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Abstract

This paper addresses the validity of radiative transfer equations as a model for the
energy density of waves propagating in highly heterogeneous media. Comparisons
between acoustic wave simulations over domains of size comparable to 500 wave-
length in two space dimensions and Monte Carlo simulations of radiative transfer
equations are performed. In the so-called weak coupling regime, the agreement be-
tween the energy densities obtained by solving the wave equations and those pre-
dicted by solving the radiative transfer equations is remarkable. The domain of
validity of the radiative transfer equations is assessed by looking at the fluctuations
in the energy density they predict in the presence of small-volume defects in the
underlying media.
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1 Introduction

The energy density or probability density of high frequency waves propagating in highly hetero-
geneous media has long been modeled by radiative transfer equation in many fields: quantum
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waves in semiconductors, electromagnetic waves in turbulent atmospheres and plasmas, mi-
crowaves in aerial communication, underwater acoustic waves, elastic waves in the Earth’s
crust. The derivation of such kinetic models may either be phenomenological or based on first
principles for the wave fields; see e.g. [12,15,19,20,23,25,27,28,31] in the physical literature and
[3,18,26,30] in the mathematical literature. The latter references derive the equations of radia-
tive transfer in the regime of wave propagation called the weak coupling regime, whereby waves
propagate over distances that are large compared to the typical wavelength in the system and
the fluctuations have weak amplitude and correlation length comparable to the wavelength.

However, very little exists on the validity of the radiative transfer equations in the weak
coupling regime, and the comparison of energy densities obtained by solving for the wave
fields with those obtained by solving the radiative transfer equations. The main contribution
of this paper is to assess the predictive power of the radiative transfer equation in domains
that are very large compared to the typical wavelength in the system. The wave energy density
is calculated by solving numerically a first-order system of acoustic equations in the time
domain. The radiative transfer equations are then solved by a Monte Carlo method based on
the probabilistic representation of transport equations, and the two energies are compared as
a function of time at some physical position in the domain where detectors are located. The
well-documented diffusive approximation to radiative transfer, which arises in the limit of large
domains relative to the mean free path, is also considered and solved numerically by a finite
element method.

Typically, the constitutive parameters of the radiative transfer model, i.e., primarily the mean
free path and the transport mean free path, are estimated theoretically based on the statistical
properties of the underlying heterogeneous medium, and then estimated numerically by consid-
ering the best radiative transfer fit to the energy calculated by solving the system of acoustic
equations. We will show that these two estimates of the constitutive parameters agree quite
well for several statistics of the underlying media. Once these spatially homogeneous parame-
ters are obtained, we wish to assess the spatial resolution of the radiative transfer predictions.
This is done as follows. The statistically homogeneous underlying medium is perturbed locally
by a small inclusion with different statistical properties from the background medium. We
consider void inclusions, where the heterogeneous fluctuations of the underlying medium are
suppressed, and perfectly reflecting inclusions, at the surface of which energy is specularly re-
flected. We then compare the influence of the small inclusion on the energy densities obtained
by the wave simulation and the radiative transfer simulation.

We will see that not-too-small inclusions generate energy density fluctuations that are above
the noise level generated by the random oscillations in the underlying medium and are well-
predicted by the radiative transfer theory. The influence of smaller inclusions may however be
too faint to be distinguished from fluctuations generated by the random oscillations. In that
case, the energy estimates predicted by the radiative transfer equation fail to be sufficiently
stable statistically to be of any use. Such energy estimates may still be valid to predict the
average influence of the inclusion, i.e., after averaging over all possible realizations of the
heterogeneous medium with given statistics is performed. This is not what we are interested
in in this paper. We want to understand the predictive power of radiative transfer to detect
local fluctuations for one “typical” realization of the underlying medium. In some sense we
are interested in quantifying the statistical stability of the wave energy density in the weak
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coupling regime. We refer the reader to [2,7,10,24] for works on the statistical stability of the
energy density of classical waves in random media.

The rest of the paper is constructed as follows. Section 2 recalls the radiative transfer equations
for acoustic waves and for discretized acoustic waves. The latter results allow us to estimate the
modifications in the kinetic parameters generated by the discretization of the wave equation.
The numerical tools used in the comparisons are presented in section 3. The wave equation is
simulated by a finite difference forward in time algorithm implemented on parallel architectures.
The transport equation is solved by Monte Carlo, whereas its diffusion approximation is solved
by the finite element method. Finally, our numerical results on the comparison of the energy
densities obtained by the various solvers are gathered in section 4. Some conclusions are offered
in section 5.

2 Kinetic models for wave propagation

In this section, we recall the derivation of radiative transfer equations following references
[3,26]. Written as a symmetric first-order system, the equation for the pressure p(t,x) and the
velocity field v(t,x) takes the form

ρ(x)
∂v

∂t
+ ∇p = 0, κ(x)

∂p

∂t
+ ∇ · v = 0, p(0,x) = p0(x), v(0,x) = v0(x), (1)

where ρ(x) is density and κ(x) compressibility of the underlying media. Here, t > 0 and
x ∈ R

d, where d ≥ 2 is spatial dimension. We will only consider propagating initial conditions
and thus assume the existence of a pressure potential φ(x) such that ρ(x)v0(x) = −∇φ(x).
This prevents the presence of vortical modes [3,26] in the system.

The numerical simulations presented in this paper are for d = 2. The above system is the
starting point for the derivation of kinetic models in e.g. [3,25,26], whose role is to describe
the spatial distribution of the wave energy density, which, averaged over the whole domain, is
a conserved quantity:

E(t) =
1

2

∫
Rd

(
ρ(x)|v|2(t,x) + κ(x)p2(t,x)

)
dx = E(0). (2)

Although this is by no means necessary in the derivation of kinetic equations, we shall assume
in the sequel that ρ = ρ0 is constant.

High Frequency Regime. Kinetic models arise in the high frequency limit of wave propa-
gation. We consider the framework where the typical distance of propagation L of the waves
is much larger than the typical wavelength λ in the system. We introduce the small adimen-
sionalized parameter

ε =
λ

L
� 1.

