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Abstract
This paper analyzes the influence of general, small volume, inclusions on the

trace at the domain’s boundary of the solution to elliptic equations of the form
∇ · Dε∇uε = 0 or (−∆ + qε)uε = 0 with prescribed Neumann conditions. The
theory is well-known when the constitutive parameters in the elliptic equation
assume the values of different and smooth functions in the background and inside
the inclusions. We generalize the results to the case of arbitrary, and thus possibly
rapid, fluctuations of the parameters inside the inclusion and obtain expansions
of the trace of the solution at the domain’s boundary up to an order ε2d, where
d is dimension and ε is the diameter of the inclusion. We construct inclusions
whose leading influence is of order at most εd+1 rather than the expected εd. We
also compare the expansions for the diffusion and Helmholtz equation and their
relationship via the classical Liouville change of variables.

1 Introduction

Asymptotic expansions for the influence of small volume inclusions for elliptic and other
equations is now well-established. We refer the reader to e.g. [2, 3, 4, 5, 6, 8] and
their references for a few historic and recent works on the subject. A major advantage
of such expansions is that they help us understand what details of the constitutive
parameters in the equation may or may not be reconstructed from available boundary
measurements. Indeed, in the elliptic equations of interest in this paper, namely the
diffusion or conductivity equation and the Helmholtz equation, the reconstruction of the
constitutive parameters X from knowledge of the full Dirichlet-to-Neumann map Λ, the
most general type of information available at the domain’s boundary, is an extremely ill-
conditioned problem. Available stability estimates for both types of equations predict
that the accuracy in the reconstruction is at best logarithmic in the accuracy of the
measurements. More precisely, we have [1, 10]

‖X1 −X2‖L∞(Ω) ≤ C
∣∣∣ log ‖Λ1 − Λ2‖L(H

1
2 (∂Ω),H− 1

2 (∂Ω))

∣∣∣−δ
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for some positive constant C and δ ∈ (0, 1), where X1 and X2 are two sets of parameters
and Λ1 and Λ2 their corresponding measurements.

For such severely ill-posed problems, only a limited number of degrees of freedom may
be reconstructed from even quite accurate measurements. A natural way of limiting the
number of degrees of freedom is to assume that the constitutive coefficients are known
throughout the domain, except at some locations where unknown inclusions may be
present. The asymptotic expansions in the size of the inclusion mentioned above thus
provide a very efficient tool to understand what may or may not be reconstructed from
data with a given level of noise.

For elliptic equations, the existing works on the subject, see e.g. [2, 4], typically
assume the parameters jumps across the interface of the inclusion. One of the main
objectives of this paper is to consider the case of more general inclusions whose coefficient
may vary at the small scale ε and need not “jump” from the values of the background
parameters. We also want to stress the similarities and differences between expansions
for the diffusion equation ∇ ·Dε∇uε = 0 and the Helmholtz equation (−∆ + qε)uε = 0
with qε of order ε−2+η for η ∈ [0, 2]. In both cases of the diffusion equation and the
Helmholtz equation when η = 0, we need to introduce local correctors and obtain a
limiting influence at the domain’s boundary that is non-linear in the parameters inside
the inclusion.

The maximal leading term in the expansion is always of order O(εd), the volume of
the inclusion. We construct expansions up to the order ε2d. Going beyond this order
of accuracy requires a more careful analysis of the decay properties of local correctors
at infinity than is available here, or the use of single and double layer potentials as in
[2] in the case of constant coefficients inside and outside of the inclusion. Note that the
cross-talk between two inclusions of volume O(εd) is also a term of order ε2d. It seems
therefore natural to stop the expansion at the order O(ε2d) for the influence of any given
well-separated inclusions.

Because our inclusions are modeled by somewhat arbitrary parameters that need not
jump from the local value of the background parameter or are not constant, the limiting
polarization tensors need not satisfy any property of positivity or definiteness. On the
contrary, we show that the polarization tensors vanish to first order for some types of
inclusions, whose influence at the domain’s boundary is therefore at most of order εd+1

rather than εd. Although we do not explore this aspect here, the proposed asymptotic
expansions may be used to construct inclusions whose influence on the measurements is
minimized in a prescribed manner.

The rest of the paper is structured as follows. Section 2 is devoted to the derivation
of the asymptotic expansions for the diffusion equation. The main tool in the expansion
is a decomposition of the corresponding Green’s function given in proposition 2.1. The
expansion obtained for smooth inclusions is presented in theorem 2.2 while the gen-
eralization to more singular inclusions with possible discontinuities of the coefficients
across the inclusion’s boundary is given in theorem 2.6. We compare our expansions
with those obtained in [2] for constant coefficients inside and outside of the inclusions
in proposition 2.8. Section 2.3 presents some properties of the polarization tensors that
appear in the asymptotic expansions. In particular, proposition 2.12 shows that the
leading polarization tensor vanishes for some non-vanishing diffusion coefficients inside
the inclusion. Some proofs of the results are postponed until section 4.
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Section 3 addresses local variations of the potential in a Helmholtz equation. The
appropriate decomposition of the Green’s function is shown in proposition 3.1 and the
main result in theorem 3.3. The relationship between the expansions for diffusion and
Helmholtz equations in regards of the Liouville change of variables is explored in section
3.2. We show that the expansions in both settings agree up to order εd+2. Most proofs
are postponed to section 4.

2 Perturbations of the diffusion problem

In this section, we are interested in the analysis of small inclusions in the diffusion or
conductivity problem. As we have mentioned in the introduction, the reconstruction of
diffusion or conductivity coefficients from boundary measurements is a severely ill-posed
problem. One possible way to overcome this difficulty is to assume that the background
diffusion coefficient is known and that the unknown part of the coefficient is localized
and has small volume.

Under such hypotheses, asymptotic expansions of the perturbed field in the volume
of the inclusion have been derived in [6] when the inclusion is perfectly reflecting or
insulating. These formulas have then been extended to more general inclusions in [5],
and to higher orders in the volume and to domain with Lipschitz boundaries in [2]. In
those references, the inclusion is modeled by a jump in the diffusion coefficient so that
its first order effect on the boundary measurements is proportional to the inclusion’s
volume. The so-called polarization tensor contains the information about the inclusion
that is available at this level of the asymptotic expansion.

Such a setting for the diffusion coefficient prevents us from using the well-known

change of variable q := ∆
√

D√
D

that allows us to relate the diffusion equation to the
Helmholtz or Schrödinger equation. Since one of the objective of the paper is to show
the equivalence of the asymptotic expansions within the diffusion and Helmholtz frame-
works, we first consider a regular inclusion without jump and derive the corresponding
asymptotic expansions in section 2.1. We next generalize these formulas to the case
with jumps in the diffusion coefficient in section 2.2. We also recover the formulas in
[2] in the special case of constant coefficients in the background and the inclusion. Fi-
nally, we present in section 2.3 some properties the polarization tensors involved in the
asymptotic formula.

2.1 The case of smooth inclusions

We consider the following system of equations: ∇ ·Dε∇uε = 0, in Ω,

Dε∂u
ε

∂n
= g, on ∂Ω,

∫
∂Ω

uεdσ = 0,
(1)

where Ω is a bounded open domain of dimension d ≥ 2 with Lipschitz boundary, σ is the
surface measure on ∂Ω, and g ∈ L2(∂Ω) such that the following compatibility condition
holds

∫
∂Ω
gdσ = 0. It is assumed that Dε is bounded from below by a positive constant

independent of ε and that Dε satisfies the decomposition Dε(x) = D0(x) + D1(
x−x0

ε
),
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where 0 < C ′
0 ≤ D0 ∈ C∞(Ω), D1 ∈ L∞(Ω) and D1 vanishing in Rd\B, B being a

bounded set with Lipschitz boundary. The properties of Dε are summarized below:
Dε(x) ≥ C0 > 0, Ω a.e.,

Dε(x) = D0(x), x ∈ Ω\x0 + εB,

Dε(x) = D0(x) +D1(
x−x0

ε
), x ∈ x0 + εB,

D0 ∈ C∞(Ω), D1 ∈ L∞(Ω).

(2)

We assume in addition that the domain of the inclusion is located away from the bound-
ary in the sense that there exists d0 > 0 independent of ε such that

dist(∂Ω,x0 + εB) > d0. (3)

The Lax-Milgram lemma applied to (1)-(2) yields a unique variational solution uε ∈
H1(Ω). Let us denote by U the solution with background diffusion coefficient D0: ∇ ·D0∇U = 0, in Ω,

D0
∂U

∂n
= g, on ∂Ω,

∫
∂Ω

U(x)dσ(x) = 0,
(4)

and introduce the related Green function N ∈ D′(Ω×Ω) satisfying, for all fixed y in Ω,
∇x ·D0(x)∇xN(x,y) = −δ(x− y), in Ω,

D0(x)
∂N(x,y)

∂nx

= − 1

|∂Ω|
, on ∂Ω,

∫
∂Ω

N(x,y)dσ(x) = 0.
(5)

For all x ∈ Ω, the Lax-Milgram lemma yields again a unique variational solution U ∈
H1(Ω) and standard elliptic regularity results [7] implies that U ∈ C∞(Ω) since D0 ∈
C∞(Ω). We denote by Γ the fundamental solution of the Laplacian, namely

Γ(x) =


− 1

2π
log |x|, d = 2,

1

(d− 2)|Sd−1|
1

|x|d−2
, d ≥ 3,

(6)

where |Sd−1| is the measure of the (d − 1)-dimensional unit sphere. Throughout the
paper, we use the following multi-index notations: for i = (i1, · · · , id) ∈ Nd, we define
|i| = i1 + · · ·+ id, ∂

if = ∂i1
1 f · · · ∂i1

d f and xi = xi1
1 · · ·x

id
d . We also define i! = i1! · · · id!.

One of the main tools in our asymptotic expansions is the following decomposition
of the Green function N :

Proposition 2.1 The Green function N can be decomposed, for (x,y) ∈ Ω× Ω, as:

N(x,y) = D−1
0 (x)Γ(x− y) +R1(x,y) +R2(x,y) +R3(y), (7)

where R3 ∈ C∞(Ω); for all y fixed in Ω, R1(·,y) ∈ W 1,p(Ω), with 1 ≤ p < d
d−2

when
d ≥ 3 and p <∞ when d = 2; and R2(·,y) ∈ H1(Ω). Moreover, R1 is C∞ when x 6= y,
R2 ∈ C∞(Ω× Ω), and we have by construction that:

∇xN(x,y) = D−1
0 (x)∇xΓ(x− y) +∇xR2(x,y). (8)
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Also, N admits the following asymptotic expansion for x ∈ B, y a.e. in ∂Ω:

∇xN(x0 + εx,y) =
d∑

|i|=1

ε|i|

i!
∇xi∂i

xN(x0,y) +O(εd+1), (9)

where O(εd+1) denotes a term bounded in L2(∂Ω) by Cεd+1 uniformly in x.

Proof. Let R1 be (uniquely) defined by

∇xR1(x,y) =
∇D0(x)

D2
0(x)

Γ(x− y),

∫
∂Ω

R1(x,y)dσ(x) = 0,

and R3 be defined as

|∂Ω|R3(y) = −
∫

∂Ω

D−1
0 (x)Γ(x− y)dσ(x).

Since D0 > 0, D0 ∈ C∞(Ω) and Γ ∈ Lp
loc(Rd) for the values of p in the proposition, it

follows that R1(·,y) ∈ W 1,p(Ω). Moreover, R1 is C∞ as soon as x 6= y. In the same way,
R3 ∈ C∞(Ω) since Γ(x) ∈ C∞(Rd\{0}). We then verify that (7) leads to (8) and that
plugging (7) into (5) leads to the system, for y ∈ Ω:

∇x ·D0(x)∇xR2(x,y) = 0, in Ω,

D0
∂R2(x,y)

∂nx

= − 1

|∂Ω|
− ∂Γ(x− y)

∂nx

, on ∂Ω,

∫
∂Ω

R2(x,y)dσ(x) = 0,

which admits a unique weak solution thanks to the Lax-Milgram lemma since we verify
that

∫
∂Ω

( 1
|∂Ω| +

∂Γ
∂nx

)dσ(x) = 0. Since ∂β
y

∂Γ
∂nx

(· − y) ∈ L2(∂Ω) for any multi-index β and

y ∈ Ω, we deduce that ∂β
yR2(·,y) ∈ H1(Ω), so that elliptic regularity yields ∂β

yR2(·,y) ∈
C∞(Ω), and finally R2 ∈ C∞(Ω× Ω).

Moreover, ∂β
yR2(·,y) is bounded in H1(Ω) uniformly in y when y ∈ Ω′ ⊂⊂ Ω. To

prove (9), we first remark from (7) that the trace ∂β
yN(z,y)

∣∣
∂Ω

is defined in L2(∂Ω)

uniformly in y when y ∈ Ω′ since R1 ∈ C∞(Ω\Ω′ × Ω′), ∂β
yR2(·,y) ∈ H1(Ω) uniformly

in y ∈ Ω′, and R3 ∈ C∞(Ω′). This allows us to apply Green’s theorem and obtain, for
any (z,y) ∈ Ω′ × Ω, that:

R2(z,y) = −
∫

∂Ω

(
1

|∂Ω|
+
∂Γ(x,y)

∂nx

)
N(x, z)dσ(x).

As y goes to ∂Ω, the boundary integral converges for Lipschitz domains Ω, see [2], to

− 1

|∂Ω|

∫
∂Ω

N(x, z)dσ(x)−p.v

∫
∂Ω

∂Γ(x,y)

∂nx

N(x, z)dσ(x)+
1

2
N(y, z), (z,y) ∈ Ω′×∂Ω,

where p.v. stands for the Cauchy principal value and the above integral operator is
bounded in L2(∂Ω). The first term belongs to C∞(Ω′) and the second and the third terms
to C∞(Ω′) with values in L2(∂Ω). Using (8), this allows us to expand ∇xN(x0 + εx,y)
and obtain (9).

We first consider the case of a smooth inclusion by adding the hypothesis that
D1 is regular and compactly supported in B, that is D1 ∈ W 1,∞(Ω), with support
suppD1 ⊂ B. In such a context, the trace of D1 vanishes on ∂B. We have the following
result:
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Theorem 2.2 Assume that D1 ∈ W 1,∞(Ω) with support suppD1 ⊂ B. Then the solu-
tion uε to (1)-(2) verifies the following asymptotic expansion, a.e. on ∂Ω:

uε(y)|∂Ω = U(y)|∂Ω −
d∑

|i|=1

d∑
|j|=1

εd−2+|i|+|j|

i!j!
Mij ∂

jU(x0) ∂
i
xN(x0,y)

∣∣
∂Ω

+O(ε2d)

−
d∑

|i|=1

d∑
|j|=1

d∑
|k|=0

d∑
l=0, l+|k|>0

εd−2+|i|+|j|+|k|+l

i!j!k!l!
M2

ijkl∂
jU(x0)

(
∂kD−1

0

)
(x0) ∂

i
xN(x0,y)

∣∣
∂Ω
,

where M and M2 are generalized polarization tensors given by

Mij =

∫
B

D1 (x)∇(xj + φ0
j 0(x)) · ∇xidx, i, j ∈ Nd,

M2
ijkl =

∫
B

D1 (x)∇φl
jk(x) · ∇xidx, i, j, k ∈ Nd, l ∈ N,

(10)

and the functions φl
jk are the unique solutions in H1

loc(Rd) ∩ C∞(Rd\B) to:
∇ · (D0(x0) +D1(x))∇φl

jk = −δ0
l ∇ ·

(
D1 (x)xk∇xj

)
−D0(x0)

l∑
|m|=1

l!∂mD−1
0 (x0)

m!(l − |m|)!
∇ ·
(
D1 (x)xm∇φl−|m|

jk (x)
)
,

φl
jk(x) = O(|x|1−d) as |x| → ∞.

