with B < 1. In all other cases, J;?’IC can be neglected.

Proof. The core of the proof is estimating TffJg”C. To do so, we start by applying the
operator K, to the integral equation solved by Jg K This yields

2K _ 2,K K 700 _ 2,K K 72,K K 700
Ko 2% = KyTog P + KT I = K, TIN + K, T J2K + K6, T J°. (55)
First step: the term ICUTQJ,%’K. We will need the following lemma:

Lemma 4.7 Let h € C°([0,7T], Xs). Then, we have the estimate:

sup Ky T9h(t)|lx. S 0 sup [[A(s)] xee-
te[0,T] s€[0,T7]

Proof. We have:

t
K,T%h = / e 2Rolt=3)fc G2 Qoh(s)ds
0

t
]—"/CnTQh = 47]d/ / e~ 20(t=9) g <1nw : S) sin <1nw : C> R(nw)
0 Rd 2 2

X [R(ﬁ +(t—s)(u—w))+R(C+ (t— s)(v—i—w))]
XFh(s,u—w, €+ (t—s)(u—w),v+w,{+ (t—s)(v+w))dwds =T + I1I.

The terms I and I are treated in the same way so we focus on I. We first split the integral in
s on [0,t — to] and [t — to,t], where 0 < ¢ty < ¢, and denote the corresponding terms by I; and
I5. For I, we make the change of variable w = u + (¢ — s) (¢ — w1) and obtain, uniformly
for ¢ € [to, T,

sup |11 (2)]
R4d

IN

N t—to
W Rl ey sup [0(6) / / Riw1)(t — 5)-4dwds,

< 't sup ||h(5)|\Xoo-
s€[0,T]

To handle I, we cannot use the regularization of the operator G2 ,Qs and make the same
change of variable since the singularity in time is not integrable in the vicinity of t. Rather, we
make the change of variable w = n~!wy and integrate R with respect to wy. Thus, V¢ € [to, T):

sup [I(t)] < 4o |R]| oo ray || Rll 1 ray sup [[2(s)]| xoe -
RAd s€[0,T]

To conclude the proof, we set tg = ¢t when ¢ < 7 so that I; vanishes and only I> remains.
When 7 < t, we set tg = 7 so that I; and I have the same order. O
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We now apply the preceding lemma to h = Jg’lc. We find, using estimate (45),

sup [T () xS 027 ([0 fam)] A1) v (nf@D0=e=P%e) - (56)
te[0,7

with fy(z) = 1 when d > 3 and fo(z) = 1 + |log z®~A|.

Second step: the term IC,,T,;CJSO. We have the following lemma:

Lemma 4.8 ICnT,;CJf;O satisfies the estimate:

sup [, T T () xS

pd(1-e)+2(1-5) when d > 3,
t€[0,T

n?(1=2) (2= log n|) A 1, when d = 2.
Proof. We have, for any 0 < tg < t:

t t—to t
KT T0() = /0 e Hol=9)1c, G2 K, JP(s)ds = /0 - /t =TI
—to

For times s less than ¢ — ¢, we are able to use dispersive properties of the operator GZ. This
cannot be done for times close to t because of a non-integrable singularity in time. To estimate
the long time contribution, we rather use the continuity of IC;, in X and the estimate (45)
for TT;CJfY)O. Regarding I, we have:

t—1to s . . R
(FI)(t,u,&,v,¢) = 172‘1/0 /0 » dsdrdwdw'dw" e =207 Rinw" Y R(w') R(nw)

Xg(tv S, T, — Wﬂa £7 v+ W”a C? w, Wl? W”)
w—w e+ t—7)(u-w")—n s —1)W,

v+w+ntw +w ¢+ (t—71)(v+w') —1—77*1(3 — T)w’),

x]-'a?i ®a2(7,u—w —-n"

where
gt s, & v, ¢ w,w' w') = 64 sin(w' - (€4 (t—s)u)/2)sin(w' - (¢ + (t —s)v)/2)
xsin(nw - (€ + (t—T)u—n""(s —7)w')/2)
xsin(nw - ((+ (t=7)v+n" (s —7)w')/2)
x sin(w” - €/2) sin(w” - ¢/2). (57)

The latter expression is obtained by applying the operator K, to (39) with a, replaced by ag.
Using the fact that (Fa))(r,u, &) = e~ 7 (Fay)(u, £ + Tu), we find
]-"ag ® ag(T, u-—w-—n'tw-—w t+t-7)(u-w)—nls—1)W,
viwHn w4+ w +(E—T)(v+W )+ (s —T)W)
= e P Fap@ag(u—w—ntw —w E+t(u—w')—nlsw — 7w,
vtwntw +w (H+t(v+w)+nisw +Tw).

After the change of variable w = u — wy — 7 'w’ — w” and w”’ = (t — 7)Y (W] — ¢ —tv —
n~(s—7)W —7u+7w1), we find since § is uniformly bounded in all variables that V¢ € [to, T],

R t—to S R
sup |I(t)] < nZdHRH%w/ // dsdrdwydw'dw] R(w')(t — 1)7¢
0 0 JRr3d

sup |Fano(wi,€)| sup [Fayo(v, wr)|.
¢eRrd veRd
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We have:

0 0 ~ | |logt| + |logtol, when d = 2.

Since tg <t < T, the double integral above is controlled by a constant times 1 + |logto| when
d = 2. This finally yields, when d > 3, V¢ € [to, T},

up 1] 5 75 R | Rl sy lonolls [ | sup [ Fapo(v,w!)aw”,
R4d R4 veRd
d(2—a—p) ;2—d
S n ( “ ﬁ) to )
since [pa SUpyera [Fayo(v, w")|dw” < || Fanollp1(r2ay S 7P and when d = 2,
sup [1(1)| S 1*~*~ | log to.
R4d
Concerning 11, we have
t
I1(t) =K, e 2o(=)G2 K, I (s)ds,

t—to

so that the stability of ), in X, gives,

sup [11()] < \
R4d

t
/ e_QRO(t_S)QtQ_SICnJSO(s)dS
t—to

Koo

We now apply lemma 4.3 with b, = ¢, = ag, (the first time integral [0, ¢] needs to replaced by
[t — to,t] without any change in the analysis) and find, using the “C” estimate:

sup [11()] < 0’ sup flaj(s)lly S dgn07

~ ~

R4d s€[0,T7]

When § < 1, setting tg = n'™? <« 1 when d > 3 gives the estimate of the lemma. When
d =2, we set tg = n'%/]logn|. When 8 = 1, we simply choose ty = t so that the term I
vanishes and the estimate stems from I/. When ¢ < ¢ for the previously defined ty for d = 2
and d > 3, we proceed as for I1. This ends the proof of the lemma O

End of the proof of proposition (4.6). To estimate ICnJ,g’K, we go back to (55), use the fact
that the operators K, and G? are bounded in X, according to lemma 3.3 to write, V¢ € [0, 77,

t
TR Ol = | [ e 0,G2 T2 ()

0

¢

S [ I s, (55)
Xoo 0
so that, according to (55), Vt € [0, T:

t
1Ky T3 M (0 x S sup K,T2T25(5)l|x. + sup H’CanJSO(S)HXOOJr/ 1K T2 (5) ]| x o ds.
$€[0,T] $€[0,T] 0

From (56) and lemma 4.8, we compare ICnTQJg K and KnT, ,’ZCJSO and find that the leading order
is jq = =20 (n=0) v (nd-D-e=Ate) when d > 3 and jy = n*1=) (n®?1=9)|log y|) A 1
when d = 2, so that the Gronwall lemma finally yields

sup Ky T2 % ()1 x00 S da- (59)
t€[0,T]
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The latter results allow us to control TécJ,% X from the continuity of Qf in X, since
K K ! K
TN TP )l xe S [ I1Kn T2 (9)]x 0 ds.
n “n 0 n

We know from (53) and lemma 3.4 that J;“C satisfies the same estimate as Jg’K:. On the other
hand, we get from (54) and (59) that Jg’lc satisfies the estimate

sup [ 1o ()| xa S -
te[0,T

When d > 3, a direct inspection then shows that JS K s negligible compared to Jf; K as soon
as a+ [ > g:;,ora—l—ﬁ<%Witha<1andﬂ<1. Whena+ﬁ<%anda:10r
8 =1, both terms are of the same order. When d = 2, Jg”c and J,‘;”’C are of the same order
when 0 = 1 or when a = 1 with 8 < 1. In all other cases, JS”C can be neglected. This ends
the proof of the proposition. 0O

4.5 The J,%’Q term.
We recall that J,% € is solution to

JhQ =Ty, g1 + 720, (60)

The T,’]CJ%’Q term is higher order. As for Jg’lc, this fact is of crucial importance when
computing the limit of J,%’Q since this implies that TZICJ%’Q can be neglected. Indeed, up to
some renormalization factors, the source term TQJS converges in the space Z’. This does not

directly imply convergence of J% < since the L(Z") norm of Iy, is of order e~! and the equation
becomes unstable in Z’. We thus need to decompose first J% < in Jg <y J,:,)”Q, where

JEe = TR+ T, (61)
Jpe = TR+ TgC. (62)

The limit of Jg’g can then be computed since the operator K, is not involved in the equation.

