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Abstract
We consider the reconstruction of vertical concentration profiles of atmospheric
gases from a spectral distribution of radiation measured from a space-borne
infrared spectrometer. Under some separability assumptions of the gases’
spectral absorption coefficients, we obtain uniqueness results on the
reconstruction of concentration profiles from (multiple-wavenumber) radiance
measurements and provide an explicit reconstruction procedure. We show that
the reconstruction is a severely ill-posed problem. To address the reconstruction
of localized layers, such as ozone or dust layers, we model the reconstruction
of strong localized variations in the concentration profiles by using asymptotic
expansions in the layer thickness. Assuming the background is known, we
obtain that the location as well as the product of the concentration variability
within the layer multiplied and the thickness of the layer may be reconstructed
from moderately noisy data. The reconstructions of both the concentration and
the thickness of the layer require more accurate data.

1. Introduction

The vertical concentrations of atmospheric gases such as carbon monoxide (CO), carbon
dioxide (CO2) and ozone (O3) play key roles in climate change, the oxidizing capacity of
the atmosphere, as well as regional and global air quality [12, 15, 16]. In recent years,
spectro-radiometers in Fourier transform infrared spectroscopy (FTIS) have been widely used
to monitor the concentration of atmospheric gases. An example of such spectrometer, the
tropospheric emission spectrometer (TES), which is on the EOS-Aura spacecraft, was launched
in July 2004 and will soon measure global three-dimensional distributions of ozone and other
gases in the troposphere [3] with unprecedented accuracy. In its nadir mode, TES will record
the spectral radiance from the Earth’s atmosphere in the form of line integrals with respect
to altitude z. Such measurements can be used to recover the vertical concentration profile of
atmospheric gases.
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Mathematically, the problem can be formulated as a one-dimensional inverse source
problem of a scattering-free transport equation aiming at reconstructing the altitude-
dependent gas distribution profiles [5, 7, 13] from wavenumber-dependent boundary radiation
measurements. While a lot of work has been done on developing numerical algorithms to
address the linear inverse problem [7, 9, 18, 20], comparatively little is known in the literature
on more mathematical questions such as uniqueness and stability of the reconstruction. The
first part of the paper addresses this issue.

Under suitable separability assumptions on the absorption coefficients in the transport
equation, we show that the gas concentrations can indeed uniquely be determined by radiation
measurements—a theoretical underpinning for the reconstruction algorithms we were not able
to find in the existing literature—and give an explicit reconstruction procedure. Moreover, we
stress that the reconstruction involves the inversion of a Laplace transform, which is known to
be a severely ill-posed problem [4, 10, 14]. As a consequence, a somewhat limited amount of
information on the profiles can be retrieved from the radiation measurements. Such limitations
need to be incorporated in realistic reconstruction methods.

An important objective of the radiation measurements is the detection of relatively thin
(on the order of 2–3 km) layers such as ozone or dust layers in the Earth’s lower atmosphere
(the troposphere). Such layers have an important impact on local climate changes and global
warming effects to cite a few. Because of the severely ill-posed nature of the inversion
problem, such thin layers must be modelled specifically in the inverse problem if they are to be
detected. We propose in this paper to model such structures as thin inclusions with arbitrary
(i.e., not necessarily small) concentration contrast. We perform asymptotic expansions in the
thickness of the inclusions to characterize their main impact on the boundary measurements.
The technique follows general principles that have been used successfully in many other
fields [1, 2, 6]. The results of the analysis are the following. The location of the inclusions
and the product of their thickness and their concentration variations (with respect to the
underlying medium assumed to be known) can be reconstructed from moderately noisy data
(see simulations below). Obtaining more on the inclusion, i.e., both its thickness and its
concentration, requires much more accurate data. This provides us with some guidelines in
our aim to understand what can versus what cannot be reconstructed from measurements with
a given noise level.

Let us note that the nadir measurements represent only one modality of TES.
Measurements involving directions of incidence other than vertical, e.g., horizontal or limb
sounding, provide additional information and could be incorporated into the model to improve
its stability properties. Although this is an important problem, it is not considered further here.

The rest of the paper is organized as follows. Section 2 recalls the pertaining mathematical
equations and the radiative transfer inverse problem. Section 3 presents a simplified model for
the retrieval problem. In that setting, uniqueness and severe ill-posedness of the reconstruction
are shown. The single-gas and multiple-gas cases are considered separately. Section 4
is devoted to asymptotic analyses showing the asymptotic effect on the measurements of
localized anomalies with sizeable concentration variations. Several numerical simulations
based on synthetic data are provided in section 5. Section 6 offers some concluding remarks.

2. Mathematical model

We denote by L(z, ν) the radiation intensity of atmospheric gases at altitude z ∈ Z = (0, Z),
where Z is the altitude at the ‘top’ of the atmosphere, and wavenumber ν ∈ N = [νmin, νmax],
where νmin and νmax are the minimum and maximum wavenumbers accessible in real
measurements. The radiation source term at the Earth surface is L(z = 0, ν). The volume
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source term of radiation is a(z, ν)B(z, ν), where a(z, ν) is the absorption profile of a specific
gas in the atmosphere and B(z, ν) is the Planck function of black-body radiation. The
measurements L(Z, ν) are the radiation intensity on top of the atmosphere z = Z. Typically,
measurements are available in the wavenumber range of 650 to 2250 cm−1 (which corresponds
to wavelengths of 15.4 and 4.4 µm, respectively). Thus, ν is in the middle of the thermal
infrared region (IR). From the atmospheric radiative transfer theory [12, 15], the transport
equation satisfied by L(z, ν) is


∂L(z, ν)

∂z
+ a(z, ν)L(z, ν) = a(z, ν)B(z, ν), (z, ν) ∈ Z × N ,

L(0, ν) = L0(ν), ν ∈ N .

