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Abstract

We consider the angular averaging of solutions to time-harmonic transport equations. Such quantities
model measurements obtained for instance in optical tomography, a medical imaging technique, with
frequency-modulated sources. Frequency modulated sources are useful to separate ballistic photons from
photons that undergo scattering with the underlying medium. This paper presents a precise asymptotic
description of the angularly averaged transport solutions as the modulation frequency ω tends to ∞.
Provided that scattering vanishes in the vicinity of measurements, we show that the ballistic contribution
is asymptotically larger than the contribution corresponding to single scattering. Similarly, we show
that singly scattered photons also have a much larger contribution to the measurements than multiply
scattered photons. This decomposition is a necessary step toward the reconstruction of the optical
coefficients from available measurements.

1 Introduction

Transport (linear Boltzmann) equations offer accurate descriptions for the propagation of particles in scat-
tering media such as e.g. photons in human tissues in the application of optical tomography [1]. In the latter
medical imaging modality, optical parameters are reconstructed from available photon density readings at
detectors. Such detectors are typically optical fibers, which collect photons coming from different directions.
The optical sources are also typically optical fibers and photons are thus emitted over a larger range of
directions. When steady state sources are used, the reconstruction of the optical parameters from available
measurements is severely ill-posed; see e.g. [7] as well as [4] for a review of inverse transport theory in several
regimes of interest in optical tomography.

When time dependent sources are being used instead, some optical coefficients can be reconstructed
from stably from angularly averaged measurements as described in [6]. However, because light speed is very
large, measurements in the time domain are typically not available. An intermediate regime consists of
using frequency modulated sources, for instance sources of the form (1 + cos(ωt + φ))S(x, v) where φ is a
constant phase shift, x is position and v direction of propagation. Heuristically, large values of ω correspond
to good temporal sampling (inversely proportional to ω) in the time domain. As ω increases, we thus expect
to be able to achieve accurate reconstructions of (some) optical parameters as in the time domain. That
the reconstruction of the optical parameters is greatly improved when ω increases was demonstrated in the
numerical simulations performed in e.g. [15, 16]; see also [2] for a similar behavior in the diffusive regime.
See also [10] for an approach to the (time-dependent) inverse problem using highly-oscillatory solutions.

The main objective of this paper is to give a precise description of the asymptotic behavior of the angular
averaging of transport solutions in the limit of large ω. The reason why reconstructions are more stable
for large values of ω is that scattering is damped, in a sense that will be made precise, as ω increases.
We decompose the transport solution into three components: the ballistic component, the single scattering
component, and the multiple scattering component. These contributions exhibit different behaviors for large
values of ω. By using stationary phase techniques, we present a precise asymptotic description of these three
components as ω →∞. Although we shall not do so here, such a decomposition can then be used to obtain
stable reconstructions of (some) optical coefficients; see also [3].
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That stationary phases appear in the analysis may be understood as follows. As “time harmonic” photons
propagate from the source (located at a point x0) to the detector (located at a point xc), they accumulate a
phase described by eiωd, where d is the distance traveled by the photon along its (possibly complicated) path.
For ballistic photons, the distance is fixed and given by the distance between the source and the detector. The
amplitude of ballistic photons is not affected by the modulation frequency ω. Scattered photons, however,
may scatter at different locations and thus arrive at the detectors’ location with interfering phases. The
precise averaging of phases is then described by stationary phase. It turns out that the points where the
phase is stationary are precisely the points on the line segment joining the source to the detector. There is
therefore a continuum of stationary points, which is the main mathematical difficulty we overcome in this
paper by a careful estimate of the remainders that appear in standard stationary phase expansions. Multiple
scattering is then handled similarly and shown to have a contribution that is asymptotically negligible
compared to that of the ballistic and single scattering components.