It thus remains to show that JS”Q can be neglected in X,,. This is the object of the next
proposition:

Proposition 4.9 JE’Q 1s negligible compared to Jf,"lc in C°([0,T], Xoo) when B> 0 and of the
same order when B =0 when d > 3 or when a = 3 =0 when d = 2.

Proof. We apply the operator I, to (60) to find:
Kndy© = KyTaydyC + KyT9J) = KyT2(J0C + J)) + KTy I3 <. (63)

We treat the first term ICnTQ(J%’Q + J,(])) by applying lemma 4.7 to h = J%’Q + Jg and thus
need to estimate h in Xo. From lemma 4.2 and estimate (33), we know that:

sup [|JO(0)||lx., S plrote-Avo
te[0,7)

Since th and Qs are continuous in X, then so is the operator T2 and we have

sup |72 () xS sup [J)(0)]x.. S OO,
t€[0,7] t€[0,7]
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In the same way, since the 4-transport is well-posed in X, (lemma 3.4), we have from (60),

sup [[J3C())x0 S sup [|T2J9()]|x., S nfltme)He=AVe,
te[0,7) t€[0,T7]

Using the above estimates for J%’Q and J,? and lemma 4.7, we find

sup 6, Te(IEC + JO)(B)]x.. S i1+,
te[0,7)

It remains to treat the second term of (63): lCnTT;CJ%’Q. For this, we use the fact that the
operators K, and Q7 are bounded in X« and obtain, as in (58),

t
KT T2l S [ 1T s
Gathering the previous results and getting back to (63) gives, Vt € [0, 77,

t
[ A (O] PSS SEPT]H/CnTQ(J%’QJrJS)(S)HXw+/0 1Ty 2 () | X ds,
se|0,

so that the Gronwall lemma yields

sup |1, Ty 2t xS sup [, T2 + J) (1) xoe S - HIH VO,
te[0,T] te[0,T]

We finally deduce from the continuity of G? in X, that, Vt € [0, T,
t
TSI Ol 5 [ 10675205 s

which implies the following estimate for J;? ’Q, together with the stability of (62) in X,

sup [[J32(1)]| x,, S pPm AV, (64)
te[0,7)

We recall that J;™ is of order pd(1-e)+1-5 ([0 fa(m)] A1)V (ntd-DE=e=B)+a) When d > 3,
this is lower order than J,:;”Q when # > 0 and of the same order when 8 = 0. When d = 2,
J,?; € is of the same order when a = 3 = 0. This concludes the proof. 0

The ballistic part gives the leading order. Since (61) does not involve the operator T,’f,
we can use the stability of that equation in Z’ to find the leading term in J,%Q. Hence, we
decompose Jg’g as Jg,g = Jﬁ’g + JS’Q, where

TpS = TeIS TR, (65)
Jp? = T2+ T2 - J)), (66)

where J7(7)0 is the ballistic part of Jg defined in section 4.2. We have the following proposition:

Proposition 4.10 When a > 0, JS’Q can be neglected in C°([0,T),Z") compared to J,;L’Q;
when a = 0 both terms are of the same order.
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Indeed, we know from lemma (3.4) that both equations on Jf;’Q and J,? < are well-posed in Z’,
so that (34) and (35) imply the following estimates:

sup [[Jy2(1)z S TRV, (67)
te[0,7)

sup |1 2(t)llz S

nd(lfa)+270f+ﬁ((d(a*ﬂ)*a)vo when d > 3,
t€[0,T

nz(l—a)+27a(naf2ﬁ‘ logn|) A 1 when d = 2.

We finally verify that as soon as 0 < «, J,“;) < s higher order than J,;I’Q and can be neglected.
When « = 0, both terms are of the same order. In all cases, the leading order is thus given
by that of Jﬁ’g. This ends the analysis of J,%’Q.

4.6 Proof of theorem 2.1.

The proof is now a simple application of the results of sections 4.2, 4.3, 4.4 and 4.5. We recall
that the total scintillation J;, is decomposed in

Ty = J0+ Tk 4+ e

From section 4.2 and (34) (or by analogy with proposition 4.10), we obtain that when 0 < a <
1, Jg is dominated by J,?O and that J,? — J,?O can be neglected in Z’. When a = 0, both terms
are of the same order. Let ¢ € S(R%) be a test function and ¢, 5, s, be the related localized
version as in (12). We have the scaling properties:

1
||f<Pn,s1,52HL1(R4d) = m||f¢“Ll(R4d),

1
”90777517S2HZ S.; nZ(d(81+52)+31+s1\/52)H“O”Z’

where a V b = max(a, b). Hence, it stems from (35), uniformly for ¢ € [0, T], denoting by (-, -)
the S'(R*) — S(R*) duality product, that

|<J7?(t)7(7077,81,32>| < |<J00(t) “n, s1,s00 |+ |<(J7? - JSO)(t)aSon,ShSQHv
< (1" Oz + 1) = YO 2l s1,50 1 2
5 n(d+2)(l a)+(a—p)Vo— 2(d(51+52)+31+31\/52). (68)

Regarding J%’K, it is decomposed following section 4.4 as Jg’lc + JS’K, where Jg’lc is higher
order in C°([0,T], Xo0) when 3 > 0 and same order when 3 = 0, according to proposition 4.5.
Then, Jg’lc is split into Jf;”c + JS”C, see (53) and (54). According to proposition 4.6, J,?”C can
be neglected in CO([O T], Xoo) when a + > 3_1, or a+f < d_l with @« < 1 and § < 1.
When o + (3 < ) L and & =1 or 8 = 1, both terms have the same order When d = 2, they
are of the same order when 0 =1 or when o« = 1 and 8 < 1. Otherwise Jn can be neglected.
Therefore, the dominant order of J%”C is given by that of J,;L K and we find, according to (52)
and the scaling of the test function, uniformly for ¢ € [0, T,

Ne 1 X 1 X
(30 onn e = Gyl I Pl € Gyl B Ol I F a1 ey,

< pd(=a)+1-B-2d(s1+s2) ([na—ﬁfd(n)} A 1) V; (n(d—l)(l—a—ﬁ)-i-a) ’ (69)

with fy(z) = 1 when d > 3 and fo(x) = 1 + |logz®5|.
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It remains to analyze the term J% '€ In the same way as for J% ”C, it is decomposed following
section 4.5 as JS”Q + J#’Q + J,‘;”Q. Proposition 4.9 states that JS’Q is negligible compared to
J#’K in C°([0,T], X&) when d > 3, and 3 > 0, and same order when 3 = 0. When d = 2, JS’Q
is of the same order when o = 8 = 0. Finally, proposition 4.10 states that when a > 0, JS’Q
can be neglected in CY([0, 7], Z") compared to Jf]"Q and that, when a = 0, both terms are of

the same order. Therefore, the dominant order in J% € is that of J;%’Q and we have, following
(67), vt € 10,77,

|<J$’Q(t), 9077,81,52>| < n(d+2)(1—a)+(a—ﬂ)\/0—2(d(sl+32)+sl+sl\/32)' (70)

Gathering (68), (69) and (70), we conclude the proof of theorem 1.

4.7 Proof of theorem 2.2.

We assume here that the initial condition of the Schrodinger equation is a coherent state 1/1,(71)
of the form (9). This translates into an initial condition for the Wigner transform reading

1 X — X k—ko
ano(x, k) = ﬁao (nav pi-a > )

where ap(x,k) is the Wigner transform of the rescaled initial condition @Dglz)l. Its Fourier
transform reads

Fayo(u, §) = e~ Contkod) oo (no, pl=og). (71)

We thus have § =1 — « and theorem 2.1 gives, for s1 = so = 0,

(Tn (1), Prsr,s2 ® Prosyse) S A7) n2(1‘“)+(2a_w°] V[ (P fa(m)) A1)

The proof is split into two cases, 0 < a < 1 and a = 1.

