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Abstract

We investigate the problem of reconstructing a fully anisotropic conductivity tensor γ from internal
functionals of the form ∇u · γ∇u where u solves ∇ · (γ∇u) = 0 over a given bounded domain X with
prescribed Dirichlet boundary condition. This work motivated by hybrid medical imaging methods
covers the case n ≥ 3, following the previously published case n = 2 [21]. Under knowledge of enough
such functionals, and writing γ = τ γ̃ (det γ̃ = 1) with τ a positive scalar function, we show that all of
γ can be explicitely and locally reconstructed, with no loss of scales for τ and loss of one derivative
for the anisotropic structure γ̃. The reconstruction algorithms presented require rank maximality
conditions that must be satisfied by the functionals or their corresponding solutions, and we discuss
different possible ways of ensuring these conditions for C1,α-smooth tensors (0 < α < 1).

1 Introduction

Hybrid medical imaging methods aim to combine a high-resolution modality (such as acoustic waves or
Magnetic Resonance Imaging) with a high-constrast one (e.g. Electrical Impedance Tomography, Optical
Tomography, . . . ) in order to improve the result of the latter thanks to a physical coupling. In this context,
the problem we consider is motivated by a coupling between an elliptic equation (modelling conductivity
or stationary diffusion) and acoustic waves. Namely we consider the problem of reconstructing a fully
anisotropic conductivity (or diffusion) tensor γ over a domain of interest X ⊂ R

n from knowledge of a
certain number of power density functionals of the form Hγ [u](x) = ∇u · γ∇u(x), where u solves the
following partial differential equation

−∇ · (γ∇u) = −
n∑

i,j=1

∂i(γ
ij∂ju) = 0 (X), u|∂X = g, (1)

where the boundary condition g is prescribed. By polarization, we will see that mutual power densities of
the form∇u·γ∇v will also be considered, where both u and v solve (1) with different boundary conditions.
The model above, when considered as a diffusion model for photons in tissues, should be augmented with
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a term σau accounting for absorption and will be addressed in future work. The availability of such
functionals is justified by a coupling with acoustic waves, as it is described in the context of Ultrasoud
Modulated- Electrical Impedance Tomography (UMEIT) or Optical Tomography (UMOT) in [2, 7, 15, 5]
by considering acoustic deformations, or in the context of Impedance-Acoustic Computerized Tomography
in [13] by considering thermoelastic effects. In both cases, the acoustic waves come to the rescue of an
otherwise very ill-posed problem (the classical Calderón’s problem of recovering γ from its Dirichlet-to-
Neuman operator, see [10]), by providing internal functionals instead of boundary ones. In (1), we require
γ to have bounded components and to be uniformly elliptic as defined by the following condition

|ξ|2κ−1 ≤ γ(x)ξ · ξ ≤ κ|ξ|2, x ∈ X, ξ ∈ R
n, (2)

from some κ ≥ 1. Borrowing notation from [3], we denote C(γ) the smallest such constant κ and define
the set

Σ(X) := {γ ∈ L∞(X), C(γ) < ∞}. (3)

With these definitions, our problem may be formulated as follows

Problem 1.1 (Inverse conductivity from power density functionals). For γ in Σ(X) or any subset of it,
does the power density measurement operator Hγ uniquely characterize γ ? If yes, how stably ?

The problem just described has received fair attention in the past few years. The first inversion
formula for Problem 1.1 was given in [11] in the isotropic, two-dimensional setting. There, a constructive
algorithm as well as an optimal control approach for numerical reconstruction were presented. [16]
then studied a linearized, isotropic version of Problem 1.1 in dimensions two and three with numerical
implementation.

Problem 1.1 has also been studied under constraints of limitations on the number of power densities
available, the most restrictive case being the reconstruction of an isotropic tensor γ = σIn in (1) from
only one measurement H = σ|∇u|2. In this case, σ may be replaced in (1) by H/|∇u|2, and this yields
the following non-linear partial differential equation

∇ ·
(

H

|∇u|2∇u

)
= 0 (X), u|∂X = g.

Newton-based methods were proposed in [13] in order to successively reconstruct u and σ, and the
corresponding Cauchy problem was studied theoretically in [4].

In search for explicit reconstruction formulas using larger numbers of functionals, the authors first
extended the reconstruction result from [11] to the three-dimensional, isotropic case in [5] with Bonnetier
and Triki. This result was then generalized in [22] to n-dimensional, isotropic tensors with more general
types of measurements of the form σ2α|∇u|2 with α not necessarily 1

2 . This covers the case α = 1 of
Current Density Impedance Imaging [23, 24]. Finally, the same authors derived reconstruction formulas
for the fully anisotropic two-dimensional problem and validated them numerically in [21].

In the last three papers presented, the explicit reconstruction algorithms were derived in the case
where the power densities belong to W 1,∞(X), and assuming some qualitative properties satisfied by
the solutions. In particular, the reconstruction algorithm for the isotropic case (or, equivalently, of a
scalar factor multiplied by a known anisotropic tensor) strongly relies on the existence of n solutions of
(1) whose gradients form a basis of Rn at every point of the domain. Under such assumptions, stability
estimates were derived for the reconstruction schemes proposed, of Lipschitz type for the determinant
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of the conductivity tensor under knowledge of the anisotropic structure γ̃ := (det γ)−
1
n γ, and of (less

stable) Hölder type for the anisotropic structure γ̃. Finally, it was shown for certain types of tensors γ that
the assumption of linear independence made on the solutions could be guaranteed a priori by choosing
appropriate boundary conditions, so that all the reconstruction procedures previously established could
be properly implemented.

Studying a linearized version of Problem 1.1 from the pseudo-differential calculus standpoint, the
Lipschitz stability mentioned above was also pointed out in [17] in the isotropic case. There, the authors
showed that from three power densities functionals, the linearized power density operator is an elliptic
functional of an isotropic tensor σ. They also studied in more detail the “stabilizing” nature of internal
functionals of certain kinds that have arisen in all the hybrid medical imaging methods mentioned above.
An extension of this result to the anisotropic case is presently investigated by the authors with Guo in
[6].

The present work aims at unifying and extending the work done in [11, 5, 22, 21] by treating in full
extent the anisotropic, n-dimensional case of Problem 1.1 for C1,α-smooth conductivities with 0 < α < 1
(the Hölder exponent is required by forward elliptic theory). The basis of this work also appears and will
strongly rely on the first author’s recent thesis [20].

2 Statement of the main results

We decompose the conductivity tensor γ into the product of a scalar factor τ := (det γ)
1
n and a scaled

anisotropic structure γ̃:

γ := τ γ̃, τ := (det γ)
1
n , det γ̃ = 1. (4)

Note that when γ ∈ Σ(X), τ is uniformly bounded above and below by C(γ) and C(γ)−1, respectively.
Under knowledge of enough power densities inside the domain, the reconstructibility of τ and/or γ̃ are

local questions, since under certain conditions described below, both quantities τ and γ̃ can be explicitely
and locally recovered in terms of power densities and their derivatives. We first describe these conditions
and the corresponding recosntruction formulas in the next paragraph.

Second, as the reconstruction algorithms presented above require local conditions, we will describe how
to control these conditions from the domain’s boundary, also tackling the question of global reconstruction.