(11)

Here, δ0
l is the Kronecker symbol and the notation O(ε2d) in the expansion represents a

term bounded in L2(∂Ω) by a constant depending on ‖D1‖L∞ and on ‖g‖L2(∂Ω).

Remark 2.3 The function φ0
jk solves the following equation in Rd:

∇ · (D0(x0) +D1(x))∇φ0
jk = −∇ ·

(
D1 (x)xk∇xj

)
,

φ0
jk(x) = O(|x|1−d) as |x| → ∞,

so that φl
jk is computed from φm

jk, 0 ≤ m < l, iteratively.

Remark 2.4 We may recast the expansion in theorem 2.2 as

uε(y)|∂Ω = U(y)|∂Ω −
d∑

|i|=1

d∑
|j|=1

εd−2+|i|+|j|

i!j!
M ε

ij ∂
jU(x0) ∂

i
xN(x0,y)

∣∣
∂Ω

+O(ε2d),

where the ε-dependent tensor M ε is given by:

M ε
ij =

∫
B

D1 (x)∇(xj + Ψε
j(x)) · ∇xidx, i, j ∈ Nd,

and the functions Ψε
j are the unique solutions in H1

loc(Rd) ∩ C∞(Rd\B) to

∇ ·
(
1 +D1(x)D−1

0 (x0 + εx)
)
∇Ψε

j = −∇ ·
(
D1(x)D−1

0 (x0 + εx)∇xj
)
,

Ψε
j(x) = O(|x|1−d) as |x| → ∞.
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The asymptotic expansion of the theorem is then recovered by expanding Ψε
j and

D−1
0 (x0 + εx) in powers of ε.

There is another equivalent expansion to that of theorem 2.2 up to the order ε2d.
We sketch its derivation in the case where D0 is constant. The right hand side of
the equation for Ψε

j is equal to −D−1
0 ∇D1 · ∇xj − D−1

0 D1∆xj. It turns out that an
appropriate linear combination of ∆xj is of order εd+1, so that we can replace Ψε

j in the
definition of M ε

ij by Φj solution to

∇ ·
(
1 +D1(x)D−1

0

)
∇Φj = −D−1

0 ∇D1(x) · ∇xj,

Φj(x) = O(|x|1−d) as |x| → ∞.

The appropriate linear combination is deduced from ∆U(x0 + εx) = 0 and from Taylor
expanding U so as to obtain:

0 = ∆U(x0 + εx) = ∆
d∑

|j|=0

ε|j|

j!
∂jU(x0)x

j +O(εd+1).

Remark 2.5 The leading order in the expansion is given by

εd
∑

|i|=|j|=1

Mij∂
iN(x0,y)∂jU(x0).

The polarization tensor M2 contributes only to higher orders. The polarization tensor
M captures the correction when the background diffusion coefficient D0 is constant in
x0 + εB, whereas M2 is the correction that needs to be added when D0 is not constant
in x0 +εB. When D0 is constant in x0 +εB, then M2

ijkl = M2
ijklδ

0
l so that the expansion

then reduces to the classical formula:

uε(y) = U(y) +
d∑

|i|=1

d∑
|j|=1

εd−2+|i|+|j|

i!j!
Mij∂

i
xN(x0,y)∂jU(x0) +O(ε2d).

In this case, using the notation of remark 2.4, Ψε
j no longer depends on ε and may be

identified with φ0
j0. Note that the latter formula also holds when D0 is non-constant

away from the support of the inclusion x0 + εB as remark 2.4 makes clear since only
the values of D−1

0 on the support of D1 are involved.

The proof of the theorem is given in section 4. Its main ingredients are the integral
formulation of (1) and the decomposition of the Green function given in proposition 2.1.
Additional boundary effects, which are not considered here, appear at the order O(ε2d)
when the geometry-dependent corrector R2(x,x0 + εy) of proposition 2.1 is expanded
in powers of ε. When D0 is constant, a proper factorization based on the technique of
double layer potentials allow us to obtain arbitrarily accurate expansions; see [2].

2.2 The case of singular inclusions

In the preceding section, we assumed that the perturbed diffusion coefficient was regular.
We may generalize the above theorem to include the case where D1 is in L∞(Rd) with
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support in B and with a possibly non-vanishing trace (if it is defined) at the interior
boundary ∂B. This generalization is achieved by regularizing the singular perturbation
so that we can use the preceding result and then by computing the limiting polarization
tensors. We have the following result:

Theorem 2.6 Assume D1 verifies (2) with no further assumption on its interior trace
on ∂B. Then uε admits the same expansion as in theorem 2.2 with polarization tensors
still given by (10), where φl

jk is now the unique solution in H1
loc(Rd) ∩ C∞(Rd\B) to:

∆φl
jk = 0, x ∈ Rd/B with φl

jk(x) = O(|x|1−d) as |x| → ∞,

∇ · (D0(x0) +D1(x))∇φl
jk = −δ0

l ∇ ·
(
D1 (x)xk∇xj

)
−D0(x0)

l∑
|m|=1

l!∂mD−1
0 (x0)

m!(l − |m|)!
∇ ·
(
D1 (x)xm∇φl−|m|

jk (x)
)
, x ∈ B,

D0(x0)
∂φl

jk

∂n

∣∣∣
+
− (D0(x0) +D1(x))

∂φl
jk

∂n

∣∣∣
−

= δ0
l D1 (x)xkn · ∇xj

+D0(x0)
l∑

|m|=1

l!∂mD−1
0 (x0)

m!(l − |m|)!
D1 (x)xm

∂φ
l−|m|
jk

∂n

∣∣∣
−
, x ∈ ∂B,

(12)

Here, n is the outer normal to the boundary of B,
∂φl

jk

∂n

∣∣∣
+

(resp.
∂φl

jk

∂n

∣∣∣
−
) denotes the

outer (resp. inner) trace of
∂φl

jk

∂n
on ∂B as functions in H− 1

2 (∂B).

The proof of the theorem is postponed to section 4.
Theorem 2.6 has been proved in [2] by using single and double layer potential tech-

niques when the background diffusion coefficient D0 is constant on the entire domain
Ω and when D1 is constant on B. Our result generalizes that of [2] to the case of non-
constant D0 and D1 for which layers techniques are not available. The first order of the
expansion can also be obtained from the general formula proved in [4] and in [5].

Remark 2.7 The expansion in remark 2.4 still holds for singular inclusions with Ψε
j

now the unique solution in H1
loc(Rd) ∩ C∞(Rd\B) to

∆Ψε
j = 0 x ∈ Rd/B,

∇ ·
(
1 +D1(x)D−1

0 (x0 + εx)
)
∇Ψε

j = −∇ ·
(
D1(x)D−1

0 (x0 + εx)∇xj
)
, x ∈ B,

Ψε
j(x) = O(|x|1−d) as |x| → ∞,

equipped with the jump condition on ∂B:

∂Ψε
j

∂n

∣∣∣
+
− (1 +D1(x)D−1

0 (x0 + εx))
∂Ψε

j

∂n

∣∣∣
−

= D1 (x)D−1
0 (x0 + εx)n · ∇xj, x ∈ ∂B.

As in the end of remark 2.4, we could also derive a modified asymptotic expansion in
the case of singular inclusions.
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The above asymptotic expansions are compatible with the slightly different expressions
for the generalized polarization tensors obtained in [2]. We have the following proposi-
tion:

Proposition 2.8 Assume that D1 is a non vanishing constant on B and that D0 is
constant on the set x0 + εB. Then uε verifies the following expansion, a.e. on ∂Ω,

uε(y)|∂Ω = U(y)|∂Ω −
d∑

|i|=1

d∑
|j|=1

εd−2+|i|+|j|

i!j!
Mij ∂

jU(x0) ∂
i
xN(x0,y)

∣∣
∂Ω

+O(ε2d),

where M is the generalized polarization tensor given in [2] by

Mij = D1

∫
∂B

n · ∇(xj + φj(x))xidσ(x), i, j ∈ Nd.

The functions φj are the unique solutions in H1
loc(Rd)∩C∞((Rd/B)∪B) to the problem:

∆φj = 0, x ∈ (Rd/B) ∪B,

D0
∂φj

∂n

∣∣∣∣
+

− (D0 +D1)
∂φj

∂n

∣∣∣∣
−

= D1 n · ∇xj, x ∈ ∂B,

φj(y)− Γ(y)D−1
0 D1

∫
∂B

n · ∇xjdσ(x) = O(|y|1−d), when |y| → ∞.

The proof of the proposition is also postponed to section 4.

2.3 Properties of the polarization tensor M

In this section, we give some symmetry properties and estimates satisfied by the tensors
M in theorems 2.2 and 2.6:

Proposition 2.9 Let αi, βi ∈ R, where i belongs to a set a of multi-index I. Then, the
polarization tensor M verifies the following properties:

(i)
∑
i,j∈I

αiβjMij =
∑
i,j∈I

αiβjMji,

(ii)

∫
B

D0(x0)D1(x)

D0(x0) +D1(x)

∣∣∣∇(∑
i∈I

αix
i
)∣∣∣2dx ≤∑

i,j∈I

αiαjMij ≤
∫

B

D1(x)
∣∣∣∇(∑

i∈I

αix
i
)∣∣∣2dx.

Proof. Using the definition of M , we have,∑
i,j∈I

αiβjMij =

∫
B

D1(x)∇
(∑

j∈I

βj(x
j + φ0

j 0(x))
)
· ∇
(∑

i∈I

αix
i
)
dx,

and the system solved by φ0
j 0 deduced from (12) imply that,∫

Rd

(
D0(x0) +D1(x)

)
∇φ0

j0 · ∇φ0
i0 dx = −

∫
B

D1(x)∇xj · ∇φ0
i0 dx. (13)
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Consequently,∑
i,j∈I

αiβjMij =

∫
B

D1(x)∇
(∑

j∈I

βjx
j
)
· ∇
(∑

i∈I

αix
i
)
dx

−
∫

Rd

(
D0(x0) +D1(x)

)
∇
(∑

j∈I

βjφ
0
j0

)
· ∇
(∑

i∈I

αiφ
0
i0

)
dx =

∑
i,j∈I

αiβjMji.

Concerning item (ii), we remark from the above equality that:∑
i,j∈I

αiαjMij ≤
∫

B

D1(x)
∣∣∣∇(∑

j∈I

αjx
j)
)∣∣∣2dx.

For the other inequality, we split the sum as:∑
i,j∈I

αiαjMij =

∫
B

D1

∣∣∣∇(∑
j∈I

αjx
j)
)∣∣∣2dx +

∫
B

D1∇
(∑

j∈I

αjφ
0
j0

)
· ∇
(∑

i∈I

αix
i
)
dx.

Since D0(x0)+D1(x) is strictly positive a.e. in Ω, the Cauchy-Schwarz inequality yields∫
B

D1∇
(∑

j∈I

αjφ
0
j0

)
· ∇
(∑

i∈I

αix
i
)
dx

≤
(∫

B

(D0(x0) +D1)
∣∣∣∇(∑

j∈I

αjφ
0
j0

)∣∣∣2dx) 1
2
(∫

B

D2
1

D0(x0) +D1

∣∣∣∇(∑
i∈I

αix
i
)∣∣∣2dx) 1

2
.

In the same way, equation (13) gives:(∫
B

(D0(x0) +D1)
∣∣∣∇(∑

j∈I

αjφ
0
j0

)∣∣∣2dx) 1
2 ≤

(∫
B

D2
1

D0(x0) +D1

∣∣∣∇(∑
i∈I

αix
i
)∣∣∣2dx) 1

2
,

so that∑
i,j∈I

αiβjMij ≥
∫

B

D1

∣∣∣∇(∑
j∈I

αjx
j)
)∣∣∣2dx− ∫

B

D2
1

D0(x0) +D1

∣∣∣∇(∑
i∈I

αix
i
)∣∣∣2dx,

=

∫
B

D0(x0)D1(x)

D0(x0) +D1(x)

∣∣∣∇(∑
i∈I

αix
i
)∣∣∣2dx.

This ends the proof.

Item (ii) of the proposition is very similar to the estimates obtained at the first order
in [4]. Such estimates can be applied to verify the definiteness or not of the polarization
tensor. In particular, it gives:

|α|2
∫

B

D0(x0)D1(x)

D0(x0) +D1(x)
dx ≤

∑
|i|=1,|j|=1

αiαjMij ≤ |α|2
∫

B

D1(x)dx,

so that for D1 constant, M is positive definite when D1 > 0 and negative definite when
D1 < 0, as it was shown in [2, 5]. The only possibility to cancel the above sum is then to
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set D1 = 0, which means that there is no inclusion. Therefore, an inhomogeneity with
constant diffusion coefficient always generates a perturbation of order εd on the measure-
ments. The situation is different whenD1 is not constant. Indeed, when

∫
B
D1(x)dx < 0,

then M is negative definite, and when
∫

B
D1(x)

D0(x0)+D1(x)
dx > 0, then M is positive defi-

nite. But when
∫

B
D1(x)dx > 0 while at the same time

∫
B

D1(x)
D0(x0)+D1(x)

dx < 0, then M
might not be definite for a suitable choice of D1 as we now show as an application of
the intermediate value theorem. We show first that the functional Mij : L∞(Ω) → R,
D1 →Mij[D1] is continuous.

Lemma 2.10 There exists a positive constant C, such that, for all finite multi-index i
and j, we have:

|Mij[D
1
1]−Mij[D

2
1]| ≤ C‖D1

1 −D2
1‖L∞(B).

Proof. Take two perturbation D1
1, D

2
1 in L∞(Ω) with support in B and denote by

M [D1
1], M [D2

1] the corresponding polarization tensors. Then:

Mij[D
1
1]−Mij[D

2
1] =

∫
B

(D1
1 −D2

1)∇xj · ∇xidx +

∫
B

(D1
1 −D2

1)∇φ0
j0[D

1
1] · ∇xidx

+

∫
B

D2
1∇
(
φ0

j0[D
1
1]− φ0

j0[D
2
1]
)
· ∇xidx. (14)

Introducing wj := φ0
j0[D

1
1] − φ0

j0[D
2
1] and using the equations verified by φ0

j0[D
1
1] and

φ0
j0[D

2
1], we find the relation:∫

Rd

(D0(x0) +D1
1)
∣∣∇wj

∣∣2dx = −
∫

B

(D1
1 −D2

1)∇wj ·
(
∇xj +∇φ0

j0[D
2
1]
)
dx.

