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Abstract

We consider the problem of the random fluctuations in the solutions to elliptic PDEs
with highly oscillatory random coefficients. In our setting, as the correlation length of the
fluctuations tends to zero, the heterogeneous solution converges to a deterministic solution
obtained by averaging. When the Green’s function to the unperturbed operator is sufficiently
singular (i.e., not square integrable locally), the leading corrector to the averaged solution may
be either deterministic or random, or both in a sense we shall explain.

Our main application is the solution of an elliptic problem with random boundary condition
that may be used to model diffusion of signaling molecules through a layer of cells into a bulk of
extracellular medium. The problem is then described by an elliptic pseudo-differential operator
(a Dirichlet-to-Neumann operator) on the boundary of the domain with random potential.

In the physical setting of a three dimensional extracellular medium on top of a two-
dimensional surface of cells forming a layer of epithelium, we show that the approximate
corrector to averaging consists of a deterministic correction plus a Gaussian field of amplitude
proportional to the correlation length of the random medium. The result is obtained under
some assumptions on the four-point correlation function in the medium. We provide examples
of such random media based on Gaussian and Poisson statistics.

Key words: Boundary homogenization, Robin problem, Fluctuation theory, Central lim-
its, PDEs with random coefficients, Dirichlet to Neumann map.
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1 Introduction

We consider elliptic pseudo-differential equations with random potential of the form

P (x,D)uε + q̃ε(x,
x

ε
, ω)uε = f(x), (1)

for x in an open subset X ⊂ R
d with appropriate boundary conditions on ∂X if necessary. The

equations are parametrized by 0 < ε ≪ 1 modeling the correlation length of the random medium.
Here, q̃ε(x,

x
ε , ω) consists of a low frequency part q0(x) and a high frequency part q(xε , ω), which

is a re-scaled version of q(x, ω), a stationary mean zero random field defined on some abstract
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probability space (Ω,F ,P) with (possibly multi-dimensional) parameter x ∈ R
d. We denote

by E the mathematical expectation with respect to the probability measure P. Equations with
coefficients varying at a much smaller scale than the scale at which the phenomenon is observed
have many practical applications in the physical modeling of complex media. In this paper, we
primarily consider the particular application of diffusion of signaling molecules through a three
dimensional extracellular medium on top of a two dimensional layer of cells while the interaction
between the molecules and the cells are modeled as a random boundary condition.

It is both mathematically and practically interesting to develop asymptotic theories for so-
lutions to (1) if only because numerical solutions become prohibitively expensive when ε → 0.
Homogenization theory or averaging theory aims at finding an effective or homogenized equation
whose solution u is the limit of uε as ε goes to zero. Corrector theory aims at further approxi-
mating the heterogeneous solution by capturing the leading terms in the corrector uε − u.

The homogenization/averaging of such a problem, where randomness appears as a potential,
is easier than the case where the randomness interacts with derivatives as in, e.g., problems
with random diffusion coefficients where P (x,D) = −∇ · A(xε , ω) · ∇. Unlike the latter case
whose homogenized equation involves nontrivial expressions of A(x, ω), cf. [13, 16], the homoge-
nized/averaged equation for (1) is obtained simply by averaging q̃ε, cf. [1, 11]. At this step, only
mild conditions such as stationarity and ergodicity of the random fields are required.

Corrector theory for the problems with random diffusion coefficients is much more difficult in
arbitrary dimensions. In one space dimension, the correctors are asymptotically Gaussian in some
settings as shown in [1, 7]. Such results are obtained with an additional requirement that the
random fields are strongly mixing with mixing coefficients decaying sufficiently fast, see below for
the notion of mixing. In higher dimensions, corrector theory for problems with random potential
is also available [1, 11] under similar mixing conditions. In particular, the procedure in [1] applies
for elliptic PDE that admits a Green’s function whose singularity at the origin is square integrable,
and says that weakly in space the corrector has random fluctuations of order εd/2. This covers
the case of diffusion equation with random potential in dimension d ≤ 3.

The main objective of this paper is to consider the case where the Green’s function of (1) is
more singular in the sense that it fails to be square integrable near the origin. In this case, a
deterministic corrector may be comparable or larger than the random corrector.

We consider the case that the random field q(x, ω) is stationary with integrable correlation
function R(x) := E{q(0)q(x)}, and show that the homogenized/averaged equation is again ob-
tained by averaging q̃ε. We then consider the corrector uε − u weakly in space, i.e., consider the
random variable 〈uε−u,M〉 for arbitrary smooth test function M . The fluctuation of this variable
is again of order εd/2 as before. The main difference with the case of square integrable Green’s
function is that the mean of the corrector is of size larger than or equal to εd/2. Hence a complete
approximation of uε should include a characterization of the deterministic term E{uε − u}, at
least its components that are of size larger than the random fluctuation. As we demonstrate in
this paper, the sizes of these components depend on the singular structure of the Green’s function
and the dimension d. Moreover, the limit of these components can be calculated explicitly using
the procedure developed here. These results are obtained under a further assumption that we can
estimate sufficiently high order moments of the random fields.

Although our approach can be carried out for general equations of the form (1), we state and
prove the main theorems for the following specific model to simplify notation. It is a diffusion
equation with a random Robin boundary condition posed on the half space Rn

+, i.e. {x ∈ R
n | xn >
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0} whose boundary is identified with R
d where d = n− 1,





(−∆+ λ2)uε(x, ω) = 0, x = (x′, xn) ∈ R
n
+,

∂

∂ν
uε + (q0 + q(

x′

ε
, ω))uε = f(x′), x = (x′, 0) ∈ ∂Rn

+.
(2)

Here, the outward normal direction, i.e., the −xn direction, is denoted by ν. We show below that
this equation is equivalent to the following elliptic pseudo-differential equation of the form (1):

(
√

−∆⊥ + λ2 + q0 + qε)uε = f, (3)

where ∆⊥ is the Laplacian on R
d, obtained from the Laplacian on R

n with ∂2
xn

eliminated. Here,√
−∆⊥ + λ2 is a pseudo-differential operator defined by (20). Also, we used qε as short-hand

notation for q(x
′

ε ). In the sequel and to simplify notation, we will use either qε(x) or simply qε to
denote the scaled function q(xε , ω).

This type of boundary problems have applications in chemical physics and biology. For in-
stance, in the context of cell communication by diffusing signals, the equation in (2) models the
diffusion of signaling molecules in a bulk of extracellular medium which is covered at the bottom
by a monolayer of cells forming a layer of epithelium. The cells on the epithelium layer can secrete
signaling molecules and they can absorb them as well, depending on levels of gene expression in
the cells. The boundary condition in (2) models the actions between the cells and the signaling
molecules.

The authors of [4, 5] have investigated a similar diffusion process of particles through a hetero-
geneous surface which reflects particles except on some periodically or randomly located patches
that absorb particles. Hence, in their setting, the boundary conditions in (2) are: on the patches
Dirichlet conditions are imposed while otherwise Neumann conditions are imposed. Analyzing
the data obtained from Brownian dynamics simulations, they find that when the patchy surface
is sufficiently fine-grained, e.g., the periodicity of the locations of the patches being ε ≪ 1, the
diffusion equation with such heterogeneous boundary conditions can be well approximated by an
effective equation with a homogeneous boundary which absorbs particles in a uniform rate over
the entire surface. Formal asymptotic analysis of the homegenization mechanism and different
numerical homogenization procedures have been developed in e.g., [15, 17].

Rigorous mathematical proof of homogenization in the above setting is challenging. We con-
sider here a Robin boundary condition with random impedance modeling a random coupling of
secreting and absorption of signaling molecules by the cells on the surface. We derive a rigorous
averaging and corrector theory in this setting. As ε goes to zero, our result implies that the
cells with random impedance can be replaced by cells with constant, averaged, impedance. The
next-order approximation consists of a random fluctuation which is weakly Gaussian and of size
εd/2 and a deterministic corrector of order ε. These deterministic and random correctors can be
expressed in terms of statistical quantities of the random field q(x, ω).

The rest of this paper is structured as follows. We state the main results for the random
Robin problem in dimension n = 3 (hence d = 2) in section 2 after introducing preliminary
material on the Robin problem and assumptions on the random fields. In section 3, we write
the Robin problem on R

n as a pseudo-differential equation on R
d and derive some properties

of its solution operator G. In section 4, we present examples of random fields that satisfy the
imposed assumptions. The proofs of the main results are shown in section 5. Generalization to
higher dimensions and concluding remarks are presented in section 6. Some technical lemmas are
postponed to Appendix A.
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2 Problem setting and main results

2.1 Diffusion equation with Robin boundary

We first analyze the Robin problem introduced above. In particular, we consider the homogenized
equation of (2), which is obtained by averaging qε(x, ω):





(−∆+ λ2)u(x) = 0, x ∈ R
n
+,

∂

∂ν
u(x′) + q0u(x

′) = f(x′), x′ ∈ R
d.

