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Abstract

We derive explicit inversion formulae for the attenuated geodesic and horocyclic ray
transforms of functions and vector fields on two-dimensional manifolds equipped with
the hyperbolic metric. The inversion formulae are based on a suitable complexification
of the associated vector fields so as to recast the reconstruction as a Riemann Hilbert
problem. The inversion formulae have a very similar structure to their counterparts
in Euclidean geometry and may therefore be amenable to efficient discretizations and
numerical inversions. An important field of application is geophysical imaging when
absorption effects are accounted for.

Résumé

Nous présentons des formules d’inversion explicites permettant la reconstruction de
fonctions et de champs de vecteurs à partir de leur intégration le long des géodésiques
ou des horocycles associés à une métrique hyperbolique en dimension deux d’espace.
L’intégration peut contenir un poids tenant compte de phénomènes d’absorption. La
méthode de reconstruction se fonde sur une complexification des champs de vecteurs
associés à ces intégrales et écrits dans un système de coordonnées adapté, de manière
à ce que l’inversion se ramène à résoudre un problème de type Riemann-Hilbert. Les
formules d’inversion obtenues ont une structure très proche de celle que l’on connait en
géométrie euclidienne, ce qui devrait en permettre une discrétisation numérique aisée. Le
principal domaine d’application de cette inversion est l’imagerie en géophysique lorsque
l’absorption de l’énergie mesurée est prise en compte.
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1 Introduction

Ray transforms and their inversions are ubiquitous in medical and geophysical imaging.
Many successful medical imaging techniques such as CT-scan, PET, and SPECT, are
based on inversions of the Radon transform in two space dimensions and more general
ray transforms in three space dimensions [23]. To a large extent, most of our under-
standing of the inner structure of the Earth is also based on the inversion of integral
transforms [29]. There, the ray transform may arise in the linearization of a non-linear
problem consisting of reconstructing the metric of a Riemannian manifold from travel
time measurements [9, 15, 18, 28, 31].

Whereas most medical imaging techniques involve domains equipped with the Eu-
clidean metric, most geophysical reconstructions involve ray transforms in non-Euclidean
geometry. This is because the speed of elastic waves generally increases with depth, thus
curving the rays back to the Earth surface. Inversions of geodesic ray transforms are
rendered more difficult by non vanishing curvatures. In practice, it is often possible
to assume as a first approximation that curvature is negative throughout the domain.
Such assumptions allow us to show, for instance, that functions are uniquely determined
by a sufficient number of ray transforms and that reconstructions are not too unstable
[19, 20, 29, 34].

Explicit inversion formulae in non-Euclidean geometry primarily involve manifolds
with enough symmetries such as those having constant curvature [6, 12, 13, 17, 30].
These inversions do not account for possible attenuation during propagation along the
geodesics. In this paper, we concentrate on the inversion of attenuated ray transforms in
two-dimensional hyperbolic geometry. The results are thus also limited to the constant
curvature framework although we hope that the methodology used in the inversion may
extend to more general metrics with negative curvature. Throughout the paper, we
assume that the absorption term is known. The constant curvature model is quite
useful in geophysical imaging as it corresponds to the propagation of acoustic waves
according to a metric ds2 = c−2(z)(dx2+dz2), where c(z) is proportional to depth z. The
constant gradient hypothesis is suitable as a first approximation [29]. Inversion of ray
transforms on constant-curvature manifolds have also found an application in electrical
impedance tomography, a medical imaging technique that uses electrical current and
potential measurements to image properties of human tissues [5, 17].

The method developed in this paper builds on a complexification technique recently
used successfully by R.G. Novikov [24, 25] to invert the attenuated ray transform in
Euclidean geometry; see also [3, 4, 7, 8, 10, 11, 22] for additional recent references
on the problem. This inversion is the mathematical backbone of the medical imaging
technique SPECT. The main aspect in the extension of the method to non-Euclidean
geometry is a choice of parameterization of the vector fields that allows the extension
of a judicious parameter into the complex plane. In the case of the two-dimensional
hyperbolic disc D, which is our model of a manifold with constant negative curvature, the
vector fields are parameterized by the point λ = eiθ ∈ ∂D of convergence of the geodesics
on the sphere at infinity, and λ is the parameter that is extended into the complex
plane. This allows us to recast the inversion of several attenuated ray transforms as
a Riemann-Hilbert problem [11], whose solution is provided by the classical Cauchy
formula. Throughout the paper we assume that the functions integrated along rays and
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the absorption parameters are sufficiently smooth so that all integrations make sense.
We do not consider range characterizations of attenuated ray transforms, which, to a
large extent, may be dealt with by adapting techniques developed in [25, 27].

The paper is structured as follows. Section 2 recalls important results on the
geodesics on D equipped with the hyperbolic metric. The main results of this paper
on the inversion of ray transforms are presented in section 3. We consider successively
the inversion of the geodesic ray transform, the inversion of the attenuated geodesic ray
transform, and the inversion of the attenuated horocyclic ray transform. The derivation
of the results is postponed to subsequent sections. In section 4, the (non-attenuated)
ray transform is inverted. The main three steps of the derivation are the complexifi-
cation of the vector fields, the derivation of the Riemann Hilbert problem, and finally
the solution to that problem. The inversion of the attenuated geodesic ray transform
is considered in section 5 and that of the dual transform along horocycles in section 6.
Section 7 then extends the inversion of the attenuated geodesic transform to the vec-
torial case. Whereas it is known that only the solenoidal part of a vector field may be
reconstructed from its ray transform in the absence of absorption, we show that the full
vector field can be reconstructed in the presence of known absorption. This generalizes
similar results in Euclidean geometry. We briefly comment on the ray inversion on the
half-plane equipped with the hyperbolic metric in section 8 and offer some conclusions
in section 9.

2 Preliminaries

This section reviews important properties of the unit disc D = {z ∈ C, |z| < 1} equipped
with the Riemannian metric

ds2
g =

dx2 + dy2

(1− x2 − y2)2
=

dx2 + dy2

(1− |z|2)2
. (1)

The curvature is constant and equal to −4 in this model. We define

〈X, Y 〉 = g(X, Y ), ‖X‖ = 〈X, X〉1/2, (2)

the inner product and norm associated to the Riemannian structure. The (volume)
measure on (D, g) is denoted by dmg(z). We verify that

dmg(z) =
dxdy

(1− |z|2)2
. (3)

The form of the geodesics on (D, g) is well-understood. We will mostly follow the
presentation in [12]; see also [16, 17].

The boundary ∂D of D, the “sphere at infinity”, is the unit circle parameterized by
the complex numbers eiθ for 0 ≤ θ < 2π. Let us introduce the map

z :

 R2 → D

(t, s) 7→ z(t, s) =
sinh t− ise−t

cosh t− ise−t
.

(4)
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We verify that z is a C∞-diffeomorphism. Moreover, the maps t→ z(t, s) at fixed s ∈ R
provide all the geodesics of (D, g) that converge to ei0 ∈ ∂D (as t → +∞); see [12].
In the (t, s) coordinates, the geodesic field is ∂

∂t
. All the other geodesics of (D, g) can

be obtained by rotation around the origin in D. We thus define the set of geodesics
parameterized by θ ∈ [0, 2π) and s ∈ R as

ξ(s, θ) =
{
eiθz(t, s), t ∈ R

}
. (5)

These are all the geodesics converging to eiθ ∈ ∂D as t→ +∞.
We identify z = x + iy, where (x, y) are the Cartesian coordinates on D. As is

customary in complex analysis, we change coordinates and introduce

z = x + iy, z̄ = x− iy, (6)

for |z| < 1 and view z and z̄ as independent variables. A basis for the tangent space
TzD is then given by

∂ ≡ ∂

∂z
=

1

2

( ∂

∂x
− i

∂

∂y

)
, ∂̄ ≡ ∂

∂z̄
=

1

2

( ∂

∂x
+ i

∂

∂y

)
. (7)

In the variables (z, z̄), the diffeomorphism in (4) may be recast as

z : (t, s) 7→ z(t, s) =

(
sinh t− ise−t

cosh t− ise−t
,
sinh t + ise−t

cosh t + ise−t

)
. (8)

We denote by z∗ the push-forward defined by z∗f = f ◦ z−1. Defining the functions

s(z) = z∗s(z), t(z) = z∗t(z), P (z) = z∗e
2t(z),

we find that the inverse of the map z is characterized by

e2t(z) = P (z) =
1− |z|2

|1− z|2
, s(z) =

z̄ − z

2i|1− z|2
=

1

2i

( 1

1− z̄
− 1

1− z

)
, t(z) =

1

2
ln P (z).

