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Abstract

Kinetic equations are often appropriate to model the energy den-
sity of high frequency waves propagating in highly heterogeneous me-
dia. The limitations of the kinetic model are quantified by the sta-
tistical instability of the wave energy density, i.e., by its sensitivity
to changes in the realization of the underlying heterogeneous medium
modeled as a random medium. In the simplified Itô-Schrödinger regime
of wave propagation, we obtain optimal estimates for the statistical
instability of the wave energy density for different configurations of the
source terms and the domains over which the energy density is mea-
sured. We show that the energy density is asymptotically statistically
stable (self-averaging) in many configurations. In the case of highly
localized source terms, we obtain an explicit asymptotic expression for
the scintillation function in the high frequency limit.
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1 Introduction

Let us consider the following scalar wave equation for the pressure potential
p(τ,x, t):

1

c2(x, t)

∂2p

∂τ 2
= ∆xp+

∂2p

∂t2
, (1)

where τ is time, (x, t) ∈ Rd×R denote the spatial variables, ∆x is the Laplace
operator in the transverse variables x, and c(x, t) is the local sound speed.
Our objective is to understand the properties of p(τ,x, t) when c(x, t) is a
highly oscillatory random field and the initial conditions for p(τ,x, t) oscillate
at the same frequency.

The analysis of high frequency waves in random media based on (1) is
extremely complicated and still not totally established mathematically. Since
the wave field is oscillatory, its (weak) limit typically misses most of the
energy of the wave field p. Kinetic models are then used to capture the
energy density of the wave fields; see e.g. [6, 7, 12, 17] for rigorous results,
[3, 19] for more formal derivations, and [11, 14, 16, 20] for references in the
physical literature.

The validity of the kinetic model is limited by its statistical instabil-
ity, namely by its variability when the realization of the underlying random
medium is changed. In many situations, the energy density is self-averaging
[2, 6, 7], which means that the energy density measured (averaged) on a
(sufficiently large) domain is asymptotically, as the frequency goes to infin-
ity, independent of the realization of the random medium. The above results
often require that the domain of measurements be of size independent of the
wavelength and that the source term for the kinetic model be sufficiently
smooth.

In this paper, we are interested in the statistical stability of such kinetic
models in a very simplified regime of wave propagation, namely the Itô-
Schrödinger regime. The latter regime arises when the wave field is a very
narrow beam propagating in the direction t and the sound speed c(x, t) os-
cillates more rapidly in the direction t than it does in other directions. Such
assumptions are valid in somewhat restrictive practical settings. However,
this regime of wave propagation is relatively simple to analyze mathemat-
ically and provides interesting qualitative answers regarding the statistical
stability of more general kinetic models.

The validity of kinetic models has been analyzed numerically in several
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settings [8, 9, 10], with quite good agreements with the energy density given
by wave equations of the form (1). Such kinetic models may then be used to
solve inverse problems, where constitutive parameters in the transport equa-
tion modeling e.g. buried inclusions or statistics of the random medium, are
reconstructed from available boundary measurements. We refer the reader
to [9, 10] for reconstructions based on synthetic (numerical) data and to [5]
for kinetic reconstructions from experimental data in the micro-wave regime;
see also [4] for a review on the use of kinetic models in the imaging of buried
inclusions. These studies show that the kinetic models perform relatively
well. Their limitations are almost entirely caused by our lack of knowledge
of the random medium, which generates some statistical instabilities in the
measurements. Understanding these instabilities will allow us to improve
on the reconstructions and to have a better understanding of the maximal
resolution that can be achieved.

Itô-Schrödinger regime. In the Itô-Schrödinger regime, we introduce
ψ(x, t;κ) as

p(τ,x, t) =
1

2π

∫
R
eiκ(t−c0τ)ψ(x, t;κ)c0dκ, (2)

where c0 is the background sound speed, assumed to be constant. Thus ψ
represents waves at position (x, t) propagating with frequency ω = c0|κ|.
After appropriate scalings and simplifications, the wave field ψ satisfies the
following Itô-Schrödinger stochastic partial differential equation:

dψη(x, t;κ) =
1

2

(
iη∆x − κ2R(0)

)
ψηdt+ iκψηB

(x

η
, dt

)
. (3)

Since κ plays no significant role in the sequel, we set it to κ = 1. Here,
B(x, dt) is the standard Wiener measure, whose statistics are described by

E{B(x, t)B(y, t′)} = R(x− y)t ∧ t′, (4)

where E is mathematical expectation with respect to the measure of an ab-
stract probability space on which B(x, dt) is defined and t ∧ t′ = min(t, t′).
We shall not justify (3) from (1). See [1] for a justification in one dimension
of space and [2] for the scaling arguments leading to (3).

For our purposes, ψη(x, t) satisfies a wave equation with highly oscilla-
tory coefficients oscillating at a frequency inversely proportional to the small
parameter η � 1. We assume that ψη(x, 0) also oscillates at a frequency
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comparable to η−1 and are interested in the properties of the wave field as
η → 0. Because the field oscillates rapidly, its weak limit is of little interest.
A more interesting quantity is the energy density of the waves |ψη|2(x, t),
or the probability density in the context of quantum waves. Because the
energy density does not satisfy a closed-form equation, it is more convenient
to analyze energy densities by introducing the following Wigner transform of
the wave field:

Wη(t,x,k) =
1

(2π)d

∫
Rd

eik·yψη

(
x− ηy

2
, t

)
ψη

(
x +

ηy

2
, t

)
dy, (5)

where ψη denotes complex conjugation of ψ. Note that
∫

Rd Wη(t,x,k)dk =
|ψη(x, t)|2 by inverse Fourier transform so that Wη may be seen as a phase
space (microlocal) decomposition of the energy density.