(1)

We assume that a(z, ν) and B(z, ν) are positive functions of class C0(Z×N ) and C1(Z×N ),
respectively, and that L0(ν) is a positive function of class C0(N ). As usual C0 is the class of
continuous functions and C1 the class of continuously differentiable functions. The solution
L(z, ν) is then a positive function of class C1(Z × N ) [11].

The Planck function B(z, ν) is given by

B(z, ν) = 2hν3

c2(ehν/kT (z) − 1)
, (2)

where h is Planck constant, ν is the wavenumber, k is the Boltzmann constant and c is the
speed of light in a vacuum. The temperature profile T (z), assumed here to be of class C1(Z),
is given in Kelvin degrees and is thus always positive. Note however that T ′(z) changes sign
on Z in practice. This will be important in the reconstruction theory. Scattering has been
neglected in (1), which is an accurate assumption in the ‘clear sky’ environment.

The radiation intensity at the Earth surface is related to the Planck constant of black-body
radiation by

L0(ν) = ε(ν)B(0, ν) (3)

where ε(ν) is the surface emissivity, which we may assume is constant at the Earth’s surface
ε(ν) = ε [15].

It is more convenient to work in the following with the quantity

H(z, ν) = L(z, ν) − B(z, ν), (4)

modelling the departure from the black-body radiation equilibrium. One can verify that the
equation for H(z, ν), also of class C1(Z × N ), takes the form


∂H(z, ν)

∂z
+ a(z, ν)H(z, ν) = −∂B(z, ν)

∂z
≡ S(z, ν), (z, ν) ∈ Z × N ,

H(0, ν) = γB(0, ν), ν ∈ N ,

(5)

where γ = ε − 1. Upon inverting this first-order ordinary differential equation, we get

H(Z, ν) = H(0, ν) exp

(
−

∫ Z

0
a(ζ, ν) dζ

)
+

∫ Z

0
S(z, ν)

× exp

(
−

∫ Z

z

a(ζ, ν) dζ

)
dz, ν ∈ N . (6)

Let us define the optical length

α(z, ν) =
∫ Z

z

a(ζ, ν) dζ. (7)

We may then recast the above integral (6) as

H(Z, ν) = H(0, ν) e−α(0,ν) +
∫ Z

0
S(z, ν) e−α(z,ν) dz, ν ∈ N . (8)
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This is the integral formulation, equivalent to the differential equation (1), as it appears in
most of the atmospheric inversion literature.

3. Uniqueness and ill-posedness of a simplified model

We know that the absorption profile a(z, ν) depends on both the concentration of atmosphere
gases and their absorption properties at specific wavenumbers. To simplify the presentation,
we assume in this section that only one gas, such as ozone, contributes to absorption and
emission. We then have that

a(z, ν) = c(z)κ(z, ν), (9)

where c(z) ∈ C0(Z) is the unknown (non-negative) concentration profile for the gas, and
κ(z, ν) ∈ C0(Z × N ) is the (positive) spectral absorption/emission coefficient (also called
spectral line shape). Although more complicated models of κ(z, ν) can be considered, we
focus here on the so-called Lorentzian line shape of κ(z, ν). It is valid in the lower atmosphere
and takes the form

κ(z, ν) ≡ κL(z, ν) = Qν0

1

π

αL(z)

(ν − ν0)2 + α2
L(z)

≡ Qν0f (z, ν − ν0), (10)

where ν0 is the centre of the band of wavenumber we are interested in and Qν0 = ∫
N κ(z, ν) dν

is the line strength. The function αL ∈ C0(Z) is called the Lorentz half-width. It is roughly
given by

αL(z) ∼ T (z)−1/2, z ∈ Z, (11)

where T (z) is the temperature profile of the atmosphere and f (z, ν − ν0) ∈ C0(Z ×N ) is the
shape factor of a spectral line [12]. The Lorentzian line shape describes how a gas absorbs
and emits radiance in a narrow band of wavenumbers centred at ν0.

The inverse (retrieval) problem in atmosphere imaging is to assume that the radiation
term B(z, ν) in (1) and absorption coefficient κ(z, ν) are known and to reconstruct as much
as possible about c(z) from radiation measurements L(Z, ν) = H(Z, ν) + B(Z, ν).

3.1. The case of a single gas

The purpose of this section is to show that the reconstruction of c(z) from L(Z, ν) is uniquely
determined (in a slightly simplified setting) and is a severely ill-posed problem (see [10]) in
the sense that, in the absence of regularization, noise in the data is more amplified during the
inversion procedure than what would result from an arbitrary number of differentiations.