Geodesic vector field. The geodesic vector field whose integral curves are the geodesics
of (D, g) converging to ei0 as t→ +∞ is given by

X(ei0) = z∗
∂

∂t
= z∗

(∂z

∂t

)
∂ + z∗

(∂z̄

∂t

)
∂̄. (9)

Some algebra shows that

∂z

∂t
= (1− |z|2)1− z

1− z̄
,

∂z̄

∂t
= (1− |z|2)1− z̄

1− z
.

We also deduce that

∂z

∂s
=

−ie−2t

(cosh t− ise−t)2
= −i(1− z)2,

∂z̄

∂s
=

ie−2t

(cosh t + ise−t)2
= i(1− z̄)2.
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The Jacobian of the transformation (t, s) 7→ (z, z̄) is thus given by

z∗∂z(t, s) = z∗

∣∣∣∣∣∣∣
∂z

∂t

∂z

∂s
∂z̄

∂t

∂z̄

∂s

∣∣∣∣∣∣∣ = 2i(1− |z|2)|1− z|2. (10)

The Jacobian of the transformation (t, s) 7→ (x, y) for z = x+iy is therefore (1−|z|2)|1−
z|2, which does not vanish on D. Moreover, we find that

dmg(z) =
1

(1− |z|2)2
dxdy =

|1− z|2

1− |z|2
dtds = e−2tdtds. (11)

The above calculations provide the following expression for the geodesic field:

X(ei0) = (1− |z|2)
(1− z

1− z̄
∂ +

1− z̄

1− z
∂̄
)
. (12)

The geodesic fields with integral curves converging to other points on ∂D may be ob-
tained by rotation. Let us define in the “z, z̄” variables the function

eiθ : (z, z̄) 7→ (eiθz, e−iθz̄), (13)

which maps a point z ∈ D to eiθz ∈ D. The geodesic vector field X(eiθ) on D corre-
sponding to geodesics converging to eiθ as t→ +∞ is thus given by

X(eiθ) = eiθ
∗ X(ei0) = (eiθ ◦ z)∗

∂

∂t
. (14)

More explicitly, we deduce from (12) that

X(eiθ) = (1− |z|2)
(1− e−iθz

1− eiθz̄
eiθ∂ +

1− eiθz̄

1− e−iθz
e−iθ∂̄

)
. (15)

The analysis and complexification of the above geodesic vector field is the main in-
gredient in the derivation of the reconstruction formulae for the integral transforms
considered in this paper.

Horocyclic vector field. A vector field orthogonal to X(ei0) at all points in D is
given by

X⊥(ei0) = z∗
∂

∂s
= i

(
− (1− z)2∂ + (1− z̄)2∂̄

)
. (16)

We also define X⊥(eiθ) = eiθ
∗ X⊥(ei0). The integral curves of X⊥(eiθ) are called the

horocycles; see (38) below. We easily verify that ‖X(eiθ)‖ = 1 for the norm defined
in (2) (recall that dz ∧ dz̄ = 2idxdy), which is consistent with the fact that ∂

∂t
is the

geodesic vector field in the (t, s) coordinates. However, X⊥(ei0) is not normalized and
we introduce the normalized vector field

X̌⊥(ei0) = P (z)X⊥(ei0) = i(1− |z|2)
(
− 1− z

1− z̄
∂ +

1− z̄

1− z
∂̄
)
. (17)

More generally, we define

X̌⊥(eiθ) = P (e−iθz)X⊥(eiθ) = i(1− |z|2)
(
− 1− e−iθz

1− eiθz̄
eiθ∂ +

1− eiθz̄

1− e−iθz
e−iθ∂̄

)
. (18)

We verify that ‖X̌⊥(eiθ)‖ = 1 and that X̌⊥(eiθ) is the rotation of X(eiθ) by an angle
−π/2.
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A note on the constant in the curvature. Let gα be the Riemannian structure
defined by

ds2
gα

=
1

α2
ds2

g =
1

α2

dx2 + dy2

(1− |z|2)2
. (19)

We verify that the geodesics of (D, gα) are obviously still given by ξ(s, θ), but that the
geodesic coordinate t need be replaced by α−1t so that the geodesic vector field becomes
Xα(eiθ) = αX(eiθ). Moreover the constant curvature Kα of the metric gα is given by

Kα = −4α2. (20)

We thus see that a constant curvature of Kα = −1 is obtained for α = 1/2, and that
the corresponding geodesic vector fields are given by X1/2(e

iθ) = 1
2
X(eiθ).

3 Integral transforms and inversion formulae

This section introduces three integral transformations and presents explicit inversion
formulae for each of them. The ray transform along geodesics for (D, g) is introduced in
(21) and inverted in (29). The result is next generalized to the attenuated ray transform
defined in (32) and inverted in (36). Finally we consider the attenuated ray transform
along horocycles for (D, g) in (40) and invert it in (48). The derivation of the inversion
formulae is postponed to subsequent sections.

The ray transform. For a sufficiently smooth function f(z) on D, we define the
geodesic ray transform (or Radon transform) on R× [0, 2π) as

Rf(s, θ) ≡ f̂(s, θ) =

∫
ξ(s,θ)

f(z)dmg(z) =

∫
R

f(eiθz(t, s))dt. (21)

We also introduce the notation Rθf(s) = Rf(s, θ). Several inversion formulae have
been obtained for the Radon transform in two dimensional hyperbolic geometry; see
for instance [6, 12, 13, 17, 30]. In this paper, we consider another inversion formula
based on the analysis of the complexification of the vector fields introduced in the
preceding section. We thus see the above integral as a ray transform rather than a
Radon transform, although both transforms are equivalent in two space dimensions.
The method builds on earlier works done in Euclidean geometry [3, 11, 24, 25] and will
be presented in detail in section 4. The central ingredient in the method is the (geodesic)
transport equation

X(eiθ)u(z, eiθ) = f(z), (22)

with the boundary condition that u(z, eiθ) vanishes at “−∞” on the geodesic ξ(s, θ),
i.e.,

lim
t→−∞

u(eiθz(t, s), eiθ) = 0.

Here u(z, eiθ) is defined on D × S1. The ray transform in (21) is then simply given by

Rf(s, θ) = lim
t→+∞

u(eiθz(t, s), eiθ),
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where u(z, eiθ) is the unique solution to (22).
The geodesics in hyperbolic geometry may also be parameterized by the point at

infinity eiθ as t → ∞ and a point z ∈ D on that geodesic. We denote by ξ(z; eiθ) such
a geodesic, slightly abusing notation by using the same symbol ξ as in the definition
(5). We define ξ+(z; eiθ) as the part of the geodesic joining z to eiθ and ξ−(z; eiθ) as
the complement of ξ+(z; eiθ) in ξ(z; eiθ). Recall that eiθ

∗ s(z) = (eiθ ◦ z)∗s = s(e−iθz).
We verify that ξ+(z; eiθ) =

{
eiθz(t, s(e−iθz)), t > t(e−iθz)

}
. Following the definition in

Euclidean geometry [3], we define the symmetrized beam transform as

Dθf(z) =
1

2

( ∫
ξ−(z;eiθ)

f(z)dmg(z)−
∫

ξ+(z;eiθ)

f(z)dmg(z)
)
. (23)

We verify that

Dθf(z) =
1

2

∫
R

f
(
eiθz(t, s(e−iθz))

)
sign

(
t(e−iθz)− t

)
dt, (24)

and that the symmetrized beam transform inverts the transport equation:

X(eiθ)Dθf(z) = f(z). (25)

We also define the classical Hilbert transform

Hf(t) =
1

π
p.v.

