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Abstract. This paper proposes an iterative technique to reconstruct the source
term in transport equations, which account for scattering effects, from boundary
measurements. In the two-dimensional setting, the full outgoing distribution in the
phase space (position and direction) needs to be measured. In three space dimensions,
we show that measurements for angles that are orthogonal to a given direction are
sufficient. In both cases, the derivation is based on a perturbation of the inversion of the
two-dimensional attenuated Radon transform, and requires that (the anisotropic part
of) scattering be sufficiently small. We present an explicit iterative procedure, which
converges to the source term we want to reconstruct. Applications of the inversion
procedure include optical molecular imaging, an increasingly popular medical imaging
modality.

1. Introduction

Optical molecular imaging (OMI) is being increasingly studied as a powerful detection

method in medical imaging. New biochemical markers are currently being engineered to

attach to specific molecules and thus be used to detect faulty genes and other molecular

processes, which precede the development of certain diseases. This makes possible

the detection of such diseases long before phenotypical symptoms appear. In optical

molecular imaging, the markers are light-emitting molecules, such as fluorophores or

luminophores. Compared to other molecular imaging techniques, such as single photon

emission tomography (SPECT) or positron emission tomography (PET), optical markers

emit low-energy near-infrared photons that are relatively harmless to the human body.

Other advantages are their high sensitivity to oxygen levels, metal ion concentrations,

pH, lipid composition, for instance; see [30, 31, 38, 39] for recent references in the

biomedical literature.

The inverse problem consists of reconstructing the spatial distribution of the

markers from measurements of light intensities at the boundary of the object we wish

to image. Two main types of markers are used in OMI, namely bioluminescent and

fluorescent markers. In both cases, the propagation in human tissues of the photons

emitted by the markers can quite satisfactorily be modeled as inverse source problems

of time-harmonic and steady-state radiative transfer equations [11, 20, 40]. To simplify
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the presentation, we only consider the steady-state problem here, for which relatively

few results exist in the mathematical literature.

Our main result consists in providing an explicit (and converging) iterative

technique to reconstruct the source term from boundary measurements of the photon

intensity in the phase space, i.e., as a function of position and angular direction. We

consider the two-dimensional and the three-dimensional settings. In both cases, we have

to assume that the anisotropic part of scattering is sufficiently regular and small (in the

sense that a certain operator linear in the anisotropic part of the scattering term must

have norm bounded by one in appropriate spaces). In three dimensions, we show that

measurements of the photon intensity for directions orthogonal to an arbitrary given

vector is sufficient. Both results are based on perturbations of the Novikov inversion

formula to invert the attenuated Radon transform; see [2, 6, 8, 9, 14, 15, 19, 25, 28, 29]

for some references on that problem, and we thus show that the Novikov inversion

formula is stable under perturbations by a scattering operator. How small scattering

has to be in terms of the absorbing and geometric properties of the domain is somewhat

characterized in Corollary 3.7.

Several imaging techniques such as SPECT and PET are based on the inversion

of the Radon transform or the attenuated Radon transform. Because optical markers

emit low-energy light, the photons scatter before they are measured. This renders

the inversion more difficult than in the higher energy methods SPECT and PET and

necessitates the use of transport equations that account for scattering effects. For earlier

works on the inverse source problem of transport equations based on different methods,

we refer to [1, 21, 32, 34, 35]. In this paper, we are interested only in the source

reconstruction and assume that the absorption and scattering coefficients are known;

see [3, 4, 5, 12, 18, 22, 23, 36, 37] for references on the determination of these parameters.

The iterative procedure presented here will not work in the highly scattering regime

(unless that scattering is fully isotropic), in which case the diffusion approximation

should be used [3]. It should be mostly effective in situations where scattering needs to

be accounted for to obtain a desired accuracy in the reconstruction, and yet is not too

strong for a method based on a perturbation of a non-scattering inversion technique to

converge. Practically, we expect this situation to arise in OMI in small domains (on the

order of 5− 10 mean free paths) such as small animals, and in SPECT and PET where

moderate scattering is accounted for.

The rest of the paper is organized as follows. Section 2 introduces the inverse

source problem in transport equations and presents our main results. The derivation of

the results is postponed to section 3 for the two-dimensional case and section 4 for the

three-dimensional extension.

2. An inverse source problem

The distribution of photons emitted by the markers is denoted by f(x), where position

x ∈ Ω ⊂ Rd. Here Ω is a bounded open convex domain and d = 2, 3 is the space
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dimension. We normalize the light speed to unity and denote by θ ∈ Sd−1 the direction

of the photons. Notice that d = 3 is the physical model, whereas d = 2 is not physical

as photons are only allowed to travel in a two-dimensional plane.

Let u(x, θ) be the density of photons at position x moving in the direction θ and

let

Γ± = {(x, θ) ∈ ∂Ω× Sd−1, ±θ · n(x) > 0}, (1)

denote the boundary spaces. Here n(x) is the outward normal to Ω at x ∈ ∂Ω. The

density of particles satisfies the radiation transfer (transport) equation

θ · ∇xu(x, θ) + a(x)u(x, θ) = Ku(x, θ) + f(x), in Ω× Sd−1

u(x, θ) = 0, on Γ−,
(2)

where the measure dθ is the usual surface measure on the unit sphere normalized such

that
∫

Sd−1 dθ = 1. Photon interaction with the underlying medium is modeled by an

absorption parameter a(x) and a scattering operator

Ku(x, θ) =

∫
Sd−1

k(x, θ · θ′)u(x, θ′)dθ′, (3)

where k(x, µ) is the scattering coefficient. Both the absorption and scattering coefficients

are assumed to be non-negative, sufficiently smooth functions such that

a(x)−
∫

Sd−1

k(x, θ · θ′)dθ′ ≥ δ > 0, (4)

for some positive constant δ. This sub-criticality condition ensures that the above

problem is well-posed in L2(Ω × Sd−1) provided that the source term f(x) ∈ L2(Ω);

see [13] for instance. Moreover, the outgoing photon distribution, defined as the

trace of u(x, θ) on Γ+ is well-defined and belongs to L2
θ·n(Γ+), in the sense that∫

Γ+
θ·nu2(x, θ)dσ(x)dθ < ∞, where dσ is the surface measure on ∂Ω. Further regularity

and smallness assumptions on k will be stated within the theorems. For references on

the mathematical theory of the transport equation (2), see for instance [10, 13, 24].

