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Abstract – An experimental study is performed on electromagnetic time reversal in 

highly scattering environments, with a particular focus on performance when 

environmental conditions change. In particular, we consider the case for which there is a 

mismatch between the Green’s function used on the forward measurement and that used 

for time-reversal inversion. We examine the degradation in the time-reversal image with 

increasing media mismatch, and consider techniques that mitigate such degradation. The 

experimental results are also compared with theoretical predictions for time reversal in 

changing media, with good agreement observed. 

 

I. Introduction 

 

Time reversal is a technique that is based on the principle of reciprocity [1]. In particular, 

assume a source emits radiation that propagates through a complex media to a set of 

receiving antennas. The data that arrives early in time at a given receiver implicitly 

travels a shorter distance than data that arrives later in time. By reversing the received 

waveforms in time, and emitting them from their respective reception points, the data that 

traveled a longer distance is emitted early, and the data that traveled a shorter distance is 

emitted later, and all of the energy arrives at the original source in unison, approximately 

recreating the original excitation. In the above discussion we have assumed that the 

medium is lossless. Further, the original source is not recreated exactly after time 

reversal, because in practice a finite set of receiver/source antennas are used. 
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While the concept of time reversal is simple, a direct result of reciprocity, it has 

important implications. For example, in conventional imaging the focusing resolution is 

limited by the size of the antenna aperture (for an antenna array) [2]. However, in a 

complex propagation medium, characterized by multiple paths from the original source to 

the receiving elements, time reversal may have an effective aperture [3,4] that is much 

larger than that of the physical array aperture and acts as a filter that increases with the 

number of available paths [5,6]. This phenomenon has been termed “superresolution” [4]. 

Interestingly, the more complex the media the more paths are manifested from a source to 

the multiple receivers, thereby enhancing superresolution refocusing quality. However, 

while resolution quality may be enhanced by increased media complexity, one also 

typically observes a reduction in the energy refocused at the original source [4,5,6] (the 

complex media yields highly scattered waves, most of which are not observed by the 

antennas). 

 

Time reversal has been demonstrated experimentally in an extensive set of ultrasonic and 

acoustic measurements [7-13], as well as in recent electromagnetic studies [14,15]. Time 

reversal examined in this previous work consists of two steps: (i) a source emits a pulse 

of radiation from a given point in a complex propagation environment, with the data 

observed at a set of receiving antennas; and (ii) the time-domain data at each of the 

receiver elements are reversed and synchronously re-radiated from the respective source-

receiver antennas. If the media through which steps (i) and (ii) are executed are the same, 

the time-reversal phenomena is well established [7], and refocusing is observed at the 

original source point. A question arises as to focusing quality when there is a mismatch 

between the environments considered in steps (i) and (ii). This mismatch may be 

manifested in several ways. For example, there may be time-varying elements within the 

media, yielding a change in the Green’s functions associated with steps (i) and (ii). 

Consider, for example, localization of an electromagnetic source within a building in 

which people may be moving. As another example, in many applications step (ii) may be 

performed computationally rather than experimentally. In particular, if a source in step (i) 

emits radiation, which we wish to localize (image) using step (ii), one requires a 

propagation model [15] to implement (ii). In this context there will often be uncertainties 
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in knowledge of the parameters of the media, or limitations of the accuracy of the 

numerical model with which step (ii) is implemented. For these reasons it is of interest to 

examine how differences in the Green’s functions used for steps (i) and (ii) deteriorate 

time-reversal refocusing quality. Work of this type has been examined experimentally in 

acoustics [8,17] and ultrasonics [10], as well as in theoretical studies [6]. For example, in 

[11-13] time-reversal refocusing quality was examined in an ocean channel, as the 

acoustic medium (sound-speed profile) changed with time. In the work presented here we 

consider such phenomenon in an electromagnetic setting, with a more-controlled 

measurement, allowing comparisons with theoretical predictions [6]. In particular, theory 

predicts that the strength of the refocused signal is an increasing function of the 

correlation of the two underlying media between the forward and backward stages of the 

time reversal experiment. 