2.1 Local reconstruction algorithms

Reconstruction of the scalar factor τ knowing γ̃: We first consider the question of local recon-
structibility of the scalar factor τ under knowledge of the anisotropic structure γ̃. The main hypothesis
here is that we use the mutual power densities Hij := ∇ui · γ∇uj (for 1 ≤ i, j ≤ n) of n solutions
(u1, . . . , un) of (1) whose gradients are linearly independent over a subdomain Ω ⊂ X, a condition which
we formulate as

inf
x∈Ω

| det(∇u1, . . . ,∇un)| ≥ c0 > 0. (5)

Under this assumption we are able to derive the following reconstruction formula: defining A = γ
1
2 to

be the positive matrix squareroot of γ, and decomposing A into A =
√
τÃ with det Ã = 1, knowledge of
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γ̃ implies knowledge of Ã. Further defining Si := A∇ui for 1 ≤ i ≤ n, the data becomes Hij := Si · Sj .
Such vector fields satisfy the following PDE’s

d(Ã−1Si)
[ = d log τ ∧ (Ã−1Si)

[ and ∇ · (ÃSi) = −∇ log τ · ÃSi, 1 ≤ i ≤ n, (6)

where the equality of two-forms expresses the fact that d(A−1Si)
[ = d2ui = 0 (exact forms are closed),

and the scalar equality is deduced from the conductivity equation. Here the [ exponent denotes the flat
(or index-lowering) operator for the Euclidean metric. From these PDE’s, one can derive the following
formula, first established in [20, Lemma 4.3.1] as a generalization of earlier results in [5, 11, 21, 22]:

∇ log τ =
2

n
|H|− 1

2

(
∇(|H| 12Hjl) · ÃSl

)
Ã−1Sj =

1

n
∇ log |H|+ 2

n
(∇Hjl · ÃSl)Ã

−1Sj , x ∈ Ω. (7)

Equation (7) may thus be used to substitute ∇ log τ into the PDE’s (6), and the resulting system
becomes closed for the frame S ≡ (S1, . . . , Sn). We then show that such a system may be rewritten as a
first-order quasilinear system of the form

∇Si = Si(S,H, dH, Ã, dÃ), 1 ≤ i ≤ n, x ∈ Ω, (8)

where Si is a Lipschitz functional of the components of the frame S. Here ∇Si denotes the total covariant
derivative of the vector field Si, a tensor field of type (1, 1) that encodes all partial derivatives ∂pS

q
i .

System (8) can thus be integrated over any curve to reconstruct the value of S from knowledge of S(x0)
for fixed x0 ∈ Ω. Once S is known throughout Ω, τ can be reconstructed throughout Ω by integrating (7)
in a similar fashion. The PDE’s (7) and (8) are overdetermined and come with compatibility conditions
which should hold as long as our measurements are in the range of the measurement operator. In such
a case, this leads to a unique and stable reconstruction in the sense of the following proposition, first
stated in [20, Prop. 4.3.6-4.3.7]:

Proposition 2.1 (Local stability for log τ). Consider two tensors γ = τÃ2 and γ′ = τ ′Ã
′2 in Σ(X),

where Ã and Ã′ are known and with components in W 1,∞(X). Let Ω ⊂ X such that the positivity (5)
holds for two sets of conductivity solutions (u1, · · · , un) and (u′

1, · · · , u′
n) with respective conductivities γ

and γ′, call their corresponding data sets {Hij , H
′
ij} with components in W 1,∞(X). Then the functions

log τ and log τ ′ can be uniquely reconstructed with the following stability estimate

‖ log τ − log τ ′‖W 1,∞(Ω) ≤ ε0 + C
(
‖H −H ′‖W 1,∞(X) + ‖Ã− Ã′‖W 1,∞(X)

)
,

where the constant C does not depend on Ω and ε0 is the error committed at some x0 ∈ Ω.

Such a stability statement shows that under the condition (5), the reconstruction of τ |Ω is a well-posed
problem in W 1,∞(Ω). Section 3.1 contains the proofs of equations (7) and (8).

Reconstruction of the anisotropic structure γ̃, then of τ : Here and below, we denote by Mn(R)
the space of n×n matrices with its inner product structure 〈A,B〉 := AijBij = tr (ABT ). We now derive
an approach to reconstruct the anisotropic structure γ̃ from additional measurements. We start from a
basis of solutions (u1, . . . , un) satisfying (5) over Ω ⊂ X. Considering an additional conductivity solution
v, we show that, although the solutions (u1, . . . , un, v) are themselves unknown, the decomposition of
∇v in the basis (∇u1, . . . ,∇un) is known from the power densities. Combining these equations with the
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PDE’s satisfied by the solutions allows to derive linear orthogonality constraints on the product matrix
ÃS (S here denotes the matrix with columns S1, . . . , Sn).

Thus, any additional solution v, by means of its power densities with the support basis, gives rise to
a subspace V ⊂ Mn(R) orthogonal to ÃS, moreover a basis of V is known from the data. The dimension
of V is accurately controlled in [20, Prop. 4.3.8] and its maximal value is

dimV ≤ dM := 1 + n(n+ 1)/2. (9)

The matrix ÃS is arbitrary inMn(R) except for its determinant, known up to sign, thus ÃS requires n2−1
independent constraints to be determined up to sign. This requires that we consider enough additional
solutions v1, . . . , vl such that their corresponding spaces V1, . . . ,Vl satisfy (i) dim

∑l
i=1 Vi = n2 − 1,

and (ii)
(∑l

i=1 Vi

)⊥
is spanned by a non-singular matrix (this condition should always hold true when

measurements aren’t noisy, as this orthogonal space is nothing but RÃS). In mathematical terms, the
proper condition to satisfy is as follows: for 1 ≤ i ≤ l, let M(i)1, . . . ,M(i)dM

span Vi (they can be
constructed from the data), and denote

M := {M(i)j | 1 ≤ i ≤ l, 1 ≤ j ≤ dM}, #M = dM l, (10)

rewritten more simply as M = {Mi | 1 ≤ i ≤ dM l} below. Conditions (i) and (ii) mentioned above will
hold if for x ∈ Ω, there exists an n2 − 1-subfamily of M with nonzero hypervolume. With the notion of
cross-product in Appendix A.2, this condition may be written under the form

inf
x∈Ω

∑

I∈I(n2−1,#M)

(det(N (I)H−1N (I)))
1
n ≥ c1 > 0, (11)

for some constant c1, where I(n2 − 1, dM l) denotes the set of increasing injections from [1, n2 − 1] to
[1, dM l] (i.e. I ∈ I(n2 − 1, dM l) is of the form I = (i1, . . . , in2−1) with 1 ≤ i1 < · · · < in2−1 ≤ dM l), and
where N (I) = N (Mi1 , . . . ,Mi

n2
−1
) is the cross-product defined in Appendix A.2. Under condition (11),

we are able to reconstruct γ̃ and ∇ log τ via formulas (40) and (42). This reconstruction is unique and
stable in the sense of the proposition below.

Proposition 2.2 (Local stability for γ̃ and log τ). Consider two tensors γ = τ γ̃ and γ′ = τ ′γ̃′ in Σ(X).
Let Ω ⊂ X where u1, . . . , un, v1, . . . , vl and u′

1, . . . , u
′
n, v

′
1, . . . , v

′
l satisfy conditions (5) and (11). Then γ

and γ′ are uniquely reconstructed from knowledge of the power densities of the above sets of solutions,
and we have the following stability estimate

‖∇(log τ − log τ ′)‖L∞(Ω) + ‖γ̃ − γ̃′‖L∞(Ω) ≤ C‖H −H ′‖W 1,∞(Ω). (12)

Remark 2.3. Although Proposition 2.1 required bounded derivatives on the anisotropic structures γ̃, this
is no longer the case here as the frame S is reconstructed algebraically instead of solving a differential
system that involves derivatives of the anisotropic structure. This is in good agreement with the fact that
the stability statement (12) is only stated in L∞-norm for γ̃.

Remark 2.4. The scalar factor τ is reconstructed with better stability than the anisotropic structure γ̃,
for which there is locally a loss of one derivative. Although the reconstruction procedure presented was
not yet proven optimal in terms of number of power densities involved, this loss of one derivative cannot
be avoided and finds justification in the microlocal analysis of the linearized problem that will appear on
future work [6].
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Local reconstructibility: In the light of the local reconstruction algorithms previously derived, a
tensor γ ∈ Σ(X) is locally reconstructible from power densities if for every x ∈ X, there exists a neigh-
borhood Ωx 3 x and n+ l boundary conditions (g1, . . . , gn, h1, . . . , hl) such that the corresponding n first
conductivity solutions satisfy condition (5) and the l remaining ones satisfy condition (11) (which then
ensures via Proposition 2.2 that γ is uniquely and stably reconstructible over Ωx). Based on the Runge
approximation for elliptic equations [19], we then have the following generic result:

Theorem 2.5 (Local reconstructibility of C1,α tensors, α > 0). If γ ∈ C1,α(X), then γ is locally recon-
structible from power densities.