∫
R

f(s)

t− s
ds. (26)

Finally we introduce the adjoint operator to the ray transform

R∗g(z) =

∫ 2π

0

(
eiθ ◦ z

)
∗

(
g(s, θ)e2t

)
dθ =

∫ 2π

0

g(s(e−iθz), θ)P (e−iθz)dθ. (27)

That R and R∗ are in duality for the inner product in L2(R×(0, 2π)) and L2(D; dmg(z))
is obtained as follows:∫

Rf(s, θ)g(s, θ)dsdθ =

∫
f(eiθz(t, s))g(s, θ)e2t(e−2tdtds)dθ

=

∫
D

( ∫ 2π

0

(
eiθ ◦ z

)
∗

(
g(s, θ)e2t

)
dθ

)
f(ζ)dmg(ζ) =

∫
D

(R∗g)(ζ)f(ζ)dmg(ζ),

where we have used that (eiθ)∗dmg(z) = dmg(z) by rotational invariance. We also use
the notation R∗

θg(z) = g(s(e−iθz), θ)P (e−iθz). The same derivation shows that R∗
θ is the

adjoint operator to Rθ for the inner products in L2(R) and L2(D; dmg(z)).

Reconstruction formula for the ray transform. We are now in a position to
state the following reconstruction formula. First, the data need to satisfy the following
compatibility condition

R∗Hf̂(z) = 0, for all z ∈ D. (28)

Then the function f(z) is uniquely determined by f̂(s, θ) and is given by

f(z) =
1

4π

∫ 2π

0

P 2(e−iθz)
(
H

∂

∂s
f̂
)(

s(e−iθz), θ
)
dθ. (29)
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The above reconstruction formula can also be restated as the following decomposition
of identity

I =
1

4π
R∗PH

∂

∂s
R =

1

4π
R∗HP

∂

∂s
R. (30)

Here, we have denoted by P the operator of multiplication by P (e−iθz). Since the
multiplicative factor is nothing but (eiθz)∗e

2t, we verify that PH = HP since the Hilbert
transform acts on the s-variable. Note that the presence of the multiplicative operator
P is here simply because ∂

∂s
is not a unit vector field, whereas e2t ∂

∂s
is. The formulae

(29) and (30) thus take the form of the classical filtered back-projections available in
Euclidean geometry [21].

Inversion of the attenuated ray transform. In many practical applications, the
signal emitted by the source term f(z) may be attenuated before it can reach the
detectors. We model the signal by using the following geodesic transport equation with
absorption term

X(eiθ)u(z, eiθ) + a(z)u(z, eiθ) = f(z), (31)

and vanishing incoming conditions

lim
t→−∞

u(eiθz(t, s), eiθ) = 0.

We assume that a(z) is known, smooth, non-negative, and has compact support to
simplify. We recall that

X(eiθ)Dθa(z, eiθ) = a(z),

whence
X(eiθ)(eDθau)(z, eiθ) = eDθa(z, eiθ)f(z).

We call the attenuated ray transform the quantity

Raf(s, θ) ≡ Ra,θf(s) =

∫
ξ(s,θ)

eDθa(z, eiθ)f(z)dmg(z). (32)

Note that this is the limit of eDθau as t → +∞ along the geodesic ξ(s, θ). Since we
assume that a(z) is known here, the attenuated ray transform is obtained in practice by
measuring u(z, eiθ) at infinity on the geodesic ξ(s, θ).

In Euclidean geometry, the attenuated ray transform may be inverted by using the
Novikov formula [3, 7, 10, 22, 24, 25]. A similar formula holds in hyperbolic geometry.
Let us define the intermediate quantity

ϕ(z, eiθ) = iP−1(e−iθz)R∗
−a,θHaRa,θf(z), (33)

where, as a generalization of operators defined in Euclidean geometry [3, 14], we have

(R∗
a,θg)(z) = P (e−iθz)eDθa(z)g(s(e−iθz)), Ha = CcHCc + CsHCs

Ccg(s, θ) = g(s, θ) cos
(Hâ(s, θ)

2

)
, Csg(s, θ) = g(s, θ) sin

(Hâ(s, θ)

2

)
.

(34)

The operators Ra,θ and R∗
a,θ are in duality for the L2(R) and L2(D; dmg(z)) inner prod-

ucts. The derivation is the same as for R∗ in (27). Note that Ra,θf(s, θ) is the measured
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data so that ϕ(z, eiθ) in (33) may directly be estimated from the measurements. We now
come to the inversion formula. First, the data need to satisfy the following compatibility
condition

1

2π

∫ 2π

0

P (e−iθz)ϕ(z, eiθ)dθ = 0, for all z ∈ D. (35)

This condition generalizes (28). Moreover, the source term f(z) is uniquely determined
by its attenuated ray transform and is given by

f(z) =
1

4π

∫ 2π

0

X̌⊥(eiθ)
(
R∗
−a,θHa[Ra,θf ]

)
(z, eiθ)dθ. (36)

The vector field X̌⊥(eiθ) is defined in (18). We thus obtain a decomposition of identity
very similar to that in the Euclidean case:

I =
1

4π

∫ 2π

0

X̌⊥(eiθ)R∗
−a,θHaRa,θdθ. (37)

In the presence of non-constant absorption a(z), the operators X̌⊥(eiθ) and R∗
−a,θ do

not commute. When a ≡ 0, these two operators do commute, Ha ≡ H, and Ra,θ ≡ Rθ

so that (37) generalizes (30) to the case of non-constant absorption.

Inversion of the dual transforms. So far we have considered the reconstruction
of functions integrated along geodesics. It is known that functions may be uniquely
determined by their integrals along quite general families of curves; see for instance
[19, 20, 26, 31, 32]. Here we consider the (much more specific) reconstruction of functions
from their integrals over all possible horocycles. The horocycles are the circles in the unit
disc D that are tangent to its boundary ∂D. More precisely, they may be parameterized
by t ∈ R and θ ∈ [0, 2π) and defined as

~(t, θ) =
{
eiθz(t, s), s ∈ R

}
. (38)

The horocycles are orthogonal (both for the metric g and the Euclidean metric) to the
geodesics and are integral curves of the vector fields X⊥(eiθ) and its normalized alter-
ego X̌⊥(eiθ). The (dual) transport equation modeling integration along the horocycles
is thus given by

X̌⊥(eiθ)u⊥(z, eiθ) + a(z)u⊥(z, eiθ) = f(z), (39)

with the same vanishing incoming conditions as before in the limit s→ −∞.
In the absence of absorption (a ≡ 0), we define the horocycle transformation of the

source term f(z) as the limit as s→ +∞ of the above transport equation (with a ≡ 0)
namely,

R⊥
θ f(t, θ) = f̌(t, θ) =

∫
~(t,θ)

f(z)dmg(z) = e−2t

∫
R

f
(
eiθz(t, s)

)
ds. (40)

The last equality stems from the relations z∗(ds)(X⊥) = 1 = P (z)dsg(X
⊥) = dsg(X̌

⊥),
where dsg is the length measure associated to the metric g on the horocycle ~(t, θ).
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We now define the symmetrized horocycle transform

D⊥
θ f(z) =

P−1(e−iθz)

2

∫
R

f
(
eiθz(t(e−iθz), s)

)
sign

(
s(e−iθz)− s

)
ds, (41)

and verify that
X̌⊥(eiθ)D⊥

θ a(z) = a(z). (42)

This allows us to observe that

X̌⊥(eiθ)(eD⊥θ au)(z, eiθ) = eD⊥θ a(z, eiθ)f(z).

We thus call the horocycle transform the following integral

R⊥
a f(t, θ) ≡ R⊥

a,θf(t) =

∫
~(t,θ)

eD⊥θ a(z, eiθ)f(z)dmg(z). (43)

This integral may also be seen as the limit as s → +∞ of the solution eD⊥θ au(z, eiθ) of
the transport equation (39) by construction.

Let us introduce the weighted Hilbert transform

H⊥f(s) =
2

π
p.v.

∫
R

f(t)

e2(s−t) − 1
dt, (44)

and the auxiliary quantity

iϕ⊥(z, eiθ) = R⊥∗
−a,θH

⊥
a R⊥

a,θf(z), (45)

where we have defined the following operators

(R⊥∗
a,θg)(z) = eD⊥θ a(z)g(t(e−iθz)), H⊥

a = C⊥
c H⊥C⊥

c + C⊥
s H⊥C⊥

s

C⊥
c g(t, θ) = g(t, θ) cos

(H⊥ǎ(t, θ)

2

)
, C⊥

s g(t, θ) = g(t, θ) sin
(H⊥ǎ(t, θ)

2

)
.