The rest of the paper is structured as follows. Our main results are stated in section 2. The decomposition
of the angularly averaged transport solution (defined in (2.4) below) into ballistic, single scattering, and
multiple scattering contributions is presented in (2.6) below. The asymptotic behavior of these terms for
large values of ω is described in Theorems 2.2, 2.5 and 2.6. Section 3 introduces notation on transport theory
and decomposes the transport solution into terms involving increasing orders of scattering. Section 4 gives
a proof of lemma 3.1, which states how the so-called subcriticality conditions in the steady-state regime can
be relaxed in the time-harmonic regime. Finally, sections 5 and 6-7 give proofs for the single and multiple
scattering estimates, respectively, using a careful stationary phase expansion.

2 Statement of the main results

Let X ⊂ Rn, n ≥ 2 be an open convex bounded domain with C1 boundary ∂X and diameter ∆ > 0. Denote
the incoming and outgoing boundaries

Γ± =
{

(x, v) ∈ ∂X × Sn−1 | v ∈ Sn−1
x,±
}
, where Sn−1

x,± := {v ∈ Sn−1 : ±νx · v > 0}, (2.1)

where νx is the outer normal to ∂X at x ∈ ∂X. We consider the transport equation in the time-harmonic
regime for the density ψ(x, v), with isotropic ingoing boundary conditions

v · ∇ψ(x, v) + (σ(x, v) + iω)ψ(x, v) =
∫

Sn−1
k(x, v′, v)ψ(x, v′) dv′, (x, v) ∈ X × Sn−1,

ψ(x, v) = g(x), (x, v) ∈ Γ−,
(2.2)

where ω ≥ 0 and the input function g takes the form g(x) = δ(x − x0), (x0, x) ∈ (∂X)2 (call it gx0). By
δ(x− x0) we mean the delta distribution that satisfies for each smooth function φ defined at the boundary:∫

∂X

δ(x− x0)φ(x) dµ(x) = φ(x0), (2.3)

where dµ(x) is the standard measure on the boundary. The coefficient σ(x, v) ≥ 0 accounts for particles
that were absorbed by the medium, and k(x, v′, v) ≥ 0 accounts for particles that scattered at point x from
direction v′ to direction v. It is customary to write σ(x, v) = σa(x, v) + σp(x, v), where σa is the intrinsic
absorption of the medium, and

σp(x, v) =
∫

Sn−1
k(x, v, v′) dv′,

represents the loss of particles that have scattered at x from direction v to other directions. An existence
theory for (2.2) is given in the next section.

From the solution ψ of (2.2), we consider the angularly averaged outgoing measurements:

Tω(x0, xc) =
∫

Sn−1
xc,+

ψ|Γ+(xc, v)|v · νxc | dv. (2.4)
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Here and below, x0 ∈ ∂X will denote the emitter’s position and xc ∈ ∂X, the captor’s position. The
measurement function (2.4) can be seen as the distributional kernel of the operator

Mω(f, g) :=
∫
∂X

∫
∂X

Tω(x0, xc)f(x0)g(xc) dµ(x0) dµ(xc), (f, g) ∈ (L1(∂X))2, (2.5)

defined and studied in [7] in the case ω = 0.
Now, as will be justified in the next section, assuming that ω is large enough, the measurement operator

defined in (2.4) admits the following decomposition

Tω(x0, xc) = Tω0 (x0, xc) + Tω1 (x0, xc) + Tω2+(x0, xc), (2.6)

where Tω0 accounts for ballistic particles emitted at x0 and captured at xc, Tω1 /Tω2+ accounts for particles that
scattered once/multiple-times inside the domain, respectively. This sort of decomposition was introduced
in [13] in three dimensions and later in arbitrary dimensions for the stationary problem [9], and the time-
dependent problem [8].

For the work that follows, and in order to avoid effects of scattering at the boundary, we formulate the
following crucial hypothesis,

Hypothesis 2.1. Define the spatial support of the scattering function

suppX k =

{
x ∈ X, sup

v,v′∈Sn−1
k(x, v, v′) > 0

}
,

then we make the following assumption:

D := dist (∂X, suppX k) > 0.