When ε ≈ 1, the energy density of waves is obtained by simply solving the wave equation.
In the high frequency regime, we rescale t → ε−1t and x → ε−1x and obtain the following
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equation for uε = (vε, pε):

ρ0ε
∂vε

∂t
+ ε∇pε = 0, κε(x)ε

∂pε

∂t
+ ε∇ · vε = 0, pε(0,x) = p0ε(x), vε(0,x) = v0ε(x), (3)

where the initial conditions p0ε(x) and v0ε(x) oscillate at the frequency ε−1. Typically we
consider initial conditions of the form φ(x) cos(ε−1ξ·x) for a given ξ ∈ R

d, and more specifically
in our numerical simulations, isotropic superpositions of such initial conditions; see (21) below.

Energy conservation is written in the form

Eε(t) =
1

2

∫
Rd

(
ρ0|vε|2(t,x) + κε(x)p2

ε(t,x)
)
dx = Eε(0). (4)

We now present a kinetic theory that models the spatial distribution of the energy described
in the above conservation law.

Radiative Transfer model in weak coupling regime. We assume that the medium is
characterized by a compressibility of the form

κε(x) = κ0(x) +
√

εκ1

(
x,

x

ε

)
, (5)

where κ0(x) is the average background compressibility, and κ1(x,y) models the random fluc-
tuations. The variable y corresponds to the small scale variations and the variable x to the
large scale variations. For each x ∈ R

d, y → κ1(x,y) is a mean-zero statistically homogeneous
random field. Note that the compressibility fluctuations oscillate at the frequency ε−1, as do
the waves in the system. This regime, where the correlation length of the medium and the
wavelength of the propagating waves are the same, thus maximizes interactions of the wave
fields with the underlying medium.

The sound speed is given by

c2
ε(x) =

1

ρ0κε(x)
. (6)

We thus verify that up to negligible lower order terms (in the limit ε → 0), we have

c2
ε(x) = c2

0(x) −√
εV (x,

x

ε
), V (x,y) =

c2
0(x)

κ0(x)
κ1(x,y), (7)

where c0(x) = (ρ0κ0(x))−1/2 is the background speed and V (x,y) accounts for the random
fluctuations.

The random inhomogeneities of the underlying medium are thus modeled by the functions
V (x,y). Inheriting the properties from the fluctuations in κε(x), we assume that for all x,
V (x,y) is a statistically homogeneous mean-zero random field in the y variable. Moreover its
two point statistics are known and the two-point correlation functions, or equivalently their
Fourier transform the power spectra, are defined by

c4
0(x)R(x, z)= E{V (x,y)V (x,y + z)} (8)

(2π)dc4
0(x)R̂(x,p)δ(p + q)= E{V̂ (x,p)V̂ (x,q)}. (9)
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Here, E{·} denotes mathematical expectation, i.e., averaging over realizations of the random
medium. The above power spectrum R̂(x,p) is the only statistical characteristic of the random
medium that survives in the limit of high frequency, as ε → 0. In this limit it is shown [3,25,26]
that there exists a phase-space energy density a(t,x,k) such that

lim
ε→0

E(t) = lim
ε→0

1

2

∫
Rd

(
ρ0|vε|2(t,x) + κε(x)p2

ε(t,x)
)
dx =

∫
R2d

a(t,x,k)dkdx. (10)

More precisely, we have the local estimate

lim
ε→0

1

2

(
ρ0|vε|2(t,x) + κε(x)p2

ε(t,x)
)

=
∫

Rd
a(t,x,k)dk. (11)

Thus a(t,x,k) can be interpreted as an energy density in the phase space whose average over
wavenumbers provides the spatial distribution of the energy density as a function of time.
Moreover, the mode a(t,x,k) solves the following radiative transfer equation

∂a

∂t
+∇kω ·∇xa−∇xω ·∇ka+Σ(x,k)a =

∫
Rd

σ(x,k,q)a(t,x,q)δ
(
ω(x,q)−ω(x,k)

)
dq, (12)

where ω(x,k) = c0(x)|k| is the dispersion relation, and

Σ(x,k) =
πω2(x,k)

2(2π)d

∫
Rd

R̂(x,k − q)δ
(
ω(x,q) − ω(x,k)

)
dq,

σ(x,k,q) =
πω2(x,k)

2(2π)d
R̂(x,k − q).

(13)

Here, σ(x,k,q) is the scattering coefficient and Σ(x,k) the total absorption (extinction) coeffi-
cient. As waves propagate through the random medium, scattering occurs and this results in a
macroscopic change in the direction of propagation. How this change of wavenumbers occurs is
characterized locally by the scattering coefficient σ(x,k,q). Note that the scattering operator
is elastic, so that energy is conserved through scattering: the frequency ω(x,q) before scatter-
ing is equal to the frequency ω(x,k) after scattering. Since ω(x,k) is conserved by both the
scattering operator and the advection term ∇kω · ∇xa−∇xω · ∇ka, we deduce that equations
for a(t,x,k) at different values of ω are uncoupled. More specifically, when c0(x) = c0 is a
constant, we observe that equations for a(t,x,k) at different values of |k| are uncoupled. At
fixed ω, the above equation thus depends on 1+d+(d−1) = 2d variables in d−space variables.
In the numerical simulations considered in this paper, where d = 2 and c0 is constant, we thus
have to solve 4-dimensional kinetic models for each fixed frequency ω.

The above kinetic equation need be augmented by a prescribed initial condition, which de-
pends on the Wigner transform of the initial conditions pε(0,x) = p0(x, x

ε
) and vε(0,x) =

v0(x, x
ε
), where to ensure that only propagating modes are generated v0(x,y) assumes the

form ϕ(x)∇φ(y) for smooth functions ϕ(x) and φ(y). Following [26, (3.41)], the transport
initial conditions take the form

a0(x,k) = lim
ε→0

1

(2π)d

∫
Rd

eik·yfε(x,x − ε
y

2
,k)f ∗

ε (x,x + ε
y

2
,k)dy, (14)
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where

fε(x,y,k) =

√
ρ0

2
ϕ(x)∇φ(y) · k̂ +

√
κ0(x)

2
p0(x,y). (15)

We refer to (23) below for the initial conditions corresponding to the numerical simulations
presented in this paper.