 

We may seek to generalize time reversal, particularly when there is uncertainty in the 

medium associated with step (i). Addressing the imaging problem, rather than 

numerically implementing step (ii) through a single (fixed) media, which may be 

different from that actually used in step (i), we may perform this step using an ensemble 

of media (i.e., a media subspace, with the idea that the actual media from step (i) may be 

in the subspace, but without requiring knowledge of the exact/precise media associated 

with step (i)). For example, we may use an average Green’s function for step (ii), with 

averaging performed over an ensemble of Green’s functions corresponding to a set of 

(distinct) media related to the particular media for which step (i) was performed. 

Alternatively, one may perform an eigen-based principal components analysis (PCA) 

[19] on an ensemble of Green’s functions for different media in step (ii), with use of the 

principal eigenvector(s) when imaging. We examine these techniques for electromagnetic 

source localization in changing and uncertain media. 

 

The remainder of the paper is organized as follows. In Sec. II we describe the 

experimental system used to perform the electromagnetic measurements considered. 

Example imaging results are presented for the case of matched media between steps (i) 

and (ii) discussed above, demonstrating the superresolution phenomenon. Results are 
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presented as a function of the physical aperture size and as a function of the frequency 

bandwidth employed, and comparisons are made to theoretical predictions. The problem 

of mismatched media is examined in Sec. III, with a carefully performed set of controlled 

measurements. The results of these measurements are also compared with theoretical 

predictions. Imaging and source localization are considered in Sec. IV, using techniques 

that account for the uncertainty of the Green’s function employed in step (ii). An 

extensive set of imaging results are presented, with the different techniques compared. 

Conclusions are provided in Sec. V. 

 

II. Experimental Configuration and Matched Media 

 

A. Details of measurements 

 

Electromagnetic time reversal (ETR) 

measurements are performed using a 

vector network analyzer. These time-

reversal studies extend many previous 

measurements performed with acoustic 

and ultrasonic systems [7-13], as well as 

recent electromagnetic studies [14,15]. The 

measurements are performed with Vivaldi 

antennas, over the 0.5-10.5 GHz band. The 

electric fields are polarized vertically. 

Low-loss dielectric rods of 1.25 cm 

diameter, 0.6 m length, and with 

approximate dielectric constant 5.2=rε  are situated with axes parallel to the direction of 

the electric fields. As indicated in Fig. 1, a total of 750 rods are considered, configured 

randomly, with an average inter-rod spacing of 6.5 cm (between rod axes). The rods are 

situated in a domain 1.2 m long and 2.4 m wide, with the rods embedded at the bottom in 

styrofoam ( 1≈rε ); the 2.4 m width is employed to minimize edge effects in the 

measurements, as detailed below. A top view of the geometry is shown in Fig. 2. The 

Antenna 1

Antenna 2

Antenna 1

Antenna 2

Figure 1. Dielectric rod experimental setup used 
in experimental time-reversal studies. The two 
antennas are moved using precision stepper 
motors. The length of the domain in the 
horizontal direction is 1.2 m, and it is 2.4 m in the 
vertical direction (of this photo). 
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1.2×2.4 m2 rod domain is composed of six distinct and contiguous rod sections (see Fig. 

2), each 2.4 m wide and 20 cm long. Multiple rod-placement realizations may be 

manifested by interchanging the positions of the six styrofoam-supported subsections. 

The antennas are situated in a plane bisecting the midpoint of the rods.  

 

The measurements are performed with two antennas, one used for transmission and the 

other for reception. Multiple antenna positions are realized using precision stepper 

motors. The transmitting antenna, on one side of the domain (see Fig. 2), is placed at 

M×M positions, with inter-grid spacing cm5.2=∆=∆ yx . On the other side of the 

domain the receiver antenna is moved to N positions along a linear aperture, with inter-

element spacing cm5.2=∆ .  

 

Let the transmitting-antenna location be 

represented as rm, for m=1, 2, …, M2, and 

the receiving antenna is placed at rn, for 

n=1, 2, …, N. These NM2 measurements 

constitute the data ),,( mnkG rrω , where ω 

represents the angular frequency. As 

indicated above the positions of the six 

contiguous styrofoam sections are 

interchanged to constitute different media 

realizations, the kth of which defining 

),,( mnkG rrω .  