It is convenient in the analysis to have unbounded spatial domains. We extended

f(x) and k(x, µ) by 0 on Rd\Ω and extend a(x) on Rd by preserving its smoothness and

compact support. The transport equation is now recast as

θ · ∇xu(x, θ) + a(x)u(x, θ) = Ku(x, θ) + f(x), in Rd × Sd−1

lim
t→∞

u(x− tθ, θ) = 0, on Rd × Sd−1.
(5)

The restriction of the above solution on Ω× Sd−1 clearly solves (2).

Our main results are that in dimension d = 2, knowledge of

m(s, θ) = lim
t→∞

u(tθ + sθ⊥, θ), (6)

on R × S1 uniquely determines f(x) compactly supported on the bounded domain

Ω provided that the scattering kernel k(x, µ) is sufficiently small. Moreover the
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reconstruction is explicit, in the sense that f(x) is obtained as the limit of a converging

Neumann series expansion.

In three dimensions, d = 3, the above result generalizes as follows. Let an

arbitrary vector in R3 be given, which after possible rotation of Ω we denote ez. For

θ = (cos θ, sin θ, 0), we define θ⊥ = (− sin θ, cos θ, 0). Then knowledge of

m(z, s, θ) = lim
t→∞

u(tθ + sθ⊥ + zez, θ), (7)

for (z, s, θ) ∈ R × R × (0, 2π) uniquely determines f(x) compactly supported on the

bounded domain Ω. This result also requires that k(x, µ) be sufficiently small in an

appropriate sense and the reconstruction is explicit in the sense mentioned above. This

implies that the outgoing measurements are known only for directions orthogonal to ez.

Note that in both cases, the problem is formally determined since both the measurements

as well as the unknown source term are d−dimensional.

To state the regularity and smallness assumption of the scattering, we introduce the

following notation. When d = 2, we identify k(x, θ ·θ′) = k(x, cos(θ− θ′)) = k̃(x, θ− θ′)

and define the Fourier coefficients kn(x) by

kn(x) =
1

2π

∫ 2π

0

k̃(x, θ)e−inθdθ. (8)

By k̂n(ξ), we mean its Fourier transform k̂n(ξ) =
∫

R2 e−iξ·xkn(x)dx.

When d = 3, we use the Legendre polynomials expansion in L2[−1, 1]:

k(x, t) =
∞∑

n=0

kn(x)Pn(t). (9)

By k̂n(ξ′, z), we mean the restricted Fourier transform to the horizontal plane k̂n(ξ, z) =∫
R2 e−ix′·ξ′kn(x′, z)dx′. For θ = (cos θ sin φ, sin θ sin φ, cos φ) ∈ S2, 0 ≤ θ < 2π,

0 ≤ φ < π let

Ynm(θ) = C1/2
nmeimθPm

n (cos φ) (10)

denote the spherical harmonics on the sphere S2. Here, Pm
n are the associated Legendre

polynomials and Cnm = (2n + 1)(n−m)!/(n + m)!; see [17] for details. We only need

to consider horizontal directions

θ ∈ S2
H = {θ ∈ S2 : θ · ez = 0}. (11)

We are ready to formulate our main results, whose proof is postponed to the following

sections. The decay uses the usual notation 〈n〉 = (1 + |n|2)1/2.

Theorem 2.1 (two-dimensional case) Let f(x) ∈ L2(R2) be a source term of

compact support in Ω and a(x) a sufficiently smooth absorption coefficient of compact
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support. Then there exists ε > 0 depending on the size of the support and on the

smoothness of a such that, for a scattering coefficient k with

max
n∈Z

〈n〉α‖k̂n‖2
L1(R2) < ε, (12)

for some α > 1, the measurements m(s, θ) in (6) uniquely determine the source term

f(x). Moreover, the source term f(x) can be obtained as the limit of the explicit

convergent Neumann series in (44) below; see also Remark 3.12. A more explicit

expression for ε in (12) can be found in Corollary 3.7 below.

Theorem 2.2 (three-dimensional case) Let f(x) ∈ L2(R3) be a source term of

compact support and a(x) a sufficiently smooth absorption of compact support. Then

there exist an ε > 0 depending on the size of the support and on the smoothness of a

such that, for a scattering kernel k with

max
n∈N

(
〈n〉α−1 max

|m|≤n
max
θ∈S2

H

|Ynm(θ)|2
∫

R
‖k̂n(·, z)‖2

L1(R2)dz

)
≤ ε (13)

for some α > 1, the measurements m(z, s, θ) in (7) uniquely determine the source term

f(x). Moreover, the source term f(x) can be obtained as the limit of the convergent

Neumann series expansion in (66) below.

Note that each theorem requires smallness as well as (weak) smoothness on the

scattering kernel k. That k is not arbitrary is already apparent in the existence theory

for the forward problem, where we have assumed (4). The L1-norm in the Fourier

variables implies continuity of the scattering in the horizontal plane. The Sobolev-type

decay property implies smoothness in the angular variable. For instance, α > 2 in (12)

already implies continuity of k in θ. The size of ε depends on the (operator) norm of the

operator NK introduced below and is not explicit. This restriction is the price to pay

to obtain a reconstruction as a perturbation of the inversion of the attenuated Radon

transform, where there is no scattering.

Let us conclude this section by noting, as was mentioned in the introduction, that

only the anisotropic part of the scattering need be small:

Corollary 2.3 The results stated in Theorems 2.1 and 2.2 are still valid when (12) and

(13), respectively, hold only for n 6= 0.

Proof. Indeed, let us decompose K = K0 + K1, where K0u(x) =

k0(x)
∫

Sd−1 u(x, θ′)dθ′ is the isotropic part of K, and K1 = K − K0 the anisotropic

part. We can then define the source term

F (x) = f(x) + K0u(x), (14)

where u(x, θ) is the solution to (5). We then verify that u also solves

θ · ∇xu(x, θ) + a(x)u(x, θ) = K1u(x, θ) + F (x), in Rd × Sd−1

lim
t→∞

u(x− tθ, θ) = 0, on Rd × Sd−1.
(15)
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We can then apply Theorems 2.1 or 2.2, depending on dimension d, based on the

smallness assumptions on K1, and conclude that F (x) can be reconstructed from the

boundary measurements. Once F (x) is known, we can solve for u in (15) and thus

calculate K0u(x). It remains to identify f(x) = F (x) −K0u(x) to conclude the proof

of the corollary.