Since ∇φ0
j0 is bounded in L2(Rd), this yields the estimate

‖∇wj‖L2(Rd) ≤ C‖D1
1 −D2

1‖L∞(B).

Using (14), we obtain the desired result.

Lemma 2.11 There exists a perturbation D1 ∈ L∞(Ω) with
∫

B
D1(x)dx 6= 0, such that,

for a given 1 ≤ l ≤ d, the component Mel,el
[D1] of the polarization tensor M vanishes,

where el is the l-th vector of the canonical basis of Rd.

Proof. Setting αi = δel
i in item (ii) of proposition 2.9 leads to∫

B

D0(x0)D1(x)

D0(x0) +D1(x)
dx ≤Mel,el

≤
∫

B

D1(x)dx.

Now take a D1
1 such that

∫
B
D1

1(x)dx < 0. Therefore, Mel,el
[D1

1] < 0. We then con-

tinuously transform D1
1 into D2

1 such that
∫

B

D0(x0)D2
1(x)

D0(x0)+D2
1(x)

dx > 0 keeping
∫

B
D1

1dx non

zero in the transformation. Such a transformation exists: let indeed D1
1 be a bounded

function in B with positive and negative parts D1
+ and D1

−. We set
∫

B
D1
−dx >

∫
B
D1

+dx
so that

∫
B
D1

1(x)dx < 0. Letting the negative part D1
− continuously go to zero then

gives a possible transformation. For the resulting D2
1, we have Mel,el

[D2
1] > 0. Since the

functional Mel,el
[D1] is continuous from L∞(B) to R, we deduce from the intermediate

value theorem the existence of a D∗
1 with

∫
B
D∗

1dx 6= 0 such that Mel,el
[D∗

1] = 0. This
ends the proof of the proposition.
As a corollary of the previous result, we have
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Proposition 2.12 There exists a perturbation 0 6≡ D1 ∈ L∞(Ω) with spherical symme-
try such that Mij ≡ 0.

Proof. Consider an inclusion with spherical symmetry. We find that Mij = M0δ
j
i

when |i| = |j| = 1 so that the above lemma yields the existence of non-vanishing
perturbation such that M0 = 0 and consequently no term of order εd appears in the
asymptotic expansion.
The latter result is to be compared with the case where D1 is constant for which there
is always a contribution of order εd in the expansion provided the constant is not zero.

3 Perturbations in the Helmholtz equation

This section addresses the problem of small-volume inhomogeneities in the Helmholtz
equation. As we did for the diffusion equation, we derive an asymptotic expansion of
the perturbed solution in the volume of the inclusions.

3.1 Asymptotic expansion and polarization tensors

We consider the following Helmholtz (or Schrödinger) equation posed in a bounded
Lipschitz domain Ω of Rd, d ≥ 2, and with d ≤ 5 for technical reasons:

−∆vε(x) +
(
q0(x) +

1

ε2−η
q1

(x− x0

ε

))
vε(x) = 0, x ∈ Ω,

∂vε

∂n
= g ∈ L2(∂Ω) on ∂Ω,

(15)

where x0 is a given point in Ω, q0 ∈ L∞(Ω) is the background index or potential,
and q1 ∈ L∞(Ω) is a local perturbation, with support localized in a bounded Lipschitz
domain B. We consider the case with only one inclusion, knowing that the results below
generalize to the setting with several well-separated inclusions so long as the maximal
order in the expansion is sufficiently small so that the inclusions do not interact at that
order. The perturbation has a magnitude of order εη−2, with η ∈ [0, 2]. The most
interesting case is η = 0, which corresponds to the strongest type of perturbation. The
latter case allows to relate the asymptotic formula given in the preceding section to the
one that we propose below for a particular form of the potential q1.

When q0 is negative, the above system models waves propagating in a medium
perturbed by a small inclusion of diameter ε with a refractive index of order εη−2. We
refer to [9] and [8] for the case of high-frequency waves in dimension two perturbed by
small inclusions with index of order one. The case q0 and q1 constant with q0 negative and
η = 2 has been treated in [2] with Dirichlet conditions instead of Neumann conditions at
the domain’s boundary. When q0 is positive, (15) models e.g. diffusive light propagating
in a medium with background absorption q0 and zones of different absorption coefficients
in a small volume. The case η = 2 has been investigated in dimension three in [3] for a
constant background q0 and a constant perturbation q1.

We denote by V the solution of the unperturbed equation
−∆V + q0V = 0, x ∈ Ω,

∂V

∂n
= g on ∂Ω.

(16)
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When q0 ≡ 0, we assume the normalizing and compatibility conditions:∫
∂Ω

V dσ = 0 and

∫
∂Ω

gdσ = 0, (17)

where σ denotes the surface measure on ∂Ω. According to (15), this also implies:∫
Ω

q1

(x− x0

ε

)
vε(x)dx = 0, when q0 = 0. (18)

In order to obtain the existence and uniqueness of a variational solution to (16), we
make the following classical assumption:

(H-1) Let u ∈ H1(Ω). Then∫
Ω

∇u · ∇v dx +

∫
Ω

q0 u vdx = 0, for all v ∈ H1(Ω),

implies that u = 0.
Under (H-1), an application of lemma 4.4 of the appendix yields a unique weak

solution V ∈ H1(Ω) to (16). When q0 := 0, the same holds thanks to conditions (17).
Since we need high-order Taylor expansions of V in the sequel, we make the additional
assumption that the restriction of q0 to a neighborhood x0 + εB′ of the set x0 + εB,
with B ⊂⊂ B′, belongs to C∞(x0 + εB′). Using standard elliptic regularity [7] and (3),
we obtain that V ∈ C∞(x0 + εB′). When first order expansions are considered, then a
L∞(Ω) regularity for V is sufficient. Existence and uniqueness for (15) uniformly in ε
for ε small enough will be given in the sequel. When η ∈]0, 2], no additional condition
is required on q1. When η = 0, we add the following assumption:
(H-2) −1 is not an eigenvalue of the bounded operator T defined as:

T : L2(B) → L2(B), ϕ→ Tϕ(y) =

∫
B

q1(x)ϕ(x)Γ(x− y)dx.

Here, Γ is the fundamental solution of the Laplacian given in (6). (H-2) is verified for
instance when q1 > 0 a.e. in B or when the following Rollnick type [11] norm of q1 is
less than one, ∫

B

∫
B

(√
|q1(x)|

√
|q1(y)||Γ(x,y)|

)p

dxdy < 1,

for some p ≥ 1, or when q1 is a Bohm-like potential of the form

q1(x) =
∆
√

1 +D1(x)√
1 +D1(x)

,

for some C2(Rd) function D1 with support in B such that 1 +D1 > 0 in Rd.
The case d = 2 and η = 0 is particular in the sense that

1

ε2

∫
Ω

q1

(x− x0

ε

)
dx =

∫
B

q1(x)dx = O(1),

so that we cannot expect the perturbation caused by the inclusion to be small in the
general case. We thus need to add an additional hypothesis to be able to treat q1 as a
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perturbation. It is the case under the following symmetry assumption:
(H-3) When d = 2 and η = 0, we assume that the solution vε to (15) verifies that∫

Ω

q1

(x− x0

ε

)
vε(x)dx = 0.

Note that (H-3) is verified when e.g. q0 ≡ 0 thanks to (17). We introduce the Green
function N(x,y) ∈ D′(Ω× Ω) of (16), which for each fixed y in Ω, solves:

−∆xN(x,y) + q0(x)N(x,y) = δ(x− y), x ∈ Ω,

∂N(x,y)

∂nx

= 0 on ∂Ω.
(19)

When q0 ≡ 0, N has to be defined as in (5). N is symmetric in its arguments. Hypothesis
(H-1) is verified e.g. when q0 ≥ 0, Ω a.e. (with the normalizing condition when q0 ≡ 0),
when q0 is constant and not an eigenvalue of the Laplacian equipped with homogeneous
Neumann conditions, or when the following Rollnick-type norm of q0 is less than one,∫

Ω

∫
Ω

(√
|q0(x)|

√
|q0(y)||N(x,y)|

)p

dxdy < 1,

for some p ≥ 1. We have the following proposition, which allows us to decompose N as
the sum of the whole space Green function Γ and a regular function:

Proposition 3.1 We have N(x,y) := Γ(x − y) + R(x,y), where R(·,y) ∈ H1(Ω) ∩
W 2,p(Ω′) with p < d

d−2
when 3 ≤ d ≤ 5 and p < ∞ when d = 2 for any Ω′ ⊂⊂ Ω

uniformly in y ∈ Ω′. When q0 ≡ 0, then R belongs to C∞(Ω×Ω). Moreover, N admits
the following asymptotic expansion for x ∈ B, y a.e. in ∂Ω:

∇xN(x0 + εx,y) =
d∑

|i|=1

ε|i|

i!
∇xi∂i

xN(x0,y) +O(εd+1), (20)

where O(εd+1) denotes a term bounded in L2(∂Ω) by Cεd+1, uniformly in x.

Proof. We consider only the case q0 6= 0 since the case q0 ≡ 0 follows from proposition
2.1. Plugging N(x,y) := Γ(x− y) +R(x,y) into (19) leads for any y fixed in Ω to the
equation: 

−∆xR(x,y) + q0(x)R(x,y) = −q0(x)Γ(x− y), x ∈ Ω,

∂R(x,y)

∂nx

= −∂Γ(x− y)

∂nx

, on ∂Ω.
(21)

Pick an y ∈ Ω′ ⊂⊂ Ω and for any v ∈ H1(Ω), consider the linear form:

l(v) := −
∫

Ω

q0(x)Γ(x− y)v(x)dx−
∫

∂Ω

∂Γ(x− y)

∂nx

v(x)dσ(x).
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Then l is continuous in H1(Ω). Indeed, on the one hand, Γ(x−y) is uniformly bounded
for (x,y) ∈ ∂Ω × Ω′ which allows us to treat the second integral. On the other hand,
Γ ∈ Lp

loc(Rd) with p < d
d−2

when d ≥ 3 and p < ∞ when d = 2 so that the Sobolev

embedding H1(Ω) ↪→ Lq(Ω), for q ≤ 2d
d−2

when d ≥ 3 and q <∞ when d = 2 implies

|l(v)| ≤ C(‖Γ‖Lq′ (BR) + 1)‖v‖H1(Ω),

for q′ ≥ 2d
d+2

when d ≥ 3 and q′ > 1 when d = 2, where BR is a ball of radius R large

enough. Since d
d−2

> 2d
d+2

for d < 6, we get the desired result. Note that for d ≥ 7,
the above linear form is not continuous as we may construct functions v ∈ H1(Ω) of
the form |x|−α such that Γ(x)v(x) is not integrable in the vicinity of 0. Lemma 4.4
then yields a unique R(·,y) ∈ H1(Ω) uniformly bounded in y when y ∈ Ω′ by choosing
a0(u, v) =

∫
Ω
(∇u · ∇v + uv)dx and a1(u, v) =

∫
Ω
(q0(x) − 1)uvdx. Standard elliptic

regularity [7] gives, for 1 < p < d
d−2

when d ≥ 3 and p <∞ when d = 2, that:

‖R(·,y)‖W 2,p(Ω′) ≤ C
(
‖R(·,y)‖H1(Ω) + ‖Γ‖Lp(BR)

)
,

so that R(·,y) ∈ W 2,p(Ω′) uniformly in y ∈ Ω′.
To prove (20), we decompose R as R(x,y) := R1(x,y) +R2(x,y) with

−∆xR1(x,y) + q0(x)R1(x,y) = −q0(x)Γ(x− y), x ∈ Ω,

∂R1(x,y)

∂nx

= 0, on ∂Ω,
(22)


−∆xR2(x,y) + q0(x)R2(x,y) = 0, x ∈ Ω,

∂R2(x,y)

∂nx

= −∂Γ(x− y)

∂nx

, on ∂Ω.
(23)

Consider first (22) for y ∈ ∂Ω. According to lemma 4.4, R1(·,y) belongs to H1(Ω)
and is uniformly bounded with respect to y. Let B′ be a neighborhood of B such that
B ⊂⊂ B′. Since Γ(· − y) ∈ C∞(x0 + εB′) uniformly in y ∈ ∂Ω, and q0 ∈ C∞(x0 + εB′),
we obtain from elliptic regularity that R1(·,y) ∈ C∞(x0 + εB) uniformly in y ∈ ∂Ω.
Now, R2 is treated almost exactly as the term R2 in proposition 2.1, so we highlight
the differences. According to the previous results on R, the trace N(x, z)|∂Ω exists in
L2(∂Ω) uniformly for z ∈ Ω′ ⊂⊂ Ω. Thus we have the following integral equation:

R2(z,y) = −
∫

∂Ω

∂Γ(x− y)

∂nx

N(x, z)dσ(x), (z,y) ∈ Ω′ × Ω.

As y goes to ∂Ω, the integral converges to

−p.v

∫
∂Ω

∂Γ(x− y)

∂nx

N(x, z)dσ(x) +
1

2
N(y, z),

where p.v. stands for the Cauchy principal value and the above quantity makes sense
in L2(∂Ω) uniformly in z ∈ Ω′ so that R2(z, ·) ∈ L2(∂Ω) for all z ∈ Ω′. Moreover, we
verify that R2(z,y) satisfies in the distributional sense, for z ∈ Ω′, y ∈ ∂Ω,

−∆zR2(z,y) + q0(z)R2(z,y) = 0,
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so that we conclude from elliptic regularity that R2(·,y) ∈ C∞(x0 + εB) with values in
L2(∂Ω). Classical Taylor expansions then yield (20).
We come back to (15) and state the following result.

Proposition 3.2 Assume that (H-2) is satisfied when η = 0 and (H-3) is satisfied
when d = 2 and η = 0. Then, under assumption (H-1), there exists ε0 > 0, such that
for all 0 < ε < ε0, the system (15) admits a unique variational solution vε ∈ H1(Ω).
Moreover, the restriction of vε to the set x0 + εB verifies the following decomposition

vε(x0 + εy) = V (x0 + εy) + εηΨε(y) + εd−2+η rε(y) +O(εd+2), y a.e. in B, (24)

where Ψε(y) :=
∑d+1

|j|=0
ε|j|

j!
∂jV (x0)φ

η
j (y) and φη

j is the unique solution in H1(B) to

φη
j + εηTφη

j = −Txj, y ∈ B, (25)

and rε the unique solution in H1(B), for y ∈ B, to

rε(y) + εηTrε(y) =

∫
B

q1 (x) vε(x0 + εx)
(
R(x0 + εx,x0 + εy)− δ2

d (2π)−1 log ε
)
dx.