 

The center of the M×M domain is defined as the source position rs, and the fields 

measured on the linear aperture due to this source are ),,(),( smnknk GS rrrr == ωω . An 

electromagnetic time-reversal (ETR) space-time image is computed using the measured 

Green’s functions as  

)exp(),,(),()(),(
1

** tiGSWdtI mnk
N

n
njmjk

BW

ωωωωω
ω

−= ∑ ∫
=

rrrr   (1)  

Imaging 
domain

x

y
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y

Source 
location
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array
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m
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s
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Figure 2. Top schematic view of the rods in 
Fig. 1. The rods are decomposed into six 
regions, with the rods in each region held 
together at the bottom via styrofoam. Different 
media instantiations are implemented by 
interchanging the positions of the six rod 
regions. 
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where the Fourier integral is performed over the system bandwidth BWω , the symbol * 

denotes complex conjugate, and )(ωW  is the window function used to weight (shape) the 

source excitation. While ),( njS rω  and ),,( mnkG rrω  are both measured, the final image 

defined by (1) is synthesized; we typically consider the image manifested at t=0. We may 

observe ETR quality when the forward and inverse measurements are matched (j=k) and 

when there is a mismatch ( kj ≠ ).  

 

B. Time-reversal imaging for matched media: effective aperture 

 

In the first set of results we consider j=k, 

and address image quality as a function 

of the bandwidth and aperture size 

considered. All images are shown at the 

M×M imaging points, at t=0. Ideally we 

expect spatial focusing at the center 

source location. In these examples 

M=13, and in the initial case N=5. A 

representative example image is 

presented in Fig. 3, for which tight 

spatial focusing is observed at the source 

location.  

An important issue of interest concerns time-reversal image stability [18]. This measure 

of stability addresses the case ),0( mjj tI r= , for which the Green’s functions in the 
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Figure 3. Time reversal focusing of a single antenna 
source via an N=5 element linear array. The color 
scale is in dB. The results use the full 0.5-10.5 GHz 
bandwidth.  
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Figure 4. As in Fig. 3, but for N=9, N=3 and N=1 linear elements. (a) N=9, (b) N=3, (c) N=1   
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forward and inverse components of time reversal (steps (i) and (ii), respectively, from the 

Introduction) are matched; the issue of stability [18] considers the variation in 

),0( mjj tI r=  across different j (here, for different ordering of the six rod subsections 

reflected in Fig. 1), with theory indicating that this variation should be weak. Stability is 

addressed in detail in Sec. IID below. 

 

The multi-path manifested from the rods yields an effective linear aperture that is larger 

than that of the physical N-element linear receiver array [4], manifesting 

“superresolution”. It is of interest to examine this phenomenon in the context of the 

present measurements. Using the full-band data (0.5-10.5 GHz) the measured cross-range 

resolution is approximately 7.5 cm, with approximately 10 cm resolution in down-range. 

For a homogeneous medium, the anticipated cross-range resolution is Rc= aL /λ , where 

λ  is the wavelength, a is the real linear aperture length, and L is the distance from the 

aperture center to the imaging point. If we consider a free-space medium, and center 

frequency 5.5 GHz, a real aperture a=10 cm (for N=5), and length L=1.5 m, the optimal 

free-space cross-range resolution is Rc=81.75 cm; Fig. 3 demonstrates the significant 

improvement in cross-range resolution manifested by the rod-induced multipath.  

 

To further assess the superresolution phenomenon, in Fig. 4 we present example time-

reversal imaging results (at t=0) for N=9, N=3 and N=1 receiver elements. The results for 

N=5 and N=9 elements are comparable, with only a slight degradation for the case of 

N=3. It is interesting to note the well-focused imaging results even for N=1, 

corresponding to no physical aperture. The case of N=1 refocusing antennas underscores 

the significant effective aperture manifested by this highly-scattering environment.  

 

C. Time-reversal imaging for matched media: effect of bandwidth 

 

An important observation from our measurements is the dependence of the ETR image 

quality on the system bandwidth and the absolute frequencies employed, as was the case 

for acoustic waves [1,7]. For example, in . 5 we consider N=5 linear elements and a fixed 

bandwidth of 2.5 GHz. However, the absolute frequencies considered in Figs. 5(a)-(c) are 
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respectively 0.5-3 GHz, 2.5-5 GHz and 5-7.5 GHz. The 5-7.5 GHz results in Fig. 5(c) are 

only slightly less well focused than the full-band results in Fig. 3. However, much weaker 

focusing is observed for the bandwidth considered in Fig. 5(a). This is attributed to the 

fact that, at 3 GHz, the wavelength is relatively large relative to the inter-rod spacing and 

to the overall distance of propagation, and therefore the rods act as an effective mixture 

medium, rather than a highly multi-scattering environment. This lack of multi-path 

undermines the aforementioned 

effective increase in the aperture 

size. However, the multipath 

increases for the 5-7.5 GHz data, 

yielding multi-path-induced 

superresolution. 