(46)

We verify that R⊥
a,θ and R⊥∗

a,θ are indeed in duality for the inner products on L2(R) and
L2(D; dmg(z)).

We then have the following results. First, the data need to satisfy the following
compatibility condition

1

2π

∫ 2π

0

P (e−iθz)ϕ⊥(z, eiθ)dθ = 0, for all z ∈ D. (47)

Moreover the source term f(z) is uniquely determined by its (weighted) integrals along
horocycles and is given by

f(z) =
1

4π

∫ 2π

0

P (e−iθz)X(eiθ)R⊥∗
−a,θH

⊥
a [R⊥

a,θf ](z, θ)dθ. (48)

In the case of vanishing absorption, the above formula simplifies to

f(z) =
1

4π

∫ 2π

0

P (e−iθz)
[ ∂

∂t
H⊥f̌

]
(t(e−iθz), θ)dθ. (49)

We note that the inversions of the geodesic and horocyclic ray transforms have very
similar structures and are also quite close to their counterparts in Euclidean geometry
[3, 24].
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4 Ray transform and inversion

We now come to the derivation of the inversion formulae. This section deals with the
inversion of the geodesic ray transform introduced in (21).

4.1 Complexification of the vector fields

In Euclidean geometry, the geodesic vector field is given by θ·∇x, where θ = (cos θ, sin θ)
in Cartesian coordinates. Introducing the complex number λ = eiθ, we may then recast
θ·∇x = λ∂+λ−1∂̄ in the (z, z̄) variables. For λ ∈ T , the unit circle, the latter differential
operator is hyperbolic (with proper vanishing conditions at infinity). However, for λ ∈
C\T (and λ 6= 0), the operator becomes elliptic, and therefore can be associated a
fundamental solution GEucl(z; λ) that will be analytic on the disc D+ = {λ ∈ C; |λ| < 1}
and on D− = {λ ∈ C; |λ| > 1}. This behavior is the central element of Novikov’s
inversion formula for the Euclidean ray (or Radon) transform; we refer to [3, 24, 25] for
the details. The question now is how this complexification of the vector field θ · ∇x =
θi ∂

∂xi can be extended to non-Euclidean geometry.
Using the Christoffel symbols associated to the hyperbolic geometry [16], we could

write the geodesic vector field (on the tangent bundle) in a given system of coordinates
as

Gx,θ = θi ∂

∂xi
+ θiθjΓk

ij

∂

∂θk
.

Because direction is no longer constant along a geodesic, it becomes more difficult to see
which quantity could be extended into the complex plane. Direct complex extensions
based on the above description of the vector field do not look very promising.

A description of the geodesic vector field amenable to complexification is precisely
the one we have introduced in section 2. The quantity that we wish to extend to the
complex plane is no longer the direction of propagation along a geodesic, but rather the
point of convergence of the geodesic on the sphere at infinity (i.e., as t → +∞ in the
parameterization introduced in section 2). Note that this notion also makes sense in
Euclidean geometry, where the main direction of propagation at infinity is well-defined.

We recall that the geodesic vector field X(eiθ) is defined in (15). We define λ = eiθ

(so that e−iθ = λ−1) and want to view λ as an arbitrary complex number and no longer
an element of the unit circle T . For each complex number λ, we define the function
(still denoted by λ)

λ : (z, z̄) 7→ λ(z, z̄) = (λz, λ−1z̄). (50)

This is a function formally defined on CC = C ⊗ C ∼= C2, the complexification of
C. Note that the second component is no longer the complex conjugate of the first
component unless λ ∈ T , the unit circle. The Jacobian of the transformation is uniformly
equal to one so that it defines a diffeomorphism on CC ∼= C2. Its inverse is given by
λ−1(z, z̄) = (λ−1z, λz̄). We then define the “complexified” vector field X(λ) as the
push-forward of X(ei0) by the function λ:

X(λ) = λ∗X(ei0). (51)

The definition for λ ∈ T is consistent with (14). The vector field is now defined on
CTD = TD⊗C ∼= D⊗C2, the complexification of the tangent bundle on D. The rules

11



for the change of variables being λ−1z ← z, λz̄ ← z̄, λ∂ ← ∂, and λ−1∂̄ ← ∂̄, we obtain
the following vector field

X(λ) = (1− |z|2)
( λ− z

1− λz̄
∂ +

1− λz̄

λ− z
∂̄
)
, (52)

in the (z, z̄) system of coordinates. The above vector field never vanishes and has poles
at λ = z and λ = z̄−1 that will be exploited in the inversion formulae. We verify the
symmetry relation

X̄(λ−1) = X(λ), (53)

and can thus concentrate on the case |λ| < 1, i.e., λ ∈ D+.
We also define the generalization of the parallel geodesic coordinates

P (z, λ) = λ∗P (z), s(z, λ) = λ∗s(z), t(z, eiθ) = eiθ
∗ t(z), (54)

where the push-forward of functions λ∗ is defined by λ∗f = f ◦ λ−1. More explicitly, we
have

P (z, λ) =
1− zz̄

(λ− z)(λ−1 − z̄)
, s(z, λ) =

1

2i

( 1

1− λz̄
− λ

λ− z

)
. (55)

For λ ∈ D+, these functions are defined for (z, z̄) ∈ Sλ = D\{λ}.
The main interest of the above vector field is that it generates an elliptic operator

for λ ∈ C\T , and thus admits a fundamental solution, in the sense that the following
holds

X(λ)G(z; λ, z0) = δg(z − z0) = (1− |z0|2)2δ(z − z0). (56)

This needs to be augmented by conditions at infinity (i.e., as |z| → 1), which will be
apparent below.

4.2 A Riemann-Hilbert problem

Analyticity properties. Our first objective in this section is to show that G(z; λ, z0)
is analytic in the λ variable on D+ and D−. This will be the premise to show that the
complexification of the geodesic transport equation

X(λ)u(z, λ) = f(z), (57)

with appropriate boundary conditions admits a unique solution given by

u(z, λ) =

∫
D

G(z; λ, z0)f(z0)dmg(z0), (58)

which is analytic in the λ variable on D+ and D−.
We first derive an explicit expression for the fundamental solution. Thanks to (53),

it is enough to consider the case λ ∈ D+. Let z0 ∈ D and consider first λ ∈ D+\{0, z0}.
The central idea in the derivation is that the parallel geodesic coordinates (t, s) form
an orthogonal basis when θ = 0 and that s is constant on each geodesic. This property
survives after complexification and we verify that

X(λ)s(z, λ) = 0, X(λ)P (z, λ) = 2P (z, λ), (59)

12



on (z, z̄) ∈ Sλ = D\{λ}. Both relations can be proved similarly. The first one, that of
interest to us in the sequel, follows from the observation

X(λ)s(z, λ) = λ∗X(ei0)λ∗s(z) = λ∗(X(ei0)s(z)) = (λ ◦ z)∗
∂s

∂t
= 0.

The second one follows from the calculation ∂
∂t

e2t = 2e2t. The results can also be directly
obtained from

∂s

∂z
= − λ

2i(λ− z)2
,

∂s

∂z̄
=

λ

2i(1− λz̄)2
, (z, z̄) ∈ Sλ. (60)

We also verify that

∂s̄

∂z
=

−λ̄

2i(1− λ̄z)2
,

∂s̄

∂z̄
=

λ̄−1

2i(1− λ̄−1z̄)2
, ∂s(z) =

|λ|2

4

( 1

|z − λ|4
− 1

|1− λz̄|4
)

> 0,

where ∂s(z) is the Jacobian (positive for 0 < |λ| < 1 and |z| < 1) of the transformation
(still denoted by s):

s(λ) : (z, z̄) 7→ (s, s̄) =

(
1

2i

( 1

1− λz̄
− λ

λ− z

)
,

1

2i

( λ̄

λ̄− z̄
− 1

1− λ̄z

))
. (61)

The change of variables generates the vector field on Sλ:

s∗X(λ) = X(λ)s(z, λ)
∂

∂s̄
= (1− |z|2)

( λ− z

1− λz̄

∂s̄

∂z
+

1− λz̄

λ− z

∂s̄

∂z̄

) ∂

∂s̄

=
1− |z|2

2i
λ̄(λ− z)(1− λz̄)

( −1

|1− λz̄|4
+

1

|z − λ|4
) ∂

∂s̄

=
2

iλ
(1− |z|2)(λ− z)(1− λz̄)(∂s(z))

∂

∂s̄
.