3. Derivation in two space dimensions

This section is devoted to the derivation of the inversion procedure in two space

dimensions and on the proof of Theorem 2.1. For any unit vector θ ∈ S1, we

introduce the representation θ = (cos θ, sin θ) for 0 ≤ θ < 2π and identify any function

f(θ) ≡ f(θ).

We define the classical beam transform S and the symmetrized beam transform D

(independently of the spatial dimension d) as

Sa(x, θ) =

∫ 0

−∞
a(x + sθ)ds, (16)

Da(x, θ) =
1

2

(∫ 0

−∞
a(x + sθ)ds−

∫ ∞

0

a(x + sθ)ds
)
. (17)

Since a(x) is smooth and compactly supported, Da(x, θ) and (eDa)(x, θ) are well-defined

smooth functions. We next introduce

w(x, θ) = (eDau)(x, θ). (18)

We know from the existence theory for the forward problem that w is well-defined. We

verify that it solves the equivalent integral equation

w(x, θ) = SeDaKe−Daw(x, θ) + SeDaf(x, θ). (19)

The transport operator inverting the transport equation can be written as

T = [I − SeDaKe−Da]−1SeDa. (20)

Under the sub-critical assumption (4) T is bounded from L2(Ω) to L2(R2 × S1). We

have then

w(x, θ) = Tf(x, θ) = SeDaf + SeDaKe−DaTf. (21)

Let us introduce the operator L acting on functions w(x, θ) as

Lw(s, θ) = lim
t→∞

w(tθ + sθ⊥, θ). (22)

The product LS is the usual Radon transform

Rf(s, θ) = LSf(s, θ). (23)

It is convenient to work with slightly modified measurements. Let us introduce

g(s, θ) = Lw(s, θ) = lim
t→∞

(eDau)(tθ + sθ⊥, θ) = e
1
2
Ra(s, θ)m(s, θ), (24)
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where m(s, θ) was defined in (6). Since a is known, then so are the new “measurements”

g(s, θ).

Let us finally introduce the attenuated X−ray transform operator

Raf(s, θ) = LSeDaf(s, θ). (25)

Applying L to (19), we deduce that the measurements g(s, θ) are given by

g(s, θ) = Raf(s, θ) + ReDaKe−DaTf(s, θ). (26)

An inversion for Ra was recently obtained in [28]; see also [2, 6, 8, 9, 25, 29] for recent

works on the attenuated X−ray transform. We define the inversion operator N , acting

on functions g(s, θ) defined on R× S1, by

Ng(x) =
1

4π

∫ 2π

0

θ⊥ ·∇x(R
∗
−a,θHag)(x, θ)dθ, (27)

where

R∗
a,θg(x) = eDθa(x)g(x·θ⊥),

Ha = CcHCc + CsHCs, Hu(t) =
1

π

∫
R

u(s)

t− s
ds,

Ccg(s, θ) = g(s, θ) cos(
HRa(s, θ)

2
), Csg(s, θ) = g(s, θ) sin(

HRa(s, θ)

2
).

(28)

The integral in the Hilbert transform H, which acts in Cc and Cs on the s variable,

has to be understood in the principal value sense. Note that Ha = H in the absence of

absorption (a ≡ 0) and that the above formula then becomes the usual inversion of the

Radon transform [26].

We thus formally apply the operator N to (26) and obtain the equation for f(x) of

Fredholm type:

Ng(x) = f(x) + NReDaKe−DaTf(x) = (I −NK)f(x), (29)

Let χ(x) be a cut-off function supported on Ω and such that χ ≡ 1 on the support

of f . The equation above is recast as

χ(x)Ng(x) = f(x) + χNReDaKe−DaTf(x) = (I −NK)f(x), (30)

where we have introduced the operator NK = −χNReDaKe−DaT .

The proof of Theorem 2.1 is based on the following result

Theorem 3.1 The operator NK defined above is bounded from L2(Ω) to L2(Ω).

We study first the mapping properties of the scattering operator K. For this we

introduce the functional spaces

L2̂(R2; C0(S1)) =
{

u(x, θ) s.t. û(ξ, θ) ∈ L2(R2; C0(S1))
}

, (31)

L2̂(Ω; C0(S1)) =
{

u ∈ L2̂(R2; C0(S1)) s.t. suppu(·, θ) ⊆ Ω
}

, (32)
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endowed with the norm

‖u‖2
L2̂(R2;C0(S1))

= ‖û‖2
L2(R2;C0(S1)) =

∫
R2

max
θ∈S1

|û(ξ, θ)|2dξ.

Since K is a convolution in the angular variable, it is decomposed as

Ku(x, θ) =
∞∑

n=−∞

kn(x)un(x)einθ. (33)

Lemma 3.2 Assume that supp k(·, θ) ⊂ Ω and that maxn∈Z〈n〉α‖kn‖2
L1(R2) < C for

some α > 1. Then the operator K maps L2(R2 × S1) to L2̂(Ω; C0(S1)).

Proof. Taking the Fourier transform in the space variable in (33) we get

|K̂u(ξ, θ)|2 =

∣∣∣∣∣
∞∑
−∞

(k̂n ∗ ûn)(ξ)einθ

∣∣∣∣∣
2

≤

(
∞∑
−∞

∣∣∣k̂n ∗ ûn

∣∣∣ (ξ)

)2

≤

(
∞∑
−∞

1

〈n〉α

)(
∞∑
−∞

〈n〉α|k̂n ∗ ûn|2(ξ)

)
.

Now we take the maximum over θ ∈ S1 on both sides and integrate in ξ ∈ R2 to get

‖Ku‖2
L2̂(R2;C0(S1))

≤

(
∞∑
−∞

1

〈n〉α

)
∞∑
−∞

〈n〉α‖k̂n ∗ ûn‖2
L2(R2)

≤

(
∞∑
−∞

1

〈n〉α

)
∞∑
−∞

〈n〉α‖k̂n‖2
L1(R2)‖ûn‖2

L2(R2)

≤

(
∞∑
−∞

1

〈n〉α

)
max
n∈N

〈n〉α‖k̂n‖2
L1(R2)

∞∑
−∞

‖ûn‖2
L2(R2) ≤ C

(
∞∑
−∞

1

〈n〉α

)
‖u‖2

L2(R2×S1).