 

To demonstrate the frequency-

dependent properties of the 

dielectric-rod medium, let )(ωjv  

represent an N× 1 vector, with nth 

element defined by ),( njS rω . The N×N  time-reversal array matrix [20] is defined as 

H
j

J

j
j )()()(

1
ωωω vvV ∑

=
= , where we have summed over 24 realizations of the media (24 

different orderings of the rods subsections in Fig. 1) and superscript H denotes complex 
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Figure 5. Time reversal focusing of a single antenna source via an N=5 element linear array. The color 
scale is in dB. Results are shown using a constant bandwidth of 2.5 GHz, but with absolute bandwidths 
of 0.5-3 GHz, 2.5-5 GHz and 5-7.5 GHz. (a) 0.5-3 GHz, (b) 2.5-5 GHz, (c) 5-7.5 GHz.   
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transpose. In Fig. 6 we plot the N=5 eigenvalues of V as a function of frequency (for N=5 

linear receiver elements). If the medium is relatively weakly scattering, then each )(ωjv  

will be similar with small (random) 

variation, and one would expect a 

single principal eigenvalue, 

representative of the single source at 

rs. If the medium is highly scattering, 

waves will be incident upon the N-

element receiver array from multiple 

angles, and the rank of V will increase. 

One notices two distinct regions in Fig. 

6. Up to approximately 4 GHz there is 

one principal mode, implying that in 

this frequency range the waves realize 

relatively weak multipath, and the rods 

constitute a relatively weak-scattering random media. Above 4 GHz the five eigenvalues 

are similar in magnitude, implying that V is full rank, and that the medium is highly 

scattering. As indicated in the previous paragraph, the highly-scattering character of the 

waves above 4 GHz is beneficial to time reversal, in that it yields an increased effective 

aperture and superresolved imaging resolution.  

 

D. Frequency dependence of focusing energy, and image stability 

 

Theoretical studies in the Rayleigh scattering regime (scatterers of small diameter 

compared to wavelength) predicts that the ETR focusing intensity should increase as the 

third power of frequency in two space dimensions and as the fourth power of frequency 

in three dimensions [6]. To consider this issue, we considered the ratio of energy focused 

at the original source location, normalized by the source energy, as a function of 

frequency. The experimental results in Fig. 7 confirm the theoretical predictions (for this 

approximately two-dimensional system), demonstrating a frequency dependence of 3f . 

The error bars in Fig. 7 correspond to different realizations of the media (as discussed in 
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Figure 7. Mean focusing energy at source point, 
normalized by energy in excitation, as a function of 
frequency. The error bars represent the standard 
deviation across 24 realizations of the media, realized 
by interchanging the rod regions in Fig. 2.   
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Sec. II, manifested by interchanging the six rod regions, as reflected in Fig. 2). To 

compute the results in Fig. 7, full-band ETR imaging was performed, yielding a time-

dependent signal for the data imaged via time reversal to the original source location. A 

Fourier transform was performed of this waveform, and the energy was normalized to the 

strength of the excitation energy, as a function of frequency.  

 

We also note that the error bars reflected in Fig. 7, corresponding to variation in 

),0( mjj tI r=  for 24 distinct manifestations of the intervening rod media, are relatively 

tight (little variation across different media realizations). This observation is consistent 

with previous studies that predict a high degree of stability [18] in the time-reversal 

image quality, for different media realizations (assuming the media used in the forward 

and inverse steps is the same). 