Now we are interested in the fundamental solution of

s∗X(s∗G) = (1− |z0|2)2s∗δ(z − z0) = (1− |z0|2)2|∂s(z0)|δ(s− s(z0, λ)), (62)

or using the above expression for s∗X,

∂

∂s̄
(s∗G) =

−λ

2i

1− |z0|2

(λ− z0)(1− λz̄0)
δ(s− s(z0, λ)) =

−P (z0, λ)

2i
δ(s− s(z0, λ)).

This shows that the fundamental solution of (56) is given by

G(z; λ, z0) =
−P (z0, λ)

2iπ

1

s(z, λ)− s(z0, λ)
, on Sλ. (63)

Here, we have chosen the fundamental solution of the ∂̄ problem on C

∂

∂ζ̄
φ(ζ) = δ(ζ) as φ(ζ) =

1

πζ
. (64)
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This provides us implicitly with boundary conditions at ∂D for the transport equations
(56) and (57). It remains to show that (63) holds for z ∈ D. We verify that

∂

∂z̄

1

s(z, λ)− s(z0, λ)
= −

∂s(z, λ)

∂z̄
(s(z, λ)− s(z0, λ))2

= R(z, λ, z0)−
λπ

2i

δ(z − λ)

(s(z, λ)− s(z0, λ))2
,

where R(z, λ, z0) is the smoother term obtained from (60). Since s(z, λ) = O((z−λ)−1),
we deduce from the above calculation that (56) also holds at z = λ as (λ−z)δ(λ−z) = 0.
The same calculation shows that G(z; λ, z0) tends to 0 as λ approaches z. So for z 6= z0,
we deduce that G(z; λ, z0) is analytic on λ ∈ D+\{0, z0}. Asymptotic expansions show

that G(z; λ, z0) converges to m(z0)
m(z)−m(z0)

where m(z) = 1−|z|2
z

as λ → 0 and converges

to −π−1 as λ → z0 for z 6= z0. This implies that G(z; λ, z0) is analytic for λ ∈ D+

when z 6= z0. This allows us to conclude that after integration in z0 against a smooth
function, u(z, λ) defined in (58) is analytic on D+ as in the Euclidean case [24]. Thanks
to the symmetry (53), we verify that

G(z; λ, z0) =
sign

(
|λ| − 1

)
2πi

P (z, λ)

s(z, λ)− s(z0, λ)
. (65)

This shows the following result:

u(z, λ) solution of (58) is analytic on D+ ∪D−.

Note that since, G(z; z, z0) = 0 and u(z, z) = 0, the point λ = z plays the same role as
the point λ = 0 in Euclidean geometry (see [3]).

Jump conditions. Sectionally analytic functions are determined by the values they
take where they are not analytic [1]. We thus need to analyze the behavior of G(z; λ, z0)
and u(z, λ) as λ converges to T . By rotational invariance, it is sufficient to understand
the case λ→ 1−. We thus define λ = 1− ε and let ε→ 0+. The factor P (z0, λ) simply
tends to P (z0). The difficulties come from the behavior of s(z, λ) − s(z0, λ). We find
that

s(z, 1) =
1

2i

( 1

1− z̄
− 1

1− z

)
,

∂s

∂λ
(z, 1) =

1

2i

( z̄

(1− z̄)2
+

z

(1− z)2

)
.

We thus obtain for λ = 1− ε that

1

s(z, λ)− s(z0, λ)
=

1[
s(z, 1)− s(z0, 1)

]
− ε

[ ∂s

∂λ
(z, 1)− ∂s

∂λ
(z0, 1)

]
+ O(ε2)

ε→0+

−−−→ 1

s(z, 1)− s(z0, 1)
− iπδ

(
s(z, 1)− s(z0, 1)

)
sign

(
i
∂s

∂λ
(z, 1)− i

∂s

∂λ
(z0, 1)

)
,

in the sense of distributions. This comes from the fact that (ix + ε)−1 converges to
(ix)−1 + π sign(ε)δ(x) in the same sense.

Let us define the function ν(t, s) such that

i
∂s

∂λ
(z, 1) = z∗ν(z), i.e., ν(t, s) = z∗

(
i
∂s

∂λ

)
(t, s).
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Here z∗ = z−1
∗ . Then we have X(ei0)i ∂s

∂λ
(z, 1) = z∗

(
∂
∂t

ν
)

by construction. The above
function is positive (in both coordinate systems) since

X(ei0)i
∂s

∂λ
(z, 1) =

1− |z|2

2

( 1 + z

|1− z|2(1− z)
+

1 + z̄

|1− z|2(1− z̄)

)
=

(1− |z|2)2

|1− z|4
> 0.

This implies that

sign
(
i
∂s

∂λ
(z, 1)− i

∂s

∂λ
(z0, 1)

)
= sign

(
t(z)− t(z0)

)
, (66)

where we recall that t(z) is the first geodesic coordinate.
Since Ḡ(λ̄−1) = G(λ) thanks to (53), we deduce that

G±(z; ei0, z0) = lim
ε→0+

G(z; 1∓ ε, z0) = ∓P (z0)

2πi

1

s− s0

+
P (z0)

2
sign(t− t0)δ(s− s0). (67)

Here, (t, s) = (t(z), s(z)) and (t0, s0) = (t(z0), s(z0)) are the geodesic coordinates of z
and z0 on ξ(s, 0), respectively. By rotational invariance we verify that G±(z; eiθ, z0) =
G±(e−iθz; ei0, e−iθz0) so that:

G±(z; eiθ, z0) = ∓P (e−iθz0)

2πi

1

s(e−iθz)− s(e−iθz0)

+
P (e−iθz0)

2
sign

(
t(e−iθz)− t(e−iθz0)

)
δ
(
s(e−iθz)− s(e−iθz0)

)
.

(68)

We finally deduce from (58) that

u±(z, eiθ) =

∫
D

G±(z; eiθ, z0)f(z0)dmg(z0).

For z ∈ D and 0 ≤ θ < 2π, we recall that s(z, eiθ) = s(e−iθz) defined in (55) is the
second geodesic coordinate of z on the unique geodesic converging to eiθ. Thanks to (68)
and the fact that the measure dmg is preserved by rotation (so that (eiθ)∗dmg = dmg),
we find that

u±(z, eiθ) =

∫
R2

P (z(t0, s0))f
(
eiθz(t0, s0)

)(
∓ 1

2πi

1

s(e−iθz)− s0

+
sign

(
t(e−iθz)− t0

)
δ
(
s(e−iθz)− s0

)
2

)
e−2t0dt0ds0

=

∫
R2

∓ 1

2πi

1

s(e−iθz)− s(z0)
f
(
eiθz(t0, s0)

)
dt0ds0

+

∫
R

sign
(
t(e−iθz)− t0

)
2

f
(
eiθz(t0, s(e

−iθz))
)
dt0

=
∓1

2i
(Hf̂)(s(e−iθz), θ) + Dθf(z). (69)

Here, we have used that P (z(t0, s0)) = e2t0 . The Hilbert transform and the symmetrized
beam transform have been defined in (26) and (24), respectively.

Note that Dθf(z) cannot directly be written in terms of the measured data f̂(s, θ).
However, the difference

ϕ(z, eiθ) = u+(z, eiθ)− u−(z, eiθ) = i(Hf̂)(s(e−iθz), θ), (70)

is explicitly calculated from the ray transform of f(z).
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Riemann-Hilbert problem. We have obtained so far that u(z, λ) is analytic in λ on
D+ ∪D− and have characterized the jump of u(z, λ) across λ ∈ T . This does not fully
characterize u(z, λ) yet as u(z, λ) does not converge to 0 as λ→∞. We have observed
however that u(z, λ = z) = ū(z, λ = z̄−1) = 0. This constraint may be used to uniquely
determine u(z, λ) from its jump conditions across T as follows.