Let us now give the main results. The ballistic term is given by

Tω0 (x0, xc) =
e−iω|xc−x0|E(x0, xc)
|xc − x0|n−1

|νx0 · e0||νxc · e0|, (2.7)

where we have defined e0 := x̂c − x0 and where E(x0, xc) is defined by (3.4) given below. Here and below
x̂ := x/|x| is the unit vector in the direction of x 6= 0. One can readily see from expression (2.7) that the
magnitude of the ballistic part is unaffected by the frequency ω. This is because the ballistic particles are
the first ones to reach the detector, and there is only one ballistic path from x0 to xc, hence no interference
due to a difference of paths.

The single scattering term admits the following expression

Tω1 (x0, xc) =
∫
X

eiωϕ(x,x0,xc)E(x0, x, xc)k(x, x̂− x0, x̂c − x)c(x, x0, xc) dx, where

c(x, x0, xc) := (|x− x0||x− xc|)−n+1|νx0 · x̂− x0||νxc · x̂c − x|,
ϕ(x, x0, xc) := −|x0 − x| − |x− xc|.

(2.8)

where E(x0, x, xc) is defined below by (3.5). We define the following function

f(x0, xc, x) := E(x0, x, xc)k(x, x̂− x0, x̂c − x)c(x, x0, xc). (2.9)

Due to the fact that there is a continuum of single scattering paths from x0 to xc, particles having taken
different paths will interfere. As a result, the single scattering becomes an oscillatory integral, the leading
behavior of which, as ω → ∞, is ruled by the stationary points of the phase function ϕ(x, x0, xc) :=
−|x−x0|− |x−xc|. The following theorem gives the leading-order term in the asymptotic expansion of (2.8)
for large ω (here and below, we denote by b·c, d·e the floor and ceiling functions, respectively):
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Theorem 2.2. Assume that the integrand defined in (2.9) satisfies f ∈ L∞((∂X)2; Cdn+3
2 e(X)) and assume

hypothesis 2.1. Then there exists a constant C such that the following decomposition holds for every (x0, xc) ∈
∂X2, x0 6= xc (denote d0 = |xc − x0| and e0 = x̂c − x0) and for every ω > 0

Tω1 (x0, xc) = e−iωd0
(

2π
d0ω

)n−1
2

e−i(n−1)π4E(x0, xc)|νx0 · e0||νxc · e0|

×
∫ d0

0

k(x0 + ue0, e0, e0)

(u(d0 − u))
n−1

2

du+Rω(x0, xc),

(2.10)

where the remainder Rω belongs to L∞(∂X × ∂X) and satisfies the estimate

‖Rω‖∞ ≤
C

ω
n+1

2

‖f‖
Cd
n+3

2 e . (2.11)

Remark 2.3. A sufficient condition for the integrand f to satisfy the regularity prescribed in theorem 2.2
is to assume that the optical coefficients (σ, k) are of class Cdn+3

2 e.

Remark 2.4. Besides increasing the ballistic-scattering separation in the measurements, the leading-order
of (2.10) contains a weighted integral transform of k which will motivate a mildly ill-posed reconstruction
formula for k. This is to be compared with [7], where the same inverse problem was investigated in the
case ω = 0 and was shown to be severely ill-posed. This weighted integral transform also appears in the
time-dependent setting [6].

Finally, the multiple scattering part of the measurements is a bounded function and satisfies the following
estimate:

Theorem 2.5. Let (σ, k) ∈ Cdn+1
2 e(X̄ × Sn−1) × Cdn+1

2 e(X × Sn−1 × Sn−1), and assume hypothesis 2.1.
Then there exists a frequency ω0 ≥ 2 and a constant C such that for every ω ≥ ω0 the multiple scattering
Tω2+ ∈ L∞(∂X × ∂X) and satisfies the estimate

‖Tω2+‖∞ ≤


C ω−1, n = 2,
C ω−2 ln(ω), n = 3,
C ω−

n+1
2 , n ≥ 4.