(4)

We also impose that the solution decays sufficiently fast as |x| tends to infinity. Above, we
identified the boundary ∂Rn

+ with R
d where d = n − 1. For simplicity we assume that the

damping coefficient λ2 is a constant with λ > 0, and the impedance q0 in the Robin boundary
condition is also a positive constant. Theory for the above equation is presented in section 3.
Both (4) and (2) are well-posed for almost all realizations assuming that q0+ q(x/ε, ω) is positive
a.e. In the sequel and to simplify notation, we still use x, instead of x′, to denote a point in R

d.

Let us define the standard Dirichlet to Neumann (DtN) operator Λ as follows:

Λg(x) :=
∂

∂ν
g̃(x). (5)

Here, the function g(x) is defined on the boundary R
d and g̃ is the solution of the volume problem

(4) with a Dirichlet boundary condition g̃|∂Rn
+
= g. Hence, Λ maps the boundary value to the

boundary flux. Either by calculating the symbol of Λ or by verifying it directly, we observe that
Λ =

√
−∆+ λ2; see section 3. Note that ∆ here is the Laplacian on R

d, i.e., the surface Laplacian
∆⊥ in (3). To simplify notation, we will use ∆ to denote both of the Laplacians on R

n and R
d.

The volume problem (4) is then equivalent to the following pseudo-differential equation posed on
the whole space R

d,

(
√

−∆+ λ2 + q0)u = f. (6)

Indeed by definition, the trace of the solution to (4) satisfies equation (6), and the lift ũ of solution
to (6) solves equation (4). In fact, we show in section 3 that (6) admits a well defined solution
operator G and consequently the diffusion equation in the volume is also well-posed.

Let G(x, y) be the corresponding Green’s function, i.e., the Schwartz kernel of G. By homo-
geneity, we observe that G is of the form G(|x − y|). This Green’s function will be investigated
further in section 3. The latter function decays exponentially at infinity and behaves like |x|−d+1

near the origin when d ≥ 2. The exponential decay allows us to easily work in infinite domain.
The singularity at the origin shows that G fails to be locally square integrable and hence is of
the type that this paper aims to analyze. In the presence of a random impedance, we denote the
corresponding Green’s operator by Gε.

Considering the application of (4) in biology, the physical domain is n = 3 and hence d = 2.
Our results are presented in that setting of practical interest.

2.2 Assumptions on the random fields

We recall that the random impedance qε(x, ω) in (2) is of the form q(x/ε, ω). The assumptions on
the random impedance are imposed on q(x, ω). We assume that q(x, ω) is a stationary and strong
mixing process with integrable mixing coefficient. These are standard assumptions on random
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fields modeling heterogeneous media in mathematical physics, and are enough for homogenization
theory. To analyze the limiting distribution of the random fluctuation in the setting of non-square-
integrable Green’s functions, we need additional assumptions which take the form of estimates on
fourth-order moments of q. Details are described below.

Stationarity. We assume that q(x, ω) is stationary, i.e., for any n ∈ N and any n-tuple
(x1, · · · , xn), the joint distribution of (q(x1, ω), · · · , q(xn, ω)) is conserved under (spatial) trans-
lation. In particular Eq(x) is a constant independent of x. Without loss of generality we assume
this constant is zero, i.e., q(x, ω) is mean-zero.

Strong mixing. We assume q(x, ω) is strong mixing or α-mixing in the following sense. For
any Borel sets A,B ⊂ R

d, the sub-σ-algebras FA and FB generated by the process restricted on
A and B respectively decorrelate so rapidly that there exists some function α : R+ → R+ with
α(r) vanishing to zero as r tends to infinity, and for any FA measurable set U and FB measurable
set V , we have

|P(U)P(V )− P(U ∩ V )| ≤ α
(
d(A,B)

)
. (7)

Here d(A,B) is the distance between the sets A and B. What this means is that (functionals
of) the random fields restricted on disjoint spatial domains A and B become more and more
independent as the distance between the sets A and B increases. The function α quantifies that
decay. We further assume that α(r) has the following asymptotic behavior for some real number
δ > 0:

α(r) ∼ 1

rd+δ
, for r sufficiently large. (8)

This implies in particular that φ(r) ∈ L1(R, rd−1dr), i.e., α(|x|) as a function of x ∈ R
d is

integrable.

There are in fact several different definitions of mixing coefficients; the α(r) defined above is
among the least restricted ones. For additional information on the notion of mixing, we refer the
reader to [8].

Fourth order cumulants. A further assumption on q(x, ω) is imposed so that we have
an approximate formula for the fourth order cross-moment of the process. To formulate this
condition, we need to introduce some terminologies.

Let F = {1, 2, 3, 4} and U be the collections of two pairs of unordered numbers in F , i.e.,

U =
{
p = {

(
p(1), p(2)

)
,
(
p(3), p(4)

)
} | p(i) ∈ F, p(1) 6= p(2), p(3) 6= p(4)

}
. (9)

As members in a set, the pairs (p(1), p(2)) and (p(3), p(4)) are required to be distinct; however,
they can have one common index. There are three elements in U whose indices p(i) are all
different. They are precisely {(1, 2), (3, 4)}, {(1, 3), (2, 4)} and {(1, 4), (2, 3)}. Let us denote by
U∗ the subset formed by these three elements, and its complement by U∗.

Intuitively, we can visualize U in the following manner. Draw four points with indices 1 to 4.
There are six line segments connecting them. The set U can be visualized as the collection of all
possible ways to choose two line segments among the six. U∗ corresponds to choices so that the
two segments have disjoint ends, and U∗ corresponds to choices such that the segments share one
common end.

We assume that q(x, ω) has controlled fourth order cumulants in the sense that the following
holds: For each p ∈ U∗, there exists a real valued nonnegative function φp in L1∩L∞(Rd×R

d), so
that for any four point set {xi}4i=1, xi ∈ R

d, we have the following condition on the fourth order
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cross-moment of {q(xi, ω)}:
∣∣∣E

4∏

i=1

q(xi)−
∑

p∈U∗

E{q(xp(1))q(xp(2))}E{q(xp(3))q(xp(4))}
∣∣∣

≤
∑

p∈U∗

φp(xp(1) − xp(2), xp(3) − xp(4)).

(10)

Observe that since Eq(x, ω) ≡ 0, the left hand side is the (joint) cumulant of {q(xi, ω)}, and
hence the notation for this property. In the sequel, we will denote the cumulant of {q(xi)}4i=1 by
ϑ(q(x1), · · · , q(x4)).
Remark 2.1. This condition is motivated by Gaussian random fields for which all but two cumu-
lants vanish and hence we can set φp to be zero for all p in (10). Although it satisfies the condition
above, a Gaussian random field is not bounded and large negative values of qε in equation (3) may
yield non-uniqueness. The above condition on the cumulants hence provides a “decomposition” of
fourth order moments into pairs just as Gaussian random fields up to an error we wish to control.

Uniform boundedness. Suppose q0(x) is a positive and uniformly bounded function. We
assume for simplicity that q(x, ω) is uniformly bounded in the space Ω × R

d by the infimum of
q0. That is to say,

‖q(x, ω)‖L∞(Ω×Rd) ≤ inf
x∈Rd

q0(x). (11)

Furthermore, the condition above implies that the impedance q0 + qε(x) in (3) is non-negative
a.e. and therefore by Corollary 3.2 below (3) is well-posed.

Remark 2.2. We observe that by scaling, qε(x, ω) is also stationary, mean zero, α-mixing and
has controlled cumulants. Nevertheless, we need to scale the spatial variable appropriately when
using (7) or (10).

2.3 Main results

With those assumptions above, we are ready to state the main results of this paper. Before doing
so, we introduce some notation.

We define the (auto-)correlation function, also known as the covariance function, of the random
field q(x, ω) as

R(x) := E{q(0)q(x)} = E{q(y)q(y + x)}. (12)

The last equality holds since q is stationary. As a correlation function, R is a positive semi-definite
in the sense of (40) below. By Bochner’s theorem its Fourier transform is a positive finite measure.
Hence we can define the strength of the random field as follows;

σ2 :=

∫

Rd

R(x)dx. (13)

Since σ2 is the Fourier transform of R evaluated at zero, it is non-negative. We consider the
nontrivial case and set σ > 0. We observe also that the random field q(x, ω) has short range
correlation in the sense that R ∈ L1(Rd). Indeed, we have

R(x) = Corr
(
q(0), q(x)

)
Var
(
q(0)

)
≤ ρ(|x|)‖q‖2L∞ ≤ C‖q‖2L∞α(|x|), (14)

and the last member is in L1(Rd) thanks to (8). Throughout the paper, we use C to denote
various constants. The function ρ above is the ρ-mixing coefficient defined as in (7) with its left
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hand side replaced by Corr(ξ, η) where ξ and η are arbitrary square integrable random variables
measurable with respect to FA and FB respectively. The ρ-mixing coefficient is stronger than the
α-mixing coefficient and hence the last inequality above hold; see [8, p.4].

Now we state the main theorems in the version of d = 2 which is the physical dimension of
the Robin problem concerning the biological application.