The operator T is defined in (H-2) and the function R in proposition 3.1 whereas δ2
d

is the Kronecker symbol. The notation O(εd+2) represents a term bounded in H1(B) by
Cεd+2. The remainder rε is bounded in L2(B) independently of ε when d = 3, by Cε−α,
for any α > 0 when d = 4, by Cε−1 when d = 5, and by C| log ε| when d = 2. When
d = 2 and η = 0, then rε is of order O(ε) thanks to (H-3). When q0 ≡ 0, then rε is
bounded in H1(B) independently of ε for any d.

We then have the following theorem:

Theorem 3.3 Under the hypotheses of proposition 3.2, the solution to vε to (15) sat-
isfies the following asymptotic expansion, almost everywhere on ∂Ω:

vε(y)|∂Ω = V (y)|∂Ω −
d+1∑
|j|=0

d+1∑
|i|=0

εd−2+η+|i|+|j|

i!j!

(
Qij + εηQη

ij

)
∂jV (x0) ∂

iN(x0,y)
∣∣
∂Ω

+ε2(d−2+η)f ε(y) +O(ε2d),

where O(ε2d) is a term bounded in L2(∂Ω) by Cε2d and for (i, j) ∈ Nd × Nd,

Qij =

∫
B

q1(x)xjxidx, Qη
ij =

∫
B

q1(x)φη
j (x)xidx,

f ε(y) =

∫
B

q1(x)rε(x)N(x0 + εx,y)dx.

The remainder ‖f ε‖L2(∂Ω) is of order: O(| log ε|) when d = 2; O(1) when d = 3; O(ε−α)
for any α > 0 when d = 4; and O(ε−1) when d = 5.

The proofs of the proposition and the theorem are given in section 4.2. When η > 0, φη
j

still depends on ε. We may then expand the operator (I+ εηT )−1 in terms of Neumann
series up to the right order. We include the term f ε in the formula because we need
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its explicit expression below to make the link between the asymptotic expansion for the
diffusion equation and that for the Helmholtz equation.

In the particular case where q0 constant and positive, η = 2, q1 is constant, and the
inclusion is centered at x0 so that

∫
B

xdx = 0, we find for d = 3 that

vε(y) = V (y)− ε3 q1

(∫
B

(
1 + ε2 φ2

0

)
dx

)
V (x0)N(x0,y)

− q1
2∑

|j|=0

∑
|i|+|j|=2

ε5

i!j!

(∫
B

xixjdx

)
∂iN(x0,y)∂jV (x0) +O(ε6).

According to (25), φ2
0 verifies φ2

0 = −T1 + O(ε2) so that we recover the asymptotic
expansion given in [3].

The tensorQ is clearly symmetric. When q1 is constant and not identically zero, there
is always a contribution of order εd−2+η in the expansion, while for spatially varying q1,
the first order contribution can vanish for instance by choosing q1 such that

∫
B
q1dx = 0.

3.2 Relation between the diffusion and Helmholtz equations

We now compare the asymptotic expansions for the solution uε to the diffusion equation
(1) given in theorem 2.2 and for the solution vε to the Helmholtz equation (15) given in
theorem 3.3. It is well-known that a solution to the diffusion equation

∇ ·D∇u = 0,

withD ∈ C2(Rd) for instance and strictly positive, also satisfies a Helmholtz or Schrödinger
equation of the form

∆
(√

Du
)

+
(∆

√
D√
D

)(√
Du
)

= 0.

Our purpose here is to verify that the polarization tensors obtained in the diffusion
and Helmholtz frameworks are indeed the same for the specific form of the potential
q1 that allows us to transform one equation into the other. As in section 2, we define
Dε(x) = D0(x)+D1(

x−x0

ε
) and to simplify the presentation, assume that D0 is constant

in Ω. We assume that D1 ∈ C2(Ω) with support included in B and that D0 + D1 is
strictly positive in Ω, so that we can define

q1(x) :=
∆
√
D0 +D1(x)√
D0 +D1(x)

. (26)

We then consider the function vε which satisfies (15) with q0 = 0, η = 0 and q1 defined
as above. With such a choice, the quantity

vε(x)√
D0 +D1(

x−x0

ε
)

solves (1). Since η = 0, we may expect from the expansion given in theorem 3.3 that
the inclusion induces a correction of order εd−2 whereas the same inclusion induces
a correction of order εd in the diffusion equation. Some simplifications due to the
particular form of the potential q1 must render the correction of order εd in the Helmholtz
framework as well. We state the main result of this section:
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Proposition 3.4 When q1 has the form (26), then we have

d+1∑
j=0

ε|j|

j!
∂jV (x0)

(
Q0j +Q0

0j

)
= O(εd+2), (27)

d+1∑
i=0

ε|i|

i!
∂iN(x0,y)

(
Qi0 +Q0

i0

)
= O(εd+2). (28)

Here, the index 0 of the polarization tensors represents the vector of Nd with components
all equal to zero. We have the following relation between the polarization tensor M in
the context of theorem 2.2 and the polarization tensor M̃ :=

√
D0(Q+Q0) in the context

of the Helmholtz equation:

Mij = M̃ij, |i| = |j| = 1, (29)

d+1∑
|j|=1

d+1∑
|i|=1

ε|i|+|j|

i!j!
∂iN(x0,y)∂jV (x0)

(
Mij − M̃ij

)
= O(εd+2). (30)

The proof of the proposition is given in section 4.2. Equations (27) and (28) imply
that the two first orders in the expansion of theorem 3.3 vanish so that the correction
is of order εd. Equations (29) and (30) show the equivalence of the tensors Mij and
M̃ij for |i|, |j| ≤ d + 1 up to an error of order εd+2, which is sufficient to show that the
asymptotic expansions on uε and vε agree up to the order ε2d. The proofs can in fact
be modified to show the equivalence at higher orders as well, e.g., for any r ∈ N,

r+1∑
|j|=1

r+1∑
|i|=1

ε|i|+|j|

i!j!
∂iN(x0,y)∂jV (x0)

(
Mij − M̃ij

)
= O(εr+2).

Furthermore, denoting by (mij) the modified polarization tensor obtained from Φj at
the end of remark 2.4, we can show in this context the strict equality between the
Helmholtz and diffusion tensors, that is M̃ij = mij, for all i, j.

4 Proofs of the main results

4.1 Asymptotic expansions for the diffusion equation

We now prove theorems 2.2 and 2.6 and proposition 2.8.
Proof of Theorem 2.2. The starting point of the proof is the formulation of (1) as

the following integral equation:

uε(y) = U(y)−
∫

x0+εB

D1

(
x− x0

ε

)
∇uε(x) · ∇xN(x,y)dx,

= U(y)− εd

∫
B

D1 (x)∇uε(x0 + εx) · ∇xN(x0 + εx,y)dx. (31)
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The above equation is justified rigorously as in the derivation of (75) in lemma 4.2 of
the appendix. We highlight the main differences. According to proposition 2.1, we have
∇xN(x,y) = D−1

0 (x)∇Γ(x− y) +∇xR2(x,y), with ∇xR2(·,y) ∈ L2(Ω) for every y in
Ω so that the above equation makes sense in L2(Ω) and therefore almost everywhere in
Ω thanks to the Young inequality since ∇uε ∈ L2(Ω) and ∇Γ ∈ L1

loc(Rd). The integral
equation (31) is obtained from the variational formulations of (1) and (4):∫

Ω

Dε∇uε · ∇v dx =

∫
∂Ω

gv dσ(x) =

∫
Ω

D0∇U · ∇v dx, (32)

for all v ∈ H1(Ω). Then, let ϕ ∈ L2(Ω) and set v(x) :=
∫

Ω
N(x,y)ϕ(y)dy. Thus v is

the unique solution in H1(Ω) to −∇·D0∇v = ϕ equipped with homogeneous Neumann
conditions and the normalization

∫
∂Ω
vdσ(x)=0. As in the proof of (75) or in the proof

of proposition 2.8, we verify that Fubini’s theorem applies and that∫
Ω

(∫
Ω

D0(x)∇u(x) · ∇xN(x,y)dx− u(y)

)
ϕ(y)dy = 0, ∀u ∈ H1(Ω).

Applying the latter equality to both uε and U , gives (31) together with (32).
To continue the proof of theorem, we write uε = U+wε as the sum of the unperturbed

solution U and a corrector wε, solution of

∇ ·
(
D0(x) +D1

(
x−x0

ε

))
∇wε = −∇ ·D1

(
x−x0

ε

)
∇U, in Ω,

∂wε

∂n
= 0, on ∂Ω,

∫
∂Ω

wε(x)dσ(x) = 0.
(33)

Since both uε and U belong to H1(Ω), then wε ∈ H1(Ω) and we deduce from (33) that:

‖∇wε‖L2(Ω) ≤ Cε
d
2‖D1‖L∞(B)‖∇U‖L∞(B0),

for some x0 + ε0B ⊂ B0 ⊂⊂ Ω with ε0 > 0 so that, from standard elliptic regularity,

‖∇wε(x0 + ε·)‖L2(B) ≤ C‖D1‖L∞(B)‖∇U‖L∞(B0) ≤ C‖D1‖L∞(B)‖g‖L2(∂Ω), (34)

for some constant C > 0. We need an approximation of the corrector wε up to the order
εd and so that we decompose it as wε(x0 + εx) = Ψε(x)+ rε(x), where rε is a remainder
of order εd in a sense made precise below. Finding an asymptotic expression for uε then
amounts to calculating Ψε(x) and showing that rε is indeed of order εd. To this aim,
we use (31) to obtain an integral equation for wε verified a.e. in Ω:

wε(y) = −εd

∫
B

D1 (x)∇
[
wε + U

]
(x0 + εx) · ∇xN(x0 + εx,y)dx. (35)

We then decompose N(x,y) following (8). Plugging (8) into (35), setting y := x0 + εy
for y ∈ B, and using the homogeneity ∇Γ(εx) = ε1−d∇Γ(x), we find

wε(x0 + εy) = −ε
∫

B

D1 (x)D−1
0 (x0 + εx)∇

[
wε + U

]
(x0 + εx) · ∇xΓ(x− y)dx

−εd

∫
B

D1 (x)∇
[
wε + U

]
(x0 + εx) · ∇xR2(x0 + εx,x0 + εy)dx.

19



We shall prove that the contribution involving R2 above is of order O(εd) and that up to
an error of the same order, we may replace D−1

0 (x0+εx) and U(x0+εx) by D−1
0,d(x0+εx)

and Ud(x0 + εx), respectively, where for H = D−1
0 and H = U , we have defined the

Taylor expansion to order d:

Hd(x0 + εx) =
d∑

|m|=0

ε|m|

m!
(∂mH) (x0)x

m. (36)

Note that ε∇wε(x0 + εy) = ∇Ψε(y) +∇rε(y). We thus want Ψε(y) to solve:

Ψε(y) + T0,dΨ
ε(y) = −ε

∫
B

D1 (x)D−1
0,d(x0 + εx)∇Ud(x0 + εx) · ∇xΓ(x− y)dx, (37)

where we have introduced the notation

T0,dΨ(y) =

∫
B

D1 (x)D−1
0,d(x0 + εx)∇Ψ(x) · ∇xΓ(x− y)dx. (38)

The above equation is the integral formulation of

∆Ψε +∇ ·
(
D1(x)D−1

0,d(x0 + εx)
)
∇Ψε = −ε∇ ·

(
D1(x)D−1

0,d(x0 + εx)(∇Ud)(x0 + εx)
)
.

We now thus expand D−1
0,d(x0 + εx) in the definition of T0,d to obtain:

T0,dΨ(y) = T0Ψ(y) +
d∑

|m|=1

ε|m|

m!

(
∂mD−1

0

)
(x0)

∫
B

D1 (x)xm∇Ψ(x) · ∇xΓ(x− y)dx,

T0Ψ(y) :=

∫
B

D1 (x)D−1
0 (x0)∇Ψ(x) · ∇xΓ(x− y)dx.

Expanding Ud and D−1
0,d in (37), and setting

Ψε(y) = D0(x0)
d∑

|j|=1

d∑
|k|=0

ε|j|+|k|

j!k!

(
∂jU

)
(x0)

(
∂kD−1

0

)
(x0) Ψε

jk(y),

leads to the following equation for Ψε
jk:

(I + T0)Ψ
ε
jk(y) = −

d∑
|m|=1

ε|m|

m!

(
∂mD−1

0

)
(x0)

∫
B

D1 (x)xm∇Ψε
jk(x) · ∇xΓ(x− y)dx,

−D0(x0)
−1

∫
B

D1 (x)xk∇xj · ∇xΓ(x− y)dx.

Equating like powers of ε, we verify that Ψε
jk(y) =

∑d
l=0

εl

l!
φl

jk(y), where φl
jk solves the

following integral equation a.e. in every bounded set of Rd:

(I + T0)φ
l
jk(y) = −

l∑
|m|=1

l!(∂mD−1
0 )(x0)

m!(l − |m|)!

∫
B

D1 (x)xm∇φl−|m|
jk (x) · ∇xΓ(x− y)dx

−δ0
l D

−1
0 (x0)

∫
B

D1 (x)xk∇xj · ∇xΓ(x− y)dx.
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Existence and uniqueness of solutions in H1
loc(Rd) ∩ C∞(Rd\B) to the above equations

follows from lemma 4.2 of the appendix: we first prove the result for φ0
jk, then for φ1

jk

which depends only on φ0
jk, and finally for all φm

jk iteratively. Moreover, according to the

lemma, φl
jk solves the system of differential equations given in (11). The function Ψε

thus belongs to the space H1
loc(Rd) ∩ C∞(Rd\B) by construction. When D0 is constant

and equal to D0(x0) in the set x0 + εB, we do not need to expand D−1
0 . We thus have

D−1
0,d = D−1

0 (x0) and φ0
j0 can be identified with Ψε

j0.
We then verify that the remainder rε(y) = wε(x0 + εy) − Ψε(y) belongs to H1(B)

by construction and moreover solves the integral equation:

(I + T0,d)r
ε(y) = Sε(εy)− εd+2

∫
B

D1(x)
[
S1(x)∇wε(x0 + εx) + S2(x)

]
·∇xΓ(x− y)dx

where S1 is the remainder of the d+ 1 order Taylor expansion of D−1
0 (x0 + εx) (so that

D−1
0 (x0+εx) = D−1

0,d(x0+εx)+εd+1S1(x)), S2 the remainder ofD−1
0 (x0+εx)∇U(x0+εx)

and where we have defined

Sε(εy) = −εd

∫
B

D1 (x)∇uε(x0 + εx) · ∇xR2(x0 + εx,x0 + εy)dx.

We may now decompose rε as rε(y) := rε
1(y) + rε

2(y) + Sε(εy) with:

(I + T0,d)r
ε
1(y) = −ε

∫
B

D1(x)D−1
0,d(x0 + εx)∇Sε(εy) · ∇xΓ(x− y)dx,

(I + T0,d)r
ε
2(y) = −εd+2

∫
B

D1 (x)
[
S1(x)∇wε(x0 + εx) + S2(x)

]
· ∇xΓ(x− y)dx.