(2.12)

These results are summarized in the following theorem, using the most regularity of the optical coefficients
that is required for theorems 2.2 and 2.5 to hold:

Theorem 2.6. Assume that (σ, k) ∈ Cdn+3
2 e(X̄ × Sn−1)×Cdn+3

2 e(X × Sn−1× Sn−1), and assume hypothesis
2.1. Then there exists a frequency ω0 ≥ 2 and a constant C such that for every ω ≥ ω0 the measurement
function Tω admits the following singular decomposition

Tω(x0, xc) = Tω0 (x0, xc) + Tω1 (x0, xc) + Tω2+(x0, xc), (2.13)

for a.e. (x0, xc) ∈ ∂X × ∂X, where Tω1 is given by (2.8) and has the asymptotic behavior described in (2.10)
and

Tω0 (x0, xc) :=
e−iω|xc−x0|E(x0, xc)
|xc − x0|n−1

|νx0 · e0||νxc · e0|, (2.14)

Tω2+ ∈ L∞(∂X × ∂X) and ‖Tω2+‖∞ ≤


C ω−1, n = 2,
C ω−2 ln(ω), n = 3,
C ω−

n+1
2 , n ≥ 4.

(2.15)

3 Forward theory

Let us now return to the forward model (2.2) and present the necessary results that will be useful for the
subsequent sections.
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Integral equation: Let us recall some notation. For (x, v) ∈ (X × Sn−1)
⋃

Γ+

⋃
Γ−, let τ±(x, v) be the

distance from x to ∂X traveling in the direction of ±v, and x±(x, v) = x± τ±(x, v)v be the boundary point
encountered when we travel from x in the direction of ±v. We also define τ = τ+ + τ−.

As it is done in many settings, we integrate the PDE in (2.2) along the direction v. We obtain that ψ is
a solution of the following integro-differential equation

(I −Kω)ψ = Jωg, (3.1)

where we have defined, for φ ∈ L1(X × Sn−1) and φ̃ ∈ L1(∂X)

Kωφ(x, v) :=
∫ τ−(x,v)

0

e−iωtE(x− tv, x)
∫

Sn−1
k(x− tv, v′, v)φ(x− tv, v′)dv′dt, (3.2)

Jωφ̃(x, v) := e−iωτ−(x,v)E(x−(x, v), x)φ̃(x−(x, v)), and (3.3)

E(x′, x) := exp

(
−
∫ |x−x′|

0

σ(x′ + s x̂− x′, x̂− x′) ds

)
. (3.4)

For future reference, we also define iteratively

E(x1, . . . , xi+1) := E(x1, . . . , xi)E(xi, xi+1). (3.5)

The operatorsKω and Jω are well-defined and continuous operators in L(L1(X×Sn−1)) and L(L1(∂X), L1(X×
Sn−1)), respectively [11, 14]. Now we must also make sense of Jω and Kω when the inputs are the singular
distributions gx0 = δ(x− x0) defined in (2.3). One can show that, in the sense of distributions, we have

Jωgx0(x, v) = E(x0, x)e−iω|x−x0||νx0 · v|
δS(v − x̂− x0)
|x− x0|n−1

, (x, v) ∈ X × Sn−1,

where δS stands for delta distribution on Sn−1. Extending naturally the definition (3.2) to distributions
in the angular variable and applying it to the previous equality, we obtain that KωJωgx0 is well-defined in
L1(X × Sn−1) and its expression is given by, for a.e. (x, v) ∈ X × Sn−1,

KωJωgx0(x, v) =
∫ τ−(x,v)