We do not have a complete theory for general absorption coefficient κ(z, ν). Rather we
make the following assumption on the shape factor f (z, ν − ν0):

f (z, ν − ν0) = µ(ν − ν0)g(z), (12)

where g(z) ∈ C0(Z) is uniformly bounded from below by a positive constant, and
µ(ν − ν0) ∈ C0(N ) is a positive function whose range M = µ(N − ν0) is an interval
in R

+. In the above expression (10) this would correspond to replacing κ by its approximation

κL(z, ν) ≈ Qν0

1

π

αL(z)

(ν − ν0)2 + ᾱ2
, (13)

with µ(ν) and g(z) given by

µ(ν) = 1

π

ᾱ

ν2 + ᾱ2
, (14)
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and

g(z) = αL(z)

ᾱ
. (15)

Here ᾱ is a constant. The range of µ is given by M = [
ᾱ

π(ν̄2+ᾱ2)
, 1

πᾱ

] ⊂ R
+ with ν̄ :=

max(|νmin − ν0|, |νmax − ν0|).
The separability assumption on the shape factor is not totally unreasonable for the

Lorentzian line shape (10). Following (11) and choosing ᾱ ∼ T̄ −1/2, where T̄ the average of
T (z) over Z , we obtain from realistic temperature profiles that

∥∥ αL−ᾱ
αL

∥∥
L∞(Z)

< 0.15, which

implies that at any given wavenumber ν,
∥∥ κ(·,ν)−κL(·,ν)

κ(·,ν)

∥∥
L∞(Z)

< 0.15, where κ and κL are given
by (10) and (13), respectively. The maximal error is attained when ν = ν0 and decays quite
fast away from ν0 because of the dominance of the term (ν − ν0)

2 over α2
L. Therefore, the

separability assumption serves as a faithful benchmark in understanding the theoretical and
numerical aspects of reconstructions based on more detailed and accurate physical models.

We also simplify the behaviour of the source terms with respect to wavenumber ν and
approximate the Planck function (2) as follows:

B(z, ν) ≈ 2kν2

c2
T (z). (16)

We verify that in the infrared region of interest, this expansion is quite accurate as hν/kT is
on the order of at most 10−3 in practice. The temperature T (z) is also assumed to be of class
C1(Z).

Accounting for the above simplifications and using the change of variables ν → µ and
H(z, ν)c2/(2kν2) → D(z,µ), we obtain, still denoting by a(z, µ) and κ(z, µ) the absorption
coefficients in the new variables, that D(z,µ) satisfies the following equation:


∂D(z, µ)

∂z
+ a(z, µ)D(z, µ) = −∂T (z)

∂z
≡ S(z), (z, µ) ∈ Z × M,

D(0, µ) = γ T (0), µ ∈ M.

(17)

After defining the rescaled optical length by

α(z) =
∫ Z

z

Qν0c(ζ )g(ζ ) dζ, (18)

equation (17) can be inverted as

D(Z,µ) = D(0) e−µα(0) +
∫ Z

0
S(z) e−µα(z) dz, µ ∈ M. (19)

Here D(Z,µ) is the measurement for µ ∈ M. The positive function g(z) and the temperature
profile T (z) (hence S(z)) are known a priori.

The inverse problem for (17) is then:

(IP) Determine the positive function c(z) ∈ C0(Z) from the measurements Dm(µ) =
D(Z,µ) for µ ∈ M.

As we have already mentioned, several numerical methods have been devised for solving
the above inverse problem; see [7, 9, 20] and the monograph [18] and references therein. Many
techniques are based on Bayesian inversion techniques [9, 18]. In this paper we concentrate
on the mathematical analysis of the continuous (non-discretized) inverse problem (IP). Our
main result is the following:

Theorem 3.1. Let us assume that S(z) is a continuous function on Z , which vanishes at
a finite (possibly zero) number of points. Then there is a unique strictly positive function
c(z) ∈ C0(Z) solving (IP).
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Proof. The gas concentration profile c(z) and the quantity g(z) in (15) are both positive
functions on Z = (0, Z), so α′(z) = −Qν0c(z)g(z) < 0 on Z . We can then perform
the change of variables z 	→ α(z) and define the continuously differentiable inverse map
α 	→ z(α). The above inequality implies that z′(α) < 0. The transform (19) may thus be
recast as

D(Z,µ) = D(0) e−µα(0) +
∫ α(0)

0
S(z(α))

∣∣∣∣ dz

dα

∣∣∣∣ e−µα dα, µ ∈ M. (20)

Here we have used that α(Z) = 0. The data D(Z,µ) are thus the Laplace transform of the
distribution

h(α) ≡ −z′(α)S(z(α)) + D(0)δ(α − α(0)). (21)

The above distribution has support in [0, α(0)]. Since it is compactly supported, its Fourier
transform ĥ(ζ ) = 1

2π

∫
R

eiζαh(α) dα is an analytic function in ζ [23]. The latter is known for
values of ζ such that ζ = iµ,µ ∈ M since then D(Z,µ) = ĥ(−iζ ). It is thus sufficient
to know D(Z,µ) on a set with at least one accumulation point to uniquely define ĥ(ζ ) for
all ζ ∈ C by analytic continuation [8, 19]. This in turn uniquely defines the function h(α).
Since M is an interval in our model, we can thus reconstruct α(0),D(0) and −z′(α)S(z(α))

on (0, α(0)) from the measurements D(Z,µ).
We now reconstruct α(z) on (0, Z) from the above measurements. We present two