We know from the hypotheses in (2) that for all y ∈ B, D0(x0 + εy) +D1(x) ≥ C0 > 0,
so that setting 0 < ε ≤ ε0 for ε0 small enough, we have 1+D1(x)D−1

0,d(x0+εy) ≥ C1 > 0,
for another constant C1 independent of ε. An application of lemma 4.2 then yields that
rε
1 and rε

2 are uniquely defined in H1
loc(Rd)∩C∞(Rd\B). Moreover, following lemma 4.2,

we have the estimates:

‖∇rε
1‖L2(Rd) ≤ Cε‖D1‖L∞(B)‖∇Sε(ε·)‖L∞(B),

‖∇rε
2‖L2(Rd) ≤ Cεd+2‖D1‖L∞(B)

(
‖∇wε(x0 + ε·)‖L2(B) + ‖D−1

0 ∇U‖Cd+1(B0)

)
,

≤ Cεd+2‖D1‖2
L∞(B)‖g‖L2(∂Ω),

according to (34) and by elliptic regularity, where B0 is as above (34). It thus remains
to estimate Sε. From proposition 2.1, we know that R2 ∈ C∞(Ω× Ω), which yields:

‖∇Sε(ε·)‖L∞(B) ≤ Cεd‖D1‖L∞(B)

(
‖∇wε(x0 + ε·)‖L2(B) + ‖∇U‖L∞(B0)

)
×

×‖∇x∇yR2‖L∞(B0×B0) ≤ εd‖D1‖2
L∞(B)‖g‖L2(∂Ω).

Gathering the different estimates for rε
1, r

ε
2 and Sε, we obtain that

‖∇rε‖L2(B) ≤ Cεd+1‖D1‖2
L∞(B)‖g‖L2(∂Ω).
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To conclude the proof, we go back to (31) and take the trace on ∂Ω. Plugging ∇wε(x0 +
εx) = ε−1(∇Ψε(x)+∇rε(x)) into (31), it just remains to expand ∇U(x0 +εx) ∈ C∞(B)
and ∇xN(x0 + εx,y) thanks to (9) since we find, a.e. in ∂Ω, that:

uε(y)|∂Ω = U(y)|∂Ω − εd

∫
B

D1(x)
(
∇U(x0 + εx) +

1

ε
∇Ψε(x)

)
·∇x N(x0 + εx,y)|∂Ω dx

+O(ε2d).

The asymptotic expansion of remark 2.4 is obtained by decomposing wε slightly differ-
ently. We write wε(x0 + εx) = Ψε(x) + rε(x), where Ψε is now given by

Ψε(y) + T εΨε(y) = −ε
∫

B

D1 (x)D−1
0 (x0 + εx)∇Ud(x0 + εx) · ∇xΓ(x− y)dx,

T εΨ(y) :=

∫
B

D1 (x)D−1
0 (x0 + εx)∇Ψ(x) · ∇xΓ(x− y)dx.

We then verify that the remainder rε is of order εd and that expanding Ud and setting
Ψε(x) =

∑d
|j|=1

ε|j|

j!
(∂jU) (x0) Ψε

j , leads to the desired result.

Proof of Theorem 2.6. Let D1 be a non-regular perturbation and let χη be the
cut-off function with support in B defined as{

χη(x) = 1, for x ∈ B such that dist(x, ∂B) > η,

χη(x) = 0, otherwise.
(39)

The parameter η will be adjusted according to ε. Let now ρη(x) := η−dρ(η−1x) be a
standard mollifier and let Dη

1 := ρη ∗ (χηD1). We verify that Dη
1 ∈ C∞(Rd) and that

its support is included in B with a vanishing and continuous trace at the boundary.
We can then apply theorem 2.2 to obtain an asymptotic expansion for the solution uε

η

associated to Dη
1 . Since the error term of order ε2d depends only on ‖Dη

1‖L∞(Rd) - which
is bounded by ‖D1‖L∞(Rd) - it suffices to look at the limit of the different polarization
tensors to find the limiting asymptotic expansion.

Since D0(x) +D1

(
x−x0

ε

)
is bounded from below by C0, this property is still verified

by the regularized diffusion coefficient so that, according to (74) of lemma 4.2 of the
appendix, the function φl,η

jk associated to Dη
1 satisfy by induction the estimates, for

l = 0, · · · , d:

‖∇φl,η
jk‖L2(Rd) ≤ C‖Dη

1‖l+1
L∞(Rd)

, ‖φl,η
jk‖L2(A) ≤ C‖Dη

1‖l+2
L∞(Rd)

,

for any bounded set A. This yields that ∇φl,η
jk is bounded in L2(Rd) independently of η

and so is φl,η
jk in H1(A). Defining the set E := {(j, k) ∈ N2d, l ∈ N, 0 ≤ |j|, |k|, l ≤ d}

with cardinal |E|, we may thus see {φl,η
jk}E as bounded in (H1(A))|E| and extract a

subsequence as η → 0 converging strongly in (L2(A))|E| and with gradient converging
weakly in (L2(Rd))|E| to a limit {φl

jk}E. We obtain that φl
jk ∈ H1

loc(Rd) and ∇φl
jk ∈

L2(Rd). To find the equation solved by ∇φl
jk, we consider the weak formulation verified

by φl,η
jk , which is, for all functions ϕ ∈ H1

loc(Rd) such that ∇ϕ ∈ L2(Rd), R−d‖ϕ‖L1(SR) →
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0 as R→∞, where SR denotes the sphere of radius R,∫
Rd

(D0(x0) +Dη
1(x))∇φl,η

jk · ∇ϕdx = − δ0
l

∫
B

Dη
1 (x)xk∇xj · ∇ϕdx

−D0(x0)
l∑

|m|=1

l!

m!(l − |m|)!
(
∂mD−1

0

)
(x0)

∫
B

Dη
1 (x)xm∇φl−|m|,η

jk (x) · ∇ϕdx.

The above formulation is justified in lemma 4.2 below; see (77). Since Dη
1 converges

strongly in any Lp(Rd) for 1 ≤ p <∞, we can pass to the limit in the non-linear terms
above and obtain the following limiting equation:∫

Rd

(D0(x0) +D1(x))∇φl
jk · ∇ϕdx = − δ0

l

∫
B

D1 (x)xk∇xj · ∇ϕdx

−D0(x0)
l∑

|m|=1

l!

m!(l − |m|)!
(
∂mD−1

0

)
(x0)

∫
B

D1 (x)xm∇φl−|m|
jk (x) · ∇ϕdx.

(40)

To obtain the behavior of φl
jk at infinity, we use the integral formulation given in (75)

of lemma 4.2 for the subsequence φl,η
jk and obtain, a.e. in every bounded set Ω′ ⊂ Rd:

(I + T0)φ
l,η
jk (y) = −

l∑
|m|=1

l!∂mD−1
0 (x0)

m!(l − |m|)!

∫
B

Dη
1 (x)xm∇φl−|m|,η

jk (x) · ∇xΓ(x− y)dx

−δ0
l D

−1
0 (x0)

∫
B

Dη
1 (x)xk∇xj · ∇xΓ(x− y)dx.

The above equation makes sense in L2(Ω′) and therefore almost everywhere in Ω′ since
∇φl,η

jk ∈ L2(Ω), l = 0, · · · , d, and ∇Γ ∈ L1
loc(Rd) so that the right hand side is fi-

nite thanks to the Young inequality. Consider now a compact set K ⊂ Rd such that
dist(K,B) > C > 0. The above equation is then verified uniformly in K and moreover
φl,η

jk ∈ C0(K). Since ∇φl,η
jk converges weakly to ∇φl

jk for 0 ≤ l ≤ d and Dη
1 converges

strongly, it follows from the above equation that φl,η
jk is a Cauchy sequence in C0(K) so

that it converges uniformly to the solution, for all x ∈ K, to

(I + T0)φ
l
jk(y) = −

l∑
|m|=1

l!∂mD−1
0 (x0)

m!(l − |m|)!

∫
B

D1 (x)xm∇φl−|m|
jk (x) · ∇xΓ(x− y)dx

−δ0
l D

−1
0 (x0)

∫
B

D1 (x)xk∇xj · ∇xΓ(x− y)dx. (41)

The fact that ∇xΓ(x − y) = O(|y|1−d) for x ∈ B and y ∈ K yields that φl
jk(y) =

O(|y|1−d) for such values of y. It is then not difficult to see that (40) is the weak
formulation of the problem given in the theorem. Notice that equation (41) is also valid
a.e. in A since φl

jk ∈ L2(A) for any bounded set A. Uniqueness follows from (40)
and the behavior at infinity: the right hand side of (40) vanishes when we consider the
difference of two possible solutions. Since those solutions are sufficiently regular, taking
that difference as a test function implies the difference is a constant which must be equal
to zero according to the vanishing limit at infinity.
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Now that we have the expression of the limiting φl
jk, it suffices to pass to the limit in

the polarization tensors using the weak convergence of ∇φ0,η
j 0 and the strong convergence

of Dη
1 and to choose η small enough such that all the errors terms coming from the

different passages to the limit are smaller than Cε2d.

Proof of Proposition 2.8. When D0 is constant on the set x0 + εB, only the sum
involving the polarization tensor M remains in theorem 2.2 as we have mentioned in
remark 2.5. We thus start from the expression of M given in theorem 2.6 and define
fj := φ0

j0−φj. A proof of the existence and uniqueness for φj can be found in [2]. Owing

the definitions of φ0
j0 and φj, we find that fj ∈ H1

loc(Rd) ∩ C∞(Rd/B) by construction
and is the unique weak solution to

∇ · (D0 + 1IB(x)D1)∇fj = −1IB(x)D1∆xj, x ∈ Rd,

equipped with the condition at infinity:

fj(y) + Γ(y)D−1
0 D1

∫
∂B

n · ∇xjdσ(x) = O(|y|1−d).

Here, 1IB is the characteristic function of the set B. When |j| = 1, we obtain fj = 0.
When |j| ≥ 2, we need to sum over j to show that fj is small in an appropriate sense. To
this aim, we derive an integral equation for fj from that of φ0

j0 and φj. As we mentioned
in the proof of theorem 2.6, (41) is verified a.e. by φ0

j0 so that we have

D0D
−1
1 φ0

j0(y) = −
∫

B

∇φ0
j0(x) · ∇xΓ(x− y)dx−

∫
B

∇xj · ∇xΓ(x− y)dx. (42)

Since φj is harmonic in B∪Rd\B, we deduce from elliptic regularity in Lipschitz domains

(see e.g. [2]) that φj ∈ H
3
2 (B) so that its inner normal derivative at the boundary ∂B

belongs to L2(∂B). This allows us to express φj in terms of single layer potential, using
the jump of its normal derivative at the boundary given in proposition 2.8, as

D0D
−1
1 φj(y) = −

∫
∂B

(
∂φj

∂n

∣∣∣∣
−

(x) + n · ∇xj

)
Γ(x− y)dσ(x). (43)

The latter equation is verified in L1(A) for any bounded set A ⊂ Rd, and thus a.e. since
‖Γ(x− ·)‖L1(A) is uniformly bounded in x ∈ ∂B. Moreover, since φj is harmonic in B,
we have for any ϕ ∈ H1(B):∫

B

∇φj · ∇ϕdx =

∫
∂B

∂φj

∂n

∣∣∣∣
−
ϕdσ(x).

Let ψ ∈ C0
c (A) and set ϕ(x) =

∫
A
ψ(y)Γ(x− y)dy. Using the Young inequality and the

fact that Γ and ∇Γ belong to L1
loc(Rd), we verify that ϕ ∈ H1(B) so that it can be used

as a test function. Moreover, to be able to use the Fubini theorem, we apply as in the
proof of lemma 4.2 the Sobolev inequality 4.3 to conclude that ∇φj(x) ·∇Γ(x−y)ψ(y)

belongs to L1(B ×A). In the same way,
∂φj

∂n

∣∣∣
−

(x)Γ(x− y)ψ(y) belongs to L1(∂B ×A)

since∫
∂B

∫
A

∣∣∣∣ ∂φj

∂n

∣∣∣∣
−

(x)Γ(x− y)ψ(y)

∣∣∣∣ dσ(x)dy ≤ C

∥∥∥∥ ∂φj

∂n

∣∣∣∣
−

∥∥∥∥
L2(∂B)

‖Γ‖Ba‖ψ‖L∞(A),
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for a ball of radius a large enough. We may thus write:∫
A

(∫
B

∇φj(x) · ∇Γ(x− y)dx−
∫

∂B

∂φj

∂n

∣∣∣∣
−

Γ(x− y) dσ(x)

)
ψ(y)dy = 0.

Plugging (43) into the latter equation yields:∫
A

(
D0D

−1
1 φj(y) +

∫
B

∇φj(x) · ∇Γ(x− y)dx +

∫
∂B

n · ∇xj Γ(x− y) dσ(x)

)
ψ(y)dy = 0.

Integrating (42) against ψ, subtracting the equation above and performing an integration
by parts, we find:∫

A

(
D0D

−1
1 fj(y) +

∫
B

∇fj(x) · ∇Γ(x− y)dx−
∫

B

∆xj Γ(x− y) dx

)
ψ(y)dy = 0.

The quantity under parentheses belongs to L2(A). Thus, we deduce by density that
the above relation holds also for any ψ ∈ L2(A) so that fj solves the following integral
equation, a.e. in every bounded set Ω′ ⊂ Rd,

D0D
−1
1 fj(y) =

∫
B

∇fj(x) · ∇xΓ(x− y)dx +

∫
B

∆xjΓ(x− y)dσ(x). (44)

We now show that an appropriate linear combination of the fj’s is of order εd+1. First,
since D0 is constant in x0 + εB, ∆U(x0 + εx) = 0 for x ∈ B according to (4), so that,
using the notation in (36), we get that ∆Ud(x) = ∆(Ud(x) − U(x0 + εx)) = O(εd+1)
uniformly in B. As a consequence, we have

Rε(x) := ∆Ud(x) =
d∑

|j|=1

ε|j|

j!
∂jU(x0)∆xj = O(εd+1).

Thus, defining

F ε(x) :=
d∑

|j|=1

ε|j|

j!
∂jU(x0)fj(x),

it follows:

d∑
|j|=1

ε|j|

j!
∂jU(x0)Mij = D1

d∑
|j|=1

ε|j|

j!
∂jU(x0)

∫
B

∇(xj + φj(x) + fj(x)) · ∇xidx,

= D1

d∑
|j|=1

ε|j|

j!
∂jU(x0)

∫
B

∇(xj + φj(x)) · ∇xidx +D1

∫
B

∇F ε(x) · ∇xidx.