Theorem 2.3. Let uε and u solve (3) and (6) respectively and d = 2. Suppose λ, q0 in those
equations are positive constants and f is in L2(R2). Assume that the random field q(x, ω) is
stationary and mean-zero with correlation function R(x) ∈ L1(R2). Assume also that q(x, ω) is
uniformly bounded as in (11). Then we have

E‖uε − u‖2L2(R2) ≤ Cε2| log ε|‖f‖2L2 , (15)

where the constant C only depends on the parameter λ, ‖q‖L∞ , dimension d and ‖R‖L1 , but not
on ε.

We will prove this theorem in section 5. The proof works for d ≥ 3 as well, and in that case
the ε2| log ε| above should be replaced by ε2. The above theorem says uε and u are close in the
energy norm L2(Ω, L2(R2)). Let us denote the corrector by ξε. We can decompose it into two
parts as follows:

ξε = (E{uε} − u) + (uε − E{uε}). (16)

We call them the deterministic corrector and the stochastic corrector, respectively.

For the deterministic corrector, we can calculate its limit explicitly. Let us define

R̃ :=

∫

R2

R(y)

2π|y|dy. (17)

Since R is integrable and bounded, this integral is finite. With this notation, we have the following
theorem on the limit of the deterministic corrector.

Theorem 2.4. Let uε and u solve (3) and (6) respectively and d = 2. Let q(x, ω) satisfy the
same conditions as in the previous theorem. Then we have,

lim
ε→0

E{uε} − u

ε
= R̃Gu. (18)

Here the limit is taken in the weak sense. That is, for an arbitrary test function M ∈ C∞
c (R2),

the real number ε−1〈M,E{ξε}〉 converges to 〈GM, R̃u〉.
Note that G as the solution operator of (6) is self-adjoint. In general, the solution operator of

(1) is not self-adjoint, and the term GM above should be replaced by G∗M where G∗ denotes the
adjoint operator.

For the stochastic corrector, we have the following central limit theorem.

Theorem 2.5. Let uε and u solve (3) and (6) respectively and d = 2. Let q(x, ω) be stationary
and mean-zero with strong mixing coefficient α(r) satisfying (8), and be uniformly bounded as in
(11). Assume further that the joint fourth order cumulant of q satisfies (10). Then:

uε − E{uε}
ε

dist.−→ −σ

∫

R2

G(x− y)u(y)dWy , (19)

where σ is defined in (13) and Wy is the standard multivariate Wiener process in R
2. The

convergence here is weakly in R
2 and in probability distribution.

Remark 2.6. From Theorem 2.4, it is clear that we can replace E{uε} in the theorem above by
u+ εR̃Gu since the rest is of order smaller than ε.
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3 Properties of the Green’s function

In this section, we first show that the Robin problem (4) is equivalent to the pseudo-differential
equation (6) by calculating the symbol of the Dirichlet to Neumann map Λ. Using this symbol
we show that (6) admits a well defined solution operator G and derive an expression for the
corresponding Green’s function G.

3.1 Symbol of the Dirichlet to Neumann map

We now verify the claim that the DtN map Λ equals the pseudo-differential operator
√
−∆+ λ2

defined as √
−∆+ λ2f =

1

(2π)d/2

∫

Rd

eix·ξ
√

|ξ|2 + λ2f̂(ξ)dξ, (20)

where f̂ is the Fourier transform of f defined as

f̂(ξ) :=
1

(2π)d/2

∫

Rd

e−ix·ξf(x)dx. (21)

We will also denote by F the Fourier transform operator, and by F−1 its inverse.

By definition (5), Λg(x) is the normal derivative of g̃(x, xn), the function satisfying:
{
−∆g̃(x, xn) + λ2g̃(x, xn) = 0, (x, xn) ∈ R

n
+,

g̃(x, 0) = g(x), x ∈ R
d ≡ ∂Rn

+.
(22)

Taking Fourier transform in the variable x, we obtain a second order ordinary differential equation
in xn, i.e., {

− ∂2
xn
ˆ̃g(ξ, xn) + (|ξ|2 + λ2)ˆ̃g = 0,

ˆ̃g(ξ, 0) = ĝ(ξ).
(23)

Solve this ODE with the assumption that ˆ̃g decays for large frequency to get

ˆ̃g(ξ, xn) = ĝ(ξ) exp(−xn
√
|ξ|2 + λ2).

Take derivative in the −xn direction, i.e. the outward normal direction and send xn to zero to
obtain Fourier transform of the function Λg. It has the form

Λ̂g(ξ) =
√

|ξ|2 + λ2ĝ(ξ). (24)

This verifies that the symbol of Λ is
√

|ξ|2 + λ2. Compare this symbol with (20) and we see
Λ =

√
−∆+ λ2. Therefore, (4) and (6) are equivalent by the argument below (6).

3.2 Solution of the pseudo-differential equation

As an immediate result, we show that (6) admits a solution operator G : H− 1

2 (Rd) → H
1

2 (Rd)
given by:

Gf(x) := F
−1 f̂√

|ξ|2 + λ2 + q0
≡ 1

(2π)d/2

∫

Rd

eiξ·x
f̂√

|ξ|2 + λ2 + q0
dξ. (25)

In particular, the map G : f → Gf is continuous from L2(Rd) to itself, and the operator norm is
bounded by a constant that only depends on λ provided that the impedance is non-negative.
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We recall some definitions. The Sobolev space Hs for s ∈ R is defined as

Hs(Rd) :=
{
v ∈ S ′ | v̂〈ξ〉s ∈ L2(Rd)

}
, (26)

where S ′ is the space of tempered distributions, i.e., linear functionals of the Schwartz space S,
and 〈ξ〉 = (1 + |ξ|2)1/2. To simplify notation, we will denote H

1

2 by H, and the corresponding
norm is

‖f‖H :=

(∫

Rd

|f̂(ξ)|2〈ξ〉dξ
) 1

2

. (27)

To prove that (6) is well-posed, we first write a variational formulation of it. To do so, multiply
(6) by a smooth test function v, and integrate. We have

B[u, v] = 〈f, v〉, (28)

where B[u, v] is a bilinear form defined as

B[u, v] := 〈Λu, v〉+ 〈q(x)u, v〉. (29)

¿From the symbol of Λ we see it maps H1/2 to H−1/2. As a result, the bilinear form B[·, ·] above
is well defined on H ×H. We say u is a weak solution of (6) if (28) holds for arbitrary v ∈ H.

The following proposition states that the bilinear form B satisfies the conditions of the Lax-
Milgram theorem and its corollary says (6) admits a unique solution in H. For the moment, we
allow the impedance in (6) to be a non-negative function denoted by q(x).

Proposition 3.1. Let λ in (6) be a positive constant. Let q(x) in (29) be a non-negative function
and assume ‖q‖L∞ is finite. Set α = ‖q‖L∞ +max(1, λ), γ = min(1, λ). Then the bilinear form
B[u, v] in (29) satisfies the following:

(i) |B[u, v]| ≤ α‖u‖H‖v‖H , for all u, v ∈ H, and

(ii) γ‖u‖2H ≤ B[u, u], for all u ∈ H.

Proof: The following inequalities hold for all ξ.

γ ≤
√

|ξ|2 + λ2

|ξ|2 + 1
≤ max(1, λ). (30)

Using the inequality on the right, formula (24), and Cauchy-Schwarz, we get

|〈Λu, v〉| =
∣∣∣
∫

Rd

√
λ2 + |ξ|2ûv̂dξ

∣∣∣ ≤ max(1, λ)

(∫

Rd

|û|2〈ξ〉dξ
)1/2(∫

Rd

|v̂|2〈ξ〉dξ
)1/2

.

Since ‖u‖L2 ≤ ‖u‖H for all u ∈ H, we have

|B[u, v]| ≤ max(1, λ)‖u‖H‖v‖H + ‖q‖L∞‖u‖L2‖v‖L2 ≤ α‖u‖H‖v‖H ,

which verifies (i). For the second inequality, since q(x) is non-negative, we have

B[u, u] ≥ 〈Λu, u〉 =
∫

Rd

|û|2
√

λ2 + |ξ|2dξ ≥ γ

∫

Rd

|û|2〈ξ〉dξ.

In the last inequality we applied (30). This verifies (ii) and completes the proof. �
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Corollary 3.2. Let λ, q(x) and γ be the same as in the preceding proposition. Assume also that
f is in H−1/2. Then (6) admits a weak solution u ∈ H satisfying (28). In particular, if f ∈ L2,
then we have that

‖u‖L2 ≤ γ−1‖f‖L2 . (31)

Proof: The first claim follows immediately from the preceding proposition and the Lax-Milgram
theorem. The second one is due to the following estimate which is clear from (ii) of Proposition
3.1 and Cauchy-Schwarz inequality.

γ‖u‖2L2 ≤ γ‖u‖2H ≤ B[u, u] = 〈f, u〉 ≤ ‖f‖L2‖u‖L2 .

This completes the proof. �

Now it is a simple matter to check that G defined in (25) gives the solution operator. Therefore,
the corollary above shows that the operator norm of G as a transformation on L2(Rd) is bounded
by the constant γ−1.

Remark 3.3. The explicit bound γ−1 in estimate (31) is crucial for us when the random equation
(3) is considered. It shows that Gε is well defined as long as q0 + qε is non-negative (which is
true thanks to (11)) and the operator norm ‖Gε‖L(L2) is bounded uniformly for almost every
realizations.