Diffusion approximation. The radiative transfer equations are referred to in the physical
literature as a mesoscopic regime, intermediate between the microscopic wave equation and the
macroscopic diffusion equation. Mathematically, diffusion arises as the long-time large-distance
limit of the radiative transfer equation [17,21,26]. Let us define the mean free path as l = c0/Σ,
where Σ is a typical value taken by Σ(x,k) in (13) and c0 is the average sound speed, assumed
constant to simplify. The diffusive regime arises when the ratio η = l/L � 1. If time and space
are rescaled as t → t/η2 and x → x/η, we obtain in the limit that the propagating mode
a(t,x,k) is independent of the direction of propagation:

a(t,x,k) ≈ U(t,x, |k|),

where we have in dimension d = 2, 3:

∂U

∂t
−∇ · D(x, |k|)∇U = 0

U(0,x, |k|) =
c0

Cd|k|d−1

∫
Rd

a(0,x,p)δ(c0(|k| − |p|))dp.
(16)

Here C2 = 2π and C3 = 4π is the measure of the unit sphere. The diffusion coefficient is given
by

D(x, |k|) =
c2
0

d[Σ(x, |k|) − λ(x, |k|)] =
c0l

∗(x, |k|)
d

, (17)

where the anisotropy factor λ is given via the relation [26]

λ(x, |k|)k̂ =
c2
0|k|2

4(2π)d−1

∫
Rd

R̂(x,p− k)p̂δ(c0(|k| − |p|))dp, (18)

and where the mean free path and the transport mean free path, which are characteristic dis-
tances of wave propagation in random media, are given by

l(x, |k|) =
c0

Σ(x, |k|) , l∗(x, |k|) =
c0

Σ(x, |k|) − λ(x, |k|) , (19)

respectively. The first distance l measures the main distance between successive interactions of
the wave energy with the underlying media, whereas the second distance l∗ measures the main
distances it takes for the energy density to substantially change its direction of propagation.
In anisotropic media, l∗, which is proportional to the diffusion coefficient, can be substantially
larger than in isotropic media, which are characterized by λ(x, |k|) = 0.

The main advantage of the diffusion approximation is that its solution is independent of the
angular direction. Thus for a given frequency ω = c0|k|, U(t,x, |k|) represents the spatial
energy density as a function of time. Its numerical solution is therefore much faster than
that of the full transport equation (12). We will see however that radiative transfer equations
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provide a much more accurate estimate of the energy density than the diffusion approximation
in the regime of moderate scattering. In the regime of large scattering (i.e., when propagation
occurs over distances much larger than the mean free path), then the diffusion approximation
becomes a very accurate description of the wave energy density.

Statistical stability. The derivation of (12) in [3,26] is based on formal arguments, which do
not allow us to characterize the statistical stability of the transport solution a(t,x,k). What
we mean by statistical stability is the invariance of the solution with respect to changes in the
random media (in the fluctuations V (x,y)) for given statistics in (9). The results obtained
in [18,30] for the Schrödinger equation show that the ensemble average of the phase space
energy density E{a(t,x,k)} solves a kinetic equation. It remains to understand how small
a(t,x,k) − E{a(t,x,k)} is in practice.

Several mathematically rigorous results exist for transport models that are close to the radia-
tive transfer equations mentioned above. In such models, such as the paraxial approximation
of wave equations, the Itô-Schrödinger approximation of wave equations, or the regime of ran-
dom Liouville equations, it is shown that the phase space energy density a(t,x,k) is indeed
stable, at least in a weak sense (i.e., a(t,x,k) multiplied by an appropriate test function and
integrated over an appropriate domain indeed is a deterministic variable). We refer the reader
to [2,5,7,9,24] for additional details on the statistical stability of the wave energy density in
these various regimes.

Statistical stability is a crucial aspect of the results we show in this paper. We want to assess
the accuracy of the prediction obtained for the wave energy density by the radiative transfer
model for one (typical) realization of the random medium, and not for an ensemble average
of random media. Although the latter is also of interest, in practice one is often interested in
the spatial distribution of the energy for one specific random medium, be it a given part of
the Earth, the ocean, or the atmosphere. Although a(t,x,k) becomes statistically stable in the
high frequency limit, this is only an approximation for a given non-zero wavelength, and only
provided that sufficient spatial and angular averaging takes place.

On the one hand, sufficiently large variations in the macroscopic statistics of the random
medium will generate modifications in the energy density that are above the level of statistical
instabilities in the system. On the other hand, too small macroscopic variations that would be
picked by the radiative transfer model in an ensemble average sense will cause modifications in
the energy density that are below the noise created by microscopic statistical instabilities. How
large the macroscopic fluctuations have to be in order to be detected on a “typical” realization
of the random medium is addressed for specific examples in section 4.

3 Numerical setting

This section presents the numerical methods used to solve the different equations that describe
wave propagation in random media. The wave and diffusion equations are discretized by using
standard finite element methods on regular grids. Because the radiative transfer regime is a
high frequency regime, the computational domain need be very large compared to the typical
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wavelength in the system. Our calculations are performed on domains on the order of 500
wavelengths. The wave code has thus been implemented on parallel architectures to achieve
sufficient accuracy (here, 20 points per wavelength). The radiative transfer equation has been
solved by using a Monte-Carlo method.

The wave equation. The equations of acoustics are solved by using a second-order (both
in space and time) mixed velocity-pressure formulation and a finite elements discretization
on a regular grid [16]. A perfectly absorbing layer (a.k.a. perfectly matched layer or PML
[13,14]) surrounds the domain Ω of interest (see Fig. 1 below). The spatial discretization of
the continuous system (1) yields a semi-discrete linear system of the form:

MV
dV

dt
= RtP, MP

dP

dt
= −RV, (20)

for the semi-discrete pressure P and velocity V, with appropriate initial conditions. The time
variable in the latter system is discretized by a second-order centered scheme. By appropriate
mass lumping [16], both mass matrices MP and MV are diagonal and the resulting scheme
is second-order accurate. The initial condition is localized in the vicinity of a point x0 and
at the same time has an oscillatory behavior at frequency k/ε (reduced frequency k). In the
simulations, the initial condition at wavenumber k0 is chosen to be

u0(x) =

(
0, C0 exp

(−|x − x0|2
2σ2

)
J0(|k0||x− x0|)

)t

= (0, p0)
t, (21)

where J0 is the zero-th order Bessel function of the first kind. The constant C0 is chosen such
that the total energy (2) associated to u0(x) equals 1. The Bessel function is an isotropic
(i.e., uniformly weighted) superposition of plane waves with wavenumber |k0|. Typically σ is
chosen to be on the order of ten wavelengths, where the “typical” wavelength in the system is
λ0 = 2π/|k0| so that the frequency content of u0 is primarily that of a single wavenumber |k0|.
The exponential term is here to localize the source term. It has sufficiently slow variations
not to interfere with the main object of interest here, namely the highly oscillatory Bessel
function. Note that the radiative transfer equations have constitutive parameters that depend
on frequency. It is therefore important to ensure that only one frequency ω = c0|k| is present
in the wave simulation to compare it with a kinetic model such as (12) at ω = c0|k| fixed. This
is the main reason for the choice of initial conditions as in (21).