 

III.  Controlled Mismatched Media and Comparisons to Theory 

 

The following measurements are motivated by theoretical studies of time-reversal in 

changing media. Specifically, the measurements attempt to replicate the conditions 

addressed in [15]. In Fig. 8 we consider the 2.4 m wide and 1.2 m long media discussed 

above. A source on the right of the domain emits energy that is observed at the N=5 linear 

elements at left (the source is at the midpoint of the 2.4 m rod-region width). The data are 

time reversed (phase conjugated) and the measured Green’s function over the square 

imaging domain is used to constitute an ETR image at t=0, as in (1). We now consider 

how the ETR image changes if the time-reversed fields are imaged using a Green’s 

function corresponding to the shifted media in Fig. 8 (now kj ≠  in (1)). By 

incrementally increasing the shift through which ETR imaging is performed (Fig. 8), we 

perform a controlled examination of how ETR refocusing quality deteriorates as the 

mismatch (shift distance) increases between the original and shifted (Fig. 8) media used 

for imaging. Note that the use of a 2.4 m wide media was necessitated by edge effects 

observed when executing such shifting when the media was only 1.2 m wide (placement 

of the original source in the middle of the 2.4 m domain was also performed to minimize 

edge effects caused by the finite-width medium). 
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The ETR images at t=0 are shown in Fig. 9, as a function of shift distance. The white 

circle in each sub-image of Fig. 9 corresponds to the physical location of the actual 

original source, with respect to which the imaging domain is shifted (see Fig. 8). 

Considering Fig. 9, we note that the down-range resolution (along the horizontal direction 

of the figures) is preserved as the media is shifted; however, with increasing shift 

distance the cross-range localization (vertical direction) is lost. It is interesting to 

examine the imaging amplitude in the center of each of the shifted imaging domains (in 

the center of each of the subimages in Fig. 9). The energy in the center of the imaging 

domain appears to oscillate 

between strong and weak 

amplitudes, with increasing 

shift. As now discussed in 

further detail, this oscillation is 

predicted to be of the form of a 

zeroth-order Bessel function 

[6]. 

 

In the diffusion regime, it has 

been predicted that the 

amplitude at the center of the 

imagery domain, for shifts of 

the type considered in Fig. 9, 

should vary as ( )τkJo  where 

τ  is the spatial shift and k is 

the wavenumber. A qualitatively similar result is predicted in the radiative transfer 

regime. In Fig. 10 we plot the energy observed at the center of each image, as a function 

of the shift between the media considered in step (i) and step (ii) of the time-reversal 

process. In addition, the results in Fig. 10 are presented as a function of the bandwidth 

used when performing time reversal. In Fig. 11 we plot the magnitude of the excitation 
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window used in (1), )(ωW . Considering )(ωW , the strongest energy in one of the 

subbands considered in Fig. 11 occurs at the respective peak energy (e.g., for the 0.5-1 

GHz subband, the greatest energy is at 1 GHz). Using this understanding, for a given 

subband in Fig. 10, we perform 

comparisons to ( )τkJo  for the 

wavenumber k associated with the 

respective peak frequency.  

 

Using ( )τkJo , the first null in the 

predicted energy at the center of the 

imaging domain should occur at 

shifts of 12 cm, 8 cm, 6 cm and 4.8 

cm, for respective (peak) frequencies 

of 1 GHz, 1.5 GHz, 2 GHz and 2.5 
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Figure 9. Time reversal image as a function of shift in the media (see Fig. 8). The position of the 
original source is shown with the white circle. (a) -8 cm shift, (b) -6 cm, (c) -4 cm, (d) – 2 cm, (e) 0 cm, 
(f) 2 cm, (g) 4 cm, (h) 6 cm, (i) 8 cm, (j) 10 cm  
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GHz. By considering Fig. 11, we note excellent agreement between our measured results 

and the predictions based on the theory in [6]. A qualitative behavior of the refocused 

intensity proportional to ( )τkJo  is not a characteristic of the diffusion regime; for 

instance it approximately holds in the less scattering radiative transfer regime [6]. We 

have also stressed that frequencies below 4 

GHz were weakly scattering. However it 

does demonstrate that multiple scattering 

is responsible for the refocused signal, for 

in homogeneous medium, the refocused 

energy would not depend on the shiftτ . 

Moreover it indicates that loss of 

correlation between the two media of the 

two stages of the time reversal experiment 

induces reduction in refocused signal 

strength. Knowledge of the exact Green’s function is therefore quite important to 

maximally benefit from the refocusing properties of time reversed waves. 