Lemma 3.3 Let h : R2 × S1 → R be a smooth map such that∫
R2

max
θ
|ĥ(ξ, θ)|dξ < ∞.

Then the operator Mh of multiplication by h is bounded from L2̂(Ω; C0(S1)) to itself.

Proof.

‖Mhf‖2
2̂,∞ = ‖hf‖2

2̂,∞ =

∫
R2

max
θ∈S1

|ĥf |2(ξ, θ)dξ =

∫
R2

max
θ∈S1

|ĥ ∗ξ f̂ |2(ξ, θ)dξ

≤
∥∥∥∥max

θ∈S1
|ĥ| ∗max

θ∈S1
|f̂ |
∥∥∥∥2

L2

≤
∥∥∥∥max

θ∈S1
|ĥ|
∥∥∥∥2

L1

‖f‖2
2̂,∞. (34)

Recall that, when acting on maps f(x, θ), R denotes the Radon transform in x ∈ R2.

The following smoothing property holds.
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Lemma 3.4 The operator R : L2̂,∞(Ω×S1) → H1/2(R×S1) is bounded, more precisely∫
S1

∫
R

∣∣∣R̂g(ρ, θ)
∣∣∣2 (1 + |ρ|)dρdθ ≤ (4π|Ω|2 + 3)‖g‖2

2̂,∞,

where |Ω| denotes the volume of Ω.

Proof. Notice first that the Fourier slice theorem R̂g(ρ, θ) = ĝ(ρθ⊥, θ) holds. In the

right hand side the Fourier transform is taken with respect of the space-variable only.

The following inequalities hold:∫ 2π

0

∫ ∞

0

∣∣∣R̂g(ρ, θ)
∣∣∣2 ρdρdθ =

∫ 2π

0

∫ ∞

0

∣∣ĝ(ρθ⊥, θ)
∣∣2 ρdρdθ

≤
∫ 2π

0

∫ ∞

0

max
ν∈S1

∣∣ĝ(ρθ⊥, ν)
∣∣2 ρdρdθ = ‖g‖2

2̂,∞,∫ 2π

0

∫ 0

−∞

∣∣∣R̂g(ρ, θ)
∣∣∣2 |ρ|dρdθ =

∫ 2π

0

∫ ∞

0

∣∣ĝ(−ρθ⊥, θ)
∣∣2 ρdρdθ

≤
∫ 2π

0

∫ ∞

0

max
ν∈S1

∣∣ĝ(−ρθ⊥, ν)
∣∣2 ρdρdθ = ‖g‖2

2̂,∞.

Also we have∫ 2π

0

∫ ∞

0

|R̂g(ρ, θ)|2dρdθ ≤
∫ 2π

0

∫ 1

0

|ĝ(ρθ⊥, θ)|2dρdθ +

∫ 2π

0

∫ ∞

0

|R̂g(ρ, θ)|2ρdρdθ

and ∫ 2π

0

∫ 1

0

|ĝ(ρθ⊥, θ)|2dρdθ ≤
∫ 2π

0

∫ 1

0

max
ν∈S1

|ĝ(ρθ⊥, ν)|2dρdθ ≤ 2π max
|ξ|≤1

|ĝ(ξ, ν0)|2,

where to simplify notation we have defined

|ĝ(ξ, ν0)| = max
ν∈S1

|ĝ(ξ, ν)|.

Let {χn(x)}n≥1 be a sequence of smooth cut-off functions equal to 1 on Ω, the support

of g, and equal to 0 at x such that d(x, Ω) > n−1; and let χ(x; ξ) = eix·ξχ(x). Then we

verify that

ĝ(ξ, ν0) =

∫
R2

e−ix·ξχn(x)g(x, ν0)dx =

∫
R2

χn(x; ξ)g(x, ν0)dx =

∫
R2

χ̂n(η; ξ)ĝ(η, ν0)dx,

from which we deduce the following bound:

|ĝ(ξ, ν0)| ≤ inf
n
||χ̂n(·; ξ)||L2||ĝ(·, ν0)||L2 = inf

n
||χn||L2‖g‖2̂,∞ ≤ |Ω|‖g‖2̂,∞. (35)

Similarly, we have∫ 2π

0

∫ 0

−∞
|R̂g(ρ, θ)|2dρdθ ≤ 2π|Ω|2‖g‖2

2̂,∞ +

∫ 2π

0

∫ 0

−∞
|R̂g(ρ, θ)|2|ρ|dρdθ.

This concludes the proof of the lemma.
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Lemma 3.5 Let f ∈ H1/2(R× S1) and φ(x, θ) be a smooth function such that∫
R2

max
ν∈S1

|φ̂(ξ; ν)|2(1 + |ξ|2)dξ < ∞. (36)

Then the map (x, θ) → φ(x, θ)f(x · θ⊥, θ) is in H1/2(R2 × S1).

Proof. We have the following sequence of inequalities:∫ 2π

0

∫
R2

(1 + |ξ|2)
1
2 |φ̂f(ξ, θ)|2dξdθ =

∫ 2π

0

∫
R2

(1 + |ξ|2)
1
2

∣∣∣∣∫
R

φ̂(ξ · θ, t; θ)f̂(ξ · θ⊥ − t, θ)dt

∣∣∣∣2 dξdθ

≤
∫ 2π

0

{∫
R

[∫
R2

(1 + |ξ|2)
1
2 |φ̂(ξ1, t; θ)|2|f̂(ξ2 − t; θ)|2dξ1dξ2

] 1
2

dt

}2

dθ

≤
∫ 2π

0

{∫
R

[∫
R2

(1 + |ξ1|2)
1
2 (1 + |ξ2|2)

1
2 |φ̂(ξ1, t; θ)|2|f̂(ξ2 − t; θ)|2dξ1dξ2

] 1
2

dt

}2

dθ

=

∫ 2π

0


∫

R
(1 + t2)

1
4

[∫
R2

(1 + |ξ1|2)
1
2 |φ̂(ξ1, t; θ)|2

(
1 + |ξ2 + t|2

1 + |t|2

) 1
2

|f̂(ξ2; θ)|2dξ1dξ2

] 1
2

dt


2

dθ

≤
∫ 2π

0

{∫
R
(1 + t2)