similar methods. Let us first introduce the function T̃ (α) of class C1(0, α(0)) defined
by T̃ (α) = T (z(α)). We verify that −z′(α)S(z(α)) = T̃ ′(α). By integration, and since
T̃ (0) = T (Z) is known, we uniquely reconstruct T̃ (α) on (0, α(0)). Since z′(α) < 0, we
deduce that T̃ ′(α) = T ′(z(α))z′(α) and T ′(z) vanish at the same singular points (in their
respective variables). If there is no such point, then T (z) is a homeomorphism on (0, Z) (it is
bijective, continuous, and maps open sets to open sets since |T ′(z)| > 0 on the interval; it thus
admits a continuous inverse) with inverse z(T ), from which we deduce z(α) = z(T̃ (α)) on
(0, Z); whence its inverse α(z). Otherwise, we call the singular points αk and zk, 1 � k � N ,
respectively, with α(zk) = αk . We also note the endpoints α0 = 0, αN+1 = α(0), z0 = Z and
zN+1 = 0. The points αk are determined by the data since T̃ (α) is known, and the points zk

are determined by knowledge of T (z). On each interval (zj+1, zj ), T (z) is a homeomorphism
with inverse function z(T ) (for the same reasons as above). We thus obtain z(α) = z(T̃ (α))

on (zj+1, zj ), whence α(z) on (αj , αj+1). Varying 0 � j � N , this allows us to reconstruct
α(z) on the whole interval (0, Z).

Another (very similar) way of looking at the reconstruction is to recast (21) for z ∈ Z as

dz(α)

dα
= − h(α)

S(z(α))
. (22)

The above (nonlinear) ordinary differential equation for z(α) holds at all but possibly a finite
number of points in Z by assumption on S(z) and can be extended by continuity to the whole
interval since z(α) is a C1 diffeomorphism. We thus uniquely recover the diffeomorphism z(α)

from (22) since h(α) is continuous on (0, α(0)) as can be seen in (21) and provided that S(z) is
a Lipschitz function (hence the above ordinary differential equation admits a unique solution;
this proof requires a little more regularity than the previous one). This also uniquely defines
its inverse α(z). Once α is reconstructed we uniquely reconstruct c(z) by differentiating
formula (18). This complete the proof. �

Both the analytic continuation [17] and the inversion of the Laplace transform [4] are
known to be severely ill-posed problems. The reconstruction of the concentration profiles
from the boundary measurements is therefore severely ill-posed, even if we had access to data
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Figure 1. Profiles used in the calculation. (a) Temperature profile as a function of z. (b) Rescaled
absorption as a function of wavelength. (c) Ozone concentration as a function of z. (d) Data
D(Z, µ(ν)) as a function of wavenumber ν.

onM = R
+ (in which case the reconstruction would still rely on inverting a Laplace transform).

In practice, this means that only a handful of parameters modelling the concentration profile
can realistically be reconstructed from the measured data provided that those data contain only
high-frequency noise.

The assumption that the temperature gradient S(z) may vanish at a finite number of points
allows us to account for non-invertible temperature profiles (i.e., z(T ) may be a multi-valued
function; the assumption on S(z) implies that it can only take a finite number of values). The
temperature profiles are not invertible in practice, see figure 1(a), so we need to account for
this situation. The assumption however cannot be substantially relaxed. If S(z) vanishes on an
interval, then α′(z) cannot be reconstructed on this interval since (21) and (22) are no longer
equivalent. The measurements at z = Z provide no information on α(z) on the intervals
where S(z) vanishes. This implies non-uniqueness of the gas profile reconstruction; see also
our numerical simulation at the end of section 5.1.

3.2. The case of multiple gases

We now extend the results obtained in the preceding section to the multiple-gas case. Let us
assume that our composite gas consist of M different species and the absorption spectra of
the composite gas contain N (N � M) well-separated bands centred at νi, i = 1, 2, . . . , N ,
respectively. By ‘well-separated’ we mean that for wavenumbers ν in the j th band, we have
|ν − νj | 
 |νk − νj |, for all k �= j . We assume moreover that the absorption coefficient for
gas i can be written as

κi(z, ν) = Qijµ(ν − νj )ci(z)gi(z), (23)
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where Qij is the line intensity for gas i in the wavenumber band j . Our main assumption is
that the function µ(ν) with range M is universal to all gases and takes the form (14), i.e.,

µ(ν) = 1

π

ᾱ

ν2 + ᾱ2
, (24)

where ᾱ is a constant. With these assumptions we have the following (relatively
straightforward) generalization of the single gas case:

Theorem 3.2. Under the assumptions of theorem 3.1, there exists a unique set of positive
profiles ci(z), i = 1, . . . ,M , such that D(Z,µ) ≡ Dm(Z,µ) provided that assumptions (23)
and (24) hold and the matrix Qij has rank M.

Proof. With the above assumptions, we can write the total absorption map for the composite
gas in the vicinity of band j as

a(z, ν) ≡ aj (z, ν) = µ(ν − νj )

M∑
i=1

Qijci(z)gi(z). (25)

After defining

αj =
M∑
i=1

Qij

∫ Z

z

ci(ζ )gi(ζ ) dζ, (26)

we obtain a similar expression as before for the measurements Dj(Z,µ) in the j th frequency
band:

Dj(Z,µ) = D(0) e−µαj (0) +
∫ Z

0
S(z) e−µαj (z) dz. (27)

For the same reason as in one gas case, since α′
j < 0, we can perform the change of variables

z → αj (z). Defining the inverse map αj 	→ z(αj ), we obtain

Dj(Z,µ) = D(0) e−µαj (0) +
∫ αj (0)

0
S(z(αj ))

∣∣∣∣ dz

dαj

∣∣∣∣ e−µαj dαj . (28)

We can thus regard D(Z,µ) as the Laplace transform of the distribution

h(αj ) ≡ D(0)δ(αj − αj (0)) + S(z(αj ))

∣∣∣∣ dz

dαj

∣∣∣∣ . (29)

Then, by the same argument as in the single gas case, we can uniquely reconstruct αj (z).
According to (26), we can uniquely recover

M∑
i=1

Qijci(z)gi(z) = α′
j (z), j = 1, . . . , N. (30)

The above inversion can be performed in each of the N absorption bands, after which we arrive
at the following system of equations for ci(z)gi(z):


Q11 · · · Q1M

...
. . .