0

e−iω(t+|x−tv−x0|)k(x− tv, x̂− x0, v)E(x0, x− tv, x)
|νx0 · ̂x− tv − x0|
|x− tv − x0|n−1

dt. (3.6)

Moreover, taking the L1 norm of (3.6), we obtain that∫
X×Sn−1

|KωJωgx0(x, v)| dx dv ≤ ‖k‖∞
∫
X×Sn−1

∫ ∆

0

dt

|x− tv − x0|n−1
dx dv

≤ ‖k‖∞|Sn−1|2∆2,

(3.7)

and the bound is uniform in x0 ∈ ∂X, where we recall that ∆ denotes the diameter of X. We will use this
result later on to prove theorem 2.5.

Subcriticality conditions: Like in the stationary setting for ω = 0 (see e.g. [9, 7, 5, 17]), equation (3.1)
is solvable for ψ if the operator (I − Kω) is invertible in L1 := L(L1(X × Sn−1)). Such a condition is met
when there exists an integer r ≥ 1 such that the operator (I −Krω) is invertible in L1. Then the solution of
(3.1) admits either one of the following equivalent expressions:

ψ = (I −Krω)−1
r−1∑
m=0

Kmω Jωg =
r−1∑
m=0

Kmω (I −Krω)−1Jωg =
N∑
m=0

Kmω Jωg + (I −Kω)−1KN+1
ω Jωg, (3.8)

for any integer N .
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In the stationary setting (i.e. ω = 0), concrete examples of invertibility of I − Kr0, r = 1, are given by
either one of the following so-called subcriticality conditions [4, 11, 14]

σ − σp ≥ 0, (3.9)
‖τσp‖∞ < 1. (3.10)

In the present time-harmonic regime, invertibility is still achieved with r = 1 under the above conditions.
However, it can also be obtained with r = 2 for large enough ω, independently of any positivity assumption,
though we require that the optical coefficients have bounded C1-norms and k be supported away from the
spatial boundary ∂X (lemma 3.1 and corollary 3.3).

Lemma 3.1. Let (σ, k) ∈ C1(X × Sn−1) × C1(X × Sn−1 × Sn−1) and assume hypothesis 2.1. Then there
exists a constant C such that for every ω ≥ 2 the following estimates hold

‖K2
ω‖L1 ≤

 C (‖σ‖C1 , ‖k‖C1) ω−
1
2 ln(ω), n = 2,

C (‖σ‖C1 , ‖k‖C1) ω−1(ln(ω))2, n = 3,
C (‖σ‖C1 , ‖k‖C1) ω−1 ln(ω), n ≥ 4.

(3.11)

Remark 3.2. The same result holds even if k is supported up to the boundary ∂X.

Lemma 3.1 will allow us to assess the decay of multiple scattering terms in further sections. From this
lemma we obtain the following corollary.

Corollary 3.3. Let (σ, k) ∈ C1(X × Sn−1)×C1
0 (X × Sn−1 × Sn−1). Then there exists ω0 which depends on

‖σ‖C1 and ‖k‖C1 , X and n such that I −Kω is invertible and ‖(I −Kω)−1‖L1 ≤ C0 uniformly for ω ≥ ω0.
C0 can be chosen to be 2(1 + ∆|Sn−1|‖k‖∞).

The uniform estimate of the norm of (I − Kω)−1 at large ω given in corollary 3.3 will also be useful to
estimate the decay of multiple scattering terms (see section 6).

Proof of Corollary 3.3. From lemma 3.1, we have that limω→∞ ‖K2
ω‖L1 = 0, so there exists ω0 such that

‖K2
ω‖L1 ≤ 1

2 for ω ≥ ω0. For such an ω, I − K2
ω is invertible with inverse (I − K2

ω)−1 =
∑∞
m=0K2m

ω and in
turn, I − Kω is invertible with inverse (I − Kω)−1 = (I + Kω)(I − K2

ω)−1 =
∑∞
m=0Kmω . In this case, and

noting that ‖Kω‖L1 ≤ ∆|Sn−1|‖k‖∞, we get

‖(I −Kω)−1‖L1 ≤ 1 + ‖Kω‖L1

1− ‖K2
ω‖L1

≤ 2(1 + ∆|Sn−1|‖k‖∞).