Remark 2.6. In a similar manner to [8], the proof of Theorem 2.5 is based on constructing solutions
locally, that will fulfill conditions (5)-(11), after which such solutions will be approximated using the Runge
approximation by solutions of (1) globally defined over X and controlled from the boundary. Although
this result establishes local reconstructibility for a large class of tensors, the applicability remains limited
insofar as the boundary conditions are not explicitely constructed.

2.2 Global reconstructions

The previous approach consisted in deriving explicit reconstruction algorithms under certain a priori
conditions (linear independence or rank maximality) satisfied by a certain number of solutions of (1).
These conditions may be checked directly on the power densities at hand. As the user only has control
over boundary conditions in this problem, it is thus appropriate to define sets of admissible boundary
conditions, for which the conditions mentioned above are satisfied globally.

The first admissibility set is that of m-tuples of boundary conditions (m ≥ n) such that, locally, n
of the m solutions of (1) have linearly independent gradients. This ensures that the scalar factor τ is
uniquely and stably reconstructible throughout the domain. For γ ∈ Σ(X), we call such an admissibility

set Gm
γ (m ≥ n), subset of (H

1
2 (∂X))m, whose full definition is given in Def. 4.1.

On to the global reconstruction of (γ̃, τ), Definition 4.2 constructs a second set of admissible boundary
conditions. We first pick g ∈ Gm

γ for some m ≥ n so that a basis of gradients of solutions may be available
everywhere. Considering l ≥ 1 additional solutions generated by boundary conditions h = (h1, . . . , hl),
we say that h belongs to Am,l

γ (g) if the spaces (V1, . . . ,Vl), generated by (v1, . . . , vl) as in the previous
section, form everywhere a hyperplane of Mn(R), so that γ̃ and τ may be reconstructed with the stability
of Proposition 2.2.

While the construction of these sets is somewhat tedious, they allow us to define sufficient conditions
for global reconstructibility of all or part of γ. In particular, they allow us to reformulate a reconstructibil-
ity statement into a non-emptiness statement on sets of admissible boundary conditions Gγ or Aγ , which
are characterized by continuous functionals of power densities. Namely, for a tensor γ = τ γ̃, we have

Theorem 2.7 (Global reconstructibility). 1. Under knowledge of a C1-smooth γ̃, the function τ ∈
W 1,∞(X) is uniquely reconstructible if Gm

γ 6= ∅ for some m ≥ n, with a stability estimate of the
form

‖ log τ − log τ ′‖W 1,∞(X) ≤ C
(
‖H −H ′‖W 1,∞(X) + ‖γ̃ − γ̃′‖W 1,∞(X)

)
. (13)

2. γ is uniquely reconstructible if there exists m ≥ n and l ≥ 1 such that Gm
γ 6= ∅ and Am,l

γ (g) 6= ∅
where g ∈ Gm

γ , with the stability estimate

‖γ̃ − γ̃′‖L∞(X) + ‖ log τ − log τ ′‖W 1,∞(X) ≤ C‖H −H ′‖W 1,∞(X). (14)
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Combining this with the fact that the conditions of linear independence stated above can be formulated
in terms of continuous functionals of power densities and their derivatives, we can deduce further useful
facts about the sets Gγ and Aγ , all of which are established in [20, Sec. 5.2.1], allowing us to draw the
following conclusions (see Sec. 4.2):

• The reconstruction algorithms presented above remain stable under C2-smooth perturbations of the
boundary conditions.

• Conductivity tensors that are close enough in C1,α norm can be reconstructed from power densities
emanating from the same boundary conditions.

• The property of being reconstructible carries through push-forwards of conductivity tensors by
diffeomorphisms, see in particular Proposition 4.3 below.

With these properties in mind, global reconstructibility is thus established for conductivity tensors
that are C1,α-close to or push-fowarded from the cases below:

1. If γ = τIn for some scalar function τ ∈ H
n
2 +3+ε with ε > 0, then Gn

γ 6= ∅ for n even and Gn+1
γ 6= ∅

for n odd. The proof can be found in [22] and relies on the construction of complex geometrical
optics solutions.

2. For γ = In, straighforward computations (see Sec. 3.3 below) show that Id|∂X ∈ Gn
γ and {x2

i −
x2
i+1}n−1

i=1 |∂X ∈ An,n−1
γ (Id|∂X). From this observation, one can cover the case of a constant tensor

γ0 by pushing forward the above solutions with the diffeomorphism Ψ(x) = γ
− 1

2
0 x.

Outline: The rest of the paper is organized as follows. Section 3 justifies the local reconstruction
algorithms. For the reconstruction of τ , Section 3.1 provides proof of equations (7) and (8), Section 3.2
covers the reconstruction of all of γ, while Section 3.3 concentrates on proving Theorem 2.5. On to the
question of global reconstructibility, Section 4 first studies the properties of the admissibility sets Gγ and
Am,l

γ before discussing what tensors are globally reconstructible.

3 Local reconstruction formulas

3.1 Reconstruction of the scalar factor τ

Geometric setting and preliminaries: We equip X with the Euclidean metric g(U, V ) ≡ U · V =
δijU

iV j , where the Einstein summation convention is adopted. For x ∈ X, (e1, . . . , en) and (e1, . . . , en)
denote the canonical bases of TxX and T ?

xX, respectively. The flat operator coming from the Euclidean
metric maps a vector field U = U iei to the one-form U [ = U iei. We also denote by ∇ the Euclidean
connection, i.e. the Levi-Civita connection of the Euclidean metric, which in the canonical basis reads
∇UV = (U i∂i)V

jej .
Over a set Ω ⊂ X where (5) holds, we have the following decomposition formula, true for any vector

field V over Ω

V = Hpq(V · Sp)Sq, Hij = [H−1]ij . (15)

For any invertible symmetric matrix M , applying (15) to MV and multiplying by M−1 yields also the
more general formula

V = Hpq(V ·MSp)M
−1Sq. (16)
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Proof of equation (7): The proof essentially relies on the study of the behavior of the dual coframe1

of the frame (A−1S1, · · · , A−1Sn). Let us denote σ0 = sgn(det(S1, . . . , Sn)), constant throughout Ω by
virtue of (5). Since STS = H with S = [S1| . . . |Sn], we have that

det(S1, . . . , Sn) = σ0

√
detH = σ0 detH

1
2 , H = {Hpq}1≤p,q≤n. (17)

For 1 ≤ j ≤ n, let us define the vector field Xj by

X[
j = σj ?

[
(A−1S1)

[ ∧ · · · ∧ (A−1Sĵ)
[ ∧ · · · ∧ (A−1Sn)

[
]
, σj := (−1)j−1, (18)

where the hat over an index indicates its omission. Xj is the unique vector field such that at every x ∈ Ω
and for every vector V ∈ TxΩ, we have

Xj(x) · V = det(A−1S1, . . . , A
−1Sj−1,

j︷︸︸︷
V ,A−1Sj+1, . . . , A

−1Sn).

In particular, we have that for any S+
n (R)-valued function M and any vector field V ,

MXj · V = Xj ·MV = det(A−1S1, . . . ,MV, . . . , A−1Sn)

= detM det((M−1A−1)S1, . . . , V, . . . , (M
−1A−1)Sn),

that is, we have that

(MXj)
[ = σj detM ?