 

IV. Imaging in Changing Media 

 

The results in Sec. III considered controlled changes (shifts) in the media used for steps 

(i) and (ii) of time reversal (the forward and inverse components, respectively), to 

perform a comparison with theoretical predictions. It was observed that substantial 

deterioration of the time-reversal image is manifested as the shift distance (change in 

media) increases. In this section we examine changes to the time-reversal imaging 

procedure, with the goal of enhancing imaging quality and realize robustness to 

uncertainty about the Green’s function associated with step (i). In particular, we make the 

assumption that while the precise (specific) Green’s function used in step (i) may be 

unknown, we may have an ensemble of Green’s functions available, representative of 

media with similar statistics. Different media are constituted by interchanging the 

positions of the six regions in Fig. 1. Below we first summarize the imaging techniques 

considered, followed by experimental results that demonstrate their relative performance.  
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Figure 11. Spectrum of the waveform used in the 
time-reversal experiments. 
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A. Imaging with mismatched Green’s function 

 

We consider image quality ),,(),(),0(
1

*
mnk

N

n
njmjk GSdtI

BW

rrrr ωωω
ω

∑ ∫
=

==  for kj ≠ , 

addressing the problem for which there is a completely distinct arrangement of the six 

regions for cases j and k (see Fig. 2). Specifically, for the kj ≠  cases considered here 

there is no overlap for any of the six rod subsections with respect to media realizations j 

and k (complete mismatch). The image is computed using the discrete sampled 

frequencies as 

),()(),0(
1

mnntI k
N

n

H
jmjk gsr ∑

=
==     (2) 

where sj(n) is an NF × 1 column vector representing the frequency dependence of 

),( njS rω , gk(n,m) is an NF×1 column vector representing the frequency dependence of  

),,( mnkG rrω , NF is the number of frequencies considered, and superscript H represents 

conjugate transpose. 

 

As discussed in the Introduction, when performing imaging, step (ii) of time reversal is 

performed computationally, using either a measured or computed Green’s function. 

When precise knowledge of media j is unavailable or cannot be modeled with full 

accuracy, then media k associated with ),,( mnkG rrω  is mismatched to the forward 

measurement ),( njS rω . Below we consider alternative means of addressing an imperfect 

representation of media j, rather than simply computing ),0( mjk tI r=  for kj ≠ . 

 

B. Averaged Green’s function 

 

Assume we have measured data ),( njS rω  from the linear array of receivers, 

corresponding to the jth realization of the media (placement of the six rod subsections). 

Further, assume that the particular media (Green’s function) associated with this jth 
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example is unknown. However, we may have access to the statistics of the Green’s 

function. Specifically, assume access to Green’s functions from K realizations of the 

media (K realizations of the six rod subsections in Fig. 2), each of which is entirely 

distinct from the jth realization referenced above (as discussed above). If these K Green’s 

functions are denoted ),,( mnkG rrω , for k=1, …,K, then one simple idea would be to 

perform imaging using the average Green’s function 

∑
=

=
K

k
mnkmnAVG G

K
G

1
),,(1),,( rrrr ωω           (3) 

with the time-reversal image represented as 

),()(),0(
1

, mnntI AVG
N

n

H
jmAVGj gsr ∑

=
==                (4) 

where ),( mnAVGg  is an NF×1 column vector representing the frequency dependence of  

),,( mnAVGG rrω . 

 

C. Subspace imaging 

 

The MUltiple SIgnal Classification (MUSIC) algorithm [21] employs the “noise” 

subspace from multiple data measured using an antenna array. This approach is 

appropriate for source localization when multiple instantiations of the array data are 

available, for a given source; such a situation may be manifested by repeated 

measurement of data from a stochastic source [20]. In the problem considered here we 

only have a single set of data ),( njS rω , for one (the jth) realization of the source and 

media. Direct application of MUSIC is therefore inappropriate. However, as discussed 

below, we may exploit related eigen-subspace ideas. 