Let ψη(x, 0) be a sequence of functions uniformly bounded in L2(Rd),
η-oscillatory, and compact at infinity in the sense of [13], i.e., such that for
every continuous compactly supported function ϕ on Rd, we have:

lim
η→0

∫
|k|>R/η

|ϕ̂ψη(k)|2dk → 0, as R→∞

lim
η→0

∫
|x|>R

|ψη|2(x)dx → 0, as R→∞.

A practical sufficient condition is that ψη(x, 0) is compactly supported and
η∇ψη(x, 0) is square integrable with L2(Rd)-norm bounded independently
of η. Then, we have the following convergence result [13, 15]: The Wigner
transform Wη(0,x,k) converges, after possible extraction of subsequences,
in the space of distributions D′(R2d) to a Radon measure W0(0,x,k), and
moreover, we have∫

R2d

W0(0,x,k)dxdk = lim
η→0

∫
Rd

|ψη|2(x, 0)dx. (6)

In other words, the limiting Wigner transform captures all the energy of the
incident wave field ψη in the limit η → 0.

Kinetic Model. Upon using the Itô formula, we obtain that the average
Wigner transform

aη(t,x,k) = E{Wη(t,x,k)}, (7)
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solves the following kinetic equation

∂aη

∂t
+ k · ∇xaη +R0aη =

∫
Rd

R̂(k− q)aη(t,x,q)
dq

(2π)d
,

aη(0,x,k) = Wη(0,x,k),
(8)

where we assume that ψη(x, 0), whence aη(0,x,k), is deterministic; see e.g.

[2] for the details of the derivation. We have defined R0 = R(0) and R̂(k) as
the Fourier transform of R(x), with the convention that

R̂(k) = FR(k) =

∫
Rd

e−ik·xR(x)dx. (9)

Since R(x) is a correlation function, R̂(k) is non-negative by Bochner’s the-
orem. For the rest of the paper, we assume that R̂(k) ∈ L1(Rd) ∩ L∞(Rd).
Note that

∫
R2d aη(t,x,k)dxdk is independent of time so that the total energy

of the initial condition is preserved by the transport evolution.

Scintillation. The validity of the kinetic model (8) to describe the ensemble
averaging of the phase space energy density of the wave field is trivial in the
Itô-Schrödinger regime: the kinetic model (8) is here exact for all η ≥ 0,
unlike what happens in other regimes of wave propagation [6, 7, 19]. It
remains however to understand how stable it is. In other words, how good
an approximation is aη(t,x,k) of the random field Wη(t,x,k). A natural
object in the study of the statistical stability of Wη is the following covariance
function:

Jη(t,x,k,y,p) = E{Wη(t,x,k)Wη(t,y,p)} − E{Wη(t,x,k)}E{Wη(t,y,p)}.
(10)

We refer to this function as the scintillation function, in analogy to how stars
are perceived to twinkle because the realization of the atmosphere changes
in time.

We shall see that the size of the scintillation function crucially depends
on the smoothness of the initial conditions ψη(x, 0) and aη(0,x,k) and on the
support of the domain over which the energy density is averaged. The effect
of the averaging will be quantified by measuring Jη in appropriate (weak)
norms.

One of the main advantages of the Itô-Schrödinger regime of wave prop-
agation is that Jη(t,x,k,y,p) satisfies a closed form equation. Another ap-
plication of the Itô formula [2] shows that Jη is the solution of the following
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kinetic equation:( ∂
∂t

+ T2 + 2R0 −Q2 −Kη

)
Jη = Kηaη ⊗ aη, (11)

with vanishing initial conditions Jη(0,x,k,y,p) = 0, where

T2 = k · ∇x + p · ∇y

Q2J =

∫
R2d

(
R̂(k− k′)δ(p− p′) + R̂(p− p′)δ(k− k′)

)
J(k′,p′)

dk′dp′

(2π)d

Kηh =
∑

εi,εj=±1

∫
R2d

R̂(u)ei
(x−y)·u

η εiεjh(x,k + εi
u

2
,y,p + εj

u

2
)
du

(2π)d
.

(12)
In the absence of the operator Kη, the variables (x,k) and (y,p) remain

uncoupled in (11) and the scintillation vanishes. Scintillation is created as
the waves propagate through the random medium with a rate of creation
proportional to Kηaη ⊗ aη. Notice that Kη involves a highly oscillatory
integral. Outside of the diagonal x = y, this oscillatory integral is small,
whereas in the vicinity of the diagonal x = y, it is not. We thus observe that
Kηh is small when h is smooth and large when part of h is concentrated near
x = y.

Outline. The rest of the paper is structured as follows. The main results
of the paper are summarized in section 2. We obtain estimates for Jη in
various norms, and in the specific case of initial conditions for aη of the form
aη(0,x,k) = δ(x)f(k), show that η−1Jη converges to a measure J solving
an explicit kinetic equation. Section 3 presents stability estimates for the
scintillation operator Kη defined in (12) and for the kinetic equations (8)
and (11). The proof of the stability estimates for Jη are given in section 4
whereas the proof of convergence of η−1Jη when aη(0,x,k) = δ(x)f(k) is
given in section 5.

2 Main results

Let ψη(x, 0) be a sequence of η−oscillatory, compact at infinity, functions
uniformly bounded in L2(Rd). This is the case of interest for us here, where
we can define the Wigner transform (5) and pass to the high frequency limit
η → 0 while still ensuring that energy is conserved as in (6). We are interested

6



in quantifying the statistical stability of the Wigner transformWη(t,x,k) and
do so by analyzing the scintillation function Jη defined in (10).