[
(M−1A−1S1)

[ ∧ · · · ∧ (M−1A−1Sĵ)
[ ∧ · · · ∧ (M−1A−1Sn)

[
]
. (19)

(X1, · · · , Xn) is, up to some scalar factor, the dual basis to (A−1S1, · · · , A−1Sn) since we have, for i 6= j

Xj ·A−1Si = det(A−1S1, . . . , A
−1Si︸ ︷︷ ︸
i

, . . . , A−1Si︸ ︷︷ ︸
j

, . . . , A−1Sn) = 0,

since the determinant contains twice the vector A−1Si. Moreover, when i = j, we have

Xj ·A−1Sj = det(A−1S1, . . . , A
−1Sn) = detA−1 det(S1, . . . , Sn) = σ0 det

(
A−1H

1
2

)
,

where we used relation (17). Therefore we can use formula (16) with M ≡ A−1 to represent Xj as

Xj =
n∑

k,l=1

Hkl(Xj ·A−1Sk)ASl = σ0

n∑

l=1

Hjl det(A−1H
1
2 )ASl. (20)

We now show that Xj is divergence-free, that is ∇ ·Xj = 0 for 1 ≤ j ≤ n. Indeed, we write

∇ ·Xj = ?d ? X[
j = ?d

[
(A−1S1)

[ ∧ · · · ∧ (A−1Sĵ)
[ ∧ · · · ∧ (A−1Sn)

[
]
= 0,

since an exterior product of closed forms is always closed, thus we have

∇ ·Xj = 0, 1 ≤ j ≤ n. (21)

1For (E1, · · · , En) a frame, (ω1, · · · , ωn) is called the dual coframe of E if ωi(Ej) = δij for 1 ≤ i, j ≤ n.
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Combining equations (20) together with (21), and using the identity ∇ · (fV ) = f∇ · V +∇f · V for f a
function and V a vector field, we obtain

0 = ∇ ·Xj = ∇ · (Hjl det(A−1H
1
2 )ASl)

= det(A−1H
1
2 )∇Hjl ·ASl +Hjl∇det(A−1H

1
2 ) ·ASl + det(A−1H

1
2 )Hjl∇ · (ASl).

The last term is zero since ∇·(ASi) = 0 and the second term expresses the dotproducts of ∇det(A−1H
1
2 )

with the frame A−1S. Thus we use the representation formula (16) with M ≡ A and divide by

det(A−1H
1
2 ) to obtain

∇ log det(A−1H
1
2 ) = Hjl(∇ log det(A−1H

1
2 ) ·ASl)A

−1Sj = −(∇Hjl ·ASl)A
−1Sj ,

which upon writing log det(A−1H
1
2 ) = − log detA+ 1

2 log detH yields

∇ log detA =
1

2
∇ log detH + (∇Hjl ·ASl)A

−1Sj .

We now plug in the rescaling A = τ
1
2 Ã (so that detA = τ

n
2 ), which implies A−1 = τ−

1
2 Ã−1, and notice

that the terms involving τ cancel out in the right-hand side of the last equation, thus (7) is proved.

Proof of Equation (8): We start by recalling the first equation of (6)

d(Ã−1Si)
[ = F [ ∧ (Ã−1Si)

[, 1 ≤ i ≤ n, F := ∇ log τ, (22)

where F is now considered a functional of (S1, . . . , Sn) and of the known power densities (this functional
relation was obtained using the divergence equations in (6), which are of no further use here). The main
tool to derive a first-order differential system for (S1, . . . , Sn) from (22) is Koszul’s formula

2(∇UV ) ·W = ∇U (V ·W ) +∇V (U ·W )−∇W (U · V )− U · [V,W ]− V · [U,W ] +W · [U, V ], (23)

which expresses covariant derivatives in terms of dotproducts and Lie-Brackets of given vector fields.
The dotproducts of S1, . . . , Sn are known from the power densities, while the Lie Brackets [ÃSi, ÃSj ] are
known from (22), as the following calculation shows

Ã−1Sk · [ÃSi, ÃSj ] = ÃSi · ∇Hjk − ÃSj · ∇Hik − d(Ã−1Sk)
[(ÃSi, ÃSj)

= ÃSi · ∇Hjk − ÃSj · ∇Hik − F [ ∧ (Ã−1Sk)
[(ÃSi, ÃSj)

= ÃSi · ∇Hjk − ÃSj · ∇Hik −HkjF · ÃSi +HkiF · ÃSj , (24)

where we have used (22) and the characterization of the exterior derivative

dU [(V,W ) = ∇V (U ·W )−∇W (U · V )− U · [V,W ]. (25)

Unless Ã = In, the frames S and ÃS do not coincide, therefore one must modify formula (23) in order
to obtain the promised system. Following [20], we first choose to represent the total covariant derivative

of Si in the basis of tensors of type (1, 1) given by {Si ⊗ (Ã−1Sj)
[}ni,j=1, in which the decomposition is

explicitely given by

∇Si = HkqHjp(∇ÃSq
Si · Sp) Sj ⊗ (Ã−1Sk)

[, (26)
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see [20, Lemma 4.3.4]. The subsequent work consists in analysing the term ∇ÃSq
Si · Sp, in particular

removing all derivations on the Si’s by moving them onto either known data Hij or the anisotropic

structure Ã.
The first step is to establish the following “modified” Koszul formula

2(∇ÃSq
Si) · Sp = ∇ÃSq

Hip +∇ÃSi
Hqp −∇ÃSp

Hqi

− [Si, Sp]
Ã · Sq − [Sq, Sp]

Ã · Si + [Sq, Si]
Ã · Sp,

(27)

where we have defined [U, V ]Ã = ∇ÃUV − ∇ÃV U . Equation (27) is obtained in [20, Lemma 4.3.2] by
using the torsion-freeness and the compatibility of the connection with the metric.

The second step is to establish for any vector fields U, V the following relation

[U, V ]Ã = Ã−1[ÃU, ÃV ]−AÃ(U, V ), (28)

where AÃ is a vector-valued tensor of type (2, 0), whose expression in local coordinates is expressed as

AÃ(U, V ) =
1

2
(U lV q − V lU q)Ã−1[Ãl, Ãq], Ãl := Ã(·, ∂l),

as established in [20, Lemma 4.3.3]. Therefore, the tensor AÃ encodes differential information about the

anisotropic structure and is identically zero if Ã is constant. Plugging relation (28) into (27), and then
using the known Lie brackets expression from (24), we arrive at

2(∇ÃSq
Si) · Sp = ∇ÃSq

Hip +∇ÃSi
Hqp −∇ÃSp

Hqi

− [ÃSi, ÃSp] · Ã−1Sq − [ÃSq, ÃSp] · Ã−1Si + [ÃSq, ÃSi] · Ã−1Sp

+AÃ(Si, Sp) · Sq +AÃ(Sq, Sp) · Si −AÃ(Sq, Si) · Sp

= ÃSq · ∇Hip + ÃSp · ∇Hiq − ÃSi · ∇Hpq + 2HpqF · ÃSi − 2HqiF · ÃSp

+AÃ(Si, Sp) · Sq +AÃ(Sq, Sp) · Si −AÃ(Sq, Si) · Sp.

The last expression no longer differentiates the vector fields Si, which fulfills our goal. Plugging the last
expression into (26) and simplifying expressions of the form (15), we arrive at the expression

∇Si =
1

2

(
Sk ⊗ U [

ik + ÃUik ⊗ (Ã−1Sk)
[ + (ÃSi · ∇Hjk) Sj ⊗ (Ã−1Sk)

[
)

+ (F · ÃSi)Ã
−1 − ÃF ⊗ (Ã−1Si)

[

+
1

2
HkqHjp(AÃ(Si, Sp) · Sq +AÃ(Sq, Sp) · Si −AÃ(Sq, Si) · Sp) Sj ⊗ (Ã−1Sk)

[,

(29)

where we have defined the data vector fields

Ujk := (∇Hjp)H
pk = −Hjp(∇Hpk), 1 ≤ j, k ≤ n. (30)

The last thing to notice is that, with the expression of F given by (7), the right-hand side of (29) is a
polynomial in the components of S of order at most five. Together with the a priori uniform estimate

n∑

i=1

|Si(x)|2 ≤ n max
x∈X, 1≤i≤n

Hii(x),

we deduce that ∇Si = Si(S,H, dH, Ã, dÃ), where Si is Lipschitz-continuous with respect to S so that
the method of characteristic is a uniquely defined and stable.

10



3.2 Reconstruction of the anisotropic structure γ̃, then of τ

As explained in Section 2, we start with n solutions (u1, · · · , un) whose gradients satisfy the rank maxi-
mality condition (5) over some Ω ⊂ X. We will call (∇u1, · · · ,∇un) the support basis.

Algebraic redundancies: Using the support basis above and formula (15), we have for any additional
solution u(i) the following relation

∇u(i) = Hpq(∇u(i) · γ∇up)∇uq = HpqH(i)p∇uq.

As a result, the power density of any two additional solutions u(i) and u(j) is computible via the formula

H(i)(j) = ∇u(i) · γ∇u(j) = HpqH(i)pH
rlH(j)r∇uq · γ∇ul = HprH(i)pH(j)r,

i.e. the mutual power density of any two additional solutions is algebraically computible from the mutual
power densities of each of these solutions with the support basis. In other words, any additional solution
u(i) adds at most n non-redundant dimensions of data, that is, the quantities H(i)p for 1 ≤ p ≤ n.