Other important choices in our numerical simulations are as follows. The width of the absorbing
layers has been chosen to be 1.5λ0. We have observed that the amount of energy reflected by
the PML was at most 10−4 times the energy of the initial conditions. It is therefore quite
negligible. In all our simulations, we have assumed that

ρ0 = 1, κ(x) = 1 +
√

εκ1

(
x

ε

)
, (22)

where κ1 is a stationary mean-zero random variable. The average sound speed is thus normal-
ized to c0 = 1. The fluctuations of the compressibility κ1(x) have been carefully modeled to
satisfy prescribed power spectra in (9). This was done in the Fourier domain as in e.g. [11].
The parallelization of the wave code, otherwise written in the programming language c, has
been performed by using the PETSc library, which considerably simplifies the message passing
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procedure. The numerical simulations presented in the next section typically take several days
each when they are performed on a (non-dedicated) cluster of 16 to 20 nodes.

The radiative transport equation. In the high frequency limit, we replace in the initial
conditions (21) |k0| by |k0|/ε and σ by εσε. Assuming that εσε � 1 but that σε 
 1, we find
(as in e.g. [22]) in the limit the following initial conditions for the kinetic model (12):

a0(x,k) = δ(x − x0)δ(|k| − |k0|)(2π|k0|)−1. (23)

Note that the energy emanates from one point, x0, at one frequency, ω = c0|k0|, and isotrop-
ically in directions. The energy is normalized so that

∫
R2×R2 a0(x,k)dxdk = 1. The radiative

transfer equation (12) with the above initial conditions is solved by using a Monte Carlo
method; see [29]. The probabilistic representation of transport equations shows that the solu-
tion to (12) is such that for all (Borel) subset A ∈ R

2 and all (Borel) subset B ∈ S1, the unit
circle, we have that

P

(
(X(t),K(t)) ∈ A × B

)
=
∫

A

∫
B

a(t,x, |k0|k̂)dk̂dx, (24)

where P denotes probability and the stochastic process (X(t),K(t)) is a jump process, which we
now briefly describe. The initial condition X(0) is chosen at X(0) = x0. The initial condition
K(0) is chosen with uniform probability on the unit circle S1. Then the particle moves freely,
according to Ẋ(t) = K(t), for a random time given by an exponential law of parameter the total
scattering coefficient Σ (see e.g. [29] for generalizations when the total scattering coefficient
depends on space). At times t of scattering, the particle jumps from the direction K(t) to
another direction K+(t), where the probability of change of direction at X(t) from K to K+ is
governed by the probability density σ(X(t), |k0|K+, |k0|K)/Σ(X(t), |k0|). If at any time during
the simulation, the particle exits the computational domain Ω, the particle’s momentum K(t)
is set to 0 so that the particle does not reenter the domain. This is consistent with the PML
conditions imposed for the wave simulations.

In our simulations B = S1 and A is the characteristic function of the detectors, equal to 1 where
we have detectors and 0 elsewhere. The law of large numbers (the Monte Carlo method) is used
to estimate (24) numerically by running N realizations of the above process independently. A
very large number of particles, on the order of N = 106 in our simulations, is used to ensure
that the statistical error (inversely proportional to the square root of the number of particles
reaching the area A × B) is sufficiently small.

Except for the presence of inclusions (see below) the random medium is statistically homoge-
neous. The mean free time Σ−1 = l/c0 and the probability of jump to another direction after
scattering described above thus are independent of the spatial position x. As shown in (13),
they depend however on the choice of a power spectrum for the random fluctuations of the
compressibility κ1, or equivalently of the sound speed V . We choose R̂ to be of the form

R̂(k) =

{
R̂0 for k < M,

0 for k > M,
(25)

where M is a given parameter. The law of change of direction after scattering then simplifies
as follows. Let us denote by Δθ the change in the direction of the particle after scattering,
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i.e., if K(t) = (cos θ, sin θ), then K+(t) = (cos(θ + Δθ), sin(θ + Δθ)). The above form for R̂
implies that cos Δθ is a random variable with a uniform distribution on an interval I, where

I = [−1, 1] if |k0| > 2M , and I = [1 − |k0|2
2M2 , 1] if |k0| ≤ 2M . In two space dimensions, the

expression of the scattering coefficient Σ in (13) for the above choice of R̂ in (25) is given after
some algebra by

Σ(k) =
c0k

3R̂0

4π

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π for k <

M

2

arccos
(
1 − M2

2k2

)
for k >

M

2
,

(26)

while we have for the diffusion coefficient in (17) the following expression

D(k) =
c2
0

2(Σ(k) − λ(k))
, (27)

where the anisotropy factor λ is given by

λ(k) =
c0k

3

4π

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for k <

M

2
R̂0 M

2 k

√
1 − M2

4k2
for k >

M

2
.

(28)

Diffusion solver. The diffusion equation (16) on Ω is solved by a standard finite element
method. Its initial condition is obtained from that for the transport equation via (16). It
remains however to specify boundary conditions. It is well known that appropriate boundary
conditions to model escape of energy at the domain boundary (through the perfectly matched
layer in our simulations) are of the form [4,17]

U + 2L2D(k)
∂U

∂ν
= 0, (29)

where L2 is an extrapolation length in two space dimensions and ν the normal unit vector at
the boundary of the domain. In the case of isotropic scattering (i.e., M = 2k above so that
λ(k) = 0 and l = l∗), an approximate value for L2 = 0.81 [4].