4.7.1 The case 0 < a < 1.

Following the proof of theorem 2.1, the leading terms in J; are JSO, Jﬁ”c and J;;’Q (one needs
to add J;;”Q when o = 0 by proposition 4.10 since J;‘,"Q and JS’Q are of the same order).
Computing the limit of J;, then boils down to computing that of the source terms J,?O and
Tf.],?o. We start with J;I)D.

First step: the term JSO. We assume here that a # 0. When o = 0, J7(7)0 is of order n®+2
in C°([0,T], Z') while T,’]CJQ0 is of order n? in C°([0, T, X) so that Ji is negligible compared
to TéchO. We recall that

t
Jgo(t) = /0 e_QRO(t_S)QtQ_SICnag ® ag(s)ds,

0
n

e 0% Fag,(u, € + su). This gives the following expression for the Fourier transform of J};O,

where al(s,x,k) = e 0% qp, (x — sk, k), so that its Fourier transform reads ]:ag(s,u,ﬁ) =
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together with (71):

t
(fﬁ%@m§V£%=ﬂﬂ/ dsdw e P09 £t —5,u,€,v,¢,nw)
0 JRd

x(nw-(E+ (t—s)u))(nw- (¢ +(t—s)v))
xfa,70®a,70(u—w E—i—tu—sw,v—{—w,(—i—tv—l—sw),

= - sdw e~ 2Fo(t=s) s,u, €, v w
n/égd Flt =50, 6,7, ¢ nw)
(€4 (t—s)u) (nw- (C+ (t—s)v))

xe z(xo (u—w)+ko-(€+tu— sw)) —i(x0-(v+w)+ko-(+tv+sw)) (72)
xXag ® ao(no‘(u —w), 7Y€ +tu— sw), % (v +w), "¢+ tv + sw)),
with
sin (3w - (€ 4 tu)) sin (3w - ({ +tv))
(zw- (€ +tw) (3w (C+tv))
As for item (iii) of lemma 3.1, we decompose (w - (§ + (t — s)u)) (w - (¢ + (¢t — s)v)) into fours
terms:
(Ww—u)-(§+({E—s)u) (W+v)-((+{E=s)v) = (w—u)- (§+(—s)u) v ((+(t=5)V)
u-(§+(t—s)u) (WHv)-((+(E—s)v) —u- (§+(E—s)u) v ((+ (t—s)v).

This leads to four different terms in JSO. The first one involves

(Ww—u)- (§+({t—s)u) (W+v) - ((+(—s)v)
J’-"ao®a0(77a(ufw),n1_°‘(£+tufsw) (v +w),nt~ O‘(C+tv+sw)),
= 02 (E+ (t—s)w)T [FVxao ® Vyao(n*(u—w),n'~*(£ + tu — sw),
1 (v A+ w), 0 T (C v 4 sw)) ] (C+ (= s)v),

where FVxap® Vyap has to be understood as the matrix (F0y,a0 F0,;a0);,j=1,.. 4- The other
three terms involve n~*FVyag ® ag, 1~ *Fag ® Vyag and Fag ® ag, so that they are at least
a factor n® smaller as soon as a > 0. Following the same analysis below for the first and
dominant term, it is easy to prove that these terms are negligible and do not affect the limit,
we thus only focus on the leading one in the sequel.

Performing the change of variable w = n~%w; in (72) leads to an integrand proportional

f(t7 u>€7V7C7W> R(W)

to
FVxao ® Vyag(n®a —wi,n' "€ + tu) — n' 2*swi,nv + wi,n' (¢ +tv) + 7' swy).
When 0 < a < %, that term converges, uniformly in all variables to
FVxag @ Vyao(—wy,0,w1,0),

and to
FVxag® Vyag(—wi, —sW1, Wi, SW1)

2a—1 1

when s = % The case a > % needs more work since n — 00. We set s = %~
the leading term in F J7(7)0 -denoted by I,,- obtained from (72) reads

(t u s’v C) d+2 (1—a)+2a— 1/ / dSldWl e—2R0(t—817720‘71)
R4

Xf(t - 8177 ,11, £v, ¢, 771 awl) > efi(xo-u+k0-(£+tu)efi(xo-v+k0-(§’+tv))
x(&+ (t — 31n2°‘*1)u)T]:ano ® Vyag (nau —wi, 0 7Y€ + tu) — 5w,
NV +wi,n' "¢+ 1) + s1w1) (C+ (8 — 51”1 )v).

s1, so that

tl2a
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We consider first the case o > % and pass to the limit in the latter term. To do so, let

© €C%([0,T], Z) be a test function and consider

2a—1 20— 1—7

(@+2)(1—a)—2at1 [ ! K
. )20 /0 (It ), olt, ))dt = /0 + /
n

2a—1

T
+/ =1 + I» + I3,
n

2a0—1—7

where 0 < v < 2a— 1 and (-, -) denotes here the Z' — Z duality product. For I, we make the
change of variable t = n?*~!t; and w; = —ws +7%u. Since f is uniformly bounded by R(w),
this yields

A~ 1 rty
’Il| < T]2aI‘RHLoo(Rd)HVyCL()HYOO/ sup \]:ang(vvg,z)]dwz/ / / dSldtldudEdVdC
R4 zcRd 0 JO R4d
(€] + (T + se** D)) (IK] + (T + sin** HIVDIF (M1, &, v, €],

S N FVxaol pigeay lelleoqorzy S 77

so that I; goes to zero. Regarding I, we make the change of variable t = n?*~1=7¢; and
w1 = —wg + n®u which gives

201 ~ Lot
] < 7| Rl oo et | Vy oy / /0 dt1ds:
77"/

X sup / | FVxao(wz,n' (& + 7> Ttu) — n%u+ sywo)|dwy
(u,)er2d JR
x /R dudgdvd( (€| + (T + s ) (I + (T + sin™ " vl) [Fe (™70, 0,6, v, Q).

The integral over s; runs from 0 to t17~"7, and since 7 < t; < 1, it is controlled by the integral
over [0,777] and we thus need to integrate for large s; to obtain a bound independent of 7.
This is done by splitting the integral in [0,1] and [1,777]. We denote by Il and III, the
corresponding terms. Controlling Il is straightforward and done in the same manner as I5;
we obtain
Il 5} n2a717ﬁ/‘

Concerning ITI5, we make the change of variable wa = s7 (w3 —n'=%(& + 721" 7tu) +n*u)
and find

1 tin~ "
I, £ ?72“_1_7/ / Sfddsldtl/ sup |FVxao(z, ws)|dws
n J1 R

¥ d ZERd

« /szd dudédvd (1€] + (T + s1n** M) (IC]+ (T + s1n**)|v])
X [Fon** 1 7,u,€,v, Q).

1 ptin™?
S P FicVxaol| g gy / / (Sfd +n* s+ 7746“_23%%) dsydt;.
nJ1

Since d > 2, the right hand side is an O(n?*~'=7) and consequently I converges as well to
zero. It remains to analyze I3 which reads

T tnl—Qa o
I3 = — / / / dtdsidwidud€dvdC ¢ 2Ro(t—s” 1)-7:90(757 u,§,v, ()
n2a—1—'y 0 R5d
X f(t —s19%7  w, €, v, ¢, ' %wy )e i xorutko: (§41u) o —ilxo-viko (CHEV))
x(&+ (t — sin** Hu)’ [FVxag ® Vxag(n™u — w1, 7' "¥(€ + tu) — sywy),
v wi,n (V) siwa) | (CH (= s ).
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As III,, we need to control the integral over s; for large s; since tn' 2% > =7 for t > n?*~1=7.
As a consequence, to apply the Lebesgue dominated convergence theorem to pass to the limit
in I3, we split the integral in s; into [0,1] and [1,¢n'~2%]. We denote by II3 and III3 the
corresponding terms. Regarding I3, we make the change of variable w; = n“u — wy and
choose as majorizing function the function

( su)p y |FVxao ® Vyao (w2, x,y,2)| (|| + Tul)([¢| + T|v]) |Fe(t,u, & v, C)|-
x,y,z)ER

Since

ft —sin** L u € v, ¢ nu—nt%ws) — R(0), a.e. in (0,7) x R%,
we then obtain for the limit of I13:
T
_/ dtdudfdvd( e—?Rote—i(XU'u+k0'(ﬁ-‘rtll))6—i(xO~V+k0'(C+tv))
0
(& +tw)" My (¢ + tv) Fo(t, u, €, v, C),

where the matrix M is defined by
1
M; = R(O) / foao ® Vyao (WQ, S1W2o, — W9, —81W2) dwsy dsy.
0 JRd