Algebraic equations for ÃS: Let us add an additional solution v ≡ un+1 and consider the mu-
tual power densities of these n + 1 solutions {Hij}1≤i,j≤n+1. As explained in Appendix A.1, by linear
dependence of n+ 1 vectors in R

n, one can find n+ 1 functions

µi = (−1)i+n+1 det{Hpq}1≤p≤n, 1≤q≤n+1, q 6=i, 1 ≤ i ≤ n,

µ = det{Hpq}1≤p,q≤n,
(31)

such that

n∑

i=1

µiSi + µA∇v = 0, (32)

where µ never vanishes over Ω by virtue of (5). In particular, the following expression is well-defined
over Ω

Sv = −µ−1
n∑

i=1

µiSi. (33)

We now apply the operators d(A−1·)[ and ∇· (A·) to relation (33), and using the fact that d(A−1Si)
[ = 0

and ∇ · (ASi) = 0, we arrive at the following relations

Z[
i ∧ (Ã−1Si) = 0 and Zi · ÃSi = 0, where Zi := ∇µi

µ
. (34)

The first equation describes the vanishing of a two-form, which amounts to n(n − 1)/2 scalar relations,

obtained by applying this two-form to vector fields ÃSp, ÃSq for 1 ≤ p < q ≤ n:

HiqZi · ÃSp −HipZi · ÃSq = 0, 1 ≤ p < q ≤ n.

11



Put in other terms and defining Z := [Z1| . . . |Zn] and S := [S1| . . . |Sn], these relations express the facts

that the matrix ZT ÃS is traceless, and that the matrix HZT ÃS is symmetric, which we may express as
orthogonality statements of the form

〈ÃS, Z〉 = 0 and 〈ÃS, ZHΩ〉 = 0, Ω ∈ An(R). (35)

In other words, the matrix ÃS is orthogonal to the following subspace of Mn(R)

V := {Z(λIn +HΩ), (λ,Ω) ∈ R×An(R)}. (36)

As established in [20, Proposition 4.3.8], we have that dimV = 1 + r(n − (r + 1)/2), where r = rankZ,
with maximal value 1 + n(n− 1)/2 when r ∈ {n− 1, n}.

Reconstruction algorithm: Assume now that we have l ≥ 1 additional solutions (v1, . . . , vl) gener-
ating spaces V1, . . . ,Vl of the form (36). Let {ep ⊗ eq − eq ⊗ ep, 1 ≤ p < q ≤ n} be a basis for An(R),

then the space
∑l

i=1 Vi is spanned by the following family

M = {Zi, ZiH(ep ⊗ eq − eq ⊗ ep) | 1 ≤ i ≤ l, 1 ≤ p < q ≤ n}, #M = dM l, (37)

with dM defined in (9). Assuming that dim
∑l

i=1 Vi = n2 − 1 throughout Ω, there is a n2 − 1-family of

M spanning it, from which we would like to reconstruct ÃS via a cross product formula, see Appendix
A.2. Now, for any n2 − 1-subfamily (M1, . . . ,Mn2−1) of M, the cross product N (M1, . . . ,Mn2−1) is

(i) either zero if (M1, . . . ,Mn2−1) is linearly dependent,

(ii) equal to ±
∣∣∣detN (M1,...,Mn2

−1)

det(ÃS)

∣∣∣
1
n

ÃS otherwise.

In the second case, we compute

N (M1, . . . ,Mn2−1)H
−1N 2(M1, . . . ,Mn2−1) =

∣∣∣∣∣
detN (M1, . . . ,Mn2−1)

det(ÃS)

∣∣∣∣∣

2
n

ÃSH−1ST ÃT .

Using the fact that SH−1ST = In, Ã = ÃT , and (det(ÃS))2 = detH, we deduce the relation

NH−1N T = (det(NH−1N T ))
1
n γ̃, with N := N (M1, . . . ,Mn2−1).

This expression also covers the case (i), as the factor in front of γ̃ is zero if (M1, . . . ,Mn2−1) is linearly
dependent. As we do not know a priori which subfamily of M is independent, we may sum over all
possible cases. With the notation I(n2 − 1, dM l) introduced in Section 2, we sum the last reconstruction
formula over all possible n2 − 1-subfamilies of M

∑

I∈I(n2−1,dM l)

N (I)H−1N (I)T = F γ̃, where F :=
∑

I∈I(n2−1,dM l)

(det(N (I)H−1N (I)T ))
1
n . (38)

F is a sum of nonnegative terms which vanishes precisely when dim
∑l

i=1 Vi < n2 − 1, so a way of

formulating the fact that dim
∑l

i=1 Vi = n2−1 and that
(∑l

i=1 Vi

)⊥
is spanned by a nonsingular matrix

is indeed

inf
x∈Ω

F(x) ≥ c1 > 0. (39)
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When condition (39) is satisfied, γ̃ is uniformly and uniquely reconstructed over Ω by the following
formula

γ̃ =
1

F
∑

I∈I(n2−1,dM l)

N (I)H−1N (I)T , x ∈ Ω. (40)

On to the reconstruction of τ , we restart from (7) and rewrite it as

γ̃∇ log τ =
2

n
|H|− 1

2

(
∇(|H| 12Hjl) · ÃSl

)
ÃSj , (41)

where γ̃ is obtained from (40). Again, we will use the cross-product expression to express ∇ log τ solely
in terms of data. For I ∈ I(n2 − 1, dM l), we have,

N (I) = ±
∣∣∣∣
detN (I)√

detH

∣∣∣∣

1
n

ÃS,

where there is a sign indeterminacy. However, this indeterminacy disappears when considering expressions
as in the right-hand side of (41):

(
∇(|H| 12Hjl) · N (I)el

)
N (I)ej = (±)2

∣∣∣∣
detN (I)√

detH

∣∣∣∣

2
n (

∇(|H| 12Hjl) · ÃSl

)
ÃSj

= (det(N (I)H−1N (I)T )
1
n

(
∇(|H| 12Hjl) · ÃSl

)
ÃSj .

Summing over I ∈ I(n2 − 1, dM l), we arrive at

∑

I∈I

(
∇(|H| 12Hjl) · N (I)el

)
N (I)ej = F

(
∇(|H| 12Hjl) · ÃSl

)
ÃSj = F|H| 12 n

2
γ̃∇ log τ,

which finally may be inverted as

∇ log τ =
2

nF|H| 12
∑

I∈I

(
∇(|H| 12Hjl) · N (I)el

)
γ̃−1N (I)ej , x ∈ Ω. (42)

This reconstruction formula guarantees a unique and stable reconstruction of τ with no ambiguity.

Proof of Proposition 2.2. The reconstruction of (γ̃, τ) is based on formulas (40) and (42). Putting defini-
tions (31), (36) and (68) together, we see that the right-hand side of (40) is, at every point, a polynomial
of power densities and their first-order derivatives. Since the denominator F in (40) is bounded away
from zero, we clearly have a continuity statement of the form

‖γ̃ − γ̃′‖L∞(Ω) ≤ C‖H −H ′‖W 1,∞(X),

where the constant C degrades like c−1
1 with c1 the constant in (39). On to the reconstruction of log τ ,

we can make the same observation as before judging by equation (42) and the fact that, since det γ̃ = 1,
the entries of γ̃−1 are polynomials in the entries of γ̃. This leads to a stability statement of the form

‖∇(log τ − log τ ′)‖L∞(Ω) ≤ C‖H −H ′‖W 1,∞(X),

where C here degrades like c−2
1 . Proposition 2.2 is proved.
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3.3 Proof of Theorem 2.5

The proof of Theorem 2.5 uses the Runge approximation for elliptic equations, which by virtue of [19,
Equivalence Theorem p.442] is equivalent to the unique continuation property. The latter property holds
for conductivity tensors with regularity no lower than Lipschitz [12]. The Runge approximation, as it is
proved in [19, 8] for instance and adapted to our case here, states that if Ω ⊂⊂ X, then any function
u ∈ H1(Ω) satisfying ∇· (γ∇u) = 0 over Ω can be approximated arbitrarily well in the sense of L2(Ω) by
solutions of (1), provided that γ is Lipschitz-continuous throughout X. In fact, we require a little more
regularity here (γ ∈ C1,α(X) with 0 < α < 1) for forward elliptic estimates.