Let us define the conformal mapping

µ : λ 7→ µ(λ) =
λ− z

1− λz̄
. (71)

We verify that µ sends z to 0 and preserves the unit circle T (but not its points indi-
vidually). Define now

ũ(z, µ) = µ∗u(z, µ) = u(z, λ), and ϕ̃(z, ν) = µ∗ϕ(z, ν) = ϕ(z, τ), (72)

for ν = µ(τ) (and τ) on the unit circle. Since µ is conformal, we verify that

ϕ̃(z, ν) = ũ+(z, ν)− ũ−(z, ν),

the jump of ũ(z, ·) across T . Note that z̄−1 is mapped to ∞ by µ and recall that
ū(z, λ̄−1) = u(z, λ) so that ũ(z, µ) converges to 0 as µ→∞. Since in addition ũ(z, µ) is
analytic in µ on D+ ∪D−, ũ(z, µ) is the unique solution of a Riemann Hilbert problem
[1] given by the following Cauchy formula:

ũ(z, µ) =
1

2πi

∫
T

ϕ̃(z, ν)

ν − µ
dν. (73)

Asymptotic expansions in the vicinity of µ = 0 yield

ũ(z, µ) =
1

2πi

∫
T

ϕ̃(z, ν)

ν
dν + µ

1

2πi

∫
T

ϕ̃(z, ν)

ν2
dν + O(µ2). (74)

Because ũ(z, µ) vanishes at µ = 0, we deduce that the data need to satisfy the following
compatibility condition

1

2πi

∫
T

ϕ̃(z, ν)

ν2
dν = 0. (75)

Let us now define the field

X̃(µ) = (1− |z|2)
(
µ∂ +

1

µ
∂̄
)

= µ∗X(µ) = X(λ); µ = µ(λ). (76)

Using the transport equation (57) in the µ variable X̃(µ)ũ(z, µ) = f(z), we deduce from
asymptotic expansions in the vicinity of µ = 0 that

1− |z|2

2πi

∫
T

∂̄ϕ̃(z, ν)

ν2
dν = f(z). (77)

Using the automorphism of T (the restriction of µ on T ):

ν =
τ − z

1− τ z̄
,

dν

ν
=

1− |z|2

(τ − z)(1− τ z̄)
dτ,

dν

ν2
=

1− |z|2

(τ − z)2
dτ, (78)
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we deduce that

0 =
1

2πi

∫
T

P (τ−1z)ϕ(z, τ)
dτ

τ
=

1

2π

∫ 2π

0

P (e−iθz)ϕ(z, eiθ)dθ,

f(z) =
(1− |z|2)2

2πi

∫
T

∂̄ϕ(z, τ)

(τ − z)2
dτ.

(79)

Since ϕ(z, τ) is explicitly given in terms of the geodesic ray transform of f(z) in (70),
we obtain an explicit reconstruction formula for the source term f(z).

4.3 Reconstruction formulae

The relation (79) provides us with an inversion formula for the ray transform on the
two-dimensional hyperbolic manifold. We may render it more explicit as follows. We
recall that the orthogonal vector fields X⊥(eiθ) and X̌⊥(eiθ) are defined in (16) and
(18), respectively. Since the ray transform preserves the real-valuedness of f(z), we can
assume without loss of generality that f(z) is real-valued. Since from (70), ϕ ∈ iR, we
deduce that ϕ̄ = −ϕ. Using the change of variables τ = eiθ so that dτ = ieiθdθ, we
deduce that

f(z) =
1

2π

∫ 2π

0

(1− |z|2)2

(1− e−iθz)2
e−iθ∂̄ϕdθ =

1

2π

∫ 2π

0

(1− |z|2)2

(1− eiθz̄)2
eiθ(−∂ϕ)dθ

=
1

4π

∫ 2π

0

(1− |z|2)2

(1− e−iθz)(1− eiθz̄)

( 1− eiθz̄

1− e−iθz
e−iθ∂̄ − 1− e−iθz

1− eiθz̄
eiθ∂

)
ϕdθ

=
1

4π

∫ 2π

0

P (e−iθz)X̌⊥(eiθ)(−iϕ)(z, eiθ)dθ.

This yields the reconstruction formula

f(z) =
1

4π

∫ 2π

0

P (e−iθz)X̌⊥(eiθ)(Hf̂)(s(e−iθz), θ)dθ. (80)

The above formula may be recast as follows

f(z) =
1

4π

∫ 2π

0

P 2(e−iθz)
(
H

∂

∂s
f̂
)
(s(e−iθz), θ)dθ. (81)

Indeed we verify that

X⊥(eiθ)
(
Hf̂(s(e−iθ))

)
= (eiθz)∗

∂

∂s
(eiθz)∗Hf̂ = (eiθz)∗

( ∂

∂s
Hf̂

)
= (eiθz)∗

(
H

∂

∂s
f̂
)
.

This proves (29), and using the definition (27) of the dual transform R∗, the formula (30).
It remains to justify the compatibility condition in (79). We verify that X(eiθ)ϕ(z, eiθ) =
0 by construction. This implies that ϕ ≡ ϕ(s(e−iθz), θ) is independent of the geodesic
variable t. The compatibility condition in (79) is then equivalent to (28).
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5 Attenuated ray transform and inversion

Generalizations of the reconstruction formulae obtained for the ray transform (21) to
the attenuated ray transform (32) are now relatively straightforward. The transport
equation (22) is replaced by (31). Its extension into the complex plane is then

X(λ)u(z, λ) + a(z)u(z, λ) = f(z). (82)

The solution is given by

u(z, λ) =

∫
D

G(z; λ, ζ)eh(ζ,λ)−h(z,λ)f(ζ)dmg(ζ), (83)

where we have defined

h(z, λ) =

∫
D

G(z; λ, ζ)a(ζ)dmg(ζ), (84)

the solution of X(λ)h = a. We verify that the limits as λ→ T are given by

h±(z, eiθ) = ∓ 1

2i
(HRθa)(s(e−iθz), θ) + Dθa(z).

The limits of the transport equation are thus given by

u±(z, eiθ) = e−h±(z,eiθ)
[∓1

2i
HRθ

(
e∓

1
2i

Hâ(s(e−iθζ))eDθa(ζ)f(ζ)
)
(s(e−iθz), θ)

]
+e−h±(z,eiθ)Dθ

(
e∓

1
2i

Hâ(s(e−iθζ))eDθa(ζ)f(ζ)
)
(z).

(85)

Since Dθ and Rθ are operators acting on the t variable only, and not on the s variable,
in geodesic coordinates, we deduce that

Rθe
∓ 1

2i
Hâ(s(e−iθζ)) = e∓

1
2i

Hâ(s(e−iθζ))Rθ, Dθe
∓ 1

2i
Hâ(s(e−iθζ)) = e∓

1
2i

Hâ(s(e−iθζ))Dθ.

This allows us to recast u± as

u±(z, eiθ) = e−h±(z,eiθ)
(∓1

2i
He∓

1
2i

Hâ(s(e−iθζ))[Raf ]
)
(s(e−iθz), θ)

+e−Dθa(z)Dθ

(
eDθa(ζ)f(ζ)

)
(z).

(86)

Let us now define the jump across T :

ϕ(z, eiθ) = (u+ − u−)(z, eiθ). (87)

We observe that
ϕ(z, eiθ) = iP−1(e−iθz)R∗

−a,θHaRa,θf(z), (88)

where the operators involved in the above formula are defined in (34). We can now use
the Cauchy formula (73) to conclude the reconstruction. The transport equation (82)
may be recast after conformal mapping by (71) as(

X̃(µ) + a(z)
)
ũ(z, µ) = f(z). (89)
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The expressions (74) and (76) still hold in the attenuated case and yield the same
formulae (79) as in the non-attenuated case, except that ϕ(z, eiθ) is now given by (88).
Note that the compatibility condition

1

2π

∫ 2π

0

P (e−iθz)ϕ(z, eiθ)dθ = 0, (90)

can no longer be written as a back-projection as in (28) since ϕ solves (X(eiθ)+a)ϕ = 0
and thus depends on both variables t and s non trivially.