We present two results. The first result proposes an upper bound for Jη

in different norms and for different initial conditions ψη(x, 0). The second
result analyzes the convergence properties of Jη as η → 0 for initial conditions
of the form aη(0,x,k) = δ(x)f(k), which correspond to localized sources at
position x = 0 radiating energy smoothly in wavenumber k. In this context,
we will show that Jη is of order O(η) and will obtain the limit of η−1Jη as
η → 0.

Some typical initial conditions. Let us consider initial conditions ψη(x, 0)
oscillating at frequencies of order η−1 and with a spatial support of size ηα

for 0 ≤ α ≤ 1. The parameter α quantifies the macroscopic concentration of
the initial condition.

The simplest example is a modulated plane wave of the form:

ψ(1)
η (x) =

1

η
dα
2

χ
( x

ηα

)
ei

x·k0
η , (13)

where χ(x) is a smooth compactly supported function on Rd. The direction of
propagation is given by k0. Note that the above sequence of initial conditions
is indeed uniformly bounded in L2(Rd), compact at infinity, and η-oscillatory.

As another example of initial conditions, we consider

ψ(2)
η (x) =

1

η
(d−1)α+1

2

χ
( x

ηα

)
J0

( |k0||x|
η

)
, (14)

where J0 is the zero-th order Bessel function of the first kind. Such an initial
condition is supported in the Fourier domain in the vicinity of wavenumbers k
such that |k| = |k0| so that ψ

(2)
η emits radiation isotropically at wavenumber

|k0|; see [8, 9] for more details. We again verify that the above sequence of
initial conditions is indeed uniformly bounded in L2(Rd), compact at infinity,

and η-oscillatory. For this, we use that J0(z) =
√

2
πz

cos(z − π
4
) +O(z−3/2).

Domain of measurements. For the above initial conditions for ψη, we are
interested in the corresponding Wigner transformWη(t,x,k) and scintillation
function Jη. It turns out that Jη is itself oscillatory so that its size depends on
the scale at which it is measured. In order to capture this scale, we introduce
a test function ϕ ∈ S(R2d), a fixed wavenumber k1 ∈ Rd, and define

ϕη,s1,s2(x,k) =
1

ηd(s1+s2)
ϕ
( x

ηs1
,
k− k1

ηs2

)
. (15)
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We then denote by 〈·, ·〉 the duality product S ′(Rn)-S(Rn) for n = 2d or
n = 4d and want to quantify 〈Wη, ϕη,s1,s2〉, the energy density averaged over
a domain (in the phase space) of width ηs1 in space and ηs2 in wavenumbers.

By using the Chebyshev inequality, we obtain the following estimate on
the probability that Wη deviate from its ensemble average aη:

P
(
|〈Wη(t), ϕη,s1,s2〉 − 〈aη(t), ϕη,s1,s2〉| ≥ δ

)
≤ 1

δ2
〈Jη(t), ϕη,s1,s2 ⊗ ϕη,s1,s2〉.

(16)
Here, a ⊗ a(x,k,y,p) = a(x,k)a(y,p). In other words, when the above
right-hand side converges to 0, then we find that 〈Wη(t), ϕη,s1,s2〉 converges in
probability to 0, which implies thatWη(t) converges weakly and in probability
to 0. The measured energy density is thus asymptotically statistically stable.
A very relevant practical question pertains to the largest values of s1 and s2

that can be chosen so that the Wigner transform is still statistically stable in
the limit η → 0. We are now ready to state our main theorem on this issue.

Bounds for the scintillation function. For any ϕ(x,k) ∈ L2(R2d), let
Fxϕ(u,k) and Fkϕ(x, ξ) be the Fourier transforms of ϕ in the first variable
only and in the second variable only, respectively. We also denote by a . b
the inequality a ≤ Cb, where C > 0 is some universal constant. Then we
have the following result:

Theorem 2.1 Let ψη(x, 0) be a sequence of functions uniformly bounded in
L2(Rd), compact at infinity, and η-oscillatory. Let aη(0,x,k) be the cor-
responding sequence of Wigner transforms given by (5). We assume that
Fxaη(0) and Fkaη(0) are integrable functions and that

‖Fxaη(0,u,k)‖L1(R2d) . η−αd and ‖Fkaη(0,x, ξ)‖L1(R2d) . η−βd, (17)

for some α ∈ R and β ∈ R. Then we find that

〈Jη(t), ϕη,s1,s2 ⊗ ϕη,s1,s2〉 . η(α−β)∨0−2ds2
(
ηd(1−α−2s1) ∧ ηd(1−2α−s1)

)
. (18)

Here, a ∧ b = min(a, b) and a ∨ b = max(a, b).

Of interest here is the following corollary:

Corollary 2.2 Let ψη(0) be given by one of the expressions in (13) or (14).
Then (18) holds with β = 1− α.

8



We can deduce the following results from the above corollary. In what fol-
lows, we consider that averaging takes place over a large domain of wavenum-
bers so that s2 = 0, as e.g., in spatial measurements of the physical energy
density.

Support of the sources. Let us assume that the spatial support of the
domain of measurements is large so that s1 = 0 as well. Then we find that

〈Jη(t), ϕ⊗ ϕ〉 . η(2α−1)∨0+d(1−α). (19)

In other words, the scintillation is of order O(ηd) when α = 0, which cor-
responds to a large support of the initial source term. This corresponds to
the ideal case where the scintillation is smallest. In such a setting, we obtain
that 〈Wη − aη, ϕ〉 is of order η

d
2 . This is the most stable situation.