Step 1. Local solutions with constant coefficients: Fix x0 ∈ X and B3r ≡ B3r(x0) ⊂ X a ball

of radius 3r (r tuned hereafter) centered at x0. Denote γ0 := γ(x0) and A0 := γ
1
2
0 . We first construct

solutions to the problem with constant coefficients, whose power densities will satisfy conditions (5) and
(11). Such solutions are given by

u0
i (x) := xi − xi

0, 1 ≤ i ≤ n, and for 1 ≤ j ≤ n− 1,

u0
n+j(x) :=

1

2
(x− x0) ·Qj(x− x0), Qj := A−1

0 HjA
−1
0 ,

(43)

where we have defined Hj := ej ⊗ ej − ej+1 ⊗ ej+1. These solutions satisfy ∇ · (γ0∇u) = 0 throughout
R

n, and we trivially have

det(∇u0
1, . . . ,∇u0

n) = 1, x ∈ R
n, (44)

so that condition (5) is satisfied throughout B3r. Moreover, condition (11) is also satisfied as direct
calculations lead to Zi = Qi = A−1

0 HiA
−1
0 for 1 ≤ i ≤ n − 1, and the matrix H0 := {∇u0

i · γ0∇u0
j}ni,j=1

is nothing but γ0. Thus the space of orthogonality is given by

V =

l∑

i=1

RQi +Qi γ0 An(R) = A−1
0

(
l∑

i=1

RHi +HiAn(R)

)
A−1

0 .

The last space between brackets can easily be seen to not depend on x and it spans the hyperplane of
traceless matrices {In}⊥, so that V = {γ0}⊥. In particular, condition (11) is satisfied for some constant
c1 > 0 independent of x.

Step 2. Local solutions with varying coefficients: From solutions {u0
i }2n−1

i=1 , we construct a second
family of solutions {ur

i }2n−1
i=1 via the following equation

∇ · (γ∇ur
i ) = 0 (B3r), ur

i |∂B3r
= u0

i , 1 ≤ i ≤ 2n− 1, (45)

thus the maximum principle implies that

max
1≤i≤n

‖ur
i ‖L∞(B3r) ≤ 3r and max

1≤j≤n−1
‖ur

n+j‖L∞(B3r) ≤ Cr2, (46)

where the constant only depends on the constant of ellipticity C(γ). The difference of both solutions
satisfies, for 1 ≤ i ≤ 2n− 1,

−∇ · (γ∇(ur
i − u0

i )) = ∇ · ((γ − γ0)∇u0
i ) (B3r), (ur

i − u0
i )|∂B3r

= 0, (47)
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where the right-hand side belongs to C0,α(B3r) with a uniform bound in 0 ≤ r ≤ r0 for some r0. Thus
[14, Theorem 6.6] implies that

‖ur
i − u0

i ‖C2,α(B3r) ≤ C(‖ur
i − u0

i ‖L∞(B3r) + ‖Fi‖C1,α(B3r)) ≤ C ′‖γ‖C1,α(X), (48)

where the first constant depends on n, C(γ), ‖γ‖C1,α and B3r. Interpolating between (46) and (48), we
deduce the first important fact

lim
r→0

max
1≤i≤2n−1

‖ur
i − u0

i ‖C2(B3r) = 0. (49)

Remark 3.1 (Dependency of the constants on the domain). The constant in (48) depends on ∂B3r,
thus on r, however this dependency works in our favor when shrinking the domain. This can be seen by
rescaling the problem x → x0 + rx′, x′ ∈ B3(0) to keep the domain fixed, and studying the behavior of the
constants w.r.t. the rescalings.

Step 3. Runge approximation (control from the boundary ∂X): Assume r has been fixed at
this stage. By virtue of the Runge approximation property, for every ε > 0 and 1 ≤ i ≤ 2n − 1, there
exists gεi ∈ H

1
2 (∂X) such that

‖uε
i − ur

i ‖L2(B3r) ≤ ε, where uε
i solves (1) with uε

i |∂X = gεi . (50)

Now applying [14, Theorem 8.24] using the fact that ∇ · (γ∇(uε
i − ur

i )) = 0 thoughout B3r, we deduce
that there exists β > 0 such that

‖uε
i − ur

i ‖Cβ(B2r)
≤ C‖uε

i − ur
i ‖L2(B3r) ≤ Cε, (51)

where the constant only depends on n, C(γ) and r = dist (B2r, ∂B3r), in particular the same estimate
holds with ‖uε

i − ur
i ‖L∞(B2r) on the left-hand side. Finally, combining (51) with [14, Corollary 6.3], we

arrive at

‖uε
i − ur

i ‖C2(Br)
≤ C

r2
‖uε

i − ur
i ‖L∞(B2r) ≤

C

r2
ε,

where the constant only depends on α, n, C(γ) and ‖γ‖C1,α(X). Since r is fixed at this stage, we deduce
that

lim
ε→0

max
1≤i≤2n−1

‖uε
i − ul

i‖C2(Br) = 0. (52)

Completion of the argument: For any Ω ⊂ X, the following functionals are continuous

C1,α(Ω)× C2(Ω)× C2(Ω) 3 (γ, u, v) 7→ H(γ, u, v) = ∇u · γ∇v ∈ W 1,∞(Ω),

[W 1,∞(Ω)]n(n+1)/2 3 {Hij}1≤i≤j≤n 7→ det{Hij}ni,j=1 ∈ W 1,∞(Ω),

H = {Hij}1≤i≤j≤2n−1 7→ F(H,∇H) ∈ L∞(Ω),

where in the last case, F is defined in (38) with l = n− 1 and its the domain of definition is

[W 1,∞(Ω)](2n−1)n with the condition inf
Ω

det{Hij}ni,j=1 > 0.
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Step 1 established that det{H0
ij}1≤i≤j≤n and F(H0,∇H0) were bounded away from zero over Br. Due

to the limits (49) and (52), there exists a small r > 0, then a small ε > 0 such that max1≤i≤2n−1 ‖uε
i −

u0
i ‖C2(Br(x0)) is so small that, by the continuity of the functionals mentioned above, det{Hε

ij}1≤i≤j≤n and
F(Hε,∇Hε) remain uniformly bounded from zero over Br, where we have denoted Hε

ij := ∇uε
i · γ∇uε

j

for 1 ≤ i, j ≤ 2n− 1. Conditions (5) and (11) are thus satisfied over Br by the family {uε
i}2n−1

i=1 which is
controlled by boundary conditions. The proof of Theorem 2.5 is complete.

4 Global questions

4.1 Admissibility sets and their properties

For compactness of notation, we denote by I(M,N) (M ≤ N) the set of increasing injections from [1,M ]
to [1, N ] (i.e. I ∈ I(M,N) has the form I = (i1, . . . , iM ) with 1 ≤ i1 < · · · < iM ≤ N).

The sets Gγ: The first admissibility set is that of boundary conditions ensuring that the scalar factor
τ is uniquely and stably reconstructible. This requires the existence of, locally, n solutions with linearly
independent gradients. Although one can easily choose m = n in two dimensions thanks to [1, Theorem
4], some counterexamples in higher dimensions [18, 9] show that one may need stricly more than n
solutions in general, hence the definition below.

Definition 4.1 (Admissibility set Gm
γ , m ≥ n). Let γ ∈ Σ(X) be a given conductivity tensor. For m ≥ n,

an m-tuple g = (g1, .., gm) ∈ (H
1
2 (∂X))m belongs to Gm

γ if the following conditions are satisfied (denote
ui the solution of (1) with ui|∂X = gi):

(i) The power densities Hij = ∇ui · γ∇uj belong to W 1,∞(X) for 1 ≤ i, j ≤ m.