1
4

[∫
R2

(1 + |ξ1|2)
1
2 |φ̂(ξ1, t; θ)|2(1 + |ξ2|2)

1
2 |f̂(ξ2; θ)|2dξ1dξ2

] 1
2

dt

}2

dθ

=

∫ 2π

0

∫
R
(1 + |ξ2|2)

1
2 |f̂(ξ2; θ)|2dξ2

{∫
R
(1 + t2)

1
4

[∫
R
(1 + |ξ1|2)

1
2 |φ̂(ξ1, t; θ)|2dξ1

] 1
2

dt

}2

dθ

≤
∫ 2π

0

(∫
R
(1 + |ξ2|2)

1
2 |f̂(ξ2; θ)|2dξ2

∫
R2

(1 + t2)
1
2 (1 + |ξ1|2)

1
2 max

ν∈S1
|φ̂(ξ1, t; ν)|2dtξ1

)
dθ

≤
∫ 2π

0

∫
R
(1 + |ξ2|2)

1
2 |f̂(ξ2; θ)|2dξ2dθ

∫
R2

(1 + |ξ|2) max
ν∈S1

|φ̂(ξ; ν)|2dξ,

where we have used the Minkowsky and Cauchy inequalities. From the second line

onwards, we have used the θ dependent coordinates ξ1 = ξ · θ and ξ2 = ξ · θ⊥.

Recall that χ(x) defined before (29) is a smooth cut-off function supported in Ω. To

simplify notation, let

f1(x, θ) = eDa(x, θ)trig(HRa(x · θ⊥, θ)/2),

f2(s, θ) = trig(HRa(s, θ)/2)

f3(x, θ) = χ(x)(θ⊥ · ∇x)f1(x, θ).

be smooth functions depending on the attenuation a only, where trig stands for either

sin or cos. The composition operator χNR becomes

χNRw(x) =
χ(x)

4π

∫ 2π

0

θ⊥ ·∇
(
f1(x, θ)H[f2(s, θ)R[w](s, θ)](x·θ⊥, θ)

)
dθ,

where the above is understood as a sum over the values that the functions trig can take

in f1 and f2. We now follow ideas from [5] though we derive some of the estimates in
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the Fourier domain to characterize the norm of the operator. Let φn(x), n = 1, 2, ... be

an orthonormal basis of L2(Ω) and let

χ(x)f1(x, θ) =
∞∑

n=1

αn(θ)φn(x), αn(θ) =

∫
Ω

χ(x)f1(x, θ)φn(x)dx. (37)

Proposition 3.6 The composition operator χNR maps L2̂(Ω; C0(S1)) to L2(Ω).

Moreover, we have the more explicit characterization:

‖χNRw‖L2 ≤ ‖w‖2̂,∞

∫
R2

max
θ
|êDa(ξ, θ)|dξ

[ ∫
R2

max
ν∈S1

|f̂3(ξ; ν)|2(1 + |ξ|2)dξ+ (38)

+2

(
∞∑

n=1

max
ν∈S1

|αn(ν)|2
) 1

2 ∫ ∞

−∞
|f̂2(s, ν0)|(2 + 4π|Ω|s2)ds

]
.

Proof. Using lemma 3.4 we obtain that Rw ∈ H1/2(R × S1). From lemma 3.5,

provided that χ(x)
(
θ⊥ ·∇xf1(x, θ)

)
satisfies the smoothness condition (36), we get that

the map (x, θ) → χ(x)
(
θ⊥ ·∇xf1(x, θ)

)
H[f2(s, θ)R[w](s, θ)](x·θ⊥, θ) is in H1/2(R2×S1).

Next we show that the operator M defined by

Mw(x) =

∫ 2π

0

χ(x)f1(x, θ)
(
θ⊥ ·∇x

)
H[f2(s, θ)R(w)(s, θ)](x·θ⊥, θ)dθ

is bounded from L2̂(Ω; C0(S1)) in L2(Ω). We have∥∥∥∥∥
∫ 2π

0

∞∑
n=1

αn(θ)φn(x)(θ · ∇)H(f2Rw(s, θ))(x · θ⊥, θ)dθ

∥∥∥∥∥
2

L2
x

=
∞∑

n=1

〈φn;

∫ 2π

0

αn(θ)(θ⊥ · ∇)H(f2Rw(s, θ)(x · θ⊥, θ))dθ〉2L2
x

≤
∞∑

n=1

∥∥∥∥∫ 2π

0

αn(θ)(θ⊥ · ∇)H(f2Rw(s, θ))(x · θ⊥, θ)dθ

∥∥∥∥2

L2
x

≤
∞∑

n=1

∥∥∥∥Fx→ξ

{∫ 2π

0

αn(θ)(θ⊥ · ∇)H(f2Rw(s, θ))(x · θ⊥, θ)dθ

}
(ξ)

∥∥∥∥2

L2
ξ

=
∞∑

n=1

∥∥∥αn(ξ−)f̂2Rw(−|ξ|, ξ−) + αn(ξ+)f̂2Rw(|ξ|, ξ+)
∥∥∥2

L2
ξ

≤

(
∞∑

n=1

max
ν∈S1

|αn(ν)|2
)(

‖f̂2Rw(−|ξ|, ξ−)‖2
L2

ξ
+ ‖f̂2Rw(|ξ|, ξ+)‖2

L2
ξ

)
.