3.3 Decomposition of Green’s function

Let G(x, y) be the Green’s function associated to the solution operator G of (6). By homogeneity
G(x, y) = G(x− y) and G(x) solves

(√
−∆+ λ2 + q0

)
G(x) = δ0(x).

Take Fourier transform on both sides. Our choice of the definition of Fourier transform (21)
implies that Fδ0(x) ≡ (2π)−d/2. Hence, G(x) is recovered by the inversion formula as follows;

G(x) =
1

(2π)d

∫

Rd

eiξ·x(
√

|ξ|2 + λ2 + q0)
−1dξ. (32)

In dimension two, we have the following explicit characterization.

Lemma 3.4. Let d = 2. Let λ, q0 in (6) be positive constants and d = 2. The Green’s function
G(x) defined above can be decomposed into three terms as follows:

G(x) =
1

2π

(
exp(−λ|x|)

|x| − q0K0(λ|x|) +Gr(|x|)
)
. (33)

Here K0 is the modified Bessel function with index zero and the function Gr(|x|) is smaller than
Cb exp(−b|x|) for any positive real number b < λ′ ≡ λ/

√
2.

Remark 3.5. In the sequel, we will call the first term on the right Gs and the second one Gb.
Clearly, Gs has singularity of order |x|−1 near the origin and has exponential decay at infinity;
Gr is smooth near the origin and has exponential decay at infinity. Asymptotic analysis of Bessel
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functions shows that Gb has a logarithmic singularity near the origin and exponential decay at
infinity, cf. [20]. In summary, we have

|G(x)| ≤ Cλ
exp(−λ′|x|)

|x| , (34)

where Cλ is a constant depending on λ.

Proof: We first decompose the Fourier transform of G into three parts as follows.

2πĜ(ξ) =
1√

|ξ|2 + λ2
− q0

|ξ|2 + λ2
+

q20
(|ξ|2 + λ2)[q0 +

√
|ξ|2 + λ2]

. (35)

Now the first two terms can be inverted explicitly. For instance, the second one is a standard
example in textbooks on Fourier analysis or PDEs, cf. Taylor [19, Chap. 3], Evans [9, Chaper 4].
In our case the dimension equals two, and its inversion is the following.

− 1

2π

∫

R2

q0 eix·ξ

|ξ|2 + λ2
= −q0

2

∫ ∞

0

e−
|x|2

4t
−t

t
dt = −q0K0(λ|x|). (36)

Here K0 is the modified Bessel function of the second kind with index 0. It has logarithmic
singularity near the origin and decays exponentially at infinity.

In dimension two, the first term admits an explicit expression as well. Indeed, thanks to (24),
(
√

|ξ|2 + λ2)−1 can be viewed as the symbol of Λ−1, i.e., the Neumann to Dirichlet operator which
maps the Neumann boundary condition of a diffusion equation of the form (22) to its solution
evaluated at the boundary. Therefore, Gs can be obtained by taking the trace of GD, by which we
denote the Green’s function associated to (22) with Neumann boundary. Since d = 2 and n = 3,
GD can be calculated explicitly using the method of images as we show now. The fundamental
solution of (22) posed on whole R

3 is given by exp(−λ|x|)/4π|x|, cf. Reed and Simon [18, Chap.
IX.7]. By the method of images, the Green’s function for the Neumann problem on the upper
half space is given by

GD(x, y) =
1

4π

exp(−λ|y − x|)
|y − x| +

1

4π

exp(−λ|y − x̃|)
|y − x̃| ,

for x in the upper space and x̃ denotes its image in the lower half space. Evaluating GD for x on
the boundary, we obtain that

Gs(x, y) =
1

2π

exp(−λ|y − x|)
|y − x| .

Clearly, it has singularity of order |x− y|−1 near the origin and decays exponentially at infinity.

Now we are left with the third term of (35). We won’t give an explicit formula for its Fourier
inversion. Nevertheless, we can show that its inversion decays exponentially at infinity and has
no singularity near the origin. The proof is a little more involved and hence postponed to the ap-
pendix as Lemma A.2. It essentially uses the Paley-Wiener theorem. Now the proof is complete.
�
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4 Two examples of random fields

In this section, we present two examples of random fields that satisfy the conditions in section
2.2, verifying that such random fields can indeed be constructed rather naturally.

4.1 Random field based on spatial Poisson point process

The first example is a random field based on the spatial Poisson point process. This model is
analyzed in [3], to which we refer the reader for more details.

Consider a spatial Poisson process defined on (Ω,F ,P) with intensity ν. We can construct
q(x, ω) as the mean zero part of q̃(x, ω) which is defined as follows.

q̃(x, ω) =

∞∑

j=1

ϕ(x− yj), (37)

where {yj}∞j=1 are the points in the spatial Poisson process. Here ϕ is some non-negative smooth
function compactly supported in the unit ball. Intuitively, (37) models a superposition of bumps
with profile function ϕ and centers {yj} randomly located on R

d with a spatial Poisson distribu-
tion. Clearly, q̃ and hence q are stationary.

Formulas for the cross-moments (of arbitrary order) of the random process q(x, ω) defined
above are derived in [3]. In particular, the joint cumulant of {q(xi, ω)}4i=1 has the following
expression;

ϑ(q(x1), · · · , q(x4)) = ν

∫
ϕ(z)ϕ(x2 − x1 + z)ϕ(x3 − x1 + z)ϕ(x4 − x1 + z)dz

≤ ν‖ϕ‖L∞

∫
ϕ(z)ϕ(x2 − x1 + z)ϕ(x3 − x1 + z)dz.

(38)

We verify that the last integral above is bounded uniformly in the variables x2 − x1 and x3 − x1
since ϕ is bounded; it is also integrable for these variables. In other words, the cumulant function
ϑ satisfies (10), for we can set φp to be the last integral in (38) for p = {(1, 2), (1, 3)} and φp ≡ 0
for all other p. This verifies that q(x, ω) defined above has controlled cumulants. One can check
also that q is strong mixing with mixing coefficient satisfying (8); see [3, 8].

Unfortunately, q(x, ω) defined as such is not uniformly bounded due to possible clustering of
the Poisson points; thus (11), which is required in the main theorems, is violated. Nevertheless,
for this model, as in [3], a careful control of E‖q‖Ln for n large allows us to remedy this issue.
This procedure can be carried out as in [3] and so we do not dwell on the details here.

4.2 Composition of a function with a Gaussian random field

Our second example is constructed as function of a Gaussian random field. This model satisfies
all the assumptions needed in the main theorems. A one-dimensional model of this type has been
considered in [2].

We start with a stationary mean-zero and unit-variance Gaussian random field g(x, ω) defined
on (Ω,F ,P). As in (12) we define its correlation function as follows, which encodes essentially all
information of g.

Rg(x) := E{g(0)g(x)}. (39)

12



As the correlation function of a stationary process Rg is symmetric, i.e. Rg(x) = Rg(−x), and is
non-negative definite in the sense that for any xj ∈ R

d, ξj ∈ R, and j = 1, · · · , N , we have

N∑

i=1

N∑

j=1

ξiRg(xi − xj)ξj ≥ 0. (40)

See [12, Chapter 5]. As a consequence, |Rg(x)| ≤ Rg(0) = 1 and hence is uniformly bounded. As
in (13) we define the strength of g as

σg := R̂(0) ≡
∫

Rd

Rg(x)dx, (41)

By Bochner’s theorem, σg is a finite positive number. Since the mixing property of a Gaussian
random field is related to its correlation function, we assume that Rg has a sufficiently smooth
Fourier transform R̂g so that g(x, ω) is strong mixing with mixing coefficient α(r) satisfying (8).
In particular, Rg ∈ L1(Rd) as seen in (14).

Our example of random field q(x, ω) is then defined as

q(x, ω) := Φ ◦ g(x, ω), (42)

for some real valued deterministic function Φ defined on the real line. The following proposition
provides a recipe of choosing Φ so that q(x, ω) constructed above satisfies all the desired properties
listed in section 2.2.

Proposition 4.1. Let g(x, ω) be the stationary mean-zero unit-variance Gaussian random field
defined above with strong mixing coefficient α(r) satisfying (8). Let Φ be a real valued function
on the real line satisfying

1. Φ is uniformly bounded by q0, i.e.,

|Φ(s)| ≤ inf
x∈Rd

q0. (43)

2. Φ integrates to zero with respect to the standard Gaussian measure, i.e.,
∫

R

Φ(t)e−
t2

2 dt = 0. (44)

3. The Fourier transform of Φ satisfies that
∫

R

|Φ̂(ξ)|
(
1 + |ξ|3

)
< ∞; (45)

Denote by κc the value of this integral which is a finite positive real number.

Then q(x, ω) defined in (42) is a stationary mean-zero random field with the same strong
mixing coefficient α(r) satisfying (8) and correlation function R in L∞ ∩L1(Rd); furthermore, it
is uniformly bounded as in (11) and has controlled fourth order cumulants as in (10).

Proof: 1. From the definition of q and the bound (43) on |Φ| it is obvious that q(x, ω) is
uniformly bounded and satisfies (11).