The latter matrix is well-defined since
|(My)i5] < R(0)]|0x,a0]lv; |9y, a0l v (73)
and is real-valued since ag is real and
FOx,a0 ® Ox,a0(W2, s1W2, —Wa, —s1W2) = 51(W2);(W2) ;| Fy,ao(wa, s1wa)|%

For the second part 1113, we make the change of variable wy = s;*(—wy +7'~%(€ + tu)) and
split the integrand into three terms: one proportional to (& +tu)” [FVxao® Vxag](¢+1tv), the
second one proportional to n?* Ls; ([u? FVxag® Vxao](¢ +tv)+ (€ +tu)T [FVxag® Vxao]v)
and the last one proportional to n**~2s2u” [FVxag ® Vxao]v. Proceeding as for I, the
last two terms vanish at the limit. To pass to the limit in the first one, we use the majorizing
function

s [FVa0® Vyan (w2 €]+ T €]+ TivD et w €v.0)L
X,y,z)ER

and obtain the expression for the limit of I113:

T
_ / dtdudEdVdC e—QRote—i(xo'll+ko'(E"rtu))e—i(XO'V-H(O'(C-‘rtV))
0
(& + tw)" M (¢ + tv) Folt, u, €, v, €),

where the matrix Ms is given by
o
My, = R(O)/ / sl_d}'ano ® Vya(](sl_l‘)VQ,WQ, —SI_IWQ,—WQ) dwo dsq,
1 JRd
R x
= R(O) / FVxag® Vy CL()(WQ, S1Wo, —Wo, —51W2) dws dsy.
1 JRd

The latter is real-valued and well-defined since

|(Ma)ij] < R(0)[|Ficdx,; aoll 1 (rea 9y a0l v -
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Gathering both parts of the integral, we finally conclude that, when % <a<l1,

p(d+2)(1-a)—2a+1 /TUn(t,-),gO(t, .)>dtﬁ/T(J-"Joo(t,-)yw(t;))dt
0 0

where
FIOG, u, €, v, &) = —e2Rote—ilxoutko (E+tw) —ilxov+ko (G+v) (¢ 4 +)T M (¢ + tv),
with
M = M; + M. (74)
Computing the inverse Fourier transform of FJ% € C°([0, T], S’ (R*)) gives finally
JO, x, k,y,p) = e 2Bol§(x —xq—kt)d(y — xo — pt)
(V&) (k — ko) M (V6)(p — ko),
where ¢ is the Dirac distribution. X

The cases 0 < a < % and o = 35 are simpler to treat and follow along the same lines as
above. This yields the limits for Jgoz

t
FIV0 06 v,0) = [ dsem it €t ko i)
0
(&4 (t — s)u)" M(s)(¢ + (t — 8)v),
R 1
M%(s) = R(O)/ FVxap @ Vyag(w, sw, —w, —sw) dw, when o = 2 (75)
Rd
A 1
M(s) = R(O)/ FVxao® Vyag(w,0,—w,0)dw, when 0 < o < 3’ (76)
Rd

which is equivalent in the physical space to

t
JO, x,k,y,p) = / ds e 2Ro(=3)5(x — xo — kos — k(t — s))
0

xd(y — xo — kos — p(t — ))(V8)" (k — ko) M (s) (V8) (p — ko).
1
L

Moreover, M® satisfies as well (73) when 0 < o <
proved the:

To summarize this section, we have

Proposition 4.11 Let ¢ € C°([0,7],Z) and 0 < a < 1. Then, as n goes to zero,
T T
p~ (D)= (@a=1)vo /0 (O, ) ot ) 27 zdt — /0 (JOt, ), ot ) 2 zdt,
where JY° € C°([0,T), Z') and

t
J(t, %, k,y,p) = / ds e 2Rot=2)(G2 J'(s,))(t — 5,%x,k,y,p) when 0 < a <
0

N[

= G0, x Koy p), when 5 <a <1,
J'(s,x,ky,p) = 6(x—x0—kos)d(y —x0 — kos) (V)T (k — ko) M(s) (V&) (p — ko).

The matriz M® is real-valued and given by (74) when 3 < a < 1 and by (75)-(76) when
0<a<L % It is well-defined since

(M) < R(0)19y,a0llvac (10, a0llys + | Fidx,aollr ey ) -
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Second step : the term T,;CJSO. From expression (39) and the fact that fa%(s,u,&) =

e~ fos F. aoy(u, € + su), we deduce that the Fourier transform of 7, T’]CJ,(;() reads, after the change
of variable w = —w1 +u — n~'w':

t ps
(‘7:T7;CJ7(7)0)(2€7 u, 5) v, C) — 77d / / / de’TdWldW, 6_2R0(t_7) (77)
0 Jo JR2d

XR(W/)R(T](U - Wl) - W/)g(t7557—7 U,E,V,C,u — W1 — nilwlvw/)
X Fano ® ano(wl,ﬁ +(t—7)u— 77*1(5 —7)wW + 7wy,
v+u—wi,(+tv+n (s — )W +71(u—wy)),

where g is defined in (40). Using the formula sin(a)sin(b) = 3(cos(a — b) — cos(a + b)), we
decompose g in g1 + g2 accordingly with

gl(t7 S, T, U, 57 v, Ca w, Wl) = -8 sin(w’ : (6 + (t - S)LI)/Q) SiH(W/ ’ (C + (t - S)V)/Q)
xcos[npw - (§+ ¢+ (t—7)(u+v))/2],
gZ(ta S, T, U, 53 v, C) w, Wl) = 8 Sin(wl : (£ + (t - S)u)/Q) sin(w' : (C + (t - S)V)/Z)
xcos[nw- (€ —¢+(E—T)(u—v)/2— n (s — T)w)].
The g; term is smooth and admits a limit as 1 goes to zero, and the related part yields the
dominant term at the limit. The g term involves a highly oscillating function that renders
the term negligible after a integration by part and a careful analysis of the integrand. We first
separate T,;CJgO accordingly in G}7 + G,27 and compute the limit of G,l].
The term G717. We have the following proposition:

Proposition 4.12 Let ¢ € C°([0,T],S(R*?)), 0 < o < 1 and gq(n) = n~41-e)=a=(2a=1)V0 ;¢
d >3 and gz(n) = n 2021 (1 4 |logn'=2*|))~1 V1. Then, asn goes to zero, denoting
by (-,-) the L?(R*) scalar product,

T T
%w4<@wwm»wHA<%wwm»w,

where G§ € C°([0,T], Xoo) and

9

N | =

t
Gi(t,x.k,y,p) = / dse U= (G2 K2 T%(s,))(t — s, x,k,y,p), when 0<a <
0

= eGP0, )t x Koy, p) when L << 1,
J2(5a X, kv Yy, p) = gg [5(X - X(])(S(y - Xo)é(k - k[])(;(p - ko)]’

where K and K4 are operators defined in the Fourier space by the multipliers kY and kq, that

is, for a tempered distribution J, K&J = F~YkSFJ) and KgJ = F1(kgFJ). K& and K4 act

on the momentum variables k and p when a > 0 and on all variables when o = 0, and

k2<o‘§%(v7<’) _ g /OOO /Rd deW/./\/la(leTa s) cos (Vvl(g—i_o) sin <W/2. €> sin (W/Z- C)a

kg (u7 S’ V’ C) = _8 / / 6_2R0(S_T) deW,MO(W,7 7-7 u + V)
0 JRd

% COS (%W/ (E+C¢+(s—1)(u+ v))) sin (W;' E) sin (WIQ- C);
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M%(W/,T, s) = R2(Wl) |.7:a0(w73w—7'w/)|2dw,

R4
1
MW 1,8) = M%(W/,T,O), 0<oz<§,
MOUW' 7,2) = RQ(WI)/ Fao ® ap(w,—7w' 2z — w,7w')dw,
Rd

ka(v,¢) = /Ooké(v,g)ds, when d > 3,
0
ka(v,¢) = —8/ /drdeQD(w T)COS<1 (§+c))sin(wl2‘5)Sin(W’Q-C)
R

M2P(w' ) = B2(w) / / | Fao(rww) dw,
0 R

The operators K& and Kq are well-defined from S’ to S’ since k< belongs to L>®°(R??) for
0<a<l, kY belongs to L°(R*), Vs € R and kg € L=°(R??).