In the above expressions, the angles ξ± are defined such that ξ · θ = 0; see notably [6,

pp.413&415] for the details of calculations that are not reproduced here. By the Fourier

slice theorem we verify that

f̂2Rw(|ξ|, ξ+) =

∫
R

f̂2(|ξ| − s, ξ+)ŵ

(
s

ξ

|ξ|
, ξ+

)
ds.
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Let us now define ν0 and ν1 as the values of the angles where maxν∈S1 |f̂2(ρ, ν)| and

maxν∈S1 |ŵ(ρ, ν)| are achieved, respectively. We compute:{∫
R2

|f̂2Rw(|ξ|, ξ+)|2dξ

} 1
2

=

{∫ 2π

0

∫ ∞

0

|f̂2Rw(r,−θ⊥)|2rdrdθ

} 1
2

(39)

=

{∫ 2π

0

∫ ∞

0

∣∣∣∣∫
R

f̂2(s,−θ⊥)ŵ((r − s)θ,−θ⊥)|ds

∣∣∣∣2 rdrdθ

} 1
2

≤

{∫ 2π

0

∫ ∞

0

(∫
R

max
ν∈S1

|f̂2(s, ν)|max
ν∈S1

|ŵ((r − s)θ, ν)|ds

)2

rdrdθ

} 1
2

=

{∫ 2π

0

∫ ∞

0

(∫
R
|f̂2(s, ν0)||ŵ((r − s)θ, ν1)|ds

)2

rdrdθ

} 1
2

≤
∫

R

{∫ 2π

0

∫ ∞

0

|f̂2(s, ν0)|2|ŵ((r − s)θ, ν1)|2rdrdθ

} 1
2

ds

=

∫
R
|f̂2(s, ν0)|

{∫ 2π

0

∫ ∞

0

|ŵ((r − s)θ, ν1|2rdrdθ

} 1
2

ds.

We evaluate the last term by splitting the integral
∫∞

0
(...)ds +

∫ 0

−∞(...)ds. To estimate

∫ ∞

0

|f̂2(s, ν0)|
{∫ 2π

0

∫ ∞

0

|ŵ((r − s)θ, ν1)|2rdrdθ

} 1
2

ds,

we further split the inner integral into
∫ 2s

0
(...)drdθ +

∫∞
2s

(...)drdθ. We obtain that∫ 2π

0

∫ ∞

2s

|ŵ((r − s)θ, ν1)|2rdrdθ ≤ 2

∫ 2π

0

∫ ∞

2s

|ŵ((r − s)θ, ν1)|2(r − s)drdθ

= 2

∫
|ξ|≥s

|ŵ(ξ, ν1)|2dξ,

and ∫ 2π

0

∫ 2s

0

|ŵ((r − s)θ, ν1)|2rdrdθ =

∫ 2π

0

∫ s

−s

|ŵ(tθ, ν1)|2(t + s)dtdθ

= 2

∫
|ξ|≤s

|ŵ(ξ, ν1)|2dξ + 2s

∫ 2π

0

∫ s

0

|ŵ(tθ, ν1)|2dtdθ

≤ 2

∫
|ξ|≤s

|ŵ(ξ, ν1)|2dξ + 4πs2 max
|ξ|≤s

|ŵ(ξ, ν1)|2

≤ 2

∫
|ξ|≤s

|ŵ(ξ, ν1)|2dξ + 4πs2|Ω|‖ŵ(ξ, ν1)‖2
L2

ξ
.

The last inequality uses in a crucial way the estimate (35) and the fact that w is
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compactly supported. We have obtained so far that∫ ∞

0

|f̂2(s, ν0)|
{∫ 2π

0

∫ ∞

0

|ŵ((r − s)θ, ν1)|2rdrdθ

} 1
2

ds

≤ ‖w‖2̂,∞

∫ ∞

0

|f̂2(s, ν0)(2 + 4π|Ω|s2)ds.

The other contribution is handled similarly:∫ 0

−∞
|f̂2(s, ν0)|

{∫ 2π

0

∫ ∞

0

|ŵ((r − s)θ, ν1)|2rdrdθ

} 1
2

ds

=

∫ ∞

0

|f̂2(−s, ν0)|
{∫ 2π

0

∫ ∞

0

|ŵ((r + s)θ, ν1)|2rdrdθ

} 1
2

ds

≤
∫ ∞

0

|f̂2(−s, ν0)|
{∫ 2π

0

∫ ∞

0

|ŵ((r + s)θ, ν1)|2(r + s)drdθ

} 1
2

ds

= ‖w‖2̂,∞

∫ ∞

0

|f̂2(−s, ν0)|ds = ‖w‖2̂,∞

∫ 0

−∞
|f̂2(s, ν0)|ds.

Combined with the estimate in (39), we have obtained that{∫
R2

|f̂2Rw|(|ξ|, ξ+)|2dξ

} 1
2

≤ ‖w‖2̂,∞

∫ ∞

−∞
|f̂2(s, ν0)|(2 + 4π|Ω|s2)ds. (40)

A similar calculation shows that{∫
R2

|f̂2Rw(−|ξ|, ξ−)|2dξ

} 1
2

≤ ‖w‖2̂,∞

∫ ∞

−∞
|f̂2(s, ν0)|(2 + 4π|Ω|s2)ds. (41)

In summary, we have obtained the following estimate for the operator M :

‖Mw‖L2 ≤ 2‖w‖2̂,∞

(
∞∑

n=1

max
ν∈S1

|αn(ν)|2
) 1

2 ∫ ∞

−∞
|f̂2(s, ν0)|(2 + 4π|Ω|s2)ds. (42)

This concludes the proof of the proposition.

Note that N has range in L2
loc(R2) and not necessarily in L2(R2). This is where the

assumption of the compactness of the support of the source term f(x), which is natural

in practice, comes into play. The above estimate shows the role played by the size of

the support of the source term.

The proof of the Theorem 3.1 follows from the preceding lemmas and proposition.

As we have seen, T maps L2(R2) to L2(R2) and let |||T |||L2→L2 denote its operator norm.

The preceding calculations allow us to obtain the more explicit version of Theorem 3.1:
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Corollary 3.7 Assume that K is such that maxn < n >α/2 ‖k̂n‖L1(R2) ≤ Cα for some

α > 1. Then the operator norm |||NK |||L2→L2 is bounded by the following expression∫
R2

max
ν∈S1

|f̂3(ξ; ν)|2(1 + |ξ|2)dξ + 2

(
∞∑

n=1

max
ν∈S1

|αn(ν)|2
) 1

2 ∫ ∞

−∞
|f̂2(s, ν0)|(2 + 4π|Ω|s2)ds


(43)

× Cα

(
∞∑
−∞

1

< n >α

) 1
2 (∫

R2

max
θ
|êDa(ξ, θ)|dξ

)
‖e−Da‖L∞(R2×S1)|||T |||L2→L2 .

Except for the norm of T (and of course the constant Cα), all the other terms involved

above are independent of scattering. Upon replacing k(x, µ) in the definition of the

scattering operator by λk(x, µ) for λ > 0, we deduce from the proposition that the

operator norm of NK is bounded by a constant less than one in L(L2(Ω)) provided

that λ is sufficiently small. This proves the first part of Theorem 2.1. Note that the

constraint on the norm of NK is only sufficient to solve (30) and by no means necessary.