...

QN1 · · · QNM







c1g1

...

cMgM


 (z) =




α′
1
...

α′
N


 (z). (31)

Since the matrix (Qij ) has rank M, the above system admits at most one solution, is invertible
when M = N , and provides the unique solution if the source terms α′

j (z) are compatible. This
implies that we can uniquely determine the concentration profiles ci(z) from the measured
data and concludes the proof. �
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In many practical situations, the matrix (Qij ) is indeed invertible (with N = M). Such
examples can be seen in [16], where it appears that the matrix Q is often diagonally dominant.
A diagonally dominant square matrix, i.e., such that |Qii | >

∑M
j �=i |Qij | for all i = 1, . . . , M ,

is known to be invertible [21].

4. Small inclusions

We have seen in earlier sections that the reconstruction of concentration profiles from radiation
measurements was a severely ill-posed problem. This implies that only very few coefficients
parametrizing the concentration can be reconstructed from the measurements provided that
noises contained in data have only high-frequency components. Therefore localized inclusions
such as ozone or dust layers, whose detection is important in many applications, may be poorly
reconstructed unless their presence is explicitly parametrized.

We proposed here to model such layers as localized inclusions of small thickness and
arbitrary concentration variations compared to the underlying medium that will be assumed
to be known. The problem of reconstructing localized diffusive or absorbing inhomogeneities
has been extensively studied in medical imaging problems [1, 2, 6]. We now consider such a
model in profile retrieval and carry out a similar analysis.

4.1. The case of a single gas

Let us start with the case of a single inclusion composed of a single gas. We assume that the
background profile c0(z) is known. The true profile is given by

c(z) = c0(z) + δc(z). (32)

The assumption on δc(z) is not that it is small in L∞(Z) but rather that it is small in L1(Z) and
of ‘small’ support. We assume that δc(z) takes the (arbitrarily large) value δc on an interval
centred at z = z0 and of size δz and takes the value 0 elsewhere:

δc(z) = δcχIz
(z), Iz =

[
z0 − δz

2
, z0 +

δz

2

]
.

Here, χIz
(z) is the indicatrix function of the interval Iz.

Let us denote by α0(z) the optical length corresponding to the background profile c0 only.
We then observe from equation (19) that

D[c0 + δc](Z,µ) = D(0) exp(−µα0(0)) exp

(
−µδc

∫
Iz

g(ζ ) dζ

)

+
∫ Z

0
S(z) exp(−µα0(z)) exp

(
−µδc

∫
Iz∩(z,Z)

g(ζ ) dζ

)
dz. (33)

By hypothesis, D[c0](Z,µ) is known and we thus have access by approximating D[c0 +
δc](Z,µ) − D[c0](Z,µ), to first order in δz, to the following quantity:

µ 	−→ µδcδzg(z0)

[
D(0) e−µα0(0) +

∫ z0

0
S(z) e−µα0(z) dz

]
. (34)

Taking the ratio at two different values of µ gives a functional F(z0). It is straightforward to
check that z0 	→ F(z0) is a smooth function. On each interval such that F ′(z0) �= 0 we can
thus uniquely reconstruct z0 in a stable way. In practical applications, F ′(z0) may vanish at a
finite number of points so that the function F(z0) is not monotone. The point z0 is then not
uniquely reconstructed. However it can be uniquely reconstructed when we know a priori on
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which interval z0 belongs where F(z0) does not vanish. Once z0 is known, we easily obtain
δcδz from the above expression.

Consequently, provided that we have a sufficiently accurate knowledge of the background
and that the term δcδz is sufficiently small, we can reconstruct in a stable way the location of
the inclusion z0 and δcδz, which for want of a better word we will call its strength. Moreover
this can ideally be performed from only two measurements corresponding to two different
values of µ.

We now verify by asymptotic expansions that the first term allowing us to separate δz

from δc is of order δz3. Indeed, upon carrying out a higher order Taylor expansion in (33) we
deduce that

D[c0 + δc](Z,µ) − D[c0](Z,µ)=
(
−µδcδzg0 +

1

2
µ2g2

0δc
2δz2 − 1

6

(
µg′′

0δc + µ3g3
0δc

3
)
δz3

)

×
[
D(0) e−µα0(0) +

∫ z0

0
S(z) e−µα0(z) dz

]
+ O(δz4), (35)

where g0 = g(z0) and g′′
0 = g′′(z0).

So when the noise in the data is of order O(δz4) or higher, we can reconstruct z0, δz

and δc as we have access to δcδz3 in the term of order O(δz3), at least provided that g′′(z0)

does not vanish. However when the noise in the data is of order O(δz3) or larger, all we
can possibly reconstruct from the measurements is the location z0 and the product δcδz.
This corresponds to knowing the total amount of ozone variation in the layer but not the
respective thickness and concentration variation. If the noise in the data is larger than δcδz,
then even this information cannot be retrieved unless a more careful statistical model is
considered.