Treatment of the inclusion. One of the main objectives of this paper is to assess the validity
of the radiative transfer equation when local (at the transport scale) modifications arise in the
power spectrum of the random fluctuations. We consider two types of inclusions: (i) void inclu-
sions where the randomness is suppressed so that R̂(x,k) = 0 on the support of the inclusion
(whence Σ = 0 and D = ∞ inside the inclusion) and; (ii) perfectly reflecting inclusions, where
the inclusion is modeled by vanishing pressure for the wave code, specular reflections at the
inclusion’s boundary for the transport code, and Neumann boundary conditions at the same
boundary for the diffusion approximation.

Such inclusions are easily incorporated into the wave and diffusion solvers. We need to be a little
more careful to incorporate them into the transport code. The process (X(t),K(t)) described
above is modified as follows in the presence of inclusions. In case (ii), the free transport between
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collisions with the underlying medium is simply replaced by a specularly reflecting collision
when the particle hits the inclusion’s boundary (i.e., K(t)−K+(t) is proportional to the normal
n(X(t)) at X(t) on the inclusion’s boundary). In case (i), the free transport between collisions
and the times of collisions are not changed. However at a time of collision, if X(t) is inside
the collision, we set K+(t) = K(t) with probability one. We can verify that the probabilistic
representation (24) holds in all cases.

In the Monte Carlo simulations of cases (i) and (ii) and their comparisons with the simulations
in the absence of an inclusion, the statistical error caused by the law of large numbers is quite
large compared to the influence of the inclusion on the measurements, unless a number of
particles much larger than 106 is used. The solution to this problem is to solve the problems
with and without inclusions (let us denote by (o) the case without an inclusion) using the same
realizations of the random processes (X(t),K(t)) as much as possible. Let Di be the spatial
domain of the inclusion. Then (24) can be recast as

∫
A

∫
B

a(t,x, |k0|k̂)dk̂dx = P

(
(X(t),K(t)) ∈ A × B |X(s) ∈ Di for some 0 < s < t

)
+ P

(
(X(t),K(t)) ∈ A × B |X(s) ∈ Di for all 0 < s < t

)
.

(30)

The second contribution is obviously the same for cases (o), (i), (ii). In our evaluations of the
differences (o)−(i) and (o)−(ii), it therefore vanishes. It still need be evaluated since we do
not know a priori how many particles will reach Di and when they will do so. However, the
statistical fluctuations generated by this contribution are in many interesting cases at least
as large as the other contribution in (30). It is therefore quite an efficient variance reduction
method to estimate it for all cases (o), (i), and (ii) at once. The first contribution is estimated
separately for all cases: as soon as a particle hits Di, it branches out into three different
particles, one for each case of interest.

Corrections due to the discretization. The kinetic model (12) concerns the continuous
wave equation (1) and does not account for possible discretization effects. The corrections
imposed by discretizations of the wave equations on the kinetic models were investigated
recently in [3]. Two main effects need to be considered: first the group velocity is modified;
this is a well known result; see e.g. [16]. Second, the kinetic parameters σ and Σ need be
updated. The discrete group velocity is given by ∇kw(k) and the corrected mean free time by
Σ̃−1 = Σ−1(k)|R′(iw(k))|−2 where Σ−1(k) is the continuous mean free time. Here, w is given
by the dispersion relation of the 2nd order in space and time mixed formulation scheme of the
acoustics wave equation,

sin2 wΔt

2
=
(

cΔt

2h

)2 (
sin2 kxh + sin2 kyh

)
, (31)

and R(iw) is the symbol of the temporal discretization:

R(iw) = i
2 sin wΔt

2

Δ
.
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Fig. 1. Geometry of the problem for the parameter estimations.

Here, h is the spatial mesh and Δ the time step. A Taylor expansion in (31) yields

w(k) = c|k|
(

1 − h2

6|k|2 (k4
x + k4

y)

)
= c|k|

(
1 − h2|k|2

6

(
1 − 2k2

xk
2
y

|k|4
))

.

Assuming that kxky = 0 (as in one space dimension) to simplify, we obtain that ∇kw(k) =

ck̂(1 − h2|k|2
2

). In the discretization we have chosen for the wave equation, we have h = λ/20,

|k| = 2π/λ so that h2|k|2
2

≈ 0.05. The average sound speed is then not given by c0 = 1 but
rather by cnum = 0.95. Concerning the dispersion relation, we have that R′(iw) = cos wΔt

2
so

that |R′(iw(k))|2 ≈ 1 − w2Δt2

2
≈ 0.984 in our simulations since we have chosen Δt = 0.03 to

satisfy the CFL condition [16]. The discretization thus results in a very slight increase of the
mean free time, which can be neglected. However the change in the sound speed of 5% caused
by the discretization was accounted for in the simulation of the radiative transfer equations,
so that the particles are modeled by the following jump process (X(t), 0.95K(t)).

4 Numerical simulations

This section has two objectives. The first one is to reconstruct the mean free path (or equiva-
lently the scattering coefficient Σ) and the transport mean free path (or equivalently the diffu-
sion coefficient D). The second one is to predict the influence of spatially localized changes in
the scattering properties on the measured intensity. More specifically we want to understand
the effect of (i) the distance between the detectors and the localized changes; (ii) the size
of the localized changes; and (iii) the size of the detectors on the statistical stability of the
measurements.

The computational domain for the wave, transport, and diffusion solvers presented in the pre-
ceding section is shown in Fig. 1. We denote by D the domain where the detectors are located.
In Fig. 1, D = D1 refers to the large detector, a square of sides equal to 150 wavelengths, and
D = D2 refers to the small detector, a square of sides equal to 75 wavelengths. The energies
predicted as a function of time at the array of detectors is given by
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E(t)=
∫
D
E(t,x)dx =

1

2

∫
D

(
κ(x)p2(t,x) + ρ(x)|v(t,x)|2

)
dx, (32)

A(t)=
∫
D

∫
R2

a(t,x,k) dk dx =
∫
D

∫
S1

a(t,x, k̂|k0|)2π|k0| dk̂ dx, (33)

U(t) =
∫
D

U(t,x, |k0|)dx, (34)

for the wave, transport, and diffusion solvers, respectively. The simplification in (33) occurs
because the initial condition is concentrated on the shell |k| = |k0| as was explained in the
preceding section.