According to the definition of fj, F
ε ∈ H1

loc(Rd) ∩ C∞(Rd/B) solves:

∇ · (D0(x0) + 1IB(x)D1)∇F ε = −1IB(x)D1R
ε, x ∈ Rd, (45)

equipped with the condition at infinity:

F ε(y) + Γ(y)D1

∫
B

Rεdx = O(|y|1−d). (46)
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Following (44), F ε thus solves the integral equation, a.e. in every bounded set Ω′ ⊂ Rd:

F ε(y) = −D1D
−1
0 (x0)

∫
B

[
∇F ε(x) · ∇xΓ(x− y)−Rε(x)Γ(x− y)

]
dx, (47)

so that Young’s inequality gives

‖F ε‖L2(B) ≤ C‖∇F ε‖L2(B) + C‖Rε‖L2(B) ≤ C‖∇F ε‖L2(B) +O(εd+1). (48)

Let BR be the ball of radius R with B ⊂⊂ BR and denote by SR its boundary. Inte-
grating (45) on BR against F ε leads to∫

BR

(D0(x0) + 1IBD1)|∇F ε|2dx = −D1

∫
B

RεF εdx +

∫
SR

∂F ε

∂n
F εdσ(x), (49)

where σ is the surface measure on SR. We may recast condition (46) using the integral
equation (47) for F ε and its derivative as

∂αF ε(y) + ∂αΓ(y)D1

∫
B

Rεdx = O
(
(‖∇F ε‖L2(B) + ‖Rε‖L2(B))|y|1−d−|α|) , (50)

for a multi-index α with |α| ≤ 1. Consider first d ≥ 3. Then ∇F ε ∈ L2(Rd) and the
boundary integral in (49) goes to zero as R tends to infinity so that∫

Rd

(D0(x0) + 1IBD1)|∇F ε|2dx = −D1

∫
B

RεF εdx. (51)

This yields, together with (48):

‖∇F ε‖2
L2(Rd) ≤ O(ε2(d+1)) + ‖Rε‖L2(B)‖∇F ε‖L2(Rd),

so that ‖∇F ε‖L2(Rd) = O(εd+1). Consider now the case d = 2. We cannot use the same
approach since F ε does not vanish at infinity. Using (50) for y ∈ SR, we have

|F ε(y)| ≤ C
((

logR +
1

R

)
‖Rε‖L2(B) +

1

R
‖∇F ε‖L2(B)

)
,∣∣∣∂F ε

∂n
(y)
∣∣∣ ≤ C

( 1

R

(
1 +

1

R

)
‖Rε‖L2(B) +

1

R2
‖∇F ε‖L2(B)

)
,

so that, since ‖Rε‖L2(B) = O(εd+1),∣∣∣ ∫
SR

∂F ε

∂n
F εdσ(x)

∣∣∣ ≤ Cε2(d+1) + CR ε
d+1‖∇F ε‖L2(B) +

C

R3
‖∇F ε‖2

L2(B).

Since, according to hypothesis 2, D0(x0) + 1IBD1 ≥ C0 > 0 a.e. in Rd, it follows from
(48), (49) and the above inequality that:

C0‖∇F ε‖2
BR

≤ Cε2(d+1) +
( C
R3

+ η
)
‖∇F ε‖2

L2(B),

for any η > 0. It suffices finally to set η small enough and R large enough so that
C
R3 + η < C0 to obtain

‖∇F ε‖L2(B) ≤ ‖∇F ε‖L2(BR) = O(εd+1).
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We end the proof with the following integration by parts:

d∑
|j|=1

ε|j|

j!
∂jU(x0)Mij = D1

d∑
|j|=1

ε|j|

j!
∂jU(x0)

∫
∂B

n · ∇(xj + φj(x))xidσ(x)

−D1

∫
B

Rε(x)xidx +D1

∫
B

∇F ε(x) · ∇xidx,

= D1

d∑
|j|=1

ε|j|

j!
∂jU(x0)

∫
∂B

n · ∇(xj + φj(x))xidσ(x) +O(εd+1),

=
d∑

|j|=1

ε|j|

j!
∂jU(x0)Mij +O(εd+1),

which shows that the error terms generated by M and M agree up to an order O(εd+1).

4.2 Asymptotic expansions for the Helmholtz equation

We now prove proposition 3.2, theorem 3.3, and proposition 3.4.
Proof of proposition 3.2. We write vε := V + wε so that the corrector wε satisfies:

−∆wε(x) +

(
q0(x) +

1

ε2−η
q1

(
x− x0

ε

))
wε(x) = − 1

ε2−η
q1

(
x− x0

ε

)
V (x), x ∈ Ω,

∂wε

∂n
= 0, on ∂Ω.

(52)
We need to show the existence of wε. We first show the existence and uniqueness of a
solution to the integral formulation of (52), which formally reads, y a.e. in Ω:

wε + T εwε = −T εV,

T εϕ(y) =

∫
x0+εB

q1

(
x− x0

ε

)
ϕ(x)N(x,y)dx.

We consider first the case d ≥ 3. Using the decomposition of N given in proposition 3.1
and denoting by w∗ the restriction of wε(x0 +εy) to B (we do not write the dependence
on ε to simplify), we recast the above system as

w∗ + εηTw∗ + εd−2+ηRεw∗ = −T εV (x0 + εy), y ∈ B,

Tw∗(y) =

∫
B

q1 (x)w∗(x)Γ(x− y)dx,

Rεw∗(y) =

∫
B

q1 (x)w∗(x)R(x0 + εx,x0 + εy)dx.

(53)

We have used the homogeneity Γ(εx) = ε2−dΓ(x) when d ≥ 3. Since T and Rε are
compact operators in L2(B), they have discrete spectra. Indeed, since Γ,∇Γ ∈ L1

loc(Rd),
we have, using the Young inequality for any ϕ ∈ L2(B),

‖Tϕ‖L2(B) ≤ ‖q1ϕ‖L2(B)‖Γ‖L1(Ba) ≤ ‖q1‖L∞(B)‖ϕ‖L2(B)‖Γ‖L1(Ba),
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where Ba is a ball of radius a large enough. Thus, proceeding analogously for ∇T ,

‖T‖L(L2(B)) ≤ ‖q1‖L∞(B)‖Γ‖L1(Ba), ‖∇T‖L(L2(B)) ≤ ‖q1‖L∞(B)‖∇Γ‖L1(Ba),

and compactness stems from the Rellich theorem. The same holds for Rε since it is
Hilbert-Schmidt as R(x0 + ε·,x0 + ε·) belongs to L2(B × B) (though not necessarily
uniformly in ε; see below) according to proposition 3.1. In the same way, we obtain that

‖T εV (x0 + ε·)‖H1(B) ≤ C‖V (x0 + ε·)‖L2(B),

where C is independent of ε. It remains to show that the operator I + εηT + εd−2+ηRε

is injective and to use the Fredholm alternative to obtain the existence of a unique
w∗ ∈ H1(B) verifying (53). Injectivity is obvious when η ∈]0, 2] since he operator norm
of εηT + ε1+ηRε in L(L2(B)) is of order O(εη) < 1 for ε < ε0 small enough.

When η = 0, we need to use assumption (H-2). Since −1 is not an eigenvalue
of T , it suffices to fix ε0 small enough such that the distance between −1 and the
nearest eigenvalue of T is larger than εd−2

0 ‖Rε‖L(L2(B)). To do so, we remark, following
proposition 3.1, that uniformly in y ∈ B, R(·,y) ∈ W 2,p(B) with p < d

d−2
when 3 ≤

d ≤ 5 and p <∞ when d = 2. The Sobolev embedding then yields that R(·,y) ∈ C0(B)
when d ≤ 3 and R(·,y) ∈ Lq(B) with q <∞ when d = 4 and q = 5 when d = 5. Hence,

‖Rε‖L(L2(B)) ≤ C‖R(x0 + ε·,x0 + ε·)‖L2 ,

which is O(1) for d ≤ 3, O(ε−α) for any α > 0 when d = 4, and O(ε−1) for d = 5. For
the particular case q0 ≡ 0, proposition 3.1 gives R ∈ C∞(B ×B) so that ‖Rε‖L(L2(B)) is

bounded independently of ε for any d. In any event, εd−2
0 ‖Rε‖L(L2(B)) = o(ε0) so that

the Fredholm alternative yields again a unique w∗ ∈ L2(B) solution to (53) for ε0 small
enough. In addition, w∗ satisfies the estimate:

‖w∗‖L2(B) ≤ Cεη‖V (x0 + ε·)‖L2(B). (54)

Then wε is given, for y ∈ Ω, by:
wε(y) = w∗

(
y − x0

ε

)
, y ∈ x0 + εB,

wε(y) =
(
−εηTw∗ − εd−2+ηRεw∗

)(y − x0

ε

)
− T εV (y), otherwise,

so that wε ∈ H1(Ω). We verify that wε is then a solution to the variational formulation
of (52). To prove uniqueness, we show that, for a given u ∈ H1(Ω), the assertion∫

Ω

∇u · ∇v dx +

∫
Ω

(
q0 +

1

ε2−η
q1

(
· − x0

ε

))
u vdx = 0, ∀v ∈ H1(Ω), (55)

implies u = 0. Indeed, for ϕ ∈ L2(Ω), consider the weak solution v ∈ H1(Ω) of

−∆v + q0v = ϕ, x ∈ Ω,

augmented with homogeneous Neumann conditions on ∂Ω. Thus, v is given by v(y) =∫
Ω
N(x,y)ϕ(x)dx. Plugging v into (55) leads to∫

Ω

(u+ T εu)ϕdx = 0, ∀ϕ ∈ L2(Ω),
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so that u + T εu = 0, which implies that u = 0. This ends the proof of existence of a
unique solution of the variational formulation of (52) when d ≥ 3.

We treat now the case d = 2. When η > 0, existence and uniqueness can be
established in the same manner as above. When η = 0, we use assumption (H-3). We
first notice that for d = 2, we have

T εw∗(x0 + εy) =

∫
B

q1 (x)w∗(x)Γ(x− y)dy − log ε

2π

∫
B

q1 (x)w∗(x)dx +Rεw∗(y).

In the same way, proposition 3.1 gives, uniformly in y ∈ B, R(·,y) ∈ W 2,p(B) ⊂ C1(B)
with p <∞, so that we can recast Rεw∗ as

Rεw∗(y) = R(x0,x0 + εy)

∫
B

q1 (x)w∗(x)dx + R̃εw∗(y)

R̃εw∗(y) =

∫
B

q1 (x)w∗(x) (R(x0 + εx,x0 + εy)−R(x0,x0 + εy)) dx.

The system (53) can then be reformulated as:

w∗ + Tw∗ + R̃εw∗ = −TV − R̃εV −
(

log ε

2π
+R(x0,x0 + ε·)

)
Cε,

where the constant Cε is equal to

Cε =

∫
B

q1 (x) (V (x0 + εx) + w∗(x)) dx =

∫
B

q1 (x) vε(x0 + εx)dx.

Under assumption (H-3), we have Cε = 0 so that we just need to show that

‖R̃ε‖L(L2(B)) = o(1)

to apply the Fredholm alternative. Since R(·,y) ∈ C1(B), uniformly in y, we have,
for all (x,y) ∈ B × B, that |R(x0 + εx,x0 + εy) − R(x0,x0 + εy)| ≤ Cε, which gives

‖R̃ε‖L(L2(B)) = O(ε) and ends the proof of existence when d = 2.

We now prove decomposition (24), which is the corner stone of the proof of theorem
3.3. Since wε(x0 + εx) = w∗(x) when x ∈ B, it suffices to obtain an expression for w∗.
We consider first the case d ≥ 3. Defining V ε(x) := V (x0 + εx), we recast (53) as:

w∗ + εηTw∗ = −εηTV ε − εd−2+ηRε (V ε + w∗) .

We expand V ε in the first term of the right hand side and set w∗ = εηΨε+εd−2+η rε+rε
V ,

so as to obtain:

Ψε + εηTΨε = −T
d+1∑
|j|=0

ε|j|

j!
xj∂jV (x0),

rε + εηTrε = −Rε (V ε + w∗) , rε
V + εηTrε

V = −TRε
V ,
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where Rε
V is the remainder of the Taylor expansion of V ε ∈ C∞(B) of order d + 2.

Writing Ψε(x) :=
∑d+1

|j|=0
ε|j|

j!
∂jV (x0)φ

η
j (x), with

φη
j (x) + εηTφη

j (x) = −Txj,

and following the preceding proof of existence when d ≥ 3, we verify that rε
V ∈ H1(B)

with a norm bounded by Cεd+2 and that rε and φη
j are uniquely defined in H1(B). Also,

examining ‖Rε‖L(L2(B)) as in the proof of existence, we find that rε is bounded in L2(B)
independently of ε when d = 3, is O(ε−α) for any α > 0 when d = 4 and O(ε−1) when
d = 5. When q0 ≡ 0, rε is bounded in H1(B) independently of ε since ‖Rε‖L(H1(B)) is
uniformly bounded. We thus obtain the expression (24) announced in the proposition
for d ≥ 3. When d = 2, the equation for rε has to be replaced by

rε + εηTrε = −Rε (V ε + w∗) +
log ε

2π

∫
B

q1 (x) vε(x0 + εx)dx,

= −R̃ε (V ε + w∗)−
(

log ε

2π
+R(x0,x0 + ε·)

)
Cε,

where Cε is the same constant as before. When η > 0, we verify that rε ∈ H1(B) with

a norm of order log ε. When η = 0, assumption (H-3) implies Cε = 0. Since R̃ε is O(ε)
in L(L2(B), H1(B)), we deduce that rε is O(ε) in H1(B) since V is uniformly bounded
in B and w∗ is bounded in L2(B) according to (54).

Proof of Theorem 3.3. We express vε in terms of V and the Green function N , to
obtain, a.e. in Ω:

vε(y) = V (y)− εd−2+η

∫
B

q1(x) (V (x0 + εx) + wε(x0 + εx))N(x0 + εx,y)dx. (56)

Taking the trace of (56) on ∂Ω, which is well defined in L2(∂Ω) and thus almost every-
where, replacing wε(x0 + εx) by the expression in (24) and Taylor expanding both V
and N according to (20), lead to the result.

Proof of Proposition 3.4. The outline of the proof is as follows: starting from the
asymptotic expansion for vε in theorem 3.3, our aim is to recover that of uε in theorem
2.2 and the expression of the polarization tensor M . This is done in several steps. First,
we verify that assumptions (H-1), (H-2) and (H-3) are satisfied for the particular form
(26) of the potential q1. In a second step, we show that the term f ε in the expansion of
vε is of order O(ε4) so that ε2(d−2)f ε is O(ε2d) and can be treated as a remainder. Then,
we show in (27)–(28) that the two first-order terms in the expansion of vε are actually
of order O(ε2d) so that they can be neglected and the expansions for vε and uε have
the same leading order O(εd). Finally, using the particular form of the potential q1, we
perform some transformations in the polarization tensors Q and Qη for η = 0 leading
to the expression of the polarization tensor M in theorem 2.2.

We will need the following lemma, which is one of the main ingredients to show the
equivalence of the tensors:
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Lemma 4.1 Assume v ∈ H1(B) verifies in the distribution sense,

−∆v + q1v = h in D′(B), q1(x) =
∆
√
D0 +D1(x)√
D0 +D1(x)

, h ∈ L2(B). (57)

Then, for all ϕ ∈ H1(B) and harmonic in B, we have:∫
B

q1(x) v(x)ϕ(x)dx =
1√
D0

∫
B

D1(x)∇
( v(x)√

D0 +D1(x)

)
· ∇ϕ(x)dx−

∫
B

hϕdx.