For a very narrow support of the initial source term comparable to the
correlation length of the medium, namely when α = 1, we obtain that the
scintillation is of order O(η) so that 〈Wη−aη, ϕ〉 is now of order η

1
2 . We thus

obtain statistical stability of the energy density generated by a very localized
source term whose radiation pattern in k is smooth, although the statistical
instability is much larger than in the case α = 0. We know that for sources
that are highly localized both in space and in wavenumbers, the scintillation
does not converge to 0 and the energy density is not asymptotically statisti-
cally stable; see [2]. Such highly localized initial conditions would correspond
to a choice α = β = 1 in Theorem 2.1 (although for coherent states such as
those considered in Corollary 2.2, β = 1 − α, which is related to the uncer-
tainty principle, so that α = β = 1 is not possible). We will confirm in the
next theorem that the order O(η) above is optimal.

Small domain of measurements. Conversely, we can consider the case of
a source term with a large support, which corresponds to α = 0, and a very
small measurement domain. In this setting, we find that

〈Jη, ϕη,s1 ⊗ ϕη,s1〉 . ηd(1−s1). (20)

This means that the energy density becomes asymptotically statistically sta-
ble as soon as it is measured over an area that is large compared to the
correlation length of the medium. This is an optimal result of self-averaging
as we cannot expect the energy density to be statistically stable point-wise,
or when averaged over sub-wavelength domains. The above result, which is
based on estimating Kη in (12) in appropriate norms, improves on estimates
obtained in [2, 18].
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We can also consider intermediate situations where both the source and
the measurement domain have small support. In that case, the optimal es-
timate for the scintillation depends on whether α < s1 or s1 < α. These
results are in fact optimal when the source term and the domain of measure-
ments are located at the same place. Such a geometry explains why we do
not obtain scintillation proportional to ηd(1−α−s1). We should obtain better
estimates when the domain of measurements and the source term are not
centered around the same point, though this cannot be inferred from our
current results.

Convergence of scintillation. Let us consider the case of initial conditions
of the form (13) or (14) with α = 1, i.e., for tightly localized source terms, in
(transverse) dimension d ≥ 2. The Wigner transform of such source terms
converges in the limit η → 0 to a distribution of the form δ(x)f(k), where
f(k) is a smooth function when χ(x) is smooth [15]. We consider the kinetic
equations with such initial conditions and obtain the following result.

Theorem 2.3 Let Jη be the solution of (11) with the initial condition in (8)
given by aη(0,x,k) = δ(x)f(k) for some smooth function f(k) in dimension
d ≥ 2. Then η−1Jη(t) converges in the space of distributions uniformly in
time to the limit J(t), which solves the following kinetic equation( ∂

∂t
+ T2 + 2R0 −Q2

)
J = 0, (21)

with initial condition

J(0) = δ(x)δ(y)2π

∫
Rd

R̂(u)δ
(
u · (p− q)

)
f(p− u

2
)
(
f(q− u

2
)− f(q +

u

2
)
)
du.

(22)

The above theorem should be interpreted as follows. The initial condition
is singular in space and thus creates scintillation for the very short time it
takes for dispersion to regularize the transport solution in the spatial variable.
The created scintillation J(0) is then propagated by the limiting transport
operator ( ∂

∂t
+ T2 + 2R0 − Q2). We also observe that the error estimate of

order O(η) in (19) with α = 1 is optimal.

3 Functional setting and stability estimates

In preparation for the proof of the theorems and the corollary presented in
the preceding section, we prove here some stability results for the transport
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equations (8) and (11) and for the scintillation operator Kη.
We denote by F the operator of Fourier transform with respect to all

variables of the function on which it applies. For 1 ≤ p ≤ ∞, we introduce
Xp as the subspace of tempered distributions in S ′(R4d) such that

‖h‖p
Xp

= sup
v,ζ∈Rd

∫
Rd

sup
ξ∈Rd

|Fh(u, ξ,v, ζ)|pdu <∞, (23)

for 1 ≤ p <∞ and

‖h‖X∞ = sup
u,ζ,v,ξ∈Rd

|Fh(u, ξ,v, ζ)| <∞. (24)

We also define Yp as the subspace of tempered distributions in S ′(R2d) such
that

‖g‖p
Yp

=

∫
Rd

sup
ξ∈Rd

|Fg(u, ξ)|pdu <∞, (25)

for 1 ≤ p <∞ and

‖g‖Y∞ = sup
u,ξ∈Rd

|Fh(u, ξ)| <∞. (26)

Finally, we define Y as the subspace of tempered distributions in S ′(R2d)
such that

‖g‖Y = sup
ξ∈Rd

∫
Rd

|Fg(u, ξ)|du <∞. (27)

Morally (though this is inexact), the space X1 corresponds to scintillation
functions that are integrable in one spatial variable (bounded in the corre-
sponding dual variable v) and bounded in another spatial variable (integrable
in the corresponding dual variable u). It is this boundedness that allows us
to obtain the result (20) in the presence of small domains of measurements.
In contrast, X∞ corresponds to scintillation functions that are integrable in
both spatial variables (bounded in u and v), which allows us to get the result
(19).

The above spaces are well-adapted to the estimation of the scintillation
operator Kη. More precisely, we have the following result:

Lemma 3.1 Assume that R̂ ∈ L1(Rd) ∩ L∞(Rd). Then for 1 ≤ p ≤ ∞,
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(i) Kη is bounded in Xp and

‖Kη‖L(Xp) ≤ 4‖R̂‖L1(Rd). (28)

(ii) Let µ ∈ Yp and ν ∈ Y . Then

‖Kη µ⊗ ν‖Xp ≤ 4 ηd ‖R̂‖L∞(Rd)‖µ‖Yp‖ν‖Y . (29)

Proof. With obvious notation, we recast Kη =
∑

εi,εj
εiεjK

ij
η . Let h ∈ Xp.