As shown in Fig. 1, we consider two sizes of detector arrays, two sizes of random fluctuations
(5% and 8% standard deviation), two types of random media (isotropic with M = 2 and
anisotropic with M = 1.15 as defined in the preceding section), and several sizes of inclusions.
The inclusions are either non-scattering inclusions (the random fluctuations in the sound speed
vanish locally) or perfectly reflecting inclusions (with pressure imposed to be 0 for the wave
solver, specular reflection imposed for the transport code, and vanishing Neumann boundary
conditions imposed for the diffusion solver). We now compare the wave solutions with the
radiative transfer and diffusion predictions for several combinations of the parameters we have
just described.

4.1 Estimation of the background physical parameters

We first consider the reconstruction of the mean free paths l and l∗, or equivalently of the
mean free time Σ−1 and the diffusion coefficient D, in the absence of an inclusion. Until further
notice, the detector array is the large one: D = D1. The numerical value of Σ−1 is obtained
by minimizing the quantity ‖E − A‖L2(0,T ), where T = 3000. To obtain a good accuracy in
the Monte Carlo simulations, 5.106 particles are used in the simulation. The theoretical sound
speed is c0 = 1 and because of discretization effects, the numerical sound speed is cnum = 0.95.
The standard deviation in the sound speed is fixed in this subsection to

√
R0 = 5%. Here

R0 is defined, based on (8) and (25), as (2π)2R0 = πM2R̂0, and measures the mean square
fluctuation in the sound speed. The numerical value of the diffusion coefficient D(|k0|) is
estimated by minimizing ‖E − U‖L2(t0,T ), where t0 is a parameter that accounts for the fact
that the diffusion limit is not a correct approximation for short times.

Note that the standard deviation
√

R0 is not a very meaningful parameter to describe wave
propagation in the radiative transport regime. The above formulas show that, for R̂0 fixed,
doubling M from 2|k0| to 4|k0| doubles the standard deviation though it has no effect on the
mean free paths l(|k0|) and l∗(|k0|). However, for a given choice of M , the mean free paths
are indeed proportional to the square of the standard deviation, and we will use this standard
parameter as a gauge of disorder in the system.

In the configuration described above, the results for the energies at the array of detectors E(t),
A(t), and U(t), where the latter two correspond to simulations with Σ(|k0|), D(|k0|), and L2

obtained by best fit (see below), are shown on figure 2 in the case of an isotropic medium
M = 2|k0| and an anisotropic medium M = 1.15|k0|.
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Isotropic power spectrum. We choose here M = 2|k0| so that the cross section is isotropic,
i.e., λ(|k0|) = 0 and l = l∗, and then Σ(|k0|) = c0|k0|3R̂0/4. The numerical estimation of the
mean free time Σ−1

num obtained by best fit of ‖E − A‖L2(0,3000) is given by Σ−1
num = 88.5. The

relative error on the energies is 1.8%. The theoretical value with c0 = 1 is given by Σ−1
th = 83.0.

However corrected for the slower speed of propagation caused by the discretization, we find a
“theoretical value” (for the discrete waves) of Σ−1

th = 86.9, which fits extremely well (by 2%)
to the numerical estimation.

For the diffusion regime, we set t0 = 400 and obtain for the best fit of ‖E − U‖L2(400,3000) the
following values Dnum = 43.2 and L2num = 0.80. This is to be compared to the theoretical
values Dth = c2

0(2Σ)−1 = 39.6 and L2th = 0.81 after correction for the sound speed cnum =
0.95. The relative residual error between E and U is about 2.0%. The error between the
estimated and theoretical values is thus around 8% for D and 2% for Lex. This gives a relatively
accurate description of the diffusion coefficient and the extrapolation length knowing that the
computational domain is less than 7 mean free paths large in the horizontal direction and less
than 4 mean free paths large in the vertical direction.

Anisotropic power spectrum. We now choose M = 1.15|k0| so that the cross section is
anisotropic and then Σ(|k0|) = c0|k0|3R̂0 arccos(1 − M2/(2k2))/4π. We obtain Σ−1

num = 86.5
for a relative error of 2.1% between E and A. The theoretical value for the mean free time is
Σ−1

th = 68.98. After correction for the modified sound speed, this yields a mean free time given
by Σ−1

th = 72.23 for an error compared to the theoretical value of about 15%.

For the diffusion regime, we set t0 = 1900. We obtain for the best fit of ‖E − U‖L2(1900,3000)

(on the order of 5.9%) the values Dnum = 80.2 and L2ex = 0.38. The theoretical value for
Dth = 55.88. There is no analytic expression for L2 in that case but the extrapolation length
is supposed to stay close to the isotropic value of 0.81. The prediction for D is thus 50% off
what one expects from theory. This result does not depend dramatically on the choice of the
parameter t0 and does not substantially improve if L2 is fixed at 0.81.

In this situation, the transport mean free path l∗ = 2D ≈ 110 becomes quite large compared
to the vertical size of the domain (more than a third). We thus do not expect the diffusion
approximation to be very accurate because of the important leakage of energy at the domain
boundary. The numerical simulations confirm this fact. Note that the estimation for the mean
free path l is also less accurate than in the isotropic case. The explanation we believe is
numerical. The power spectrum chosen in (25) with M < 2 is quite singular and is thus
relatively difficult to simulate numerically. In the numerical simulations, the integrals appearing
in the estimate of Σ in (13) are replaced by inaccurate numerical integrations for singular power
spectra, which explains the (still relatively moderate) discrepancy between the theoretical and
numerical predictions for the mean free path.

4.2 Effect of spatially localized inclusions

We now keep the best fit estimates (not the theoretical values) obtained above for the isotropic
and anisotropic cases to assess the influence of small inclusions and of the size of the array
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Fig. 2. Estimation of the parameters by comparison of the energies given by the wave, transport and
diffusion models. Left: isotropic spectrum; Right: anisotropic spectrum.

of detectors on the energy density. As will become clear below, the fluctuations predicted by
the wave and transport simulations are in quite a remarkable agreement. The fluctuations
predicted by the diffusion model will only be valid when wave propagation really occurs in the
diffusive regime.