Reconstructions based on (30) thus have a larger domain of validity than what we

consider in Theorem 2.1. As for the constructive aspect of the reconstruction, we easily

verify that for λ sufficiently small, the following Neumann series expansion

f(x) =
∞∑

n=0

Nn
KNg(x), (44)

converges in L2(Ω) strongly to the solution f(x). This provides us with an

explicit reconstruction formula to recover f(x) from the measurements m(s, θ) =

e−
1
2
Ra(s, θ)g(s, θ) and concludes the proof of Theorem 2.1. Let us conclude this section

by a few remarks.

Remark 3.8 The measurements m(s, θ) for s ∈ R and 0 ≤ θ < 2π are redundant.

Indeed in the case a ≡ 0 and k ≡ 0, the measurements satisfy m(s, θ) = m(−s, θ +π) so

that the source term can be reconstructed from knowledge of m(s, θ) on Z = R× (0, π).

When a 6= 0, such a redundancy still exists, although it is harder to characterize. Under

certain smallness assumptions on a(x), an explicit procedure to reconstruct the source

term from m on Z when k = 0 was proposed in [6] and implemented in [7]. That

measurements on Z suffice to determine the source term was recently obtained in [33];

see also [27] in the case of constant absorption. The explicit procedure proposed [6] can

be extended to the case of scattering kernels so that provided that k is sufficiently small,

the source term is uniquely determined by m(s, θ) on Z.

Remark 3.9 We could have considered more general scattering kernels of the form

k(x, θ, θ′) so long as the smoothing of the scattering kernel K imposed in Lemma 3.2

still holds. The description of this smoothing effect in terms of the scattering coefficients

is simplified for kernels of the form k(x, θ · θ′). However this is the only place where

the specific structure of the kernel has been used (except for the subcriticality condition
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(4), which should hold with k(x, θ · θ′) replaced by both k(x, θ, θ′) and k(x, θ′, θ); see

[13]).

Remark 3.10 The smoothing effect of the scattering kernel described in 3.2 is rendered

necessary (at least some sort of smoothing is) by the behavior of the Radon transform

and the inversion operator N . Although NR maps functions in L2(Ω) to functions in

L2(Ω) (since the operator NR is then identity), this is no longer the case for functions in

L2(Ω× S1) that depend non-trivially on θ. We need to map functions from the smaller

space L2̂(R2; C0(S1)), which is made possible by the regularizing effect of K.

Remark 3.11 Under appropriate assumptions on the scattering kernel K, the equation

(29) is indeed of Fredholm type as the operator NK can be shown to be compact. Indeed

NR is a bounded operator, whereas the operator KT (as well as Ke−DaT for smooth

absorption a(x)) can be shown to be compact under general assumptions. We refer to

[24] for such results and to [16] for connected result on averaging lemmas.

Remark 3.12 The reconstruction of the source term can be obtained by the following

iterative scheme. We consider the setting of Corollary 2.3. Let g(s, θ) = eRa/2m(s, θ) be

the measurements. We initialize the algorithm as

F (0)(x) = Ng(x). (45)

Provided that F (k)(x) is known, we solve for u(k) in

θ · ∇xu
(k)(x, θ) + a(x)u(k)(x, θ) = K1u

(k)(x, θ) + F (k)(x), in R2 × S1

lim
t→∞

u(k)(x− tθ, θ) = 0, on R2 × S1.
(46)

We next solve for v(k)(x, θ) in

θ · ∇xv
(k)(x, θ) + a(x)v(k)(x, θ) = K1u

(k)(x, θ), in R2 × S1

lim
t→∞

v(k)(x− tθ, θ) = 0, on R2 × S1.
(47)

We then compute the new data

g(k)(s, θ) = eRa/2Rav
(k)(s, θ). (48)

Finally we set the new source term

F (k+1)(x) = N(g − g(k))(x). (49)

We verify that F (k)(x) converges to F (x) = K0u(x) + f(x) in L2(Ω) as the above

algorithm is equivalent to the Neumann series expansion (44). We then solve for u(x, θ)

and reconstruct the source term f(x) = F (x)−K0u(x).
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4. Derivation in three space dimensions

The derivation in the three-dimensional case is very similar to that of the preceding

section. The main observation is that the inversion of the X−ray transform can

be performed “slice by slice”, i.e., “z by z”, using outgoing information for angles

perpendicular to ez only. The inversion with scattering coefficient is again considered

as a perturbation of the inversion of the X−ray transform. Mathematically, the main

novelty compared to the two-dimensional case is that we need to control the amount of

photons scattered into the directions orthogonal to ez.

Upon defining w(x, θ) = (eDau)(x, θ), we still obtain that

w(x, θ) = SeDaKe−Daw(x, θ) + SeDaf(x, θ). (50)

We define now the trace operator P onto the horizontal directions S2
H defined in (11).

More precisely P takes functions on Ω × S2 onto function on Ω × S2
H as follows. For

θ = (cos θ sin φ, sin θ sin φ, cos φ),

P [w(x, θ)] = w(x, (cos θ, sin θ, 0)). (51)

For θ ∈ S2
H , we define the orthogonal vector θ⊥ = (− sin θ, cos θ, 0) and the transversal

X−ray transform

Rf(z, s, θ) = LSf(z, s, θ), (52)

where the trace operator at infinity is defined by

Lw(z, s, θ) = lim
t→∞

w(tθ + sθ⊥ + zez, θ). (53)

Finally the transversal attenuated X−ray transform is defined by

Raf(z, s, θ) = ReDaf(z, s, θ). (54)

Note that

R = LS = LPS = LSP = RP, and PeDa = (PeDa)P,

so that the rescaled measurements are given by

g(z, s, θ) = e
1
2
Ra(z, s, θ)m(z, s, θ) = Raf(z, s, θ) + ReDaPKe−DaTf(z, s, θ). (55)

Now the operator Raf(z, s, θ) can be inverted at each fixed z by using the Novikov

formula. Namely, for x = (x′, z), we define

N3g(x) = N [g(z, ·, ·)](x′), (56)

by applying the two-dimensional operator N to (s, θ) → g(s, θ, z) for each z ∈ R. We

verify that N3Ra = Id on functions of x ∈ R3. As in the two-dimensional case however,

N3Ra is no longer identity when applied to functions that depend on the variable θ.