As before the reconstruction formula in (79) can be written more explicitly as

f(z) =
1

4π

∫ 2π

0

P (e−iθz)X⊥(eiθ)(−iϕ)(z, eiθ)dθ, (91)

which yields after using (88):

f(z) =
1

4π

∫ 2π

0

X̌⊥(eiθ)
(
R∗
−a,θHa[Ra,θf ]

)
(z, eiθ)dθ, (92)

where [Ra,θf ] is the measured attenuated ray transform. This is (36), which may be
recast as (37).

6 Dual transforms and inversions

The derivation of inversion formulae for the horocyclic transform is very similar to that
for the geodesic transform. We highlight the differences. The complexification of the
normalized vector field along horocycle is given by

X̌⊥(λ) = i(1− |z|2)
(
− λ− z

1− λz̄
∂ +

1− λz̄

λ− z
∂̄
)
. (93)

The transport equation involved in the definition of the attenuated ray transform along
horocycles of a source term f(z) is then

X̌⊥(λ)u⊥(z, λ) + a(z)u⊥(z, λ) = f(z). (94)

The fundamental solution to the above equation is thus defined by

X̌⊥(λ)G⊥(z; λ, z0) = δg(z − z0). (95)

In order to solve the above equation, we first verify that

X̌⊥(λ)P (z, λ) = (λ ◦ z)∗(e
2t ∂

∂s
e2t) = 0.

We thus define the transformation (still denoted by P ):

P (λ) : (z, z̄) 7→ (P, P̄ ) =

(
1− zz̄

(1− λ−1z)(1− λz̄)
,

1− zz̄

(1− λ̄−1z̄)(1− λ̄z)

)
. (96)
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We compute for z ∈ Sλ = D\{λ}:

∂P

∂z
=

λ

(λ− z)2
,

∂P

∂z̄
=

λ

(1− λz̄)2
,

∂P̄

∂z
=

λ̄

(1− λ̄z)2
,

∂P̄

∂z̄
=

λ̄

(λ̄− z̄)2
.

This implies that the Jacobian of the transformation P is given by

∂P (z) = |λ|2
(

1

|λ− z|4
− 1

|1− λz̄|4

)
> 0.

We now have

P∗X̌
⊥(λ) = i(1− |z|2)

(
− λ− z

1− λz̄

∂P̄

∂z
+

1− λz̄

λ− z

∂P̄

∂z̄

)
∂

∂P̄

= i(1− |z|2)λ−1(λ− z)(1− λz̄)(∂P (z))
∂

∂P̄
.

The fundamental solution G⊥ thus satisfies

P∗X̌
⊥(λ)P∗G

⊥ = (1− |z|2)2P∗δ(z − z0) = (1− |z0|2)2|∂P (z0)|δ(P − P (z0, λ)),

which implies that

∂

∂P̄
(P∗G

⊥) = −i
λ(1− |z0|2)

(λ− z0)(1− λz̄0)
δ(P − P (z0, λ)).

Using (64), the solution to the above equation is finally given by

G⊥(z; λ, z0) =
P (z0, λ)

iπ

1

P (z, λ)− P (z0, λ)
. (97)

We verify as in (63) that G⊥(z; λ, z0) is analytic in λ ∈ D+ when z 6= z0.
We now characterize the limit of G⊥(λ) as λ→ 1−. We verify that

P (z) =
1− |z|2

|1− z|2
,

∂P

∂λ
(z, 1) =

(1− |z|2)(z̄ − z)

|1− z|4
= 2is(z)P (z).

Since P (z) > 0 on the horocycle P (z) = P (z0), we obtain that sign(i∂P
∂λ

(z, 1) −
i∂P

∂λ
(z0, 1)) = − sign(s(z) − s(z0)). Following the same calculation as in (67), we de-

duce that

G⊥
±(z; ei0, z0) =

±P (z0)

iπ

1

P (z)− P (z0)
+ P (z0)δ(P (z)− P (z0))sign(s(z)− s(z0)). (98)

We may thus recast the above limit as

G⊥
±(z; ei0, z0) =

±P (z0)

iπ

1

P (z)− P (z0)
+

1

2
δ(t(z)− t(z0))sign(s(z)− s(z0)). (99)

Let us define

h⊥(z, λ) =

∫
D

G⊥(z; λ, z0)a(z0)dmg(z0),
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the solution to X̌⊥(λ)h⊥ = a. We recall that z∗dmg = e−2tdtds. The limit as λ → 1 is
given by

h⊥±(z, ei0)

= ±
∫

D

P (z0)

iπ(P (z)− P (z0))
a(z0)dmg(z0) +

∫
D

δ(t(z)− t0)

2
sign(s(z)− s0)a(z0)dmg(z0)

= ± 1

iπ

∫
R2

a(z(t0, s0))

e2t(z) − e2t0
dt0ds0 +

e−2t(z)

2

∫
R

sign(s(z)− s0)a(z(t(z), s0))ds0

= ± 1

iπ

∫
R2

a(z(t0, s0))e
−2t0

e2(t(z)−t0) − 1
dt0ds0 +

e−2t(z)

2

∫
R

sign(s(z)− s0)a(z(t(z), s0))ds0.

Thanks to the invariance of the family of horocycles by rotation, we finally obtain the
following limit

h⊥±(z, eiθ) = ± 1

2i
(H⊥R⊥

θ a)(t(e−iθz), θ) + D⊥
θ a(z). (100)

We recall that the weighted Hilbert transform H⊥ is defined in (44). This implies that
the limit of the transport solution as λ→ T is given by

u⊥±(z, eiθ) = e−h⊥±(z,eiθ)
[±1

2i
H⊥

(
e
±1
2i

H⊥ǎ(t(e−iθζ))[R⊥
a f ]

)]
(t(e−iθz), θ)

+e−D⊥θ a(z)D⊥
θ

(
eD⊥θ a(ζ)f(ζ)

)
(z).

(101)

We have used here that for any smooth function ϕ(t(z)),

R⊥
θ ϕ(t(e−iθζ)) = ϕ(t(e−iθζ))R⊥

θ , D⊥
θ ϕ(t(e−iθζ)) = ϕ(t(e−iθζ))D⊥

θ ,

since R⊥
θ and D⊥

θ act only on the s-geodesic coordinate. Let us define

ϕ⊥(z, eiθ) = (u⊥+ − u⊥−)(z, eiθ). (102)

We observe that
iϕ⊥(z, eiθ) = R⊥∗

−a,θH
⊥
a R⊥

a,θf(z), (103)

where the operators in the above equality are defined in (46). As in the case dealing
with integration along geodesics, we verify that u(z, λ) vanishes for λ = z since |P (z, λ)|
becomes infinite there. We can thus use the conformal map (71) and define ũ⊥(z, µ) =
µ∗u

⊥(z, µ) = u⊥(z, λ). The following Cauchy formula then applies

ũ⊥(z, µ) =
1

2πi

∫
T

ϕ̃⊥(z, ν)

ν − µ
dν.

Using the change of variables defined in (78), this yields as before the compatibility
condition

1

2πi

∫
T

ϕ̃⊥(z, ν)

ν
dν =

1

2πi

∫
T

P (z, τ)
ϕ⊥(z, τ)

τ
dτ = 0. (104)

We now verify that

µ∗X̌
⊥(µ) = X̃⊥(µ) = i(1− |z|2)(−µ∂ +

1

µ
∂̄).
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We deduce from the asymptotic expansion in the vicinity of µ = 0 of the transport
equation (X̃⊥(µ) + a)ũ⊥(z, µ) = f(z) that

f(z) =
(1− |z|2)

2π

∫
T

∂̄ϕ̃⊥(z, ν)

ν2
dν = (1− |z|2)2 1

2π

∫
T

∂̄ϕ⊥(z, τ)

(τ − z)2
dτ. (105)

Using that iϕ⊥ is real-valued when f(z) is real-valued, we deduce that

f(z) = (1− |z|2)2 1

2π

∫ 2π

0

e−iθ

(1− e−iθz)2
∂̄(iϕ⊥)dθ

=
1

4π

∫ 2π

0

1− |z|2

(1− e−iθz)(1− eiθz̄)
(1− |z|2)

(1− e−iθz

1− eiθz̄
eiθ∂ +

1− eiθz̄

1− e−iθz
e−iθ∂̄

)
(iϕ⊥)dθ

=
1

4π

∫ 2π

0

P (e−iθz)X(eiθ)(iϕ⊥)dθ.