(ii) There exists a constant Cg > 0 such that

inf
x∈X

Dm
γ [g](x) ≥ Cg, where Dm

γ [g](x) :=
∑

I∈I(n,m)

det{Hpq}p,q∈I . (53)

Condition (i) above allows to construct a finite open cover of X in a generic manner, where to each
open set Ωk can be associated a single basis of n solutions, see [20, Prop. 5.1.2]. This basis can then
be used to reconstruct τ throughout each Ωk. Doing this for each Ωk and patching reconstructions
appropriately allows to reconstruct τ in a globally unique and stable fashion, as is summarized in [20,
Theorem 5.1.4].

The sets Aγ: On to the global reconstruction of the anisotropy γ̃, we now define a second class of sets
of boundary conditions, such that the solutions generated satisfy condition (11) throughout X.

Let γ such that Gm
γ 6= ∅ for some m ≥ n and pick g ∈ Gm

γ with constant Cg as in (53). By virtue of

[20, Prop. 5.1.2], there exists an open cover made of balls O = {Ωk}Kk=1 of X, a constant C ′
g > 0 and an

indexing function I(k) = (i(k)1, . . . , i(k)n) ∈ I(n,m) for 1 ≤ k ≤ K

min
1≤k≤K

inf
x∈Ωk

detH(k) ≥ C ′
g, H(k) := {Hpq, p, q ∈ I(k)}, (54)
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i.e. one may use {∇ui}i∈I(k)
as a support basis over Ωk. Given an additional solution vα, we now

construct over each Ωk a basis for the space V based on the local support basis:

Vα|Ωk
= RZα(k) + Zα(k)H(k)An(R), where for 1 ≤ j ≤ n,

Zα(k)ej := (−1)j+n+1∇
(
det{Hpq, p ∈ I(k), q ∈ subs (I(k), j, α)} / detH(k)

) (55)

and where “subs (I(k), i(k)j , α)” is obtained from I(k) by replacing i(k)j by α. From a collection of l
additional solutions, similarly to (37), we build over each Ωk the family of matrices

M|Ωk
= {Zi(k), Zi(k)H(k)(ep ⊗ eq − eq ⊗ ep) | 1 ≤ i ≤ l, 1 ≤ p < q ≤ n}, (56)

of cardinality dM l with dM defined in (9), so that we may rewrite it generically as

M|Ωk
= {M(k)i | 1 ≤ i ≤ dM l}.

Definition 4.2 (Admissibility setAm,l
γ (g) for g ∈ Gm

γ ). For m ≥ n, let us assume that g = (g1, · · · , gm) ∈
Gm
γ , and let (O = {Ωk}Kk=1, I, Cg) an open cover, an indexing function and a constant associated to it.

For l ≥ 1, we say that l additional boundary conditions h = (h1, · · · , hl) ∈
(
H

1
2 (∂X)

)l
belong to the set

of admissibility Am,l
γ (g) if there exists a constant Cg,h > 0 such that the following condition holds

min
1≤k≤K

inf
x∈Ωk

Fm,l
γ [g,h]|Ωk

(x) ≥ Cg,h, where (57)

Fm,l
γ [g,h]|Ωk

:=
∑

J∈I(n2−1,dM l)

det(N(k)(J)H
−1
(k)N(k)(J)

T )
1
n , (58)

N(k)(J) := N (M(k)j1 , . . . ,M(k)j
n2

−1
).

With definitions 4.1 and 4.2 in mind, in the sense of the present derivations, we may say that a tensor
γ is globally reconstructible from power densities if Gm

γ 6= ∅ for some m ≥ n and for g ∈ Gm
γ , Am,l

γ (g) 6= ∅
for l ≥ 1 large enough.

4.2 Properties of the admissibility sets

Openness properties of Gγ and Aγ:

• For C1,α-smooth γ an C3-smooth ∂X, the sets Gγ and Aγ are open for the topology of C2,α(∂X)
boundary conditions ([20, Lemma 5.2.2]).

• For C1,α-smooth γ ([20, Lemma 5.2.3]).

Behavior of Gγ and Aγ with respect to push-forwards by diffeomorphisms: In the topic of
inverse conductivity, diffeomorphisms are used in the anisotropic Calderón’s problem to exhibit an ob-
struction to uniqueness. Here, these diffeomorphisms work in our favor in the sense that the property of
being locally or globally reconstructible from power densities carries through push-forwards by diffeor-
morphisms.

Let Ψ : X → Ψ(X) be a W 1,2-diffeomorphism where X has smooth boundary. Then for γ ∈ Σ(X),
we define over Ψ(X) the push-forward of γ by Ψ, denoted Ψ?γ, the tensor

Ψ?γ(y) := (|JΨ|−1DΨ γ DΨT ) ◦Ψ−1(y), y ∈ Ψ(X), JΨ := detDΨ. (59)
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As explained in [3], Ψ?γ ∈ Σ(Ψ(X)), and Ψ pushes foward a solution u of (1) to a function v = u ◦Ψ−1

satisfying the elliptic equation

−∇y · (Ψ?γ∇yv) = 0 (Ψ(X)), v|∂(Ψ(X)) = g ◦Ψ−1,

moreover Ψ and Ψ|∂X induce isomorphisms of H1(X) and H
1
2 (∂X) onto H1(Ψ(X)) and H

1
2 (∂(Ψ(X))),

respectively. For our proofs based on pointwise estimates, we will add the further requirement that Ψ
satisfies a condition of the form

C−1
Ψ ≤ |JΨ(x)| ≤ CΨ, x ∈ X, for some constant CΨ ≥ 1. (60)

We define the relation (γ,X) ∼ (γ′, X ′) iff there exists Ψ : X → X ′ a diffeomorphism onto X ′ satisfying
(60), such that γ′ = Ψ?γ. It is clear that ∼ is an equivalence relation.

With these definitions in mind, our main observation is the following

Proposition 4.3 (Prop. 5.2.4-5.2.5 in [20]). For γ ∈ Σ(X) and Ψ : X → Ψ(X) a W 1,2-diffeomorphism
satisfying (60), we have for any m ≥ n

Gm
Ψ?γ = {g ◦Ψ−1 : Gm

γ }. (61)

Moreover, if g ∈ Gm
γ for some m ≥ n, then we have

Am,l
Ψ?γ

(g ◦Ψ−1) = {h ◦Ψ−1 : h ∈ Am,l
γ (g)}. (62)

Remark 4.4. In other words, when a tensor γ is reconstructible from power densities, then so is any
tensor of the form Ψ?γ with Ψ defined as above. Moreover, if (g1, . . . , gm, h1, . . . , hl) are boundary condi-
tions on ∂X whose corresponding solutions allow to reconstruct γ via the above explicit algorithms, then
one may pick precisely (g1, . . . , gm, h1, . . . , hl) ◦ Ψ−1 as boundary conditions on ∂(Ψ(X)) to reconstruct
Ψ?γ. In particular, if Ψ fixes the boundary ∂X, then one may pick the same boundary conditions as γ
to reconstruct Ψ?γ.

Proof of proposition 4.3: Let g ∈ Gm
γ for m ≥ n. The corresponding solutions {ui}mi=1 are being pushfor-

warded to functions vi = ui ◦ Ψ−1 over Ψ(X) whose power densities are denoted H ′
ij = ∇vi · [Ψ?γ]∇vj .

For this proof, primed quantities will always indicate quantities referring to the push-forwarded problem.
Using the chain rule and the definition of Ψ?γ, we have the transformation law

Hij(x) = |JΨ(x)|H ′
ij(Ψ(x)), x ∈ X. (63)

Since the functions Dm
γ [g] defined in (53) are homogeneous polynomials of power densities of degree n,

we have the following relation

Dm
γ [g](x) = |JΨ(x)|nDm

Ψ?γ [g ◦Ψ−1](Ψ(x)), x ∈ X. (64)

By virtue of condition (60), the left-hand side of (64) is uniformly bounded away from zero if and only
if the right-hand side is as well, which concludes the proof of (61).