This completes the proof.

Derivation of decomposition (2.6): Whenever subcriticality conditions are satisfied and the solution u
of (3.1) admits the expressions (3.8), one obtains the following decomposition of the measurement function

Tω(x0, xc) =
N∑
m=0

Tωm(x0, xc) +RN+1(x0, xc), (3.12)

for any integer N ≥ 2 where

Tωm(x0, xc) =
∫

Sn−1
xc,+

[Kmω Jωgx0 ](xc, v)|v · νxc | dv, for m ≥ 0, (3.13)

and

Rωm(x0, xc) =
∫

Sn−1
xc,+

[(I −K)−1Kmω Jωgx0 ](xc, v)|v · νxc | dv, for m ≥ 2.

From this latter expression (3.13) of the Tωm’s, one can deduce the expressions (2.7), (2.8) and (6.1) of the
ballistic, single and multiple scattering components of the measurement function Tω. This can be done by
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following the calculations in [7, Section 3.1] with minor modifications. We do not repeat these calculations
here.

Then the decomposition (2.6) follows from (3.12) and the equality

Tω2+(x0, xc) =
N∑
m=2

Tωm(x0, xc) +RN+1(x0, xc), for any integer N ≥ 2. (3.14)

4 Proof of Lemma 3.1

From (3.2) it follows that

K2
ωφ(x, v) =

∫
X×Sn−1

βω(x, v, x′, v′)φ(x′, v′)dx′dv′, (4.1)

for (x, v) ∈ X × Sn−1 and for φ ∈ L1(X × Sn−1), where the distributional kernel βω of K2
ω is given by

βω(x, v, x′, v′) =
∫ τ−(x,v)

0

e−iω(t+|x−x′−tv|) f(t, x, v, x′, v′)
|x− tv − x′|n−1

dt, where (4.2)

f(t, x, v, x′, v′) := E(x′, x− tv, x)k(x− tv, v1, v)k(x′, v′, v1), v1 := ̂x− tv − x′,

for a.e. (x, v, x′, v′) ∈ X × Sn−1 ×X × Sn−1. Note that f is uniformly bounded by ‖k‖2∞.
The goal here is to bound the quantity

sup
x′,v′

∫
X×Sn−1

|βω(x, v, x′, v′)| dx dv.

Let ω ≥ 2. We extend σ (resp. k) by 0 to R2 × Sn−1 (resp. R2 × Sn−1 × Sn−1). Then since k is compactly
supported inside X × Sn−1× Sn−1, f is thus extended smoothly to R×Rn× Sn−1×Rn× Sn−1. We now fix
(x′, v′, v) ∈ X × (Sn−1)2 and study the quantity

I(x′, v′, v, ω) =
∫
X

|βω(x, v, x′, v′)| dx. (4.3)

It is now customary to study the phase function ϕ(t) = −t− |x− tv − x′| (the dependency of ϕ on (x, x′, v)
is made implicit here), especially, for what x’s the function is stationary. We have

∂ϕ

∂t
= −|x− tv − x

′| − v · (x− tv − x′)
|x− tv − x′|

= − |x− x′|2 − ((x− x′) · v)2

|x− tv − x′|(|x− tv − x′|+ v · (x− tv − x′))
. (4.4)

Hence ∂tϕ = 0 whenever x = x′ + uv, u ∈ [−∆,∆]. In order to adapt x to the geometry of the problem, we
make the change of variable

x = x′ + uv + ρθ, u ∈ [−∆,∆], ρ ∈ [0,∆], θ ∈ Sn−2({v}⊥). (4.5)

In these new variables, we have the following facts

dx = ρn−2 dρ dθ du, |x− tv − x′| = ((u− t)2 + ρ2)
1
2

|x− x′|2 − ((x− x′) · v)2 = ρ2,
1
∂tϕ

= −
(t− u)2 + ρ2 + (u− t)

√
(t− u)2 + ρ2

ρ2
.