The inclusion is modeled as a ball of radius R located at xb. It is characterized either by an
absence of random fluctuations at its location and by an effective sound speed of c0 = 1 (or
cnum = 0.95), as in the background medium, or by an infinite compressibility coefficient, which
corresponds to a perfectly reflecting inclusion. At the transport level, the first type of inclusion
is a collisionless zone. Within the diffusion regime, the inclusion is associated to either an
infinite diffusion coefficient, as in [8], or to a vanishing diffusion coefficient, respectively.

The corrections caused by the inclusion are evaluated by the three numerical methods; E(t)−
Einc(t) by the wave solver; A(t) − Ainc(t) by the Monte-Carlo transport method, and U(t) −
Uinc(t) by the diffusion method. Here, Einc(t), Ainc(t) and Uinc(t) refer to the energies mea-
sured at the array of detectors in the presence of the inclusion, which are subtracted to the
corresponding energies obtained in the absence of an inclusion.

4.2.1 Void inclusion

We first consider the case of a void inclusion, where the random fluctuations in the sound
speed are suppressed.

Isotropic power spectrum. In the case where M = 2|k0|, we plot the energy variations
in Fig. 3 for the wave, transport, and diffusion solvers for two sizes of inclusions: R = 40
and R = 50. The inclusion is 300 (wavelengths) away from the source term and the center of
array. The signal thus needs to propagate for at least 7l = 7l∗ before it returns to the array
of detectors after visiting the inclusion. We observe a very good agreement between the wave
and transport predictions. The diffusive solution is not accurate for short times, but becomes
quite accurate for relatively long times (close to T = 3000), as expected from theory.
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Fig. 3. Comparison of the corrections introduced by the perfectly homogeneous inclusion for the wave,
transport, and diffusion models in the isotropic case. Left: R = 40; Right: R = 50.

Anisotropic power spectrum. We now consider the case where M = 1.15|k0|. The results
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Fig. 4. Comparison of the corrections introduced by the perfectly homogeneous inclusion for the wave,
transport, and diffusion models in the anisotropic case. Left: R = 30; Right: R = 40.

are shown in Fig. 4 for two sizes of inclusions: R = 30 and R = 40. The distance between
the source/detectors and the inclusion is still on the order of 3.5l and roughly 2.7l∗ (and
less than 2l∗num, where l∗num ≈ 160, as estimated by the best diffusion fit). Since the diffusion
approximation was not satisfactory in the absence of an inclusion, we do not expect to obtain
a good fit between the diffusion and wave solvers. However, the transport solver still provides
a remarkable estimate for the energy fluctuation.

Effect of increased random fluctuations. So far,
√

R0 was set to 5%. We now increase this
value to 8% in the case of isotropic fluctuations (M = 2|k0|), which has for effect to multiply
the value of the mean free path by 2.56. The best fit estimates obtained in the absence of an
inclusion by comparing wave, transport, and diffusion energy estimates, are given by Σ−1

num = 35,
Dnum = 17.0, L2num = 0.79, where we have chosen the final time of simulation T = 4000. The
corresponding mean free paths are very close to being 2.56 times smaller than in the case of
5% of standard deviation for the fluctuations.
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The variations in the energy density caused by the inclusion are presented in Fig. 5. Whereas
transport simulations are very close to the wave energy predictions, now the diffusion solver also
accurately predicts the energy variations. Note that the separation between the detectors and
the inclusion is now roughly 8.5l = 8.5l∗, so that by the time waves come back to the array of
detectors (after propagating for 17l = 17l∗ mean free paths), they essentially are diffuse waves.
Note that because randomness in the system has increased substantially, the wave simulation
becomes more oscillatory and less statistically stable. This effect will be further analyzed below.
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Fig. 5. Comparison of the corrections introduced by the perfectly homogeneous inclusion for the wave,
transport, and diffusion solvers in the isotropic case with 8% fluctuations.

4.2.2 Perfectly reflecting inclusion

We now replace the void inclusion by a perfectly reflecting inclusion. It is modeled by vanishing
pressure for the wave equation, by specular reflection at its outer boundary for the transport
code, and by vanishing Neumann conditions at its outer boundary for the diffusion code. Note
that in the diffusive regime, a void inclusion is modeled by a diffusion coefficient D = ∞
whereas a perfectly reflecting inclusion is modeled by a diffusion coefficient D = 0. We verify
that in the limit of small inclusions (see e.g. [8, Eq. (22)]) the effect of a perfectly reflecting
inclusion is the exact opposite of the effect of a void inclusion. The reason is simply that voids
let as much energy propagate through as reflecting inclusions reflect back. We thus expect the
variations E(t) − Einc(t) to be non-positive.

Isotropic power spectrum. Let us consider the case of an isotropic power spectrum M =
2|k0| and a standard deviation of 5% for the sound speed fluctuations. The results are shown
in Fig. 6. Here again, wave and transport energy predictions agree quite well, whereas the
diffusion approximation is valid only for long times.

Anisotropic power spectrum. We finally consider the case of an isotropic power spectrum
M = 1.15|k0| and a standard deviation of 5% for the sound speed fluctuations. The results
are shown on figure 7 for two sizes of inclusions, R = 20 and R = 30. As in the case of a void
inclusion, the diffusion solver does not capture the main aspects of the energy fluctuations. The
transport model, however, is quite an accurate description of the wave energy fluctuations.

17



0 1000 2000 3000

−7

−6

−5

−4

−3

−2

−1

0
x 10

−4

Time

D
et

ec
to

r 
C

or
re

ct
io

n

Corrections, R=30, isotropic case

Wave
transport Σ−1=88.5
Diffusion D=43.2, Lex=0.80

0 1000 2000 3000
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0x 10
−3

Time

D
et

ec
to

r 
C

or
re

ct
io

n

Corrections, R=40, isotropic case

Wave
transport Σ−1=88.5
Diffusion D=43.2, Lex=0.80

Fig. 6. Comparison of the corrections introduced by the perfectly reflecting inclusion for the wave,
transport, and diffusion models in the isotropic case. Left: R = 30; Right: R = 40.
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Fig. 7. Comparison of the corrections introduced by the perfectly reflecting inclusion for the wave,
transport, and diffusion models in the anisotropic case. Left: R = 20; Right: R = 30.