Then we have

FKij
η h =

∫
Rd

eiw·( 1
2
εiξ+ 1

2
εjζ)R̂(w)Fh

(
u− w

η
, ξ,v +

w

η
, ζ

)
dw,

so that using the Hölder inequality with 1 = 1
p

+ 1
p′

,

‖Kij
η h‖

p
Xp
≤ sup

v,ζ∈Rd

∫
Rd

sup
ξ∈Rd

∣∣∣∣∫
Rd

|R̂(w)Fh
(
u− w

η
, ξ,v +

w

η
, ζ

)
|dw

∣∣∣∣p du,
≤ ‖R̂‖

p
p′

L1(Rd)
sup

v,ζ∈Rd

∫
Rd

sup
ξ∈Rd

∫
Rd

|R̂(w)|
∣∣∣∣Fh(

u− w

η
, ξ,v +

w

η
, ζ

)∣∣∣∣p dwdu,
≤ ‖R̂‖p

L1(Rd)
‖h‖p

Xp
.

This proves (i). Let now h := µ⊗ν. Upon performing the change of variables
w → ηw, we have

FKij
η µ⊗ ν = ηd

∫
Rd

eiηw·( 1
2
εiξ+ 1

2
εjζ)R̂(ηw)Fµ⊗ ν (u−w, ξ,v + w, ζ) dw,

so that

‖Kij
η h‖

p
Xp

≤ ηd sup
v,ζ∈Rd

∫
Rd

sup
ξ∈Rd

∣∣∣∣∫
Rd

|R̂(η(w − v))Fµ⊗ ν (v + u−w, ξ,w, ζ) |dw
∣∣∣∣p du,

≤ ηd ‖R̂‖p
L∞(Rd)

‖ν‖
p
p′

Y sup
v,ζ∈Rd

∫
Rd

sup
ξ∈Rd

∫
Rd

|Fµ(v + u−w, ξ)|p|Fν (w, ζ) |dwdu,

≤ ηd ‖R̂‖p
L∞(Rd)

‖µ‖p
Yp
‖ν‖p

Y ,

which concludes our proof.
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We need stability estimates for the kinetic equations. We start with the
first kinetic equation:

∂a

∂t
+ p · ∇xa+R0 a = Qa+ S, a(0,x,p) = a0(x,p), (30)

Qa(t,x,p) = (2π)−d

∫
Rd

R̂(p− p′)a(t,x,p′)dp′,

with R0 := R(0), R ∈ L1(Rd)∩L∞(Rd) and R̂ non-negative. Then we have:

Lemma 3.2 Assume that a0 ∈ Yp and S ∈ L1((0, T ), Yp) for some T > 0
and 1 ≤ p ≤ ∞. Then (30) admits a unique solution in C0([0, T ], Yp) such
that

‖a‖C0([0,T ],Yp) ≤ ‖a0‖Yp + ‖S‖L1((0,T ),Yp). (31)

Let S = 0 and let a0(t,x,p) := a0(x − tp,p)e−R0t be the ballistic part of a.
Then, assuming that Fka0 ∈ L1(R2d), we have the following estimate for all
t > 0:

‖(a− a0)(t, ·)‖Y . t1−d

∫
Rd

sup
v∈Rd

|Fa0(v, ξ)|dξ . t1−d‖Fka0‖L1(R2d). (32)

Proof. The proof is a direct application of the integral formulation of
(30),

a(t) = e−R0tGta0 +

∫ t

0

e−R0(t−s)Gt−sQ(a(s) + S(s))ds,

where Gt is the free transport semigroup given by

Gta(x,p) := a(x− tp,p).

The operators Q and Gt are both continuous in Yp. Indeed, for ϕ ∈ Yp, we
have:

FGtϕ = Fϕ(u, ξ + tu),

FQϕ = R(ξ)Fϕ(u, ξ),

so that
‖Gtϕ‖Yp ≤ ‖ϕ‖Yp ,

‖Qϕ‖Yp ≤ ‖R‖L∞(Rd)‖ϕ‖Yp .
(33)

Standard fixed point techniques then provide existence and uniqueness results
for (30). When S = 0, estimate (31) follows from the maximum principle and
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the observation that ‖a0‖Yp is a majorizing solution to (30). When a0 = 0,
(31) is an application of the Gronwall lemma.

For S = 0, we have the following Neumann series expansion in terms of
multiple scattering:

an(t) =

∫ t

0

e−R0(t−s)Gt−sQan−1(s)ds,

with the ballistic part a0(t,x,p) := e−R0ta0(x− tp,p). By induction, we find
the following expression for the Fourier transform of an:

Fan(t,u,k) = e−R0t

∫ t

0

∫ s1

0

· · ·
∫ sn−1

0

R(k + (t− s1)u) · · ·

R(k + (sn−1 − sn)u)Fa0(u,k + tu)ds1 · · · dsn.

The change of variable k + tu → ξ yields

‖an(t, ·)‖Y ≤ e−R0t

n! td−n
‖R‖n

L∞(Rd)

∫
Rd

sup
v∈Rd

|Fa0(v, ξ)|dξ,

≤ e−R0t

n! td−n
‖R‖n

L∞(Rd)‖Fka0‖L1(R2d).