 

For a given source and receiver point, again assume access to K examples of the Green’s 

function, denoted ),,( mnkG rrω , for k=1, …, K. Rather than taking the average of these K 

Green’s functions (for K realizations of the media), we may perform a principal 

components analysis (PCA) [19], and project the measured data onto the principal 

Green’s function eigenvectors. We perform an eigen decomposition of the NF×NF  matrix  
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H
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ggG ∑

=
=     (5) 

Let ),( mnle  represent the lth eigenvector of (5). A PCA-based imaging result is 

represented as 

∑ ∑
= =

==
N

n

L

l
l

H
jmEIGj mnntI

P

1 1
, ),()(),0( esr    (6) 

In the example results we have considered Lp=1 principal component.   

 

D. Example imaging results 

 

The measurements were performed as follows. The Green’s function ),,( mnG rrω  was 

measured for Nmedia=24 realizations of the six rod subsections depicted in Fig. 2. For the 

jth of these realizations, there was a set jΩ  of  Nj < Nmedia other rod arrangements 

considered for which there was a complete mismatch in the order of the six rod regions.  

 

When considering the technique in Sec. IVA for media j, Ijk was calculated separately for 

all media jk Ω∈ ; consequently, for each media j we compute Nj distinct images Ijk. For 

the techniques in Secs. IVB and IVC, a single image is computed for each of the Nmedia 

media arrangements. Specifically, for AVGjI ,  the average Green’s function ),( mnAVGg  

was computed using the Nj media in jΩ ; for EIGjI ,  the principal component ),(1 mne  

was also computed using the Nj media in jΩ . We first present qualitative results based 

on these imaging techniques, followed in Sec. IVE by quantitative results. In these 

examples a total of Nmedia=24 media were considered, and for each media j on average 

Nj=10 (the minimum was Nj=6). 
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In Fig. 12(a) a representative image is performed using traditional time reversal as in (2), 

for which the Green’s functions used for the forward and inverse parts of time reversal 

are entirely distinct – corresponding to (2). Figures 12(b) as 12(c) present representative 

results for ),0(, mEIGj tI r=  and ),0(, mAVGj tI r= , respectively, for which generally good 

imaging is observed. The improved results of  Figs. 12(b) and 12(c) vis-à-vis Fig. 12(a) is 

expected, given that the former employ more information (the latter two both use an 

ensemble of Green’s functions, while in Fig. 12(a) a single mismatched Green’s function 

is employed). However, we underscore that each of Green’s function employed in Figs. 

12(a), 12(b) and 12(c), for computation of the average and eigen Green’s functions, are 

entirely distinct from media j associated with forward measured data ),( njS rω . As a 

reference, in Fig. 12(d) we show results for which the Green’s function ),( mnkg  in (2) 
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Figure 12. Typical time-reversal images for the case in which there is a complete mismatch between 
the Green’s function associated with the forward and inverse phases of time reversal. Results are on a 
10 dB scale. (a) Using mismatched Green’s function, (b) using an eigen Green’s function, (c) using an 
average Green’s function, (d) using the free-space Green’s function. 
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corresponds to the free-space Green’s function – for this case no cross-range resolution is 

observed.  

 

F. Quantitative analysis of imaging results 

 

As indicated above, numerous images of the form in Fig. 12 have been generated by 

varying the placement of the rod positions, as reflected in Fig. 2. It is therefore of interest 

to perform a quantitative analysis of all such images. Toward this end, consider Fig. 13, 

for which a square region is defined (corresponding to a contiguous 33× pixel region in 

image space, with pixels defined as in Fig. 12). The test statistic l used in this analysis is 

defined by the peak pixel amplitude within the inner box. If Tl >  a target is declared as 

being within the 33×  inner region, 

and if Tl <  no target is declared (the 

actual target position is in the center 

of the image, as in Fig. 12). By 

varying the threshold T, from zero to 

maxlT >  (the largest value of l 

within a given image), we yield the 

receiver operating characteristic 

(ROC) [22], representing the 

probability of detection as a function 

of the probability of false alarm (a 

false alarm is defined by declaring 

the presence of a source at a location for which there is in reality none). In Fig. 14 we 

plot the ROC curves for the imaging techniques considered in Fig. 12. We note that the 

techniques based on the average and eigen Green’s functions (equations (4) and (6), 

respectively) yield comparable performance, while performance declines precipitously 

when considering a single mismatched Green’s function or the free-space Green’s 

function (the latter yielding the worst results). The results in Fig. 14 indicate that, while 

time reversal may work poorly when the imaging is performed with a single mismatched 

Green’s function, significantly improved performance is realized if one uses information 
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Figure 13. Receiver operating characteristic (ROC) 
averaged across multiple realizations of mismatched 
media, using the four imaging techniques reflected in 
Fig. 12. 
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in an ensemble of Green’s function representative of that used in the forward 

measurement. 