Also from the definition of q, we see that the σ-algebra FA generated by variables q(x, ω), x ∈ A
is in fact generated by the underlying Gaussian random variables g(x, ω), x ∈ A. Hence q shares
the same stationarity and strong mixing coefficient α(r) with g.
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It is also easy to see that q(0, ω), hence q(x, ω) for all x, is mean-zero. Indeed, observe that
g(0) has normal distribution N (0, 1), then (44) says exactly that E{q(0)} = 0.

2. From the definition of R(x) and the bound (43), it is obvious that |R| is uniformly bounded
by (inf q0)

2. Thanks to strong mixing, R(x) is integrable as seen in (14). Nevertheless, we show it
by another method which provides a formula for R. In the Fourier domain, R(x) has the following
expression:

R(x) =

∫

R2

Φ̂(ξ1)Φ̂(ξ2) exp{−
1

2
(ξ21 + 2Rg(x)ξ1ξ2 + ξ22)}d2ξ; (46)

Here we denote by ξ the vector (ξ1, · · · , ξN ), and by dN ξ the Lebesgue measure in R
N . Recall

that for any s ∈ R, there exists c(s) ∈ [0, 1] so that

es − 1 = s+
1

2
s2ecs. (47)

Using this expansion, we rewrite (46) as

R(x) =

∫

R2

Φ̂(ξ1)Φ̂(ξ2) exp{−
1

2
ξtξ}

(
1−Rg(x)ξ1ξ2 +

1

2
e−cRg(x)ξ1ξ2R2

g(x)ξ
2
1ξ

2
2

)
d2ξ. (48)

In the above equation, ξt is the transpose of ξ. The real number c above depends on ξ and x but
is always in the interval [0, 1]. Now (44) says that the constant one in the parenthesis above does
not contribute to the integral. Hence we can write

R(x) = κRg(x) +R2
g(x)κr(x),

where κ is a finite positive constant given by

κ := −
∫

R2

Φ̂(ξ1)Φ̂(ξ2)ξ1ξ2e
− 1

2
ξtξd2ξ =

(∫

R

sΦ(s)e−
s2

2 ds

)2

.

and κr is a function given by

κr(x) :=
1

2

∫

R2

Φ̂(ξ1)Φ̂(ξ2)ξ
2
1ξ

2
2e

− 1

2
ξt(I+cD0)ξd2ξ,

where D0 above is a symmetric two by two matrix whose off diagonal is Rg(x) and whose diagonal
entries are zeros. Since c(x) is in [0, 1] and the matrix I +D0 is non-negative definite due to (40),
so is the matrix I + cD0. Therefore we can ignore the exponential term in the expression of κr(x)
above and bound ‖κr‖L∞ by ‖Φ̂(ξ)ξ2‖2L1/2. Consequently, we obtain

|R| ≤
(
κ+

‖Φ̂(ξ)ξ2‖2L1

2

)
|Rg|.

Thus R ∈ L1(Rd) because Rg(x) is integrable.

Moreover, the analysis above shows that as |x| → ∞, R is roughly κRg.

3. It remains to show that q has controlled fourth order cumulants. Fix any four points
{xi}4i=1 and let ϑ be the joint cumulant of {q(xi)}; in the Fourier domain it can be expressed as

ϑ =

∫

R4

4∏

j=1

Φ̂(ξj)e
− ξtξ

2

( 3∏

i=1

e−
1

2
ξtDiξ −

3∑

i=1

e−
1

2
ξtDiξ

)
d4ξ. (49)
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Here the matrices Di, i = 1, 2, 3 are defined as follows:

D1 =




0 ρ12 0 0
ρ12 0 0 0
0 0 0 ρ34
0 0 ρ34 0


 ,D2 =




0 0 ρ13 0
0 0 0 ρ24
ρ13 0 0 0
0 ρ24 0 0


 ,D3 =




0 0 0 ρ14
0 0 ρ23 0
0 ρ23 0 0
ρ14 0 0 0


 ,

where ρij := Rg(xi − xj) is the covariance of g(xi) and g(xj). We apply the following identity to
the product and the sum inside the parenthesis in (49).

abc− a− b− c = (a− 1)(b − 1)(c− 1) + (a− 1)(b− 1) + (a− 1)(c − 1) + (b− 1)(c − 1)− 2,

We then use (44) to argue that the constant two above does not contribute to (49). Hence we
have

ϑ =

∫

R4

4∏

j=1

Φ̂(ξj)e
− ξtξ

2

(
3∏

i=1

[e−
1

2
ξtDiξ − 1] +

∑

i<k

[e−
1

2
ξtDiξ − 1][e−

1

2
ξtDkξ − 1]

)
.

For each fixed ξ, we use the Taylor expansion for exponential function as in (47) and write

e−
1

2
ξtDiξ − 1 = −1

2
ξtDiξe

− 1

2
ξt(ciDi)ξ,

where the real number ci depends on ξ and Di but is always an element in [0, 1]. Therefore, we
have

ϑ =

∫

R4

4∏

j=1

Φ̂(ξj)

(
−e−

1

2
ξt(I+

∑3
i=1 ciDi)ξ

3∏

i=1

1

2
ξtDiξ+

+
∑

i<k

e−
1

2
ξt(I+ciDi+ckDk)ξ [

1

2
ξtDiξ][

1

2
ξtDkξ]

)
d4ξ.

Observe that I + Di, I + Di + Dj with (i < j) for i, j = 1, 2, 3, and I +
∑3

i=1 Di are non-
negative definite matrices. Since ci ∈ [0, 1], we deduce that I + ciDi + ckDk for any i < k, and
I+
∑3

i=1 ciDi are all non-negative definite. Indeed, we can rewrite them as a sum of non-negative
definite matrices. For instance, without loss of generality we assume ci is increasing in i, and then

I +

3∑

i=1

ciDi = c1(I +

3∑

i=1

Di) + (c2 − c1)(I +

3∑

i=2

Di) + (c3 − c2)(I +D3) + (1− c3)I.

Each of the matrices on the right hand side above is non-negative definite.

Therefore, we can bound the exponential terms in the integral by one, and conclude that

|ϑ| ≤
∫

R4

4∏

j=1

∣∣Φ̂(ξj)
∣∣
(

3∏

i=1

∣∣1
2
ξtDiξ

∣∣+
∑

i<k

∣∣1
2
ξtDiξ

∣∣ ·
∣∣1
2
ξtDkξ

∣∣
)
.

Now the products in the parenthesis above are just polynomials in the |ξj | variables, and for each
ξj, the highest possible power on it is three. The coefficients in those polynomials are products
of two or three ρij functions. Since |ρij| ≤ 1 by definition, we can bound the ξtD1ξ of the
first member in the parenthesis above by |ξ1ξ2| + |ξ3ξ4|. Then after evaluating the product, the
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coefficients in the polynomial of |ξj| variables are products of two ρij functions. With this in
mind, it is easy to verify that

∣∣ϑ(q(x1), · · · , q(x4))
∣∣ ≤

(
|ρ12ρ13|+ |ρ12ρ24|+ |ρ34ρ13|+ |ρ34ρ24|

+ |ρ12ρ14|+ |ρ12ρ23|+ |ρ34ρ14|+ |ρ34ρ23|

+ |ρ13ρ14|+ |ρ13ρ23|+ |ρ24ρ14|+ |ρ24ρ23|
) ∫

R4

4∏

j=1

Φ̂(ξj)
(
|ξj|3 + |ξj|2 + |ξj |+ 1

)
d4ξ

Thanks to (45), the last integral is finite and can be bounded by 34κ4c . Compare the above
inequality with the cumulant condition, i.e., (10); we see that all pairs of indices in the prod-
ucts of ρ functions above lie in U∗ where U is defined in (9). Then for each p ∈ U∗, we set
φp := 81κ4c |Rg ⊗ Rg|, which is in L1 ∩ L∞(Rd × R

d). We see (10) is indeed satisfied. This com-
pletes the proof. �

5 Proof of the main results

In this section, we prove the main theorems in dimension d = 2. Let us denote by ξε = uε−u the
corrector. Now subtract (6) from (3) to get

(
√

−∆+ λ2 + q0 + qε)ξε = −qεu. (50)

Recall that G is the solution operator (
√
−∆+ λ2 + q0)

−1, and Gε is the solution operator with
random impedance. Therefore, the above equation says ξε = −Gεqεu. Unfortunately, Gε is not as
explicit as G. Nevertheless, we will show shortly that −Gqεu is the leading term of −Gεqεu and
hence it suffices to estimate the former. Let us assign it the following notation;

χε := −Gqεu. (51)

We have the following estimate.

Lemma 5.1. Let u solve (6) and χε be defined as above and d = 2. Assume that the coefficient
λ, q0, and the random field q(x, ω) satisfy the same conditions as in Theorem 2.3. Then we have

E‖χε‖2L2 ≤ Cε2| log ε| ‖u‖2L2 , (52)

where the constant C depends on λ, q0 and ‖R‖L1 but not on u or ε.

Proof: 1. We first express ‖χε‖2L2 as a triple integral of the form

∫

R3d

G(x− y)qε(y)u(y)G(x − z)qε(z)u(z)d[yzx].