Proof. Using (71) and (77), the Fourier transform of G}? reads, after the change of variable
w1 =1 “wg and 7 =5 — n%m:

t sm— e
(FGL)(tu,€,v,¢) = y-ote / / / dsdry dwadw!' ¢~ 2Ro(— (=)
0 JO R2d

XR(WI)R(TI(U' - niaWQ) - W/>gl <t7 S$,8 — 77a717 u, €7 \Z Ca u-— 77704“’2 - nilwla W,)
+v

x e~ o0 (WHv) o =iko-(EHUHCHY) 10 @ qg (Wa, 21, 1% (V + 1) — Wa, 22) (78)
zi = 7€+ (- s+ ntm)u) - nw + 0T (% — T1)wa,
zo = N Htv+ (s —nPm)u) + w — ' (nT% — 1) wa.
Assume first that 0 < a < % Then, z; — —mw’ and z9 — mw’ when a < % and z; —

—mw' + swy and z9 — T W' — swy when a = % Proceeding as for the limit of Jgo by splitting
the time integrals conveniently and applying the Lebesgue dominated convergence theorem,
we verify that, for any test function in C°([0, 7], S(R*?)),

7= [ (@ et it~ [ (@Yot
0

Here, we have defined when 0 < o < l:

(FG() )(t,u,&,v,¢) = —ixo:(utv) , —iko-(§+tut(+tv)

/ / /Rd dsdrdw’e=2F0t=9) M (w' | 7, 5) cos (W (E+¢+(t—s)(u+v))/2)
< sin(w' - (€ 4 (1 — s)u)/2) sin(w’ - (¢ + (t — 5)v),2),

. . t
= ¢~ 0 (V) g—iko-(§+tutCHtv) / ds e 209 po(u ¢ + (t — s)u, v, ¢ + (t — s)v),
0

and, when o = 0:

(FOB) (1, £,v,€) = 80 (40) ik €t v)
t s
/ / / dsdrdw'e 2R MO(w! 7 u+ v) cos (W - (E+ ¢+ (t—T)(u+v))/2)
0 Jo JRd
X sin(w’ - (€ + (¢ — s)u)/2) sin(w' - (¢ + (¢ — 5)v)/2),
t
_ e—ixo.(u+v)€—iko-(£+tu+c+tv)/ ds e—QRo(t—s) kg(u7€ + (t . s)u,v, ¢+ (t o S)V),

0
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where M, MY and k¢ are defined in the proposition. This proves the proposition by iden-
tification when 0 < a < % Regarding the fact that the multipliers are bounded, we split the
integral on 7 for 7 € [0,1] and 7 € [1,00). This yields

Ikl po@aay < IR L @) 1B oo @y laollvacllaollvs + 1R s ggay laollva [ Ficaoll 11 goay,

A

0 . .
1Bsl o raay < 8[| Rl[p1 gy | Rl oo (ra) llaollvaollao] v -
We treat now the case % < a < 1. For such values of «, z; and z2 diverge when 1 — 0 so that
we need to perform in (78) the additional change of variable s = n?*~1s; and split F G}7 as
12«

e psin® ! 1 1 1 s1n® tn
T A A A (N A A A A
0 0 nlfa 0 nlfa 1

= L+ 1+ I3+ 14

After the change of variable sy = n'~%s,, it is straightforward to see that I converges to zero
in L>°((0,T) x R4). Regarding I, using the majorizing function

R(W/) sup ‘FGO ® aO(W27X7y’Z)|7
(x,y,2)ER3

and the Lebesgue dominated convergence theorem, we verify that, in L>((0,7) x R4):

Lt,u,&,v,¢) — —8 e~ Xor(utv)g=iko:(E+tutiity)

/ / /Rddsldewe 2Rot A3 2(w', 7, 51)cos (W (€4 ¢+ t(u+v))/2)
X sin(w' - (€ + tw)/2)sin(w' - (¢ +1v),/2),

where M2 is defined in the theorem. Concerning I3, we have in the second time integral
sn®~1 > 1 since s > '~ so that we need a control for large 7. We thus perform the change
of variable w' = 7, H(w — n'(¢ + tv + (517?71 — n%m)u) + (51 — n' %71 )wa), and use the
majorizing function

de sup |fao & ao(Wz,XaY»W”
(x,y)eR24

to pass to the limit. We find, in L>°((0,T) x R*9):

I3 (tv u, 57 v, C) — —8 e—ixo~(u+v)€—iko-(£+tu+c+tv)

/1 /OO/ dsidrdw T_de_QROtM%(T_lw,T, s1)cos (17w (€+ ¢ +t(u+v))/2)
o Ji Jrd
x sin(77 w - (€ + tu)/2) sin(7 7w - (¢ +tv)/2).

Concerning I, we only consider times such that ¢t > 7?*~! since the contribution for times less

than 7720‘_1 converges to Zero in LOO((O T) x R4) — %, Setting 71 = 517, we split the integral on

T as f(;?a_ fo )+ fl ) and denote by I an I1I4 the corresponding terms. Assume
first that d 2 3. For 11y, performlng the change of variable

wa = h(w) = (s1(1 =0 7%7)) Hw = TN E+ (t = s1 (™ = nPT)w) + W], (79)
and using the majorizing function

siIR(W')  sup  |Fag ® ao(x,w,y,z)|,
(x,y,2)€R3
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we find in L%°((0,T) x R4) —

II4(t, 0, &, v, () — —8 e~ X0 (utv) o —iko-(E+tutCtv)

/ / /d ~dds drdw’e 2 M(w', 7, 51) cos (W (€+C¢+t(utv))/2)
< sin(w' - (€ + tw)/2) sin(w - (¢ +1v)/2),
M(w',7,51) = R*(w') y Fao ® ap(sy'w + 17w, w, —s7 'w — 7w/, —w)dw.
Regarding the term I11;, we need to integrate for large 7 and large s;. Setting, in addition
o (79),
w' = h(wh) = (s17) 7wy — 0 TN H v+ s (0P T = ¥ r)u) +s1(1 -0 ) wal,  (80)

and using the majorizing function

SiidT_d sup |fa0 ® aO(W%X?yawé)"

(x,y)€R?
this yields in L*>°((0,7T) x R4d) -
ITI,(tu, &, v,¢) — —8 e X0 (utv) g —iko-(E+tutCHtv)
/ / / dsdrdwe M ((s7) " w, s, ) cos (W G lriuy V))>
R 27s
X sin ( ) (5 + tu)/2) Sln((Ts) . (C + tV)/Q)_

To recover the expression of G(l) given in the proposition, it then suffices to add Is, Is and Iy
and to notice that

g€ = [ [ [ dsaraw' M r ) PO v 6.0)
8 o Jo Jre
1 1
= / / / deTdW/M%(W/,T, s)F(0,w',u,v,§,¢)
o Jo JRrd
1 e )
+/ / / T*ddsdewM%(Tflw, 7,5)F (0,7 'w,u,v, &, ¢)
0o J1 Jrd
oo rl —
+/ / / slfddsdeW’ME(w/, 7,8)F(0,w',u,v,§,¢)
Rd
/ / / 7dd$deWM%((ST)71W, sT, 8)F(0, X, u, v, &, (),
Rd ST
F(t,w,u,v,€,¢) = cos (2 (E+C¢+t(u+ v)> sin <;W (€4 tu)) sin <;W (¢ + tv)> .

The fact that f; € L>(R??) stems from the latter decomposition.

The case d = 2 is more difficult since s~! is not integrable and computing the limit of the
term Iy is more involved. We give here the main lines of the analysis and skip some details.
We have to compute the limit of terms of the form

1—2a

) tn .
T = / Sl_lfrl](sl)dsla t Z 772(1_17 ] = 1727
1
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with either (¢,u,v,&, ¢ are fixed here), case 1 (term similar to 71 when d > 3):

1 (s1) / / drdwdw) e 2R0(t_sl(772a71_77a7))%ﬁf(h(wlz))ﬁi(n(u — 1" “wz) — h(wy))
R2d

xg1(t, 51777 s1 (27— o), W, €, v, Cou — %W — i Hh(wh), h(wh))e o ()

Xeiiko.(£+tu+c+tV)fa0 & CLO(WQ) Ulia(c + € + t(V + u)) - W/27 77a(V + u) — W2, W/2)7
or, case 2 (term similar to I1y):
f2( ) /1/ d d d / —2R0(t—81(7]2a_1—17aT)) (W,
s1) = Tdwdw' e B —
T o Jra (1W“W
xgi(t, s> si (T = n%7), W €, v, u—n Yh(w) —n'w  w)e
x e~ Ko (EHUECHY) Za0 @ ag(h(w), w, (v + 1) — h(w), ' "*({ + €+ (v +u)) — w).