The integral (4.3) becomes

I(x′, v′, v, ω) =
∫ ∆

−∆

∫
Sn−2

∫ ∆

0

|βω(x(u, ρ, θ), v, x′, v′)|ρn−2 dρ dθ du.
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In this set of variables, the phase is non-stationary for ρ > 0, so we split the above integral into two parts
I := I1 + I2 by chopping the integral in ρ:

∫∆

0
dρ =

∫ ε
0
dρ +

∫∆

ε
dρ, respectively. The small parameter

ε ≤ 1/2 will be chosen at the end in terms of ω, in order to get the optimal estimate.
Let us estimate I1 first. Note that using (4.2) we obtain

|βω(x(u, ρ, θ), v, x′, v′)| ≤ ‖k‖2∞
∫ τ−(x′+uv+ρθ)

0

dt

((t− u)2 + ρ2)
n−1

2

≤ 2‖k‖2∞
∫ ∆

0

dt

(t2 + ρ2)
n−1

2

,

thus

I1(x′, v′, v, ω) ≤ 2‖k‖2∞
∫ ∆

−∆

du

∫
Sn−2

dθ

∫ ε

0

dρ

∫ ∆

0

dt
ρn−2

(t2 + ρ2)
n−1

2

≤ 4‖k‖2∞∆|Sn−2|
∫ ε

0

∫ ∆

0

ρn−2

(t2 + ρ2)
n−1

2

dt dρ.

Estimating the integral on the above right-hand side, we write (t, ρ) = (r cosα, r sinα), with α ∈ [0, π2 ] and
r ∈ [0, r(α)], where r(α) = ∆

cosα if α ≤ α0 := tan−1 ε
∆ and r(α) = ε

sinα if α ≥ α0. The above double integral
becomes, after simplification:∫ ε

0

∫ ∆

0

ρn−2

(t2 + ρ2)
n−1

2

dt dρ = ∆
∫ α0

0

sinn−2 α

cosα
dα+ ε

∫ π
2

α0

sinn−3 α dα,≤ C
{
ε| ln ε|, n = 2,
ε, n ≥ 3,

whence the bound on I1(x′, v′, v, ω).

Now, let us estimate I2. For ρ ≥ ε, ∂tϕ is never zero, so we can write eiωϕ = 1
iω∂tϕ

∂

∂t
eiωϕ and integrate

by parts the right-hand-side of (4.2). Doing so, we write

βω =
1
iω

(β1,ω + β2,ω + β3,ω) ,

where we have defined

β1,ω(x, v, x′, v′) =
e−iω(τ−(x,v)+|x−τ−(x,v)v−x′|)f(τ−(x, v), x, v, x′, v′)

|x− τ−(x, v)v − x′|n−2(|x− τ−(x, v)v − x′|+ τ−(x, v)− (x− x′) · v)
(4.6)

β2,ω(x, v, x′, v′) = − e−iω|x−x
′|f(0, x, v, x′, v′)

|x− x′|n−2(|x− x′| − (x− x′) · v)
, (4.7)

β3,ω(x, v, x′, v′) =
∫ τ−(x,v)

0

e−iω(t+|x−tv−x′|) d

dt

(
f(t, x, v, x′, v′)

|x− tv − x′|n−2(|x− tv − x′|+ t− (x− x′) · v)

)
. (4.8)

The term β1,ω is identically zero provided that k is supported away from the boundary (hypothesis 2.1).
We now estimate β2,ω. From (4.7) it follows that

|β2,ω(x, v, x′, v′)| ≤ ‖k‖2∞
|x− x′|n−2(|x− x′| − (x− x′) · v)