Proof. Define D(x) := D0 + D1(x). Note that ∂nD1 = 0 on ∂B since D1 ∈ C2(Ω)
and D1 is supported in B. Hence, two successive integrations by parts yield:∫

B

∆
√
D(x)√
D(x)

v(x)ϕ(x)dx = −
∫

B

∇
√
D · ∇

( vϕ√
D

)
dx =

∫
B

(√
D −

√
D0

)
∆
( vϕ√

D

)
dx.

The above expression makes sense since ϕ is harmonic and ∆v ∈ L2(B) because of (57).
Starting from (57), we verify after some algebra that v solves

∇ ·D∇
( v√

D

)
=
√
Dh, in D′(B), (58)

which, since D > 0 in Rd, is equivalent to:

2∇
√
D · ∇

( v√
D

)
+
√
D∆

( v√
D

)
= h.

Since D = D0 on ∂B and is constant, it follows from the above equation and another
integration by parts that:

2

∫
∂B

∂v

∂n
ϕdσ −

∫
B

√
D∆

( v√
D

)
ϕdx− 2

∫
B

√
D∇

( v√
D

)
· ∇ϕdx =

∫
B

hϕdx. (59)

Here, σ is the surface measure on ∂B and the boundary term above has to be understood
as the H− 1

2 (∂B)–H
1
2 (∂B) duality product since ∂nv ∈ H− 1

2 (∂B) because v ∈ H1(B)
and ∆v ∈ L2(B) thanks to (57). Using the fact that ϕ is harmonic in B, that D = D0

on ∂B, and using equation (59), we find:∫
B

(√
D −

√
D0

)
∆
( vϕ√

D

)
dx

=

∫
B

(√
D −

√
D0

)
∆
( v√

D

)
ϕdx + 2

∫
B

(√
D −

√
D0

)
∇
( v√

D

)
· ∇ϕdx,

= −
∫

B

√
D0 ∆

( v√
D

)
ϕdx− 2

∫
B

√
D0∇

( v√
D

)
· ∇ϕdx + 2

∫
∂B

∂v

∂n
ϕdσ −

∫
B

hϕdx,

= −
∫

B

√
D0∇

( v√
D

)
· ∇ϕdx +

∫
∂B

∂v

∂n
ϕdσ −

∫
B

hϕdx.

To conclude, we just need to remark that, thanks to (58),∫
∂B

∂v

∂n
ϕdσ =

1√
D0

∫
∂B

D
∂

∂n

( v√
D

)
ϕdσ =

1√
D0

∫
B

D∇
( v√

D

)
· ∇ϕdx.
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Coming back to the proof of proposition 3.4, we first verify that assumptions (H-1),
(H-2) and (H-3) are satisfied. Since q0 = 0, (H-1) trivially holds because of the
compatibility conditions (17). The same is true for (H-3). Regarding (H-2), we have
to show that if

ϕ+ Tϕ = 0, ∀ϕ ∈ L2(B), (60)

then ϕ = 0. To this aim, we first remark that T maps L2(B) to H1(B), so that
every ϕ verifying (60) belongs to H1(B). Now, ϕ can be extended to Rd to a function
ϕ∗ ∈ H1

loc(Rd) by the relation:{
ϕ∗(y) = ϕ (y) , y ∈ B,
ϕ∗(y) = −Tϕ(y), otherwise.

Moreover, when (60) holds, then so does the following in the distributional sense:

−∆ϕ∗ + q1ϕ
∗ = 0, in D′(Ω′), (61)

for any bounded set Ω′ ⊂ Rd. Consider y ∈ Rd\B. Then Γ(x − y) is harmonic for
x ∈ B. We then apply lemma 4.1 with h = 0 to find, uniformly in y:

ϕ∗(y) = −
∫

B

q1 (x)ϕ∗(x)Γ(x− y)dy,

= − 1√
D0

∫
B

D1(x)∇

(
ϕ∗(x)√

D0 +D1(x)

)
· ∇Γ(x− y)dx.

We thus deduce from the above equation for d ≥ 2 the following behavior at infinity:

ϕ∗(y) = O(|y|1−d), ∇ϕ∗(y) = O(|y|−d). (62)

Besides, equation (61) can be reformulated as:

∇ · (D0 +D1)∇
(

ϕ∗√
D0 +D1

)
= 0, in D′(Ω′). (63)

After multiplication by ϕ∗(D0 + D1)
− 1

2 in H1
loc(Rd), and an integration on the sphere

BR ⊃⊃ B of radius R and boundary SR, we find:∫
BR

(D0 +D1)

∣∣∣∣∇( ϕ∗√
D0 +D1

)∣∣∣∣2 dx− ∫
SR

∂ϕ∗

∂n
ϕ∗dσ = 0.

Letting R→∞ leads, together with (62), to ϕ = 0 so that assumption (H-2) is satisfied.
We now show the equivalence of the tensors. First, the term f ε given in the expansion

of theorem 3.3 is of order O(ε4), which is not obvious at first sight. Consequently,
ε2(d−2)f(ε) is of order O(ε2d) and can treated as a remainder in the expansion. To prove
this, we apply lemma 4.1 to f ε and need to estimate rε. Let us recall the equation
verified by rε ∈ H1(B) given in proposition 3.2:

rε(y) + Trε(y) =

∫
B

q1 (x) vε(x0 + εx)R(x0 + εx,x0 + εy)dx. (64)
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When d = 2, we use the fact that assumption (H-3) is satisfied since q0 = 0 so that the
term involving log ε in the equation of proposition 3.2 vanishes. Since vε verifies (57)
with h = 0, and R verifies (21) with q0 = 0 so that we have ∆yR(x,y) = ∆yR(y,x) = 0
since R is symmetric in its arguments and is thus harmonic, we apply lemma 4.1 to find:∫

B

q1 (x) vε(x0 + εx)R(x0 + εx,x0 + εy)dx

=
ε√
D0

∫
B

D1(x)∇

(
vε(x0 + εx)√
D0 +D1(x)

)
· ∇xR(x0 + εx,x0 + εy)dx.

Moreover, we show that ∥∥∥∥∇(vε(x0 + ε·)√
D0 +D1

)∥∥∥∥
L2(B)

= O(ε), (65)

so that the left hand side of (64) is of order O(ε2). This is obtained by proving that
the leading term in the above expression vanishes. That is to say, thanks to the de-
composition given theorem 3.3, vε(x0 + εy) = V (x0 + εy) +

∑d+1
|j|=0

ε|j|

j!
∂jV (x0)φj(y) +

εd−2 rε(y) +O(εd+2), y a.e. in B, that

∇
(V (x0)(1 + φ0(x))√

D0 +D1(x)

)
= 0. (66)

The argument is very similar to that in the verification of assumption (H-2) and so we
just sketch the proof. Since φ0 verifies φ0 + Tφ0 = −T1, it can be extended to Rd to
φ∗0 ∈ H1

loc(Rd) which admits the behavior at infinity given in (62). We also have, for any
bounded set Ω′ ⊂ Rd,

−∆(φ∗0 + 1) + q1(φ
∗
0 + 1) = 0, in D′(Ω′), (67)

so that, still denoting by BR the sphere of radius R,∫
BR

(D0 +D1)

∣∣∣∣∇( φ∗0 + 1√
D0 +D1

)∣∣∣∣2 dx− ∫
SR

∂φ∗0
∂n

(ϕ∗0 + 1)dσ = 0.

Sending R to infinity then gives the result thanks to the decay of ∇φ∗0 at infinity. Owing
to this result, the decomposition (24), the fact that φj and rε belong to H1(B), and rε

is at least an O(ε) when d = 2 as mentioned in theorem (3.3), we get that (65) holds.
Furthermore, using again the fact that R is harmonic, we verify from (64) that rε solves
in the distribution sense:

−∆rε + q1r
ε = 0, in D′(B).

We cannot apply lemma 4.1 directly to (64) since for (x,y) ∈ B ×B, we have

−∆xΓ(x− y) = δ(x− y), in D′(B),
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and Γ is not harmonic. Nevertheless, the lemma can easily be adapted to this special
case so that, y a.e. in B, we have∫

B

q1(x) rε(x)Γ(x− y)dx =
1√
D0

∫
B

D1(x)∇
( rε(x)√

D0 +D1(x)

)
· ∇Γ(x− y)dx

−
√
D0 +D1(y)−

√
D0√

D0 +D1(y)
rε(y).

Plugging the above expression into (64), we finally find the following equation for rε ∈
H1(B), y a.e. in B:

rε(y)√
D0 +D1(y)

+
1

D0

∫
B

D1(x)∇
( rε(x)√

D0 +D1(x)

)
· ∇Γ(x− y)dx

=
ε

D0

∫
B

D1(x)∇
( vε(x)√

D0 +D1(x)

)
· ∇xR(x0 + εx,x0 + εy)dx.

Identifying the right hand side of the latter equation with Sε(εx) and (D0+D1)
− 1

2 rε with

rε
1(x)+Sε(εx) in the proof of theorem 2.2, we see that (D0+D1)

− 1
2 rε and rε

1(x)+Sε(εx)
satisfy similar equations so that the same technique yield∥∥∥∥∇( rε

√
D0 +D1

)∥∥∥∥
L2(B)

≤ Cε2

∥∥∥∥∇( vε

√
D0 +D1

)∥∥∥∥
L2(B)

‖∇x∇yR‖L∞(B0×B0) .

From proposition 3.1, R ∈ C∞(Ω× Ω). Together with (65), this finally gives that:∥∥∥∥∇( rε

√
D0 +D1

)∥∥∥∥
L2(B)

= O(ε3). (68)

We conclude by applying once again lemma 4.1 to obtain

‖f ε‖L2(∂Ω) =

∥∥∥∥∫
B

q1(x)rε(x)N(x0 + εx, ·)dx
∥∥∥∥

L2(∂Ω)

=
ε√
D0

∥∥∥∥∥
∫

B

D1(x)∇
( rε(x)√

D0 +D1(x)

)
· ∇xN(x0 + εx, ·)dx

∥∥∥∥∥
L2(∂Ω)

= O(ε4),

thanks to (68).
We now prove (27) and (28) so that the leading order in the expansion of theorem

2.2 is O(εd) as in the case of the diffusion equation. We remark that, for η = 0,

d+1∑
j=0

ε|j|

j!
∂jV (x0)

(
Q0j +Q0

0j

)
=

d+1∑
j=0

ε|j|

j!
∂jV (x0)

∫
B

q1(x)
(
φη

j (x) + xj
)
dx,

=

∫
B

q1(x)
(
Ψε(x) + V (x0 + εx)−Rε

V (x)
)
dx,

where Ψε is given in the theorem and Rε
V is the remainder of the Taylor expansion of

V (x0 + εx) at the order d + 2 and is thus of order O(εd+2). In order to apply lemma
4.1, we verify from (25) that Ψε ∈ H1(B) solves,

−∆Ψε + q1Ψ
ε = −q1

(
V (x0 + εx)−Rε

V (x)
)

in D′(B).
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Setting v(x) = Ψε(x) + V (x0 + εx), h = q1R
ε
V and ϕ = 1 in lemma 4.1 yields (27).

Regarding (28), we write, for y ∈ ∂Ω,

d+1∑
i=0

ε|i|

i!
∂iN(x0,y)

(
Qi0 +Q0

i0

)
=

∫
B

q1(x)
(
1 + φ0(x)

)
(N(x0 + εx,y)−Rε

N(x,y))dx,

where Rε
N is the remainder of the d + 2 order Taylor expansion of N(x0 + εx,y) with

respect to x and is thus of order O(εd+2). Since N(x0 + εx,y) is harmonic when x ∈ B
and y ∈ ∂Ω, we apply lemma 4.1 thanks to (67) to find:

d+1∑
i=0

ε|i|

i!
∂iN(x0,y)

(
Qi0 +Q0

i0

)
=

1√
D0

∫
B

D1∇
( (1 + φ0(x))√

D0 +D1(x)

)
· ∇xN(x0 + εx,y)dx

+O(εd+2) = O(εd+2),

since the above integral vanishes thanks to (66).
At this point of the proof, we have thus shown that vε satisfies, a.e. on ∂Ω, that

vε(y)|∂Ω = V (y)|∂Ω −
d+1∑
|j|=1

d+1∑
|i|=1

εd−2+|i|+|j|

i!j!

(
Qij +Q0

ij

)
∂jV (x0) ∂

iN(x0,y)
∣∣
∂Ω

+O(ε2d).

Setting vε(y) := uε(y)
√
D0 +D1(

y−x0

ε
), V :=

√
D0U , we verify that uε and U are

solutions to (1) and (4), respectively, with the boundary term g multiplied by
√
D0. It

thus remains to show that (29) and (30) hold to recover the asymptotic expansion for
uε of theorem 2.2. Since xj + φj satisfies (57) when |j| = 1 and xi is harmonic when
|i| = 1, we have, for |i| = |j| = 1:

Qij +Q0
ij =

∫
B

q1(x)
(
xj + φj(x)

)
xidx,

=
1√
D0

∫
B

D1∇
( xj + φj(x)√

D0 +D1(x)

)
· ∇xidx. (69)

We introduce the following extension to φj on Rd:{
φ∗j(y) = φj

(
y
)
, y ∈ B,

φ∗j(y) = −Tφj(y)− Txj, otherwise,

which thus satisfies the conditions at infinity in (62). We recall that φ0
j0, the function

introduced in theorem 2.2 to define the polarization tensor M , is the unique weak
solution in the space H1

loc(Rd) ∩ C∞(Rd\B) to the following system posed in Rd:

∇ ·
(
D0 +D1(x)

)
∇φ0

j0 = −∇ ·
(
D1(x)∇xj

)
, (70)

φ0
j0(x) = O(|x|1−d) as |x| → ∞. (71)

When |j| = 1, notice that φ0
j0 is given by

φ0
j0(x) =

(√D0 +D1√
D0

− 1
)
xj +

√
D0 +D1√
D0

φ∗j(x),
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so that (29) is proved using (69). To prove (30), we need to sum over i and j to be able
to use lemma 4.1 since xi is not harmonic for |i| ≥ 2 and xj + φj(x) satisfies (57) with
a negligible left- hand side h of order O(εd+2) only after summation. We thus write,
using the same arguments as for the proof of (27) and (28), for y ∈ ∂Ω:

d+1∑
|j|=1

d+1∑
|i|=1

ε|i|+|j|

i!j!

(
Qij +Q0

ij

)
∂iN(x0,y)∂jV (x0)

=
d+1∑
|j|=1

d+1∑
|i|=1

ε|i|+|j|

i!j!
∂iN(x0,y)∂jV (x0)

∫
B

q1(x)
(
xj + φj(x)

)
xidx,

=

∫
B

q1(x)
(
V (x0 + εx)−Rε

V (x) + Ψε(x)
)
(N(x0 + εx,y)−Rε

N(x,y))dx +O(εd+2),

=
ε√
D0

∫
B

D1∇
(V (x0 + εx) + Ψε(x)√

D0 +D1(x)

)
· ∇xN(x0 + εx,y)dx +O(εd+2),

=
d+1∑
|j|=1

d+1∑
|i|=1

ε|i|+|j|

i!j!
∂iN(x0,y)∂jV (x0)

∫
B

D1(x)∇
( xj + φj(x)√

D0 +D1(x)

)
·∇xidx +O(εd+2).