Summing over n ≥ 1 gives the result.
The last lemma deals with the fourth-order transport equation (11):

Lemma 3.3 Assume a0 ∈ Xp and S ∈ L1((0, T ), Xp), for T > 0 and 1 ≤
p ≤ ∞. Then, the above system admits a unique solution in C0([0, T ], Xp)
such that:

‖a‖C0([0,T ],Xp) ≤ ‖a0‖Xp + ‖S‖L1((0,T ),Xp). (34)

Proof. The result stems from the integral formulation of (11) given by

a(t) = e−2R0tG2
t a0 +

∫ t

0

e−2R0(t−s)G2
t−s[(Q2 +Kη)a+ S](s)ds,

where G2
t is the semigroup defined as

G2
t a(x,p,y,q) := a(x− tp,p,y − tq,q).

From Lemma 3.1, we know Kη is continuous in Xp, and so are G2
t and Q2

since

FG2
t ϕ = Fϕ(u, ξ + tu,v, ζ + tv),

FQ2ϕ = (R(ξ) +R(ζ))Fϕ(u, ξ,v, ζ),
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for ϕ ∈ Xp. Existence and uniqueness follow as before from standard fixed
point theorems while estimate (34) stems from separate applications of the
maximum principle and the Gronwall lemma.

4 Estimates for the scintillation

We are now ready to prove Theorem 2.1 and Corollary 2.2.
Proof [Theorem 2.1]. According to Lemma 3.3, the fourth-order trans-

port equation (21) is stable in Xp, so that we have the following estimate,
uniformly on [0, T ],

‖Jη(t)‖Xp .
∫ t

0

‖Kηaη ⊗ aη (s)‖Xpds. (35)

Provided that aη belongs to Y ∩ Yp, then Kηaη ⊗ aη is small in Xp. Indeed,
item (ii) of Lemma 3.1 yields for s ∈ [0, T ] and 1 ≤ p ≤ ∞ that:

‖Kηaη ⊗ aη (s)‖Xp ≤ 4ηd‖R̂‖L∞(Rd)‖aη(s)‖Y ‖aη(s)‖Yp .

First, we control the Y norm by the Y1 norm since Y1 ⊂ Y . Lemma 3.2 shows
that the radiative transfer equation (8) is stable in Yr, for 1 ≤ r ≤ ∞, so
that we just need to estimate the initial condition aη0(x,p) := aη(0,x,p) in
these Yr norms. Denoting by Fxaη0(u,p) the Fourier transform of aη0 with
respect to the spatial variable x only, we obtain,

‖aη0‖Y1 ≤
∫

R2d

|Fxaη0(u,p)| dpdu,

‖aη0‖Y∞ ≤ sup
u∈Rd

∫
Rd

|Fxaη0(u,p)|dp,

so that the assumption of the theorem gives

‖aη0‖Y1 ≤ Cη−dα.

Moreover, defining ψη0(·) := ψη(·, 0), we have the relation

Fxaη0(u,p) =
1

ηd
Fψη0

(
p

η
+

u

2

)
Fψη0

(
p

η
− u

2

)
,

from which it follows, using the Cauchy-Schwarz inequality, that

‖aη0‖Y∞ ≤ ‖Fψη0‖2
L2(Rd) ≤ C,
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where C is independent of η. We have thus obtained that for all s ∈ [0, T ],

‖Kηaη ⊗ aη (s)‖X∞ ≤ Cηd(1−α),

‖Kηaη ⊗ aη (s)‖X1 ≤ Cηd(1−2α),

which yields by interpolation, for 1 ≤ p ≤ ∞,

‖Kηaη ⊗ aη (s)‖Xp ≤ Cηd(1−(1+ 1
p
)α). (36)

This induces a first estimate for Jη, which is not optimal for initial conditions
with small support when α− β > 0. The stability of the transport equation
(8) in Yp is not sufficient to deal with such irregular initial conditions. Rather,
we need to separate the ballistic part from the scattering part in the kinetic
equation to obtain sharper estimates and thus introduce:

aη(t,x,p) := a0
η(t,x,p) + as

η(t,x,p),

where a0
η(t,x,p) = e−R0taη0(x− tp,p) is the ballistic part and as

η satisfies

∂as
η

∂t
+ p · ∇xa

s
η +R0 a

s
η = Qas

η +Qa0
η, as

η(t = 0,x,p) = 0.

Since the Fourier transform of a0
η is given by e−R0tFaη0(u,k+tu), its Y norm

can be estimated for t ∈ (0, T ] as:

‖a0
η(t)‖Y ≤ sup

k∈Rd

∫
Rd

|Faη0(u,k + tu)| du ≤ 1

td
sup
k∈Rd

∫
Rd

∣∣Faη0(t
−d(k− z), z)

∣∣ dz
≤ 1

td

∫
R2d

|Fkaη0(x, z)| dzdx ≤ C

td
η−dβ.

Now, Lemma 3.2 and estimate (32) imply that:

‖as
η(t)‖Y ≤

C

td−1
η−dβ,

so that the time singularity of as
η is weaker than that of a0

η. Thus, for 1 ≤
p ≤ ∞,

‖Kηaη ⊗ aη (s)‖Xp . ηd(1−β− 1
p
α) (s−d + s1−d) . ηd(1−β− 1

p
α)s−d.
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For short times, we then use estimate (36) since it is independent of s and
for longer times, we use the above estimate. We thus write:

‖Kηaη⊗aη (s)‖Xp = 1I (s ≤ t0(η)) ‖Kηaη⊗aη (s)‖Xp+1I (s > t0(η)) ‖Kηaη⊗aη (s)‖Xp ,

so that, for t ∈ [0, T ], we have

‖Jη(t)‖Xp ≤ C t0(η) η
d(1−(1+ 1

p
)α) + Ct1−d

0 (η)ηd(1−β− 1
p
α).

Setting t0(η) = ηα−β when α > β above and using (36) and (35), we find, for
t ∈ [0, T ], that

‖Jη(t)‖Xp ≤ Cηd(1−(1+ 1
p
)α)+(α−β)∨0.