 

Let us mention that the performance obtained with the ensemble of Green’s functions is 

significantly lower than what is obtained by using the exact Green’s function. It is 

however significantly higher than that predicted by theory in the weak coupling regime, 

where fluctuations in the underlying structures are delocalized and small [6]. The exact 

mathematical average of the Green’s functions over all possible realizations of a random 

media with given statistics should, according to theory in [6], not provide better 

refocusing than the Green’s function in a homogeneous medium. That the results 

presented in this paper are significantly better than this prediction may have two origins. 

Firstly, the 24 realizations considered here are not completely statistically independent. 

Interchanging subsections 1 and 2 bears many similarities to a 20 cm shift in the medium. 

The results in Fig. 10 show that such shifts are still compatible with a sizeable refocused 

energy over a large frequency band and may thus be explained by theory [6]. Secondly, 

rods are by no means small fluctuations as the dielectric constant jumps from 1 in the air 

to 2.5 in the dielectric rods. Because 750 rods are packed on 2.88 m2, it is also quite 

likely that rods in stage two will end up very near locations of rods in phase 1. Such pairs 

of rods will have positive correlation for all frequencies larger that twice the inverse of 

the distance between the rods. We do not have a quantitative theory that explains such 

correlations. Yet our results seem to suggest that (i) correlations between the random 

media of both phases of time reversal are indeed sufficiently significant to generate a 

sizeable recompression at the source location, and (ii) that their effect is however 

statistically unstable as ensemble averages, either by averaging the Green’s function or 

by projecting over the principal component to the realizations, provide more focused 

images than those obtained by a random Green’s function. 

 

 

 

 

 



 20

V. Conclusions 

 

Time-reversal imaging has been examined experimentally for electromagnetic source 

localization in highly scattering media. We initially addressed the well-known time-

reversal behavior for the case in which the media employed in the forward and inverse 

steps are matched. These experiments confirmed theoretical predictions concerning time-

reversal imaging stability, for the case in which the forward and inverse media are 

matched, but for different media realizations [6]. The experiments also confirmed the 

anticipated 3f  frequency dependence of the imaging amplitude in the Rayleigh regime 

[6], for the case of matched media. 

 

After addressing the case of matched media, significant attention has been directed on the 

case for which the media employed in the forward and inverse steps are mismatched. The 

case of mismatched media for the inverse step is of relevance for changing media, as well 

as for numerical time-reversal imaging for which the exact media is unknown or cannot 

be modeled precisely. 

 

In our first analysis of time-reversal imaging in changing media, we considered the 

special case for which the two media are shifted with respect to each other. While this is a 

special case, it is of particular interest because it allows us to address the accuracy of 

previous theoretical predictions [6]. In particular, in the diffusive regime it is predicted 

that the imaged amplitude should vary as )( τkJo  , where k represents the wavenumber 

and τ  the spatial shift [6]; the experimental results considered here are in excellent 

agreement with theoretical predictions.  

 

While the theory and experimental results indicate time-reversal imaging deterioration as 

media mismatch increases between the forward and inverse phases, we have also 

considered alternative techniques for the case in which the media employed in the 

forward phase is either unknown or may not be modeled precisely. Specifically, we have 

performed time-reversal imaging based on an average Green’s function, computed using 

an ensemble of Green’s functions; each Green’s function in the ensemble corresponds to 
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a media completely distinct from that used in the forward step, but with similar statistics. 

A similar use of the ensemble of Green’s functions was considered via an eigen analysis, 

analogous to principal components analysis (PCA) [16]. It was demonstrated that we 

often observe significantly improved time-reversal imaging quality based on either the 

average or eigen Green’s function. 

 

Concerning future research, in this study we have focused entirely on source localization. 

There is also interest in time-reversal imaging for the case of target scattering, for which 

the intervening multi-scattering environment is not known precisely, but potentially 

statistically (e.g., for targets embedded in foliage). Such research will be the subject of 

future research.  
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