On to the proof of (62), we first look at how things are being push-forwarded locally. As in the
preliminaries before definition 4.2, an open over O = {Ωk}Kk=1 of X yields an open cover {Ψ(Ωk)}Kk=1 of
Ψ(X) with the same indexing function I. This is because of the transformation law

det(∇xui1 , . . . ,∇xuin)(x) = JΨ(x) det(∇yvi1 , . . . ,∇yvin)(Ψ(x)), x ∈ X,
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which ensures that {∇xui}i∈I(k) is a basis over Ωk iff {∇yvi}i∈I(k) is a basis over Ψ(Ωk) with vi = ui◦Ψ−1.
Using (63) and the chain rule, the matrices Zα(k) defined in (55) admit the transformation law

Zα(k) = DΨT Z ′
α(k) ◦Ψ (Ωk). (65)

In the definition (55) of the space Vα|Ωk
, the scalar function |JΨ| appearing from the fact that H(k)(x) =

|JΨ(x)|H ′
(k)(Ψ(x)) may be absorbed by the space An(R), so that we may write

Vα|Ωk
= DΨT V ′

α|Ωk
◦Ψ (Ωk).

Thus the family M|Ωk
(56), from the elements of which one construct cross-products, transforms as

M|Ωk
= DΨT M′|Ψ(Ωk) ◦Ψ (Ωk).

Using formula (71), we deduce that for J ∈ I(n2 − 1,#M) and throughout Ωk

N(k)(J) = N (M(k)j1 , . . . ,M(k)j
n2

−1
)

= N (DΨT M ′
(k)j1

◦Ψ, . . . , DΨT M ′
(k)j

n2
−1

◦Ψ)

= (JΨ)
nDΨ−1N (M ′

(k)j1
, . . . ,M ′

(k)j
n2

−1
) ◦Ψ.

In particular, the function Fm,l
γ [g,h]|Ωk

defined in (58) transforms according to the rule

Fm,l
γ [g,h]|Ωk

= |JΨ|2n−1− 2
nFm,l

Ψ?γ
[g ◦Ψ−1,h ◦Ψ−1] ◦Ψ. (66)

Again, by virtue of (60), the left-hand side of (66) is bounded away from zero iff the right-hand side is
bounded away from zero. Taking the minimum over 1 ≤ k ≤ K does not change this property, thus (62)
is proved.

A Linear algebra

A.1 Relations of linear dependence

Lemma A.1. Let (V1, . . . , Vn+1) be n + 1 vectors in R
n, and denote Hij = Vi · Vj for 1 ≤ i, j ≤ n + 1.

Then the following linear dependence relation
∑n+1

i=1 µiVi = 0 holds with coefficients

µi = − det(V1, . . . , Vn) · det(V1, . . . , Vn+1︸ ︷︷ ︸
i

, . . . , Vn),

= (−1)i+n+1 det{Hpq | 1 ≤ p ≤ n, 1 ≤ q ≤ n+ 1, q 6= i}, 1 ≤ i ≤ n,

and µn+1 = det(V1, . . . , Vn)
2 = det{Hij}1≤i,j≤n.

(67)

Proof. Define the µi’s as in the statement of the function and let us show that
∑n+1

i=1 µiVi = 0. Consider
the vector field defined by the following formal (n+ 1)× (n+ 1) determinant

V = det




V1 · V1 · · · V1 · Vn V1 · Vn+1

...
. . .

...
...

Vn · V1 · · · Vn · Vn Vn · Vn+1

V1 · · · Vn Vn+1


 ,
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i.e. computed by expanding along the last row. Then we have

V =

n+1∑

i=1

(−1)i+n+1 det ({Hpq}1≤p≤n,1≤q≤n+1,q 6=i) Vi

=

n+1∑

i=1

(−1)i+n+1 det(V1, . . . , Vn) det(V1, . . . , Vî, . . . , Vn+1) Vi

= −
n∑

i=1

det(V1, . . . , Vn) · det(V1, . . . , Vn+1︸ ︷︷ ︸
i

, . . . , Vn)Vi + det(V1, . . . , Vn)
2Vn =

n+1∑

i=1

µiVi,

where moving Vn+1 back to the i-th position in the i-th requires n − i sign flips. We now show that
V = 0. For 1 ≤ i ≤ n, the dotproduct V · Vi becomes a determinant of a matrix whose rows of indices
i and n + 1 are equal, therefore V · Si = 0. Moreover, V · Sn+1 is nothing but the determinant of the
Gramian matrix of (V1, . . . , Vn+1), which is zero since n + 1 vectors are necessarily linearly dependent.
Concluding, we have

V · V =

n+1∑

i=1

µiV · Vi = 0,

thus V = 0, hence the lemma.

A.2 Generalization of the cross-product

Let us consider a N -dimensional inner product space (V, 〈, 〉) with a basis (e1, · · · , eN ). Given a linearly
independent family of N − 1 vectors (V1, · · · , VN−1) in V, a (non-normalized) normal to the hyperplane
spanned by (V1, · · · , VN−1) is given by computing the formal V-valued determinant

N (V1, · · · , VN−1) :=
1

det(e1, · · · , eN )

∣∣∣∣∣∣∣∣∣

〈V1, e1〉 · · · 〈V1, eN 〉
...

. . .
...

〈VN−1, e1〉 · · · 〈VN−1, eN 〉
e1 · · · eN

∣∣∣∣∣∣∣∣∣

, (68)

to be expanded along the last row. The function N can be easily seen to be N − 1-linear and alternat-
ing, and its definition does not depend on the choice of basis (e1, · · · , eN ). Moreover, N satisfies the
orthogonality property

〈N (V1, · · · , VN−1), Vj〉 = 0, 1 ≤ j ≤ N − 1,

as such dotproducts take the form of determinants with identical j-th and N -th rows. The first important
property is that the squared norm of N represents the hypervolume spanned by V1, . . . , VN−1:

〈N ,N〉 = det{〈Vi, Vj〉}1≤i,j≤N−1, (69)

We now derive transformation rules when using linear transformations. For L : V → V an automor-
phism, the following proposition relates N (V1, · · · , VN−1) with N (LV1, · · · , LVN−1).
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Proposition A.2. For L ∈ Aut(V) and (V1, · · · , VN−1) a family of linearly independent vectors, the
operator N defined in (68) satisfies the transformation rule

N (LV1, · · · , LVN−1) = (detL)L−TN (V1, · · · , VN−1). (70)

Proof. Direct computations yield, picking a basis (e1, · · · , eN )

N (LV1, · · · , LVN−1) =
1

det(e1, · · · , eN )

∣∣∣∣∣∣∣∣∣

〈LV1, e1〉 · · · 〈LV1, eN 〉
...

...
...

〈LVN−1, e1〉 · · · 〈LVN−1, eN 〉
e1 · · · eN

∣∣∣∣∣∣∣∣∣

=
detL

det(LT e1, · · · , LT eN )
L−T

∣∣∣∣∣∣∣∣∣

〈V1, L
T e1〉 · · · 〈V1, L

T eN 〉
...

...
...

〈VN−1, L
T e1〉 · · · 〈VN−1, L

T eN 〉
LT e1 · · · LT eN

∣∣∣∣∣∣∣∣∣

,

where we recognize N (V1, · · · , VN−1) expressed in the basis (LT e1, · · · , LT eN ), hence the result.

We are now interested in the case where V = Mn(R) with the inner product 〈M1,M2〉 = tr (M1M
T
2 ),

and where the automorphism LA denotes left-multiplication by a non-singular matrix A. First of all, it
is straightforward to see that LT

A = LAT and L−1
A = LA−1 , where T and −1 on the right-hand side denote

regular matrix transposition and inversion.
With (e1, · · · , en) the canonical basis of Rn, the family Eij = ei⊗ej for 1 ≤ i, j ≤ n is an orthonormal

basis for Mn(R) and we define the orientation on Mn(R) by

det(E11, · · · , En1, · · · , E1n, · · · , Enn) = 1.

Now, if we represent the vectors AEij in the above oriented basis, we see that

detLA = det
Mn(R)

(AE11, · · · , AEn1, · · · , AE1n, · · · , AEnn) = det

∣∣∣∣∣∣∣

A 0 0

0
. . . 0

0 0 A

∣∣∣∣∣∣∣
= (det

Rn
A)n.

This brings us to the relation of interest:

Corollary A.3. For (M1, . . . ,Mn2−1) ∈ Mn(R), A ∈ Gln(R) and N defined as in (68), we have the
following transformation rule:

N (AM1, . . . , AMn2−1) = (detA)nA−TN (M1, . . . ,Mn2−1). (71)
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