We conclude by using the Parseval-Plancherel equality which yields, for t ∈
[0, T ], ∣∣〈Jη, ϕη,s1,s2 ⊗ ϕη,s1,s2

〉∣∣ = (2π)−d
∣∣〈FJη,Fϕη,s1,s2 ⊗ ϕη,s1,s2

〉∣∣ ,
≤ (2π)−d ‖Jη‖Xp ‖Fϕη,s1,s2‖L1(R2d)

∥∥∥∥∫
Rd

|Fϕη,s1,s2(·,p)|dp
∥∥∥∥

Lp′ (Rd)

,

with 1 = 1
p

+ 1
p′

. It remains to verify the scaling properties:

‖Fϕη,s1,s2‖L1(R2d) =
1

ηd(s1+s2)
‖Fϕ‖L1(R2d),∥∥∥∥∫

Rd

|Fϕη,s1,s2(·,p)|dp
∥∥∥∥

Lp′ (Rd)

=
1

ηd(s1(1− 1
p
)+s2)

∥∥∥∥∫
Rd

|Fϕ(·,p)|dp
∥∥∥∥

Lp′ (Rd)

.

We conclude the proof of the theorem by choosing p = ∞ or p = 1 in the
above estimates.

Proof [Corollary 2.2]. We simply need to estimate Fxa0η and Fka0η in
L1(Rd). Since

Fxaη0(u,p) =
1

ηd
Fψη0

(
p

η
+

u

2

)
Fψη0

(
p

η
− u

2

)
,

Fkaη0(x,k) = ψη0

(
x +

η

2
k
)
ψη0

(
x− η

2
k
)
,

it follows that:∫
R2d

|Fxaη0(u,p)|dudp =
1

ηd

∫
R2d

∣∣∣∣Fψη0

(
p

η
+

u

2

)
Fψη0

(
p

η
− u

2

)∣∣∣∣ dudp,
=

∫
R2d

∣∣Fψη0 (u)Fψη0 (p)
∣∣ dudp = ‖Fψη0‖2

L1(Rd) ≤ Cη−dα,∫
R2d

|Fkaη0(x,p)|dxdp ≤ η−d‖ψη0‖2
L1(Rd) ≤ Cη−d(1−α).
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It suffices to set β = 1 − α in Theorem 2.1 to conclude the proof of the
corollary.

5 Convergence of the scintillation

We now prove the announced convergence result. We first observe that the
existence results obtained in Lemmas 3.2 and 3.3 hold when the spaces Yp and
Xp are replaced by the spaces of bounded measures M(R2d) and M(R4d),
respectively or by the spaces of continuous functions C0(R2d) and C0(R4d),
respectively. We recall that d ≥ 2 here.

Proof [Theorem 2.3]. The scintillation function satisfies the following
transport equation in integral form

Jη(t) =

∫ t

0

e−2R0(t−s)G2
t−s(Q2 +Kη)Jη(s)ds+

∫ t

0

e−2R0(t−s)G2
t−sKηa⊗ a(s)ds.

(37)
We recast this, with obvious notation, as

Jη = T2ηJη + J0
η , Jη =

∞∑
k=0

T k
2ηJ

0
η .

We denote by T2 the formal limit operator of T2η defined as

T2f(t) =

∫ t

0

e−2R0(t−s)G2
t−sQ2f(s)ds. (38)

The source contribution. We verify that

‖Kηa⊗ a(s)−Kηa
0 ⊗ a0(s)‖X∞ .

ηd

sd−1
∧ 1, (39)

where the ballistic part is given by

a0(t,x,k) = e−R0tδ(x− tk)f(k) = e−R0t 1

td
δ(k− x

t
)f(

x

t
).

Indeed, we know from Lemma 3.1 that

‖Kη(a− a0)⊗ a(s)‖X∞ . ηd‖a− a0‖Y ‖a‖Y∞ ,
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and from (32) in Lemma 3.2 that

‖a− a0‖Y . t1−d

∫
Rd

sup
v∈Rd

|Fa0(v, ξ)|dξ . t1−d

∫
Rd

|f̂(ξ)|dξ.

That ‖a‖Y∞ is bounded comes from the stability of the transport equation in
Y∞ established in Lemma 3.2. The term Kηa

0⊗ (a− a0) is treated similarly.
Let us define

J00
η (t) =

∫ t

0

e−2R0(t−s)G2
t−sKηa

0 ⊗ a0(s)ds,

= e−2R0t

∫ t

0

G2
t−sKηG2

s (a0 ⊗ a0)ds.

(40)

We find that
‖J0

η (t)− J00
η (t)‖X∞ . η

d
d−1 � η. (41)

Indeed, we deduce from (39) and the stability of G2
t in L(X∞) that

‖J0
η (t)− J00

η (t)‖X∞ .
∫ t

0

(
ηd

sd−1
∧ 1)ds . t0 + ηdt2−d

0 . η
d

d−1 ,

for t0 = η
d

d−1 . Up to a smaller-order error term in the space of distributions,
we may thus replace J0

η by J00
η in the sequel since the transport equation (37)

is stable in X∞. Now, calculations with Kη replaced by K−1,−1
η show that

e2R0tJ00
η,11(t) =

∫ t

0

∫
Rd

R̂(u) eiu
η
·[(x−(t−s)p)−(y−(t−s)q)]δ(x− tp + su

2
)

δ(y − tq + su
2
)f(p− u

2
)f(q− u

2
)duds

=

∫ t

0

∫
Rd

R̂(u) eius
η
·(p−q)δ(x− tp + su

2
)

δ(y − tq + su
2
)f(p− u

2
)f(q− u

2
)duds,

e2R0tJ00
η,11(t) = η

∫ t
η

0

∫
Rd

R̂(u) eisu·(p−q)δ(x− tp + ηsu
2
)

δ(y − tq + ηsu
2
)f(p− u

2
)f(q− u

2
)duds.