R(ipu —n'~“h(w) — w')

2a—1 2a—1 —ixo-(utv)

Above, h and h are defined in (79)-(80). Since the function f1 is uniformly bounded in all
variables, the integral Z' is expected to be of order logn'=2*. To see that, we integrate by
parts and obtain that

/tn
1

Since in particular h(wh) — (s7)7'wh + 77wy, we first verify that f)(tn'~**) — f3(t) in
L®((0,T) x R*) — x, with

1—2« 12«

s{mmwﬁ%w1%ﬁml%—/m logs (£1)(s)ds. (1)
1

f(} (Z) = -8 e—ixo.(u-l—v)e—iko.(£+tu+c+tv)

oo
/ / 772 drdwodwh e 2Fo(t—2) fp2 (77 wy)
R2d
XF(t -z, 7-_1W27 u,v, Sa C)j:aﬂ & aO(W27 _W,27 — W2, W/2)a

where F is defined as above. Therefore, the first term of r.h.s of (81) is of order log n' 2. It re-
mains the second term involving (f,)’. We claim it can be written as (f;)'(s) = n** 2R f, (s)+
hl ( )+ ry(s), where hl has the same expression as f, L except g1 is replaced by g1 with

gl(tv 5117204—1’ 51 (772a_1 - naT)> u, 5) v, Ca w, W,) =
7720671 (8891)(t? 31772a717 81(772(171 - naT)a u, Sa v, C: w, Wl)

+(7720471 - naT)(argl>(ta 3177204717 31(7720171 - naT)v u, Ea v, Ca w, W/>,

and some lengthy calculations show that
1
[ro(s)] S n*[logm| + 5 (1 + [u] + [v] + [&] + [¢])*. (82)

This requires in particular to regularize R since ry involves VR. This has no incidence on the
leading term since 7, is negligible and the limit does not depend on VR. We thus have:

tn1720¢ tn172a tn172a
/ log s (f,})'(s)ds = 7720‘_12R0/ logsf,%(s) +/ logsh%(s)ds
1 1 1
1—2a

in
—i—/ log s ry(s)ds. (83)
1
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Estimate (82) implies, for any ¢ € C°([0, T], S(R*?)),

1—2a

T prin
(logn'—2*)~! / / log sy ¢ dsdtdudvd€d¢ — 0.
o J1

The term related to r, can thus be neglected. It remains the terms in the r.h.s of (83) for
which we perform the change of variable s — sn'=2%. This yields in L>((0,7) x R*) —

tn1—2a t

(logn”“)ln%‘l/1 logs f,(s)ds = (logn”a)l/ log(sn' %) fy(sn'7**)ds
n

= [ pas.
0

Regarding the term involving h717, we verify that

tnl—Qa

t
(log ' ~22)~1 / log s hl(s)ds — / B (s)ds,
1 0

where h has the same expression as fi except that F(t — z,-) is replaced by —0,F(t — z,-).
Gathering the previous results, we thus find, for any ¢ € C°([0, T], S(R*%)),

T
(lognt—2)~1 / / 7' p dtdudvdéd¢ (84)
0 R4

T ¢ .
- /0 /]Rd [f(%(t) —/0 (2Ro fo(s) —I—hé(s))ds} o dtdudvd€d¢ :/0 /]Rd £3(0)¢ dtdudvdédc.

Regarding 72, we verify that fg(tnl_m) — f2(t) in L>=((0,T) x R*) — %, with

1
) = —serourgioemier) [ rigdwe 2o 2 w)
0 Jr2d
F(t—z,w u v, &) Fag® ag(tw',w, —7w’ w).

In the same manner as 7', we write (f7)'(s) = n** " '2Ro f2(s) + hi(s) + 1, (s), where r,, yields
a negligible term. Following along the same lines, we find the same relation as (84) for Z2,
with f§ replaced by f2. Summing f} and fZ then gives in the end, since now Iy, I and I3 are
negligible compared to 14:

(logn' 2N FGH(t,u,€,v,¢) = e 2ot gmixo-(uhv) p=iko (EHUFCHVI By (¢ 4 tu, ¢ + tv).

The fact that ky € L°°(R??) follows from separate estimates of f3 and fg. This ends the proof
of the proposition. 0O

The term G%. We have the following proposition:

Proposition 4.13 Let ¢ € C°([0,T], S(R*)), 0 < a < 1 and gq(n) = n~ 1 -0)—a=2a=1V0 ;¢
d >3 and gz(n) = n 2021 (1 4 |logn'=2|))"1 V1. Then, asn goes to zero, denoting
by (-,-) the L?(R*) scalar product,

T
ga(n) /0 (G2(t,), p(t, )t — 0.
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Proof. We have:

92(t7 S, T, U, 5) v, Ca u—w-— nilwl? W/)
=8 sin(w'- (€ + (t — s)u)/2) sin(w' - (¢ + (t — s)v)/2)

x cos [n(u—w) - (§=C+ (t—7)(a=v))/2+n (s = 7)|W'[*] .

We decompose the cosine as

cos [n(u—w) (= ¢+ (t—7)(u=v))/2+n" (s —7)|W|*] =

cos[nu—w) - (€=¢+ (t—71)(u—v))/2—n"t7|w|?] cos (n7s|w'|?)

—gin [n(u —w)-(—-CH+({t—T)(u—-vV))/2— 77_17'|W’]2] sin (17_13|W’|2) ,
and split g; accordingly so that G% = G%l + G%Q. Both terms are treated similarly, so that we
only focus on the first one. Introducing the notation

8 sin(w’ - (€ + (¢t — s)u)/2) sin(w’ - (¢ + (¢t — 5)v)/2) cos (n~ s|w'|?)
cos [n(u—w) - (€= ¢+ (t—7)(u=v))/2 —n~'7[w[]
= h(t,s,7,u,& v, {,w,w') cos (n‘lslw’\Q) ,

and integrating by parts the cosine, this yields from (77):

t s
(ngl)(t7u7£7V7C> = nd/ / dH(t,S,T, u7€7V7C7W7W,)
0 Jo JR2

x cos (n~'s|w'|?) dsdrdwdw’ = I+ II+1III,
s 1 s=t
I = pitt [/ / s H(t s, 7, u,€,v,(, w,w') sin (77_18|W/|2) drdwdw' ,
0 Jrea |W| 5=0
t
1
I = —nd‘H/ / s H(t, s, 5,u,6,v, ¢, w,w')sin (77_18|W/|2) dsdwdw’,
0 Jr2a [W/|
t s
1
I = —nd“/ / / 7/285H(t,8,7', u, &, v, ¢, w,w')sin (n_ls\wl\z) dsdrdwdw’,
0 Jo Jrea [W']
with

H(t, s, 7€, v, ¢ w,w') = e 20D R(w) R(n(u —w —n~'w'))
Xh(t, s, 7,0, &,v, ¢, W, W) Fan @ ayo(w, €+ (t — 7)u — n (s — )W + Tw,
V—I—u—W,C—i—tV—l—’l’]_l(S—T)W/+T(U—W)).

Let us consider first the term I that reads
t 1
I = nd'H/ / e Ht T, w €, v, ¢, w,w')sin (n_1t|w'|2) drdwdw’,
0 Jr2a [W|

and assume in the beginning that d > 3. For the case 0 < a < %, we perform the change of
variable w = n~%w; and using (71) we obtain, uniformly in ¢,u, v, &, ¢:

_ . R(w")
HESSTAS OC)HHR||L0<>(JRd)||CLO||Y1||610||Yo<> /Rd del~ (85)

When d > 3, the latter integral is finite (since R € L'(R%) N L>°(R%)) so that I is controlled
by n41=2)+1 and consequently ga(n)I by '~ which goes to zero since we are in the case
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0<a<L % When o > %, we proceed as usual by setting 7 = n?*~!

integral on 71 into short times [0, 1] and long times [1, #7'~2%]. We assume here that t > 7
since when t < n?*~! we already know from (85) that I is of order pdd—e)+1+2a—1 g4 that
ga(n)I tends to zero. Following (85), the short times part [0, 1] is controlled by nd(1—e)+1+2a—1,
The long time contribution on [1,#1'~2%] is bounded by

71 and splitting the time
2a—1

1—2«

- n R(w')
d(1—a)+14+(2a—1) - dw'dr d
n | 2] oo (ray /R?d/l w dridw W

| Fao(wi,n' "€+ (t —n** tr)u) —n~%(s — p** tr)w' + 1wy .