It remains to replace iϕ⊥ by its expression (103) in terms of the data to obtain the final
reconstruction formulae (48) and (49).

7 Vectorial ray transform

So far we have considered the integration of scalar source terms. We now consider the
reconstruction of vectorial source terms from their geodesic ray transforms; see [23, 33]
for references on vector tomography in Euclidean geometry.

Let F (z) be a vector field on TD. We consider the transport equation

X(eiθ)u(z, eiθ) + a(z)u(z, eiθ) = 〈X(eiθ), F 〉, (106)

with the usual vanishing conditions at −∞. The attenuated ray transform of the vector
field is given by

RaF (s, θ) ≡ Ra,θF (s) =

∫
ξ(s,θ)

eDθa(z, eiθ)〈X(eiθ), F 〉dmg(z). (107)

This is again the limit of eDθau as t → +∞ along the geodesic ξ(s, θ). The question is
then whether F can be reconstructed from RaF . The answer is yes on the support of
a positive absorption term a(z). In the absence of absorption, all one can reconstruct
about F is its solenoidal component, or equivalently its curl defined by ∗dF [; see [2] for
the notation.

The inversion formulae are based on the analysis of u(z, λ) for λ in the vicinity of
z. Let F [ be the co-vector (one form) associated to the vector F . The complexified
transport equation reads

X(λ)u(z, λ) + a(z)u(z, λ) = F [(z)X(λ). (108)

We recall the definition X̃(µ) = µ∗X(µ) in (76) and define the expansion

X̃(µ) =
1

µ
X̃0 + O(µ), X̃0 = (1− |z|2)∂̄. (109)
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Since F [ is independent of µ, we deduce that ũ(z, µ) is bounded (but no longer converges
to 0) in the vicinity of µ = 0. We thus have

ũ(z, µ) = u0(z) + µu1(z) + O(µ2).

Upon plugging these expansions into the transport equation and equating like powers
of µ, we get

X̃0u0(z) = F [(z)X̃0

X̃0u1(z) + au0(z) = 0.
(110)

Let us return to the Riemann-Hilbert problem. Since ũ(z, µ) is bounded and analytic
on D+ ∪D−, we can apply the Cauchy formula as in (73) and obtain that

ũ(z, µ) =
1

2πi

∫
T

ϕ̃(z, ν)

ν − µ
dν + ū0(z). (111)

We verify that ũ(z,∞) = ū0(z) thanks to (53). In (111), ϕ̃(z, ν) = µ∗ϕ(z, ν) is defined
as in (72) and ϕ(z, τ) = u+(z, τ)− u−(z, τ) is defined in the vectorial context as

ϕ(z, eiθ) = iP−1(e−iθz)R∗
−a,θHa[Ra,θF ](z), (112)

where the operators involved in the above formula are defined in (34) and (107). The
derivation of the above formula is the same as in (103) as X(λ) is analytic in the
vicinity of T , whence does not jump across T . Since both sides in (111) are analytic
in µ on D+, we may perform an asymptotic expansion in µ. The first two terms in
the expansion yield (we can verify [3] that higher-order terms in the expansion do not
provide additional information):

u0(z)− ū0(z) =
1

2πi

∫
T

ϕ̃(z, ν)

ν
dν =

1

2π

∫ 2π

0

P (e−iθz)ϕ(z, eiθ)dθ ≡ ϕ0(z)

u1(z) =
1

2πi

∫
T

ϕ̃(z, ν)

ν2
dν =

1

2πi

∫
T

ϕ(z, τ)

(τ − z)2
dτ ≡ ϕ1(z).

(113)

Owing to (112), the terms ϕ0(z) and ϕ1(z) are uniquely determined by the data Ra,θF (s).
Let us assume that a ≡ 0. Then the second equations in (110) and (113) do not

provide any information about F [. The first equations provide partial information about
F [ = F1dx + F2dy. Indeed, we verify that the first equations in (110) and (113) are
equivalent to the following system

∂̄u0(z) =
F1 + iF2

2
2i={u0(z)} = ϕ0(z).

(114)

Upon applying ∂ to both sides of the first equation and ∆ = 4∂∂̄ to the second equation,
we get

curlF ≡ ∗dF [ =
∂F2

∂x
− ∂F1

∂y
=

1

2i
∆ϕ0. (115)

We can thus reconstruct the solenoidal component of F but not its gradient component.
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Let us now assume that a(z) > 0 on the support of F (z). We deduce from (110)
that

F [(z)X̃0 = −X̃0
1

a(z)
X̃0u1(z). (116)

More explicitly, this yields

F1(z) + iF2(z) = −2∂̄
(1− |z|2

a(z)
∂̄ϕ1(z)

)
. (117)

Since the vectorial ray transform preserves the real-valuedness of the vector field, we
may assume that F is real-valued. The above formula thus allows us to reconstruct both
components of F . This is similar to the results obtained in Euclidean geometry [3, 8].

8 Half-plane geometry

The Poincaré disc model (D, g1/2), where g1/2 is defined in (19) and has constant cur-
vature K1/2 = −1, is isometric [16] to the Poincaré half-plane model (H, h), where H is
the upper half-plane R× R+ and h is the Riemannian metric defined by

ds2
h =

dx2 + dy2

y2
, (x, y) ∈ R× R+. (118)

The isometry may be realized by the conformal map

w :

{
D → H

z 7→ w(z) = i
1− z

1 + z
,

(119)

such that 1 is mapped to w(1) = 0 and 0 is mapped to w(0) = i. The description
of the geodesics presented in section 2 has an equivalent description on (H, h). We
rather use the isometry w(z) to obtain the properties we need on (H, h). For instance,
Y (0) = w∗X1/2(e

i0) is the geodesic vector field of geodesics converging to (0, 0) on the
real axis. After some algebra we find explicitly that

Y (0)|w = iy
(w

w̄
∂ − w̄

w
∂̄
)

(120)

where we identify w = x+ iy. Since (H, h) is invariant by translation along the x−axis,
the geodesic vector field of geodesic integral curves converging to (k, 0) for k ∈ R is
given by

Y (k)|w = iy
(w − k

w̄ − k
∂ − w̄ − k

w − k
∂̄
)
. (121)

Here, the parameter k is related to eiθ by k = w(eiθ).
The complexification of Y (k) is now straightforward. The translation parameter k

may be seen as a complex number k ∈ C rather than a real number. We verify that
Y (k) is an elliptic operator for k ∈ C\R. The quantity being complexified is thus no
longer the direction of propagation at infinity (all geodesics are almost parallel to the
y-axis at infinity), but rather the point of convergence on the x-axis.

For =(k) > 0, we verify that Y (k) is ∂̄-like, which corresponds to the case λ ∈ D+

on (D, g), with {=(k) > 0} = w(D+). We thus see how the theory developed on (D, g)
may unfold on (H, h). Naturally, all the results obtained earlier in the paper may be
directly stated on (H, h) via the conformal map w(z).
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9 Conclusions

The method of complexification of geodesic vector fields allows us to invert an important
class of weighted ray transforms namely, the attenuated geodesic and horocyclic ray
transforms in hyperbolic geometry. It involves a specific global parameterization of the
geodesic vector field, based on the point of convergence at infinity of the geodesics.

The inversion of the ray transform in higher dimension is straightforward. Namely,
hyperbolic manifolds of dimension higher than two can be foliated into totally geodesic
two-dimensional manifolds that are isometric to (D, g). The inversion may then be
performed on each leaf of the foliation independently as in Euclidean geometry [24].

For two-dimensional manifolds, it remains an open problem to characterize the class
of metrics for which the method of complexification will provide explicit inversion for-
mulae for ray transforms. One may be tempted to believe that real-analytic metrics
with negative curvature (thus on geodesically complete manifolds) are in this class.
More generally, one may ask which families of integral curves of vector fields of the form
X(eiθ) permit the derivation of explicit inversion of ray transforms.
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Nantes, Laboratoire de Mathématiques).
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