Upon sending η → 0, we find in the limit that

lim
η→0

J00
η,11(t)

η
= J0

11(t) =

e−2R0tδ(x− tp)δ(y − tq)π

∫
Rd

R̂(u)δ
(
u · (p− q)

)
f(p− u

2
)f(q− u

2
)du

+ie−2R0tδ(x− tp)δ(y − tq) p.v.

∫
Rd

R̂(u)
1

u · (p− q)
f(p− u

2
)f(q− u

2
)du,
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in the space of bounded measures M(R4d). After accounting for all four
terms in the definition of Kη and using the fact that R̂(u) = R̂(−u), we find
that the limit of η−1J0

η (t) is given by:

J0(t) = e−2R0tδ(x− tp)δ(y − tq)×

2π

∫
Rd

R̂(u)δ
(
u · (p− q)

)
f(p− u

2
)
(
f(q− u

2
)− f(q +

u

2
)
)
du.

Upon applying the operator ( ∂
∂t

+T2 +2R0), this gives us the initial condition
(22) in the transport equation (21).

Kinetic equation for the scintillation. We have shown that η−1J0
η con-

verged to J0. It remains to obtain convergence of the whole sequence η−1Jη.
Let φ(t,x,p,y,q) be a a smooth function on [0, T ]× R4d. Then we have by
integration on the latter space that

(Jη, φ) = (T2ηJη, φ) + (J0
η , φ), (42)

and equivalently that

(Jη, φ) = (Jη, T
∗
2ηφ) + (J0

η , φ), (43)

with

T ∗
2ηφ(s) =

∫ T

s

e−2R0(t−s)(Q∗
2 +K∗

η)G2∗
t−sφ(t)dt. (44)

We have shown that the difference between the source terms η−1J0
η and

J0 converges to 0 as a distribution and has a negligible effect on η−1Jη. So
we can replace the initial condition for the error term by J0 and look at the
problem

J̃η = T2ηJ̃η + J0,

where J̃η is now of order O(1). We observe that

J0(t) = e−2R0tδ(x− tp)δ(y − tq)H(p,q),

where H(p,q) is a smooth function.
Let now J1

η = J̃η − J0 be the solution of

J1
η = T2ηJ

1
η + T2ηJ

0.
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We recall that

T2ηJ(t) =

∫ t

0

e−2R0(t−s)G2
t−s(Q2 +Kη)J(s)ds,

so that
T2ηJ

0 = T2J
0 + J2

η ,

where J2
η is given by a bounded operator in M(R4d) applied to KηJ

0. The
latter is given by

δ(x− tp)δ(y − tq)e−2R0t

∫
Rd

R̂(u)eip−q
tη

·uH(p− u

2
)H(q− u

2
)du,

plus similar contributions. Because H is a smooth function, this term con-
verges to 0 in M(R4d) as η → 0. This shows that J2

η converges to 0 as
η → 0.

The other contribution, T2J
0, involves a bounded operator applied to

Q2J
0, which is equal to

Q2J
0(t)(x,p,y,q) = e−2R0tR̂(p− x

t
)R̂(q− y

t
)

1

t2d
H(

x

t
,
y

t
). (45)

For f , whence H, and R sufficiently smooth, the above function is bounded
in C0(R4d). The function is not bounded uniformly in time, however, and we
split the contribution J0(t) into J0

δ (t) = J0χ(0,δ)(t) and J0χ(δ,T )(t), which we
still denote by J0(t). The source term T2J

0
δ generates a small contribution,

which goes to 0 as δ goes to 0 in the sense of distributions since the term
in (45) is bounded in e.g. L1(R4d) uniformly in time so that after time
integration in (38), the contribution is bounded by O(δ) → 0. The remaining
contribution is bounded in the uniform norm uniformly in time with bound
inversely proportional to δ2d.

We now have a problem of the form

J1
η = T2ηJ

1
η + T2J

0,

where T2J
0 is uniformly bounded in the uniform norm by O(δ−2d). Weakly,

this means that
(J1

η , φ) = (J1
η , T

∗
2ηφ) + (T2J

0, φ),

where φ(t,x,p,y,q) is a smooth function. The solution J1
η is bounded in

C0(R4d) uniformly in η by stability of the fourth-order transport equation in
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the uniform norm. There is therefore a subsequence that converges weak ∗
in L∞(R4d) to a limit J1 ∈ L∞(R4d).

Let us decompose T2η as:

T2ηJ(t) =

∫ t

0

e−2R0(t−s)G2
t−s(Q2 +Kη)J(s)ds = T2J(t) + S2ηJ(t),

where

S2ηJ(t) =

∫ t

0

e−2R0(t−s)G2
t−sKηJ(s)ds.

We choose φ sufficiently smooth so that S∗2ηφ goes to 0 strongly in L1(R4d).
As a consequence, (J1

η , S
∗
2ηφ) goes to 0 with η so that, in the limit, we have

(J1, φ) = (J1, T ∗
2 φ) + (T2J

0, φ).

The above convergence to the limiting transport equation holds for every cut-
off δ. Thus, by stability of the limiting transport equation, we can remove
the cut-off in δ and obtain that

J1 = T2J
1 + T2J

0,

weakly in the space of distributions. The above integral equation admits a
unique solution, which shows that the whole sequence η−1Jη converges to J
solution of:

J = T2J + J0.

This completes the proof of Theorem 2.3.
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