The change of variable wy = 7 *(wg — n'~*(€ + (t —?*"Ir)u) + 9~ (s — n**~'7)w’') allows
us to control the time integral and we obtain that the long time integral is bounded by
pd1=)+1+Qe=1) - Therefore g4(n)I is of order n'~® and goes to zero. So far, we have thus
seen that for any 0 < o« < 1 and d > 3, g4(n)I can be neglected. We turn now to the case
d = 2 which requires more work since the function |w’| 2R(w’) is no longer integrable. We
are thus led to introducing a cut-off and perform the integration by part in G7271 only on the
complementary of a ball B(r) C R? so that in addition to I + IT + III adds up a term of the
form

t s
IV = 772/ / / / H(t,s,7,u,&,v, ¢, w,w') cos (nfls\w'|2) dsdrdwdw’,
0 Jo JR2JB(r)

where the integration on w’ in I + IT + II1 is performed in R?\B(r). Proceeding with the
standard splitting of the time integral when considering the cases a < % and o > %, we verify
that IV can be uniformly controlled in all variables by 72(1=)+@Ee=1)V0r2 The term I is just
treated as for the case d > 3, unless w’ is integrated on the complementary of B(r). We have,
for any 1 < p < oo,

» / [eS) 1/p
/ B R(‘jv2) dw' < C </ /12 1d|W/|> = or?Y = Cr?,
rR2\B( W] v WP

for any 0 < § < 1. This finally gives the following bound for I when d = 2:

‘I’ 5 n2(17a)+1+(20471)\/07,75‘

The bounds on I and IV are same order when r = nﬁ so that we find the estimate, uniformly
int,u,v,&(:
I+ |TV] < n2A-e)te=B)Votgiy

Since a < 1, it is possible to find § such that 2—3_5 > «, which in turns imply g2(n)(I + IV) is
of order 772%570‘ and therefore tends to zero in C°([0, 7], Xoo).

The term I7 is treated exactly in the same manner as I and requires no additional work.
The term 111 is more involved. We first write 0,H = dsHq + dsHs with

OsH(t,s, 7,0, &, v, ¢, w,w') = e 2R R(w\R(n(u — w — n~1w’))
x4 [—(w'-u)cos(w' - (€+ (t — s)u)/2)sin(w' - (¢ + (t — s)v)/2)
—(w' - v)sin(w' - (§ + (t — s)u)/2) cos(w' - (¢ + (t — 5)v)/2)]
s cos [ia - w) - (€~ €+ (t — 1) —v))/2 — - rlw'|]
xFan @ an (W, &+ (t—m)u—n"'(s— )W + 7w
VAHu-w, v+ (s — )W +T(u—w)),
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OsHs(t,s,7,u, &, v, w,w) = e 2Fo(t— )R( K n(u—w—ntw'))
x sin(w’ - (€ + (t — s)u)/2) sin(w’ - (¢
x sin(w’ - (€ + (t — s)u)/2) sin(w’ - (¢
X cos [n(u—w) - (€~ ¢+ (t - 7)(u—v))/2— 5 rlw[?]
xn W (=Va + Vy) Fay ® ano(w, €+ (t — 7)u — n (s — )W + 7w
Vru—-w(+tv+n (s —1)wW +7(u—w)),
and set III := III + 1115 accordingly. Above, we separated the derivatives of Fag, ® a,o
from the rest, Voh(u,§,v,{) = Veh(u, &, v,¢) and Vih(u,§,v,¢) = Veh(u,§,v,¢). The
ITI; term is treated almost as I unless the singularity is now |w’|~! so that |w’| 'R(w’) is
integrable for any d > 2, and a change of topology is needed since the s derivative yields terms
proportional to w’ - u and w’ - v. We thus find, V(¢,u,v,&,¢) € [0,T] x R* :

/

|IIIl‘ 5 nd(lfoz)+1+(2a71)V0 (|u| + |V|)

so that IT1; is of order nd(1=®)+1+2a=1V0 for any d > 2 in the C°([0, 7], Z') norm to account
for the weight |u|+ |v|. The I1l5 term is the most technical to deal with and we consider only
the term involving V3 as the contribution V4 can be estimated analogously. We rewrite ds Ha
as

OsHy =17 1Q(t, s, 7,1,&,v,(, W, W')R(W’)W' - VaFan @ ano + term proportional to Vy,

with obvious identification for Q with the property |Q| < ||R|| Loo(ra) Uniformly in all variables.
Following the expression of 111, we are thus led to studying the integral

t s 1 R
nd/o /0 /R2d dsdewdw’|W/|2R(w') sin (?7718|W/|2) Q

w' - VoFan @ ano(w,é +(t—7)u— 77_1(3 —7)W + 71w,
vitu-w,(+tv+n (s — 1w + 1(u—w)). (86)

The approach is very close to that of the proof of lemma 4.3. The main difference lies in
the presence of the singular factor w’|w’|=? which requires particular care. Using first the
expression of the Fourier transform of a,o given in (71), we have

VaFag(u,§) = n'~%e X0 (T, Fag)(5u, n'~*E),
= —in' e (0t (Fhag) (5", n' ).

And after the change of variable wi; = n~%w, we find the straightforward estimate, uniformly
for (t,u,v,&,¢) € [0,T] x R4

R(w'

V1S ol o | (87)

Above, kag is bounded in Y7 since
1
Ikaollvy < 1Fckaoll 1 raay < [FVactl” |2 ey < C,
where wgl) is the rescaled initial condition deduced from (9). Hence, when ¢t < n*, V is of

order n1=@)+1+a g that My<pega(n)V — 0 in L=((0,T) x R*) when a < 1 for any d > 2.
From now on, assume therefore that ¢ > n®. In (86), we then separate times s < n® and times
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n® < s <t and perform the change of variable 7 = s — %7 in the part s > n®. Splitting the
integral over 7y in [0, 1] and [1, sn~?], we recast V as

n< s t 1 t sn—«
vV = nd(la)Jrla/ /(')+T]d(1a)+1/ /(')_’_nd(la)Jrl/ / ()7
0 0 n* J0 ne J1

= W+Vi+ Vs
Vo is estimated using (87) with ¢ = n®. Similarly, we find for V;:

R(w')
W

dw’.

Vit v,6.0) € T X RY, VIS [aoll ol ||

For the long times part V5, we make in addition the change of variable

/

w =7 (W= T (C v+ (s —ntm)u) + 0 (s — ) wa) =1 (W)
and obtain the bound, V(¢,u,v,§,¢) € [n%, T] x R4
_ b R(r w)
Va| < n?0=9+ Y [kag |y, / / / dsdrdwiTi~ d(l—f,()) sup |Fao(z, wh)|.
n* J1 R4 |f(wl)| z€R4

The function | f(w})| ™! is integrable in the vicinity of the origin for any d > 2. So, splitting the
integral over w} for |f(w))| < 1 and |f(w})| > 1 finally gives, V(t,u,v,€,¢) € [n, T] x R4

Vo| < =)ty for d > 3, Va| < (=)0 H 1 log | t, for d = 2.