Here and in the sequel, the short-hand notation d[x1 · · · xn] is the same as dx1 · · · dxn. Take
expectation and use the definition of R(x) to obtain

E‖χε‖2L2 =

∫

R3d

G(x− y)G(x− z)R(
y − z

ε
)u(y)u(z)d[yzx].

16



2. We integrate in x first. Use the estimate (34) to replace the Green’s functions by potentials
of the form e−λ′|x−y|/|x − y|; then apply Lemma A.1 to bound the integration in x of these
potentials. We obtain

E‖χε‖2L2 ≤ C

∫

R2d

e−λ′|y−z|
(∣∣ log |y − z|

∣∣+ 1
)∣∣∣R(

y − z

ε
)u(y)u(z)

∣∣∣d[yz]. (53)

Now change variable (y − z)/ε → y. Since d = 2, the integral on the right hand side becomes

ε2
∫

R2d

e−ελ′|y|
(
| log |y|+ log ε|+ 1

)∣∣∣R(y)u(z + εy)u(z)
∣∣∣d[yz].

3. Now, bound the exponential term by 1, and integrate in z. Use Cauchy-Schwarz to get

∫

Rd

∣∣u(z + εy)u(z)
∣∣dz ≤ ‖u‖L2‖u(·+ εy)‖L2 = ‖u‖2L2 . (54)

Therefore, we have

E‖χε‖2L2 ≤ Cε2‖u‖2L2

∫

Rd

(
| log |y|+ 1 + | log ε|

)∣∣R(y)
∣∣dy

Recall that R(y) behaves like |y|−d−δ for some positive δ; see (8) and (14). Hence the function
(| log |y|+ 1)|R| is integrable. The integral above is then

Cε2| log ε| · ‖u‖2L2‖R‖L1 +O(ε2).

This completes the proof. We also see that the constant C only depends on λ and ‖R‖L1 . �

Theorem 2.3 now follows if we can control ‖ξε − χε‖L2 . From (51) we see

(
√

−∆+ λ2 + q0 + qε)χε = −qεu+ qεχε.

Subtract this equation from (50); we get an equation for ξε − χε. Apply Gε on this equation to
get

ξε = χε − Gεqεχε. (55)

The following proof relies on this expression and the fact that the operator Gε is bounded uniformly
in ε and ω as we have emphasized in Remark 3.3.

Proof of of Theorem 2.3: From the expression (55) we have,

‖uε − u‖L2 ≤ ‖χε‖L2 + sup
ω∈Ω

‖Gε‖L‖q‖L∞(Ω×Rd)‖χε‖L2 .

Due to (11) and Corollary 3.2, we have ‖q‖L∞ ≤ q0 and ‖Gε‖L∞(Ω,L(L2)) ≤ min{1, λ}−1. We will
denote the products of the two constants by C. Then we have

‖uε − u‖L2 ≤ (1 + C)‖χε‖L2 .

Square both sides and take expectation; then apply Lemma 5.1 to get

E{‖uε − u‖2L2} ≤ CE{‖χε‖2L2} ≤ Cε2| log ε| · ‖u‖2L2 .
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Now use Corollary 3.2 to replace the L2 norm of u by that of f . Again, all constants involved do
not depend on ε. This completes the proof. �

To prove Theorem 2.4 and 2.5, i.e., to characterize the limits of the deterministic and stochastic
correctors, we first express ξε as a sum of three terms with increasing order in qε. To this end,
move the term qεξε in (50) to the right hand side, and then apply G on it. We get

ξε = −Gqεu− Gqεξε.

Iterate this formula one more time to get

ξε = −Gqεu+ GqεGqεu+ GqεGqεξε. (56)

Note that the limits in both theorems are taken weakly in space, so we consider an arbitrary test
function M , e.g. in C∞

c , and integrate the above formula with M . We get

〈ξε,M〉 = −〈Gqεu,M〉+ 〈GqεGqεu,M〉+ 〈GqεGqεξε,M〉. (57)

Defining m := GM , the last term can be written as 〈qεξε,Gqεm〉 since G is self-adjoint. Using this
notation we now prove the second main theorem.

Proof of Theorem 2.4: Take expectation on the weak formulation (57). The first term
vanishes since qε is mean zero. To estimate the thrid term, we observe that

∣∣〈GqεGqεξε,M〉
∣∣ =

∣∣〈qεξε,Gqεm〉
∣∣ ≤ ‖qε‖L∞‖ξε‖L2‖Gqεm‖L2 .

Thanks to the uniform bound (11) for q(x, ω), the term ‖qε‖L∞ is bounded by q0. After taking
expectations on both sides and using Cauchy-Schwarz on the right hand side, we obtain

E
∣∣〈GqεGqεξε,M〉

∣∣ ≤ C
(
E{‖ξε‖2} E{‖Gqεm‖2}

)1/2 ≤ Cε2| log ε| · ‖u‖L2‖m‖L2 , (58)

where the last inequality follows from Theorem 2.3 and Lemma 5.1. In the limit, this term is
much smaller than ε.

Now we calculate the expectation of the second term in (57), which can be written as:

E〈qεu,Gqεm〉 =
∫

R2d

G(x− y)R(
x− y

ε
)u(x)m(y)d[xy]. (59)

As in the proof of Lemma 5.1, we change variable (x−y)/ε to x. The integral above now becomes

εd
∫

R2d

G(εx)R(x)u(y + εx)m(y)d[xy] ≤ ‖u‖L2‖m‖L2

∫

Rd

εdG(ε|x|)|R(x)|dx. (60)

The last equality is obtained by integrating in y and applying the same technique as in (54).
Recalling Lemma 3.4 and d = 2, G can be decomposed into three terms. We have

ε2G(ε|x|) = ε2

2π

(
exp(−λε|x|)

ε|x| − q0K0(λε|x|) +Gr(ε|x|)
)
.

Since K0 only has logarithmic singularity at the origin and Gr is uniformly bounded as we have
seen in Lemma 3.4, the last two terms above are of order ε2| log ε| and ε2 respectively. Their
contributions to (60) are neglectable.
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Hence the leading term in (60) is

ε

∫

R2

e−ελ|x|

2π|x| R(x)u(y)m(y + εx)dydx. (61)

Taking the limit and recalling the definition of R̃ in (17), we see that this term is

εR̃〈u,m〉+ o(ε) = εR̃〈Gu,M〉 + o(ε).

This completes the proof. �

Our poof of the third theorem also relies on the formula (57). The plan is as follows. First,
we show that the leading term in the stochastic corrector ξε −E{ξε} is the first term in (57); this
is done by showing that the variances of the other terms are small. Then we verify that the first
term has a limiting distribution that can be written as the right hand side of (19); this step is
rather standard and follows from a generalized central limit theorem in [1]; see below. For the
moment, let us assume the following lemma and prove Theorem 2.5.

Lemma 5.2. Let u solve (6) with d = 2 and M be a test function in C∞
c (Rd). Assume that the

random field q(x, ω) satisfies the same conditions as in Theorem 2.5. Then we have the following
estimate:

Var 〈GqεGqεu,M〉 ≤ Cε3, (62)

where C depends on ‖M‖L1 , ‖M‖L∞ , dimension d, ‖φp‖L1 and ‖φp‖L∞ in (10), but not on ε.

Proof of Theorem 2.5: 1. From formula (57) we have that

E

∣∣∣〈uε − E{uε}
ε

+
Gqεu
ε

,M〉
∣∣∣ ≤ 1

ε

(
Var 〈GqεGqεu,M〉

) 1

2 +
2

ε
E{|〈GqεGqεξε,M〉|}.

The last term is of order ε| log ε| thanks to the estimate (58), and the next-to-last is of order
√
ε

due to (62). Therefore the right hand side above vanishes in the limit. This shows convergence of
ε−1〈uε−E{uε},M〉 to −ε−1〈Gqεu,M〉 in L1(Ω) which in turn implies convergence in distribution.
Hence, we only need to characterize the asymptotic distribution of the latter term.

2. The random variable ε−1〈Gqεu,M〉, which is the same as ε−1〈qεu,m〉 where m = GM , is
of the form of an oscillatory integral. Let v(y) denote u(y)m(y); it is an L2 function. We want

∫

R2

1

ε
q(
y

ε
)v(y)dy

dist.−→ σ

∫

R2

v(y)dWy, (63)

where Wy is the standard two-variate Wiener process as in Theorem 2.5. This convergence result,
with R

2 replaced by a bounded domain and v continuous, was stated as (3.31) in [1] and was the
main step in the proof of Theorem 3.7 there. The proof goes as follows. Break the integral on
the left of (63) into integrals on small pieces, and on each piece write the integral as a properly
scaled sum of weakly dependent random variables. Apply central limit theorem for such variables,
e.g. [6], and show that each piece converges to a centered normal random variable with certain
variance. At this stage, we need the strong mixing coefficient α(r) of q to satisfy (8). Then show
that different pieces are independent in the limit. Consequently, the left side of (63) converges in
distribution to a sum of independent normal random variables and hence is itself normal in the
limit. The variance of this limiting normal random variable is then verified to be

σ2

∫
v2(y)dy,
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the same as the variance of the right hand side of (63), closing the proof. For details, we refer
the reader to [1].