We now consider a case where the location z0 cannot be recovered uniquely. We
deduce from (34) that all the information we have access to about z0 is contained in
g(z0)

(
D(0) e−µα0(0) +

∫ z0

0 S(z) e−µα0(z) dz
) ≡ G(z0). Both g(z) and S(z) are related to the

temperature profile T (z). Suppose that T (z) is constant on an interval I so that S(z) vanishes
on I. Then we verify that G(z) is constant on I, which means that z0 cannot be reconstructed
uniquely when the inclusion is located in a region of constant temperature. Note that the
hypotheses of theorem 3.1 are not satisfied in this case. Consequently, if one tries to recover
z0 by a gradient-based optimization technique such as a Newton or conjugate gradient (CG)
method [22], the gradient of objective functional (for instance F(z0)) with respect to z0 will
vanish for z0 ∈ I ; see the numerical simulations in section 5.

4.2. The case of multiple gases

Let us now briefly extend the analysis in the case of M gases assuming the existence of M
(to simplify) separated wavenumber bands as described in (23). The asymptotic analysis is
based on formula (27). As in the single-gas case, we assume that the profile for each gas is
a superposition of a known background and localized variations of arbitrary contrast. More
precisely, we have

ci(z) = c0i (z) + δci(z), i = 1, . . . ,M, (36)

where c0i is the background concentration profile for species i and where the fluctuations are
modelled by

δci(z) = δciχIzi
(z), Izi

=
[
zi − δzi

2
, zi +

δzi

2

]
, i = 1, . . . ,M.
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As before, χIzi
(z) is the indicatrix function of the interval Izi

. We assume also that all
thicknesses δzi are of the same order O(δz). We assume here that each gas may have strong
fluctuations in only one layer. The generalization to multiple layers is straightforward and is
not considered. This may be accounted for in the present theory by stipulating that several
indices 1 � j � M correspond to the same gas.

Upon inserting the above approximation into formula (27), we obtain

D[c01 + δc1, . . . , c0M + δcM ](Z,µ)= D(0) exp
(−µα0

j (z)
)

exp

(
−µ

M∑
i

Qij δci

∫
Izi

g(ζ ) dζ

)

+
∫ Z

0
S(z) exp

(−µα0
j (z)

)
exp

(
−µ

M∑
i

Qij δci

∫
Izi

∩(z,Z)

g(ζ ) dζ

)
dz, (37)

where α0
j denotes the optical length αj in (26) defined with the background profile. Upon

performing a second-order Taylor expansion in the above formula, we get

Dj [c01 + δc1, . . . , c0M + δcM ](Z,µ) − Dj [c01, . . . , c0M ](Z,µ)

= −µ

M∑
i=1

(Qij δciδzigi(zi)S̄(µ, zi)) + µ2
M∑
i=1

(Qij δciδzigi(zi))
2S̄(µ, zi)

+ µ2
M∑
i=1

M∑
i �=k=1

Qijδciδzigi(zi)Qkj δckδzkgk(zk)S̄(µ, min(zi, zk)) + O(δz3),

(38)

where we have defined the averaged source term

S̄(µ, zi) ≡
∫ zi

0
S(z) e−µα0

j (z) dz + D(0) e−µα0
j (0). (39)

Higher order terms can be obtained similarly although their expression becomes much more
cumbersome. Note that we recover (34) when M = 1. Suppose that the error in the measured
data is of order O(δz2). Then we only have access to the information

µ 	→ µ

M∑
i=1

Qijδciδzigi(zi)S̄(µ, zi). (40)

Assuming that the matrix (Qij )i,j is a square invertible matrix, we can reconstruct from
measurements in M well-separated bands the quantities defined by

pi ≡ µδciδzigi S̄(µ, zi). (41)

This information has the same structure as in the single-gas case. From a minimum of two
measurements, we can reconstruct the location zi . An accuracy of order O(δz) in the data then
allows us to reconstruct the strength of the ith inclusion δciδzi . The same products appear
in the terms proportional to δz2. Therefore an accuracy in the data of order O(δz3) is again
necessary to estimate δzi and δci separately.

5. Numerical reconstructions

We present in this section several numerical simulations that illustrate the theory developed in
the preceding section. The atmosphere thickness is normalized to Z = 1. We first concentrate
on the single-gas case and then consider an example with a mixture of two gases. All the data
are synthetic and the cases considered academic. However, we have chosen temperature and
concentration profiles that are qualitatively very similar to those analysed in [5].
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Figure 2. Cross section of the error functional in the parameter space. (a) Functional at z0 = 0.3;
(b) functional at δz = 0.06 and δc = 1.0.

5.1. The case of a single gas

We start with the single-gas model. We illustrate the predictions of the asymptotic expansions
that different properties of the localized inclusions can be retrieved from the measured data
depending on the noise level. The concentration profile is given by

c0(z) =
{

3z z ∈ (0, 0.5]

3.0 − 20(z − 0.75)2 z ∈ (0.5, 1.0),
(42)

which is a simplified model for the concentration profile of ozone in the atmosphere below
40 km. A thin inclusion is located at z0 = 0.3. The characteristics of that inclusion are that
δz = 0.06 and δc = 1.0. The temperature profile is modelled by

T (z) = 250 + 50 sin
(

3πz +
π

2

)
, z ∈ (0, 1), (43)

which qualitatively resembles the observed profiles. Figure 1 shows the concentration profile,
the temperature distribution, the absorption line shape used in the calculations and the solution
of equation (17) with respect to wavenumber ν.