4.3 Limitations of the radiative transport model

Radiative transfer equations offer a model for wave energy propagation over a fairly large
range of regimes, including the weak coupling regime considered in this paper and the low
density regime [20], where fluctuations are point scatterers that may be separated by distances
orders of magnitude larger than the wavelength. In the regime of random Liouville, where the
fluctuations have a correlation length much larger than the wavelength, the limiting behavior
for the wave energy density is described by a Fokker-Planck equation [5], which can be seen as
the highly-peaked forward approximation of the radiative transfer equation, and thus belongs to
the same class of models (e.g. by sending M in (25) to 0 while appropriately rescaling the power
spectrum). Radiative transfer is expected to be valid for random media with disorder that is
not too large. As the transport mean free path converges to 0 (for very large fluctuations), the
regime of wave localization is expected to arise [28]. Although we are not interested in this
extremely high-disorder regime here, even moderately high disorder limits the applicability of
radiative transfer.
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The radiative transfer equation (12), as it is derived in e.g. [3,26] models the average wave
energy density over realizations of the random medium. It remains to know how stable this
prediction is with respect to changes in the realization for a given set of macroscopic statistical
properties. The results obtained in simplified settings than radiative transfer in e.g. [2,7,10,24]
show that the energy density is indeed statistically stable, at least provided that it is averaged
over a sufficiently large detector. This is what we plan to investigate now.

Let us consider the case of the small detector D = D2, which is a square of side equal to 75
wavelengths. Then in the case of isotropic fluctuations M = 2|k0| and

√
R0 = 5%, we observe

that the wave energy captured on D2 is much more oscillatory than that on D1, in the case
of a void inclusion of radius R = 40 and a perfectly reflecting inclusion of radius R = 30. We
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Fig. 8. Comparison of the corrections introduced by an inclusion for the wave and transport models
in the isotropic case and with a small detector D = D2. Left: void inclusion with R = 40; Right:
reflecting inclusion with R = 30.

observe that the wave simulation is much more unstable than that in Figs. 3 and 6.

The above curves show the degradation of the radiative transfer prediction for smaller sizes
of the array of detectors. The same phenomenon occurs if the size of the inclusion decreases.
For instance, we show in Fig. 9 the energy fluctuations predicted by the wave and radiative
transport models in the case of small void (with R = 20) or reflecting (with R = 10) inclusions.
The radiative transfer still predicts the main features of the inclusion, for instance the sign
of the fluctuation, and can thus be used for detection of inclusions. It may now however be
too oscillatory (statistically unstable) to allow for a good prediction of the specific structure
of the inclusion. For smaller radii of the inclusions than those in Fig. 9, even detection of the
inclusion becomes questionable.

5 Conclusions

The main objective of this paper was to validate the theory of radiative transfer by compar-
ing its wave energy predictions with simulations of wave propagation in random media. We
have shown the quite remarkable agreement of the radiative transfer equations to model wave
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Fig. 9. Comparison of the corrections introduced by an inclusion for the wave and transport models
in the isotropic case and with a large detector D = D1 but small inclusions. Left: void inclusion with
R = 20; Right: reflecting inclusion with R = 10.

propagation in the weak coupling regime, and to accurately predict the influence of localized
modifications in the constitutive parameters of the transport equations, which here take the
form of void or perfectly reflecting inclusions.

We have also quantified, on specific examples, the statistical stability of the radiative transfer
model. For instance with

√
R0 = 5%, inclusions separated from the radiation source by a little

over 3l (l ≈ 90) can be adequately predicted when measured over detectors of order 1.5l when
their radius is more than R = 0.25l, with a similar result for inclusions with a radius twice as
big when the detector side is twice as small. Such data provide valuable information for the
detection and imaging of inclusions in cluttered media; see e.g. [8].

It would be interesting to simulate wave propagation on larger domains. For instance one
expects that inclusions separated by a given number of mean free paths from a detector will
generate more stable fluctuations when the standard deviation of the random fluctuations
is halved. This in turn would require a domain of propagation four times larger counted in
number of wavelengths. More numerical simulations are necessary to address such questions
and will be done in the future.

Although our simulations are restricted to acoustic wave propagation, the results obtained in
this paper should hold for more general wave phenomena, including quantum, electromagnetic,
and elastic wave propagation [1,26]. It would however be quite interesting to see how accurately
polarization effects in electromagnetic and elastic waves are predicted by the radiative transfer
model. Such polarization effects are indeed quite useful to obtain properties of the random
medium that intensity measurements alone can hardly predict [6].

Acknowledgment. This work was supported in part by DARPA-ONR grant N00014-04-1-
0224 and NSF Grant DMS-0239097. GB also acknowledges support from the Alfred P. Sloan
Fellowship.

20



References

[1] J. Achenbach, Wave propagation in elastic solids, North Holland, Amsterdam, 1991.

[2] G. Bal, On the self-averaging of wave energy in random media, Multiscale Model. Simul. 2(3)
(2004) 398–420.

[3] G. Bal, Kinetic models for scalar wave fields in random media, to appear in Wave Motion.

[4] G. Bal, V. Freilikher, G. Papanicolaou, L. Ryzhik, Wave Transport along Surfaces with Random
Impedance, Phys. Rev. B 62(10) (2000) 6228–6240.

[5] G. Bal, T. Komorowski, L. Ryzhik, Self-averaging of Wigner transforms in random media, Comm.
Math. Phys. 242(1-2) (2003) 81–135.

[6] G. Bal, M. Moscoso, Polarization Effects of Seismic Waves on the Basis of Radiative Transport
Theory, Geophys. J. Int. 142(2) (2000) 571–585.

[7] G. Bal, G. Papanicolaou, L. Ryzhik, Self-averaging in time reversal for the parabolic wave
equation, Stochastics and Dynamics 4 (2002) 507–531.

[8] G. Bal, O. Pinaud, Time reversal-based imaging in random media, Inverse Problems 21 (2005)
1593–1620.

[9] G. Bal, L. Ryzhik, Time Reversal for Classical Waves in Random Media, C. R. Acad. Sci. Paris,
Série I 333 (2001) 1041–1046.

[10] G. Bal, L. Ryzhik, Stability of time reversed waves in changing media, Disc. Cont. Dyn. Syst. A
12(5) (2005) 793–815.
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