This gives a first estimate for V suitable when a < % Indeed, in this case, we verify that

Lysnaga(n)V — 0 in L((0,T) x R*). When a > , we need a refined estimate. Hence, we
perform in addition the change of variable s = 7720‘_151 in V; and V5 and write

s1m
J
1 1 Sl'l’}a t'l’}l 2a
_ nd(l—a)+1+2a—1 (/ / () _|_/ / / / )
7]17(1 0 nlfa 1

= Va+Vyi+ Vs,

t12a

‘/'1_{_‘/2 — d(l —a)+1+2a— 1/

Vs = ’L( u+v)-xo+(€+tu+¢+tv)-ko) d(l a)+14+2a—1

/ / dsldﬁdwldw’ i R( ') sin (n_ls]w’\z) Q
11—«

W fka())(Wl, 1= a(£+(t—81772a 1—|—7] 7'1) —7'1W/+(81—7717QT1)W1)
N+ v) —wi, (v (s1* T =t r)u+ mw — (s1— 0t %) w),

with similar expressions for V; and V5. Estimating V3 is straightforward and we find, V(t,u,v,&,¢) €
[, T] x R,

R(w")
w|
Regarding Vj, we set w' = h(wh) = (1) Y (wh — =% + tv + (517?71 — n%m)u) +
(s1 — n'7%m)wy). It comes, using the fact that |h(w})|~! is integrable around the origin,

Va| < p? =T H20 7 keqg |y, [lao |l va /Rd aw'.
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V(t,u,v, € ¢) € [n®, T] x R

- [ R(h(wh) :
Vi S nd(l o)+1+2a—1 / WD) sup | Fag(x, w dw’
. ra [h(w)| s 70 Ge Rl
x/ sup |Fkao(w,x |dw/ / 7dd7'd81, < pd-e)+i+2a-1
R4 xcRd 1—a

It remains to analyze V5. We set 7 = s17 and write

tnl 2a tnl 2a
%:dumﬂﬂal(/ / / / >:: T

In V3, we perform the change of variable w = s1(1—n'=27) " (—wy +n!=({ +tv+s1 (n?* 1 -
n*r)u) + sy7w’). This yields:

~

V< et gy / sup | Fag(x, w)ldw

R4 x€R4
tﬂl 2a
) ’w ’ / / T)_ddsldTv
R
nd(l—a)—l—l-i-?Oé—l’ when d > 3,
~ p2(1-@)+1+2a=1| |50 | when d = 2.

Regarding V2, we set w' = h(wh) = (s17) " H(Wh — n17%(¢ + tv + s1(n**™ !t — n%7)u) +
s1(—n'=%7)wq). It comes, using the fact that |h(w )=t is integrable around the origin,
Yt u,v,€,¢) € [1°, 7] x R
- - R(h(w}))
V2 < d(1—a)+1+2a 1/ 2))\ "Ndw'
’ 5‘ ~ N Rd ’h(W/Q)| ‘ aO(X7W2)’ Wa

x/ sup |fkag(w1,x)|dwl/ sl_dds/ 4,
R? xcRd 1 1

pd(i—a)+1+2a—1 when d > 3,
~ p2(1=e)+142a=1) 150l when d = 2.

t771_2a

Gathering the different estimates on I, 11, I1I, IV and V then ends the proof of the propo-
sition. 0O

4.7.2 The case v = 1.

-1

The Fourier transform of J,?O is given in (72). After the change of variable w = 7 w; and

s = nsi, this yields:

-1

tn R
(fJgO)(t, w,€,v,Q) = —47]/ /d dsidw e 2Ro(t=m51) R(w))
R
. 1 1
—i(x0-utko-(€+tu)) ,—i(x0-v+ko-(C+tv)) . . - .
xe e sm<2 w1 (€+tu)> sm<2w1 (C—i—tv))
xFag ® ao(nu —wi, &+ tu—sywy,npv+wi,{ +tv + slwl).

When t < n, it is easy to see that n_llltgnf,]go — 0in L((0, T) xR*¥)—x. For times t > 7, we
split the integral over sy for s; € [0,1] and s1 € [1,¢n~!]. Passing to the limit in the first integral
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is straightforward. For the second integral, the change of variable wi = sl_l w allows to use the
Lebesgue dominated convergence theorem so as to obtain that n_l(]:Jf;O)(t, u,&,v,¢) — J%
in L>=((0,T) x R*) — %, where

(FIO)tu & v, Q) = e 2foteribontlaierm)omibon ko CH) k(g 4 tu, ¢ + tv),
e - ! !
k&, ¢) = —4/0 /Rd dsidwi R(wq) sin (§w1 -E) sin (§W1 . C)
xFag @ ag(— w1, & — s1w1, w1, ¢ + s1w1).

We verify that k is indeed well-defined since

Nt R 1 1-1
Ill oo rzey < 1IN gy |RI g a5, ooy,
and also that J% can be written as
JO = e2Rtg2y J = 6(-—x0)0(- — x0) K(6(- — ko) (- — ko)), (88)

where K is the operator defined for a tempered distribution J by KJ = F~1(kF.J).

4.7.3 Proof of theorem 2.2: conclusion.

We recall that J,, = Jg + J,%’Q + J% K and compute the limit of Jg + J% © and J%”C separately.
Consider first the term ‘]7(7) + J%’Q and assume 0 < a < 1. We have already seen in the proof

of theorem 2.1 that the leading term in J,? + J%’Q is jn = J,?O + J,;l’Q. According to (65), jn
solves the integral equation B N
Iy =TT, + J,

and following (35)-(67), 5~ (#+2)(1-e)=(2a=1V0 Jis hounded in the Banach space C°([0,T], Z').
We can thus extract a subsequence such that

n—(d—i—2)(1—04)—(204—1)\/0j;7 N Jé’ in LOO((O,T),Z,) %
Let ¢ € C°([0,T), Z) and

T
T CO([0,T), 2) — C°([0,T), Z),  (T<"p) (s) = / e 2009 0yG2_p(t)dt.

s

Then:
T T T
/ <‘]77790>Z’,Zdt:/ (T, T2*0) 21 7 dt+/ (130, 0) 21,7 dt.
0 0 0

)(1—a)—(2a—1)V0

Rescaling the latter equation by n~(@+2 and passing to the limit, we find that

JL e L>=((0,T), Z") satisfies

T T T
/0 (@) g dt = /0 (JL, T2 ) 1 7 dt + /0 (T, o) 1. dt,

where J% is defined in proposition 4.11. .J! is thus solution to
JL=12J! 4+ jo°, (89)

which admits a unique solution in C°([0, T, Z’) according to corollary 3.4 since J% € C°([0,T7], Z').
This implies that the whole sequence 5~ (@+2)(1=e)=(2a=1V0 J converges to J1.
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Consider now the term J%’IC and assume 0 < o« < 1. The leading term in J%”C is J;L”C,

solution to (53). Jﬁ”c is of order nd(l-e)+a [t fa(m)] A1 in CO([0,T), Xoo), with fa(z) =1
when d > 3 and fo(x) = 1 + |loga!™2%|. We can thus extract a subsequence such that
pd0=e)—a (o1 fd(n)]‘1 V1) FJpN — FJ2 in L°((0,T) x R*) — «. Considering a test
function ¢ € CY([0,T], S(R*)), denoting by (-,-) the L?(R*?) scalar product and verifying
that FT%*p € C°([0, T], L' (R*?)), we have

T T T
/O (FIpN Fo)dt = /D (FIpN FT9% ) dt + /0 (FT I, Fo) dt.
Recalling that Tfjgo = G,l7 +G727, rescaling the latter equation by n~¢(1—e)—a( (22 fa(n)] “ly
1) and passing to the limit using propositions 4.12 and 4.13, we find

T T T
/ (FJ2, Fop)dt = / (FJ2, FT9*p) dt + / (FG}, Fo)dt,
0 0 0

where G} is defined in proposition 4.12. J2 is thus solution to
J2=T°J2 + Gy, (90)

which admits unique solution in C°([0, 7], X ) according to corollary 3.4 since G§ € C°([0, T}, Xo0)-
Hence the whole sequence converges.

It remains the limit of J,, when a = 1. Proceeding exactly as above, we find that the whole
sequence 1~ 1 F jﬁ converges in L=((0,T) x R*) — x to F.J} , where J! is the unique solution
to Ji = T2J} + J% and J% € C°([0, T], Xoo) is now given by (88).

We have proved that, when 0 < o < 1,

J7[7) _ n(d+2)(1—a)+(2a—1)\/0Jé + nd(l—a)—l—a([nQa—lfd(n)] A 1)J2 + T,

where 7, is negligible compared to the two first terms in the L>°((0,T),S’(R*?)) — x topology.
To obtain the expressions of the theorem, it suffices to recast (89) and (90) as partial differential
equations and to rewrite (after lengthy calculations) the operators K¢ and Ky in terms of
the physical variables x, y, k and p. We verify as well that o,(t,k) € L'(Ry x R?) for the
different values of a and that 0 (0,k) € L'(R%). When a = 0, the leading term is proportional
to Jg so that Jg =2 + 7, and the theorem follows by recasting K2 and by noticing that
oo € C°([0,T), LY(R; x RY)). When a = 1, the leading term is proportional to J3 so that
Jg = nJg + ry. The fact that J11 0 is real stems from separating the G term of the theorem
into real and imaginary parts and by using that Fxao(—w, k) = Fxao(w, k). When ay is even,
Fxao(w, k) = Fxao(—w, k) and the integral in principal value sense vanishes. This concludes
the proof.
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