The location and characteristics of the inclusion are reconstructed by two methods. In the
first method, we minimize the error of the forward model to the true data by using a full search
algorithm. This can be done because only three parameters need to be recovered in this case.
More precisely we search on a 101 × 101 × 401 uniformly distributed mesh for (z0, δz, δc) in
the parameter space [0.25, 0.35] × [0.01, 0.11] × [0.80, 1.20]. We look for the minimum of
the least-square error functional

E(z0, δz, δc) =
∫
M

(D(Z,µ) − Dm(µ))2 dµ, (44)

where Dm(µ) represents the measurement data. In the numerical simulations, we take
Q0 = ᾱ = 2 × 10−2,M = 1

π

[
1

101 , 1
]
, which means that the wavenumbers either belong

to [1999.8, 2000] or to [2000, 2000.2] by symmetry. We use 200 wavenumbers in each band.
We show in figure 2 the distribution of the error in parameter space. In figure 2(a), we

present the function at z0 = 0.3 (dashed lines), and the function at z0 = 0.3 and δzδc = 0.06
(thick solid line). We observe that the functional varies quite substantially in the direction of
increase (or decrease) of δzδc but remains almost constant in the orthogonal direction (i.e.,
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Table 1. Characteristics of the inclusion reconstructed by a full search algorithm. The true values
are z0 = 0.3, δz = 0.06, δc = 1.0, hence δzδc = 0.06. The numbers in parentheses denote the
relative error in percentage between the reconstructed parameters and their true values.

Noise z0 (error in %) δz (error in %) δc (error in %) δzδc (error in %)

0.00% 0.3000 (0.0) 0.0600 (0.0) 1.0000 (0.0) 0.0600 (0.0)
0.05% 0.3000 (0.0) 0.0590 (1.7) 1.0180 (1.8) 0.0597 (0.5)
0.10% 0.2970 (1.0) 0.0570 (6.0) 1.0430 (4.3) 0.0592 (1.4)
1.00% 0.2950 (1.7) 0.0490 (18.0) 1.1870 (18.0) 0.0581 (3.1)

Table 2. Same as table 1 (with the same noisy measurements) except that the conjugate gradient
algorithm is used in the optimization process.

Noise z0 (error in %) δz (error in %) δc (error in %) δzδc (error in %)

0.00% 0.3000 (0.0) 0.0600 (0.0) 1.0000 (0.0) 0.0601 (0.2)
0.05% 0.3000 (0.0) 0.0591 (1.7) 1.0177 (1.8) 0.0602 (0.3)
0.10% 0.2971 (1.0) 0.0572 (4.7) 1.0386 (3.9) 0.0594 (1.0)
1.00% 0.2952 (1.6) 0.0492 (18.0) 1.1811 (18.0) 0.0581 (3.1)

along curves where δzδc is constant). Finding the curve where δcδz is minimal can thus
be achieved even with quite substantial noise in the data. Finding the global minimum of
the functional, which is necessary to separately reconstruct δc and δz, requires much more
accurate data. Figure 2(b) shows that the functional with respect to z0, the location of the
inclusion, at δc and δz fixed to their exact value, is quite well behaved. This indicates that z0

can also be reconstructed in quite a stable way.
Table 1 lists the parameters recovered by the full search algorithm. The accuracy in the

recovery of δz and δc decreases as the noise level increases. The location of the inclusion
z0 and the product δzδz can be obtained satisfactorily even with a relatively high-noise level
of around 1%. However, at this level of noise, the reconstruction of δz and δc is no longer
reliable with relative errors as high as 20%. In all our simulations, a noise level of x% means
that a uniformly distributed random number between −x% and x% has been added.

As the number of parameters increases, full search algorithms are not tractable. We have
repeated the preceding reconstruction by using the conjugate gradient method [22] to minimize
the least-squares-error functional (44),

min
z0,δz,δc

E. (45)

The initial guess for the parameters are z0 = 0.27, δz = 0.07 and δc = 1.2. The results are
list in table 2 and are very similar to those obtained with the full search algorithm. The CG
algorithm was found to be relatively robust with respect to the choice of the initial guess.

Let us now consider the special case where uniqueness in the reconstruction of z0 is not
guaranteed. This happens when the temperature gradient vanishes on an interval I including
the inclusion’s location. The temperature profile is now chosen to be

T (z) =
{

250 + 50 sin
(
3πz + π

2

)
z ∈ (0, 0.1) ∪ (0.5, 1.0)

240 z ∈ [0.1, 0.5],
(46)

and the background concentration profile is given by

c0(z) =
{

4z z ∈ (0, 0.5]
2.5 − 8(z − 0.75)2 z ∈ (0.5, 1.0).

(47)
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Table 3. Characteristics of the inclusion reconstructed by the conjugate gradient algorithm when
the inclusion is placed in a region with vanishing temperature gradient. The real values for those
variables are z0 = 0.25, δz = 0.08, δc = 1.20 and δzδc = 0.096. The numbers in parentheses
denote the relative error in percentage between the reconstructed parameters and their true values.