Here, since we assumed that M is compactly supported, v decays fast and is in L2(Rd), and
we obtain (63) by using the known result on the ball with radius B and sending B to infinity.
This completes the proof of the theorem. �

It remains to prove the preceding lemma.

Proof of Lemma 5.2: We express random variable 〈GqεGqεu,M〉, which equals 〈qεu,Gqεm〉
where m = GM , as the following integral.

I :=

∫

R2d

u(x)m(y)G(x − y)qε(x)qε(y)d[xy].

Take the variance of this variable. Denote by ϑ the joint cumulant. We have the following
expression for Var{I}, i.e., E{I2} − (E{I})2;

Var{I} =

∫

R4d

u(x)m(y)u(x′)m(y′)G(x− y)G(x′ − y′)
[
ϑ{qε(x), qε(y), qε(x′), qε(y′)}

+R(
x− x′

ε
)R(

y − y′

ε
) +R(

x− y′

ε
)R(

y − x′

ε
)
]
d[xyx′y′].

Then we identify x, y, x′, y′ with x1, x2, x3, x4. Let U and U∗ be the sets defined in (9) and
the paragraph below it. Recall that the joint cumulant ϑ{qε(xi)}4i=1 satisfies (10) with φp ∈
L1 ∩ L∞(Rd ×R

d); we have the following bound for Var{I}:
∫

R4d

∣∣u(x)m(y)u(x′)m(y′)G(x− y)G(x′ − y′)
( ∑

p∈U∗

φp(
xp(1) − xp(2)

ε
,
xp(3) − xp(4)

ε
)

+R(
x− x′

ε
)R(

y − y′

ε
) +R(

x− y′

ε
)R(

y − x′

ε
)
)
d[xyx′y′].

(64)

Let us denote the contributions of the last two terms in the parenthesis above by J2 and J3
respectively, and denote the contribution of the other term by J1. We observe that the variables
in the R⊗ R functions are independent with the variables in the Green’s functions, while this is
not the case for the variables in the φp functions.

We first estimate J2. It has the following expression;

J2 :=

∫

R4d

∣∣u(x)m(y)u(x′)m(y′)G(x− y)G(x′ − y′)R(
x− x′

ε
)R(

y − y′

ε
)
∣∣d[xyx′y′].

Perform a change of variables as follows:

x → x,
x− x′

ε
→ x′,

y − y′

ε
→ y′, x− y → y.

This change of variables yields a Jacobian ε2d and the integral above becomes

ε2d
∫

R4d

∣∣u(x)m(x− y)u(x− εx′)m(y − εy′)G(y)G(y − ε(x′ − y′))R(x′)R(y′)d[xyx′y′]. (65)

Now we observe that the function m = GM is uniformly bounded as follows;

‖m‖L∞ ≤ C(‖M‖L∞ + ‖M‖L1). (66)
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Indeed, we use the estimate (34) for the Green’s function and have

m(x) =

∫

Rd

G(x− y)M(y)dy ≤ C

∫

Rd

M(y)

|x− y|d−1
dy

≤ C

(
‖M‖L∞

∫

B1(x)

1

|x− y|d−1
dy +

∫

Bc
1
(x)

M(y)dy

)
.

Here we denote by B1(x) the unit ball centered at x, and by Bc
1(x) its complement. The integral

inside B1(x) is bound by π⌊ d
2
⌋, and the integral on Bc

1(x) is bounded by ‖M‖L1 . Hence we obtain
(66). Use this bound to control the m functions in (65). Integrate in x and use (54) to control the
u functions. Integrate in y for the two Green’s function and view the integration as a convolution.
Use (34) to bound them by potentials of the form e−λ′|x|/|x|, and use Lemma A.1 to get

∫

Rd

G(y)G(y − ε(x′ − y′))dy ≤ Ce−λ′ε|x′−y′|
(
| log(ε|x′ − y′|)| · χ{ε|x′−y′|≤1} + 1

)
,

where χ is the indicator function of a set. This estimate is a refined version of item two in (77)
below, and it can be shown following the same proof while in (80) we perform the integration by
parts only if ρ ≤ 1. Therefore, after controlling u, m, and G, we get

J2 ≤ Cε2d‖u‖2L2‖m‖2L∞

∫

R2d

(∣∣ log(ε|x′ − y′|)
∣∣χ{ε|x′−y′|≤1} + 1

)

× |R(x′)| · |R(y′)|d[x′y′].
(67)

The constant one in the parenthesis hence has a contribution of order ε2d since ‖R‖L1 is finite.
For the logarithmic term, we observe that

sup
0<r≤1

rd−1| log r| ≤ e−1

d− 1
, for d ≥ 2. (68)

Therefore, we have

∣∣ log(ε|x′ − y′|)
∣∣χ{ε|x′−y′|≤1} ≤

e−1

(d− 1)εd−1|x′ − y′|d−1
χ{ε|x′−y′|≤1}.

The contribution of the logarithm term in (67) is bounded by

Cεd+1‖u‖2L2‖m‖2L∞

∫

R2d

|R(x′)| · |R(y′)|
|x′ − y′|d−1

d[x′y′].

Now apply the Hardy-Littlewood-Sobolev inequality, e.g. [14, §4.3], to get

∣∣∣∣
∫

R2d

|R(x′)| · |R(y′)|
|x′ − y′|d−1

∣∣∣∣ ≤ C(
2d

d+ 1
, d− 1)‖R‖2

L
2d
d+1

. (69)

Since R ∈ L1 ∩ L∞, it is certainly in L
2d
d+1 . Set d = 2; we have proved that

J2 ≤ Cε3‖u‖2L2‖m‖2L∞‖R‖
3

2

L∞‖R‖
1

2

L1 +O(ε2d). (70)

Similarly, J3 can be shown to be of size smaller than ε3 as well in dimension two.
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Now we consider J1. There are C
2
6 − 3 = 12 terms that appear in the sum over p ∈ U∗ in (64),

and they can be divided into two groups. In the first group, the function φp shares a variable with
one of the Green’s functions; in the second group, the variable of one of the Green’s functions is
a linear combination of the two variables of the φp function.

We first consider a typical term from the first group and still call it J1; it has the following
expression:

J1 :=

∫

R4d

∣∣G(x− y)G(x′ − y′)φp(
x− y

ε
,
x− x′

ε
)u(x)m(y)u(x′)m(y′)

∣∣d[xyx′y′],

Note that the x − y variable is shared by the first Green’s function and φp. We perform the
following change of variables:

x → x,
x− x′

ε
→ x′,

x− y

ε
→ y, x′ − y′ → y′.

The Jacobian is again ε2d, and then the integral becomes

ε2d
∫

R4d

∣∣u(x)m(x − εy)u(x − εx′)m(x′ − y′)G(y′)G(εy)φp(y, x
′)d[xyx′y′].

Use (66) to control them functions; integrate in x and use (54) to control the u functions; integrate
in y′ to control the first Green’s function. We obtain the following bound for J2.

J2 ≤ Cε2d‖u‖2L2‖m‖2L∞‖G‖L1

∫

R2d

1

(ε|y|)d−1
φp(y, x

′)d[yx′], (71)

where we have used (34) for the Green’s function. The scaling ε−d+1 resulting from the Green’s
function combined with the Jacobian ε2d indicates that J2 is of size εd+1 once we control the
following integral: ∫

R2d

φp(y, x
′)

|y|d−1
d[yx′].

Indeed, this integral is finite since |y|d−1 is integrable near the origin and φp is integrable at
infinity. To summarize we have

J2 ≤ Cεd+1‖u‖2L2‖m‖2L∞‖G‖L1

∥∥∥∥
φp(y, x

′)

|y|d−1

∥∥∥∥
L1

. (72)

For a typical term from the second group in the sum over p ∈ U∗ in (64), we can apply the
same procedure exactly and in (71) we will have |x′ − y|d−1 on the denominator in the integral,
and we can control the integral as in (69). Therefore, the contributions of such terms are also of
size ε3 in dimension two. This completes the proof. �

6 General setting with singular Green’s function

In this section we explain how to apply the procedure of this paper to elliptic pseudo-differential
equations of the form (3) in general dimensions. We consider the following pseudo-differential
equation with random coefficient:

P (x,D)uε(x, ω) + (q0(x) + qε(x, ω))uε = f(x), (73)
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posed on a subset X of Rd with appropriate boundary condition. As before, qε(x, ω) = q(x/ε, ω)
and q(x, ω) is a stationary, mean zero, finite variance, strong mixing random field defined on
(Ω,F ,P), with parameters x ∈ R

d. Assume that the deterministic and random potentials, i.e., q0
and qε, satisfy proper conditions so that the solution operators,

G :=
(
P (x,D) + q0

)−1
, Gε :=

(
P (x,D) + q0 + qε

)−1
,

are well defined almost everywhere in Ω. Assume also that G and Gε as transformations on L2(X)
are bounded for all realizations, and the upper bound of the operator norm is independent of
realizations. Assume further that the Green’s function corresponding to G is singular, i.e., not
square integrable near the origin, and is therefore of interest in this paper.