It remains to relate the latter sum to M . For that, let fj be defined as:

fj(y) =
(√D0 +D1√

D0

− 1
)
xj +

√
D0 +D1√
D0

φ∗j(y)− φ0
0(y).

Then fj belongs to H1
loc(Rd) ∩ C∞(Rd\B) by construction and solves:

∇ · (D0 +D1(x))∇fj = −1IB(x)
√
D0 +D1(x) ∆xj, x ∈ Rd, (72)

fj(y) = O(|y|1−d) as |y| → ∞. (73)

Here, 1IB is the characteristic function of the set B and φ∗j is the extension of φj to Rd.
Note that fj = 0 when |j| = 1 so that we recover the preceding relationship between φ∗j
and φ0

0. To conclude the proof, it suffices to show that an appropriate linear combination
of the terms fj is of order O(εd+2). Let:

T ε
V (x) :=

d+1∑
|j|=1

ε|j|

j!
∂jV (x0)∆xj, F ε(x) :=

d+1∑
|j|=1

ε|j|

j!
∂jV (x0)fj(x),

so that since ∆V (x0 + εx) = 0, for all x ∈ B, we have T ε
V (x) = O(εd+2) uniformly in B

and F ε ∈ H1
loc(Rd) ∩ C∞(Rd\B) solves

∇ · (D0 +D1(x))∇F ε = −1IB(x)
√
D0 +D1(x)T ε

V , x ∈ Rd,

F ε(y) = O(|y|1−d) as |y| → ∞.

The above equation is very similar to (45) at the end of proof of proposition 2.8 and a
similar analysis yields

‖∇F ε‖L2(Rd) = O(εd+2).
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We conclude the proof by calculating that

d+1∑
|j|=1

d+1∑
|i|=1

ε|i|+|j|

i!j!
∂iN(x0,y)∂jV (x0)

∫
B

D1(x)∇
( xj + φj(x)√

D0 +D1(x)

)
· ∇xidx,

=
d+1∑
|j|=1

d+1∑
|i|=1

ε|i|+|j|

i!j!
∂iN(x0,y)∂jV (x0)

1√
D0

∫
B

D1(x)∇
(
xj + ψj + fj

)
· ∇xidx,

=
1√
D0

d+1∑
|j|=1

d+1∑
|i|=1

ε|i|+|j|

i!j!
∂iN(x0,y)∂jV (x0)Mij +O(εd+2).

4.3 Appendix

This appendix states several lemmas that were needed in the preceding analyses.

Lemma 4.2 Let F ∈ (L2(Rd))d and D1 ∈ W 1,∞(Rd) compactly supported in a bounded
domain B, and D0 a strictly positive constant. Assume moreover that D0 + D1(x) ≥
C0 > 0 a.e. in Rd. Then, the following problem (P):

∇ · (D0 +D1(x))∇φ = ∇ · F in D′(Rd),

φ(x) = O(|x|1−d) as |x| → ∞,

admits unique solution in H1
loc(Rd)∩C∞(Rd\B). Moreover, φ satisfies the estimates, for

any bounded set A ⊂ Rd,

‖∇φ‖L2(Rd) ≤ C−1
0 ‖F‖(L2(B))d , ‖φ‖L2(A) ≤ C‖F‖(L2(B))d

(
1 + ‖D1‖L∞(Rd)

)
, (74)

and is the unique solution, a.e. on every bounded set of Rd, to the integral equation

D0 φ(y) = −
∫

B

D1 (x)∇φ(x) · ∇xΓ(x− y)dx +

∫
B

F(x) · ∇xΓ(x− y)dx. (75)

Proof. We show that (P ) is equivalent to a problem posed on a bounded domain
that can be solved with the Lax-Milgram lemma. To do so, let BR be the sphere of
radius R with B ⊂⊂ BR and denote by SR its boundary. Consider the solution φ to (P)
with the announced regularity. Since both D1 and F are supported in B, the function φ
is harmonic in Rd\B and in particular in Rd\BR. Denoting by Λ : H

1
2 (SR) → H− 1

2 (SR)
the exterior Dirichlet-Neumann operator on the sphere SR, we then have the standard
relation

∂φ

∂n
= Λ φ|SR

,

where ∂φ
∂n

is the outer normal derivative of φ on SR and φ|SR
its outer trace. Since φ is

harmonic in Rd\B and is thus of class C∞ on this set, ∂φ
∂n

and φ|SR
are continuous across

SR. Using this fact and integrating (P) against a test function v ∈ C∞(BR), we find∫
BR

(D0 +D1)∇φ · ∇v dx−D0〈Λ φ|SR
, v|SR

〉 =

∫
B

F · ∇v dx,
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where 〈·, ·〉 denotes the H
1
2 (SR)−H− 1

2 (SR) duality product. The restriction of φ to BR

is therefore a solution to the following variational problem (P2): Find u ∈ H1(BR) such
that

a(u, v) = l(v), ∀v ∈ H1(BR),

with obvious notation for the bilinear form a and the linear form l. Let us assume for
the moment the existence of a unique solution u to (P2). That solution can be extended
to a function u∗ solution to (P ). Let indeed u∗ be defined as:{

u∗ = u, in BR,

u∗ = U, in Rd\BR,

where U is the solution to

∆U = 0 in D′(Rd\BR),

U |SR
= u|SR

, U(x) → 0 as |x| → ∞.

By construction, the trace of u∗ is continuous across SR. Since U is harmonic in Rd\BR

and vanishes at infinity, it also verifies: ∂U
∂n

= Λ U |SR
= Λ u|SR

. It then suffices to

integrate the equation solved by U against a test function v ∈ C∞0 (Rd) and to consider
(P2) to find ∫

Rd

(D0 +D1)∇u∗ · ∇v dx =

∫
B

F · ∇v dx, ∀v ∈ C∞0 (Rd),

so that u∗ solves (P). The above equation also implies that u∗ is harmonic in Rd\B
and is thus of class C∞ on this set. It remains to verify the behavior at the infinity,
which stems from the fact that F has compact support in BR. Setting v = 1 in (P2)
yields 〈Λ u|SR

, 1〉 = 0. Getting back to U , since its trace and its normal derivative are
known and given by u|SR

and Λ u|SR
, respectively, it admits the following representation

formula, for x ∈ Rd\BR:

U(x) =

∫
SR

u|SR
(y)

∂Γ(x− y)

∂ny

dσ(y)− 〈Λ u|SR
,Γ(x− ·)〉,

where Γ is the fundamental solution of the Laplacian in (6) and σ is the surface measure
on SR. We conclude by noticing that, as |x| → ∞:

〈Λ u|SR
,Γ(x− ·)〉 = 〈Λ u|SR

,Γ(x− ·)− Γ(x)〉 = O(|x|1−d).

It remains to show the existence of a unique solution to (P2). This is a consequence
of the Lax-Milgram lemma: a and l are both continuous in H1(BR) and the coercivity
follows from the Poincaré-type inequality:

‖u‖L2(BR) ≤ C
(
‖∇u‖L2(BR) + ‖u‖L2(SR)

)
, ∀u ∈ H1(BR),

and the relation

C‖u‖2
L2(SR) ≤ −〈Λ u|SR

, u|SR
〉, ∀u ∈ H

1
2 (SR).
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We now prove the first estimate in (74). Let v ∈ C∞0 (Rd) such that

1

Rd
‖v‖L1(SR) → 0 as R→∞. (76)

Integrating (P) against v yields∫
BR

(D0 +D1)∇φ · ∇v dx−D0

∫
SR

∂φ

∂n
vdσ =

∫
B

F · ∇v dx.

Since ∇φ(x) = O(|x|−d) as x tends to infinity, it belongs to Lp(Rd\Bρ) for some p > 1
and a ball of radius ρ with B ⊂⊂ Bρ. The above equality also holds by density for all v ∈
Vρ, the space of functions v such that v ∈ H1

loc(Rd), v verifies (76) and ∇v ∈ Lp′(Rd\Bρ)
for 1

p′
+ 1

p
= 1. Since ∂φ

∂n
= O(R−d), sending R to infinity implies, together with (76), that

the boundary term goes to zero. On the other hand, the function ∇φ · ∇v is integrable
on Rd for v ∈ Vρ, which allows us to use the Lebesgue dominated convergence theorem
and obtain as R→∞:∫

Rd

(D0 +D1)∇φ · ∇v dx =

∫
B

F · ∇v dx, (77)

for all v ∈ Vρ. Since φ ∈ Vρ for any d ≥ 2, we obtain the left estimate of (74).
Let us now consider the integral equation (75) and show that the solution to (P)

verifies (75). For ψ ∈ L2(BR), let v(x) =
∫

BR
Γ(x−y)ψ(y)dy for a given ball BR. Since

Γ ∈ W 1,1
loc (Rd), it follows from the Young inequality that v ∈ H1

loc(Rd). Set x ∈ Rd\BR′

with BR ⊂⊂ BR′ . Then ∇Γ(· − y) ∈ Lp(Rd\BR′) for p > d
d−1

and y ∈ BR. Such
a function v also satisfies (76) for d ≥ 2 since Γ(x − y) grows at worst as log |x| for
(x,y) ∈ Rd\BR′ ×BR. We can thus use v as a test function in (77). In order to use the
Fubini theorem, we notice that the function ∇v(x) · ∇Γ(x− y)ψ(y)1IBR

(y) belongs to
L1(Rd×Rd) thanks to the Sobolev inequality [11] recalled in lemma 4.3 in the appendix
since ∇v ∈ L2(Rd) and ψ ∈ L2(BR). Indeed, since R <∞, we bound the Lq(Rd) norm
of ψ(y)1IBR

(y) by the L2(BR) norm of ψ for q = 2d
d+2

≤ 2. Then choose p = 2 and
λ = d− 1 in lemma 4.3.

The same conclusion holds for F(x) · ∇Γ(x− y)ψ(y)1IBR
(y) so that we obtain from

(77):

D0

∫
BR

(∫
Rd

∇φ(x) · ∇Γ(x− y) dx
)
ψ(y)dy

= −
∫

BR

(∫
Rd

D1(x)∇φ(x) · ∇Γ(x− y)− F(x) · ∇Γ(x− y)
)
ψ(y)dy. (78)

It thus only remains to show that
∫

Rd ∇φ(x) · ∇Γ(x − y) dx = φ(y) a.e. on BR to
conclude. To this aim, consider a sequence φn of C∞0 (Rd) functions such that ∇φn → ∇φ
in L2(Rd) and φn → φ in L2(A) for any bounded set A. Since −∆xΓ(x− y) = δ(x− y)
in the distribution sense, we have, for any y ∈ Rd:

lim
ε→0

∫
|x−y|>ε

Γ(x− y)∆φn(x)dx = −φn(y).
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The Lebesgue dominated convergence theorem yields consequently:

lim
ε→0

∫
BR

(∫
|x−y|>ε

Γ(x− y)∆φn(x)dx

)
ψ(y)dy = −

∫
BR

φn(y)ψ(y)dy.

An integration by parts then gives:∫
|x−y|>ε

Γ(x− y)∆φn(x)dx =

∫
|x−y|=ε

∂φn(x)

∂n
Γ(x− y)dσ(x)

−
∫
|x−y|>ε

∇Γ(x− y) · ∇φn(x)dx.

The boundary integral goes to zero with ε. For the other term, we remark that the
function 1I|x−y|>ε1IBR

∇Γ(x−y) · ∇φn(x)ψ(y) converges a.e. in Rd×Rd to 1IBR
∇Γ(x−

y)·∇φn(x)ψ(y) which belongs to L1(Rd×Rd) thanks to the Sobolev inequality. Applying
again the Lebesgue dominated convergence theorem yields∫

BR

(∫
Rd

∇φn(x) · ∇Γ(x− y) dx

)
ψ(y)dy =

∫
BR

φn(y)ψ(y)dy,

and it suffices to pass to the limit in the sequence φn to conclude. This proves that the
solution to (P) satisfies (75). Conversely, considering a solution of (75) in H1

loc(Rd) ∩
C∞(Rd\B), we verify using the same techniques as above that this solution also satisfies
(P), which we know admits a unique solution. Therefore, the integral equation (75) also
admits a unique solution. The second estimate of (74) follows from (75), the Young
inequality and the first estimate of (74).

Lemma 4.3 Sobolev inequality (see e.g. [11]). Let f ∈ Lp(Rd), g ∈ Lq(Rd), 1 < p, q <
∞, 0 < λ < d with the relation 1

p
+ 1

q
+ λ

d
= 2. Then:∫

Rd

∫
Rd

|f(x)g(y)|
|x− y|λ

dxdy ≤ C‖f‖Lp(Rd)‖g‖Lq(Rd).

The following lemma, which is a standard variational formulation of the Fredholm al-
ternative, is used several times in the paper.

Lemma 4.4 Let H be a Hilbert space and let a(·, ·) be a bilinear form on a H × H
such that a(·, ·) = a0(·, ·) + a1(·, ·), where both a0 and a1 are continuous in H and a0 is
H-coercive. Assume moreover, that for two sequences un and vn weakly converging in
H to u and v, we have

a1(un, vn) → a1(u, v).

Then, if the following assertion is verified

(a(u, v) = 0, ∀v ∈ H) =⇒ u = 0,

for all f in H ′, there exists a unique u ∈ H which satisfies

a(u, v) = 〈f, v〉, ∀v ∈ H.

Here, 〈·, ·〉 denotes the H ′-H duality product. Moreover, u verifies the estimate, for
some positive constant C:

‖u‖H ≤ C‖f‖H′ .
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Proof. We sketch a proof for completeness. Since a0 is coercive, we know from the
Lax-Milgram theory the existence of a bounded and boundedly invertible operator S
on H such that a0(u, v) = (S−1u, v), where (·, ·) is the inner product on H. By the
Riesz representation theorem, we similarly know the existence of a bounded operator
A1 such that a1(u, v) = (A1u, v). The hypotheses on a1 imply that A1 is compact on
H. Indeed, choose un ⇀ u and define vn = A1un − A1u. We verify that vn ⇀ 0 and
that ‖A1un−A1u‖2 = (A1un, vn)− (A1u, vn) converges to 0 by the above hypothesis on
a1 so that A1 maps weakly converging sequences to strongly converging sequences and
is thus compact.

Now by the Riesz representation theorem, there exists f̃ ∈ H such that 〈f, v〉 =
(f̃ , v), for all v ∈ H, so that a(u, v) = 〈f, v〉 is equivalent to (S−1 + A1)u = f̃ and
thus equivalent to (I + SA1)u = Sf̃ , which admits a unique solution if and only if −1
is not an eigenvalue of the compact operator SA1, which is equivalent to the fact that
a(u, v) = 0 for all v ∈ H implies that u = 0.
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