Noise z0 (error in %) δz (error in %) δc (error in %) δzδc (error in %)

0.00% 0.280 (12.0) 0.080 (0.0) 1.202 (0.2) 0.0962 (0.2)
0.05% 0.280 (12.0) 0.081 (1.3) 1.180 (1.7) 0.0956 (0.4)
0.10% 0.280 (12.0) 0.083 (3.8) 1.144 (4.7) 0.0950 (1.1)
1.00% 0.280 (12.0) 0.091 (14.0) 1.026 (15.0) 0.0933 (2.8)

Table 4. Characteristics of the inclusions in the two-particle model reconstructed from noise free
data. The initial guess is z1 = 0.32, δz1 = 0.05, δc1 = 0.8 and z2 = 0.28, δz2 = 0.10, δc1 = 1.0.
The numbers in parentheses denote the relative error in percentage between the reconstructed
parameters and their true values.

Gas zi (error in %) δzi (error in %) δci (error in %) δziδci (error in %)

i = 1 0.200 (0.0) 0.060 (0.0) 1.002 (0.2) 0.0601 (0.2)
i = 2 0.250 (0.0) 0.081 (1.3) 1.190 (0.8) 0.0964 (0.4)

Table 5. Same as table 4 with 0.10% noise.

Gas zi (error in %) δzi (error in %) δci (error in %) δziδci (error in %)

i = 1 0.200 (0.0) 0.059 (1.7) 1.012 (1.2) 0.060 (0.5)
i = 2 0.251 (0.4) 0.082 (2.5) 1.150 (4.2) 0.094 (1.8)

A small inclusion is placed at z0 = 0.25. The width of the inclusion is δz = 0.08 and the
concentration variation δc = 1.2.

Reconstructions from data at different noise levels by the conjugate gradient method
are presented in table 3. The gradients have been computed by using a finite difference
approximation. We found numerically that while we can recover δc and δz almost perfectly
with exact simulated data, the exact location z0 is not retrieved if our initial guess lies within I.
The initial guess for the data in table 3 was chosen to be z0 = 0.28, δz = 0.07, and δc = 1.0.

5.2. The case of two gases

Let us now consider the case of two gases. We use (42) and (47) as the background profiles for
the two gases, respectively. The characteristics for the two small inclusions are the following:
(z1, δz1, δc1) = (0.30, 0.06, 1.00) and (z2, δz2, δc2) = (0.25, 0.08, 1.20). We simulate the
data using 800 wavenumbers uniformly distributed in two band centred at ν1 = 1500 cm−1

and ν2 = 2000 cm−1, respectively. The absorption kernel has the form given in (13) with
parameters given by ᾱ = 2 × 10−2, and (Q11,Q12,Q21,Q22) = (2.0, 1.0, 1.0, 2.0) × 10−2.

We perform three sets of numerical experiments with noise free data, data with 0.1% noise
and data with 1% noise, respectively. The results are listed in tables 4, 5 and 6, respectively.
The initial guess is z1 = 0.32, δz1 = 0.05, δc1 = 0.8 and z2 = 0.28, δz2 = 0.10, δc1 = 1.0.
We found that the initial guess on the positions may be chosen relatively far away from the
true values, while the guess on the other two parameters should be close to the true value in
order for the CG algorithm to converge.

Note in table 4 that the parameters for both inclusions are recovered very accurately in
the absence of noise. This is quite similar to the one-particle case. The only noticeable
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Table 6. Same as table 4 with 1% noise.

Gas zi (error in %) δzi (error in %) δci (error in %) δziδci (error in %)

i = 1 0.204 (2.0) 0.053 (12.0) 1.081 (8.1) 0.057 (4.5)
i = 2 0.261 (4.4) 0.089 (11.0) 1.038 (14.0) 0.092 (3.8)

difference numerically is that a much wider range of wavenumbers is necessary in the case of
multiple particles to ensure convergence. This is in agreement with theory, which indicates
that the number of measurements should scale at least linearly with the number of retrieved
gas profiles.

At moderate levels of noise, we can still recover the positions of the inclusions and their
strength δcδz, but not δc and δz separately. We also observed in our simulations that, as the
noise level increases, we even lose the information about z0 and δzδc. The only quantity
which seems numerically to be accurately reconstructed is then p introduced in (41).

6. Conclusions and remarks

Under some separation assumptions on the spectral emission coefficient, we have shown
that the concentration profiles of single or multiple gases could uniquely be reconstructed
from radiation measurements. Moreover we have shown that the reconstruction invokes the
inversion of a Laplace transform (at best) and is therefore a severely ill-posed problem. The
assumptions on the emission coefficient necessary to obtain an explicit formula are technical
and should not modify the general conclusion that the reconstruction problem is severely
ill-posed even in more general settings.

To reconstruct localized strong fluctuations such as ozone layers in the troposphere, we
have presented an asymptotic model, which assesses the type of information that can be
reconstructed based on the quality of the measured data. For instance, we show that with
moderate noise levels, we can reconstruct the location of the inclusion and the product of its
thickness with its concentration variation (with respect to the background). We have shown
that the reconstruction of both the thickness and the concentration variation requires much
more accurate data.

We have conducted numerical experiments on academic though qualitatively faithful
benchmarks that corroborate the theory. Our main conclusion is that the reconstruction of the
thickness and the concentration of ozone layers in the troposphere requires extremely accurate
data. In our setting, possible errors in the reconstruction of the background are treated as
noise in the measured data. This assumption certainly needs improvement. Yet the method
of asymptotic expansions presented in this paper provides a systematic framework to evaluate
the type of information that can be retrieved on localized inclusions from measured data with
a given noise level.
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