Using the same techniques developed in previous sections, we can show that uε converges
to the solution of a homogenized equation denoted by u in the L2(X × Ω) norm. We can then
show that the random corrector uε−E{uε} converges weakly and in probability distribution to a
Gaussian process with variance of size εd. The large components, with size no less than εd/2, of
the deterministic corrector E{uε}−u can also be captured. As in the main body of this paper, we
need additional assumptions on some higher-order moments of the random field q(x, ω) to obtain
the last two results.

To be precise, suppose the Green’s function G(x, y) has the following decomposition with
decreasing singularities,

G(x, y) ∼
N∑

j=1

cj(x, y)

|x− y|γj +Gr(x, y). (74)

Here, N is a finite integer and

d > γ1 > γ2 > · · · > γN ≥ d

2
.

Let us denote the terms in the sum above as Gj . The functions {cj(x, y)} are uniformly bounded
and decay fast enough so that {Gj} are integrable if the domainX is unbounded. Further, Gr(x, y)
is a term that is both integrable and square integrable (with respect to one of the variables and
uniformly in the other variable).

Then, the homogenized equation for (73) will be of the same form with qε averaged (or
removed). In fact, we have the following as an analogy of Theorem 2.3.

E‖uε − u‖2L2 ≤
{
Cε2(d−γ1)‖u‖2L2 , if 2γ1 > d,

Cεd| log ε|‖u‖2L2 , if 2γ1 = d.
(75)

These estimates show that uε converges to the homogenized solution u in energy norm. At this
stage, we do not need the mixing property or control of higher order moments of q(x, ω).

Under certain conditions on some moments of the random field, we know that the fluctuations
in the corrector are approximately weakly Gaussian and of size εd/2. To further approximate uε,
we would like to capture all the terms in the corrector whose means are larger. To do this, we
expand uε as iterations of G on random potentials as follows.

uε(x)− u = −GqεGf + GqεGqεGf − GqεGqεGqεGf + · · ·+ (−Gqε)kξε. (76)

The order k at which we terminate the iteration is chosen so that we can show E{‖(Gqε)k−2GM‖2L2} ≤
εγ with γ > 2γ1 − d for some test function M . Then weakly, the remainder term (−Gqε)kξε is of
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order less than εd/2. Hence, the finite terms in (76) before the remainder include all the compo-
nents in the corrector whose means are weakly larger than the random fluctuations. Then it is a
tedious routine as shown in the paper to calculate the large deterministic means of these terms
and to check that their variances are less than εd. As a result, the limiting law of uε − E{uε}
is given by the limiting law of 1

εd/2
Gqεu, which is Gaussian and admits a convenient stochastic

integral representation.

As an example, we summarize and compare results for the diffusion equation (4) as the di-
mension n and hence d change.

When n = 2 and hence d = 1, the Green’s function G has logarithmic singularity only and
hence Gj ≡ 0 in (74). As a result, G is square integrable and the problem reduces to a case that
is investigated in [1]. In particular, the deterministic corrector E{uε−u} is of size ε and does not
show up in Theorem 2.5; in other words, the deterministic corrector is dominated by the random
fluctuations, which are of size

√
ε.

When n ≥ 4 and hence d > 2, then the leading term of the Green’s function is given by a
modified Bessel potential and has singularity of order γ1 = d−1 at the origin, and 2γ1 > d. Then
the leading term in the deterministic corrector will be of order εd−γ1 , which is larger that εd/2, In
other words, the deterministic corrector dominates the fluctuations., which is of size εd/2

The physical dimension n = 3 considered in the main section turns out to be the critical case
when the deterministic corrector is in fact of the same size as the fluctuations, and they are of
size ε.

A Two technical lemmas

A.1 Convolution of potentials in the whole space

Lemma A.1. Let us fix two distinct points x, y ∈ R
d. Let α, β be positive numbers in (0, d), and

λ another positive number. We have the following convolution results.

∫

Rd

e−λ|z−x|

|z − x|α
e−λ|z−y|

|z − y|β dz ≤





Ce−λ|x−y|(|x− y|d−(α+β) + 1), if α+ β > d;

Ce−λ|x−y|(| log |x− y||+ 1), if α+ β = d;

Ce−λ|x−y| if α+ β < d.

(77)

Similarly, we also have that
∫

Rd

e−λ|z−x|

|z − x|α e
−λ|z−y|

∣∣ log |z − y|
∣∣dz ≤ Ce−λ|x−y|. (78)

The above constants depend only on the diam (X), α, β, λ, and dimension d but not on |x− y|.

Proof: We use the partition of the integration domain as shown in Fig. 1. On I and similarly
on I ′, we use |z − x|+ |z − y| ≥ |x− y|, and define ρ = |x− y|. Then we have

∫

I

e−λ|z−x|

|z − x|α
e−λ|z−y|

|z − y|β dz ≤ 2πde
−λ|x−y|

3ρβ

∫ ρ

0

rd−1

rα
dr.

The last integral can be calculated explicitly and yields ρd−α/(d−α). Hence the integration over
I ∪ I ′ can be bounded by

2(2d − α− β)πde
−λ|x−y|

3(d− α)(d − β)|x− y|α+β−d
. (79)
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Figure 1: Integration region of the convolution of two potentials.
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q qx y

I I ′
II II ′

Now on the unbounded domain II, we observe that |z − y| > ρ and |z − y| > |z − x|, and
obtain similar relations on II ′. Therefore the integration on II ∪ II ′ is bounded from above by

2e−λ|x−y|

∫

II

e−λ|z−x|

|z − x|α+β
dz ≤ 4πde

−λ|x−y|

3

∫ ∞

ρ

e−λr

rα+β−d+1
dr.

Now, we estimate the last integral, which we call A(ρ). When α + β < d, the integrand is
integrable over R+, the nonnegative real line. Therefore A(ρ) is bounded by some constant,
actually a multiple of Γ(d − α − β). This together with the bound (79) proves the third case in
(77).

When α+ β = d, then an integration by parts yields

A(ρ) =

∫ ∞

ρ

e−λr

r
= −e−λρ log ρ+ λ

∫ ∞

ρ
e−λr log rdr. (80)

The last integral is finite over R+ and hence |A(ρ)| ≤ Ce−λρ(1 + | log ρ|). This together with the
bound (79) proves the second case in (77).

When α+ β > d, let us denote −α− β + d− 1 = s. Several integrations by parts yield

A(ρ) =

∫ ∞

ρ
e−λrrsdr =

λγ

∏γ
j=1(s+ j)

∫ ∞

ρ
e−λrrs+γdr

−e−λρ
( ρs+1

s+ 1
+

λρs+2

(s+ 1)(s + 2)
+ · · · + λγ−1ρs+γ

(s+ 1) · · · (s+ γ)

)
.

(81)

Here, γ is the largest integer that is smaller than or equal to α+β− d. When they are equal, the
right hand side above needs some slight modifications and the first integral involves a logarithmic
function. In both cases, the first integral is finite and the second term is bounded by Ce−λρ(1 +
ρd−α−β). This together with the bound (79) proves the second case in (77).

The claim (78) follows from a similar and easier analysis which we omit. �

25



A.2 Fourier transform and exponential decay

Lemma A.2. Let λ and q0 be positive real numbers and let ξ ∈ R
2. Set λ′ ≡ λ/

√
2. Then, for

any positive real number b < λ′, there exists a finite constant Cb such that

∣∣∣∣∣F
−1 q20

(|ξ|2 + λ2)(q0 +
√

|ξ|2 + λ2)

∣∣∣∣∣ ≤ Cbe
−b|x|. (82)

Proof: 1. Let us denote by h(ξ) the function whose inverse Fourier transform is considered in
(82). Let us also define h(z) to be the same function with ξ replaced by z = (z1, z2) ∈ C

2, a
complex valued function of two complex variables. Set

Γ := {z ∈ C||Im(z)| ≤ λ′}. (83)

We claim that h is holomorphic on the region Γ2, i.e. Γ× Γ.

Figure 2: Holomorphic region of the function h(z).
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Left: holomorphic region of g(w) =
√
w + λ2.

Right: holomorphic region of g(z21 + z22); here λ′ = λ/
√
2.

Indeed, let w(z1, z2) be the function z21+z22 . It is clearly entire on C
2. Define g(w) :=

√
w + λ2

as a function of one complex variable. It is holomorphic on the branched region B := C\(−∞,−λ2]
as shown in Fig. 2. Now when (z1, z2) ∈ Γ2, we verify that w ∈ B and hence g(w(z)) is holomorphic
on Γ2. This is because composition of holomorphic functions is again holomorphic; see [10]. Since
λ > q0, we verify that g(w(z)) + q0 does not vanish. Thus, h(z) is holomorphic on Γ2.

The above arguments show that for any η ∈ R
2 so that |ηj | < λ′, i = 1, 2, the function h(ξ+iη)

is analytic. Furthermore, it is easy to check that ‖h(ξ + iη)‖L1 is bounded uniformly in η. Hence
we apply Theorem IX.14 of [18], which says that under such conditions, for each 0 < b < λ′, there
exists Cb so that |F−1h| ≤ Cbe

−b|x|. This completes the proof. �
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