Thus formally applying the operator N3 to (55), we obtain that

N3g(x) = f(x) + N3ReDaPKe−DaTf(x) = (I −NK)f(x), (57)

where now NK = −N3ReDaPKe−DaT . The results of section 3 extend as follows.
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Proposition 4.1 The operator NK defined above is bounded from L2(Ω) to L2(Ω).

Similarly to the planar case, let û(ξ′, z, θ) =
∫

R2 e−ix′·ξ′u(x′, z, θ)dx′ denote the

Fourier transform in the first two components of the spatial variable only. We work

with the functional space

L2̂(R2
x′ × Rz; C

0(S1)) =
{

u(x′, z, θ) s.t. û(ξ′, z, θ) ∈ L2(R2
ξ′ × Rz; C

0(S1))
}

, (58)

where L2(R2
ξ′ × Rz; C

0(S1)) is endowed with the norm

‖û‖2
L2(R2

ξ′×Rz ;C0(S1)) =

∫
R3

max
θ∈S1

|û(ξ′, z, θ)|2dξ′dz.

The proposition is based on the following lemmas.

Lemma 4.2 Consider the decomposition of k(x, ·) ∈ L2[−1, 1] in Legendre polynomials

k(x, t) =
∞∑

n=0

kn(x)Pn(t), (59)

and assume that, for some α > 1,

max
n∈N

(
〈n〉α−1 max

|m|≤n
max
θ∈S2

z

|Ynm(θ)|2
∫

R
‖k̂n(·, z)‖2

L1(R2)dz

)
≤ C. (60)

Then the operator PK maps L2(R3 × S2) to L2̂(R2
x′ × Rz; C

0(S1)).

Proof. Using the summation formula Pn(θ · θ′) = 1
2n+1

∑n
m=−n Ynm(θ)Y ∗

nm(θ′) (see

[17] for instance), we get the following decomposition of the scattering operator

Ku(x, θ) =

∫
S2

k(x, θ · θ′)u(x, θ′)dθ′ =
∞∑

n=0

n∑
m=−n

1

2n + 1
kn(x)unm(x)Ynm(θ), (61)

where

unm(x) =

∫
S2

u(x, θ′)Ynm(θ′)dθ′. (62)

The Plancherel identity for the spherical harmonics gives

‖u‖2
L2(R3×S2) =

∞∑
n=0

n∑
m=−n

‖unm‖2
L2(R3). (63)

In what follows we consider θ ∈ S2
H , i.e., only horizontal directions. To simplify the

notation, we denote by

βn = max
|m|≤n

max
θ∈S2

H

|Ynm(θ)| . (64)
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Taking the Fourier transform with respect to the horizontal variables in (61), we obtain

|K̂u(ξ, z, θ)|2 =

∣∣∣∣∣
∞∑

n=0

n∑
m=−n

1

2n + 1
(k̂n ∗ξ ûnm)(ξ, z)Ynm(θ)

∣∣∣∣∣
2

≤

(
∞∑

n=0

n∑
m=−n

βn

2n + 1

∣∣∣(k̂n ∗ ûnm)(ξ, z)
∣∣∣)2

≤

(
∞∑

n=0

n∑
m=−n

1

〈n〉α(2n + 1)

)(
∞∑

n=0

n∑
m=−n

〈n〉αβ2
n

2n + 1

∣∣∣(k̂n ∗ ûnm)(ξ, z)
∣∣∣2) .

We now take the maximum in θ ∈ S2
z then integrate in ξ ∈ R2. We deduce that∫

R2

max
θ∈S2

z

|K̂u(ξ, z, θ)|2dξ ≤

(
∞∑

n=0

1

〈n〉α

)(
∞∑

n=0

n∑
m=−n

β2
n〈n〉α

2n + 1
‖k̂n ∗ ûnm(·, z)‖2

L2(R2)

)

≤

(
∞∑

n=0

1

〈n〉α

)(
∞∑

n=0

n∑
m=−n

β2
n〈n〉α

2n + 1
‖k̂n(·, z)‖2

L1(R2)‖ûnm(·, z)‖2
L2(R2)

)

≤
(

max
n∈N

β2
n〈n〉α

2n + 1
‖k̂n(·, z)‖2

L1(R2)

)( ∞∑
n=0

1

〈n〉α

)(
∞∑

n=0

n∑
m=−n

‖ûnm(·, z)‖2
L2(R2)

)
.

It remains to integrate in z ∈ R to obtain that

||Ku||2
L2̂(R2

x′×Rz ;C0(S1))
≤
(

max
n∈N

β2
n〈n〉α

2n + 1

∫
R
‖k̂n(·, z)‖2

L1(R2)dz

)( ∞∑
n=0

1

〈n〉α

)
||u||2L2(R3×S2).

This concludes the proof of the lemma.

Lemma 4.3 The operator N3R maps L2̂(R2
x′ × Rz; C

0(S1)) to L2(Ω).

Proof. This is a direct consequence of Lemma 3.6:

‖N3Rf‖2
L2(Ω) =

∫
R

∫
R2

|N3Rf(x′, z)|2 dx′dz =

∫
R

∫
R2

|[NRf(·, ·, z)](x′)|2 dx′dz

≤ C

∫
R

dz

{∫
R2

max
θ∈S2

z

∣∣∣f̂(ξ, θ, z)
∣∣∣2 dξ

}
= ‖f‖2

L2̂(R2
x′×Rz ;C0(S1))

. (65)

The rest of the proof of Theorem 2.2 is similar to that of Theorem 2.1. Provided that

scattering is sufficiently small, the following Neumann series expansion

f(x) =
∞∑

n=0

Nn
KN3g(x), (66)

converges in L2(Ω) strongly to the solution f(x).

The remarks at the end of section 3 still hold in the three dimensional setting. The

main difference between the two-dimensional and three-dimensional theories is that
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the scattering operator is required to be more regularizing in three dimensions than

in two dimensions. This is so because the three dimensional reconstruction is based

on measurements of the outgoing distribution for directions that are orthogonal to the

vertical axis ez. The influence of the geometry on the norm of NK could be characterized

in the three dimensional setting as we have for the two dimensional setting in Corollary

3.7, althgouh we shall not do so here.
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