≤ ‖k‖2∞
|x− x′|+ (x− x′) · v

|x− x′|n−2(|x− x′|2 − ((x− x′) · v)2)

≤ 2‖k‖2∞
|x− x′|n−3(|x− x′|2 − ((x− x′) · v)2)

≤ 2‖k‖2∞
(u2 + ρ2)

n−3
2 ρ2

,

(4.9)
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where we expressed the change of variable (4.5) in the last line. We get∫ ∆

−∆

∫
Sn−2

∫ ∆

ε

|β2,ω(x(u, ρ, θ), v, x′, v′)| ρn−2 dρ dθ du

≤ 4‖k‖2∞|Sn−2|
∫ ∆

0

∫ ∆

ε

ρn−4

(u2 + ρ2)
n−3

2

dρ du (4.10)

≤ 4‖k‖2∞|Sn−2|


√

2∆2 ε−1, n = 2,
∆ | ln(ε)|, n = 3,
π
2 ∆, n ≥ 4.

(4.11)

Finally we estimate β3,ω. Plugging the change of variable (4.5) into (4.8) and using the fact that τ−(x′+
uv + ρθ, v) = τ−(x′ + ρθ, v) + u, we get

β3,ω(x(u, ρ, θ), v, x′, v′) =
1
ρ2

∫ τ−(x′+ρθ,v)+u

0

eiωϕ

× d

dt

(
t− u−

√
(t− u)2 + ρ2

((t− u)2 + ρ2)
n−2

2

f(t, x(u, ρ, θ), v, x′, v′)

)
dt.

Hence, we have that

|β3,ω(x(u, ρ, θ), v, x′, v′)| ≤ C‖f‖C1
ρ2

∫ τ−(x′+ρθ,v)+u

0

dt

((t− u)2 + ρ2)
n−2

2

≤ 2C‖f‖C1
ρ2

∫ ∆

0

dt

(t2 + ρ2)
n−2

2

.

Finally ,∫ ∆

−∆

∫
Sn−2

∫ ∆

ε

|β3,ω(x(u, ρ, θ), v, x′, v′)| ρn−2 dρ dθ du

≤ 4C‖f‖C1∆|Sn−2|
∫ ∆

0

∫ ∆

ε

ρn−4

(t2 + ρ2)
n−2

2

dρ dt ≤ 2C‖f‖C1∆|Sn−2|

 ∆ε−1, n = 2,
π
2 (ln ε)2, n = 3,
π
2 | ln ε|, n ≥ 4.

To sum up, we have the following estimates:

I1 ≤ C
{
ε| ln ε|, n = 2,
ε, n ≥ 3, , I2 ≤ C

 (ωε)−1, n = 2,
ω−1(ln ε)2, n = 3,
ω−1| ln ε|, n ≥ 4.

Choosing ε = ω−
1
2 when n = 2 and ε = ω−1 when n ≥ 3 finally gives the estimate (3.11). This completes

the proof.

5 Proof of single scattering asymptotics (theorem 2.2)

In order to prove theorem 2.2, we will use the following

Lemma 5.1. Let X ⊂ Rd be an open, bounded set containing 0, m ≥ −d+ 1 and f ∈ Cd
m+d

2 e
0 (X) such that

f(0) 6= 0. Consider the following oscillatory integral

I =
∫

Rd
|x|mf(x)e−iωϕ(|x|) dx, (5.1)

where ϕ(r) = r2g(r2) with g a smooth nonnegative function such that g(0) 6= 0, and r = 0 is the only point
satisfying ϕ′(r) = 0. Then the following estimate holds

|I| ≤ C

ω
m+d

2

‖f‖
Cd
m+d

2 e .

9



Proof of lemma 5.1. Define f1(r) :=
∫

Sd−1 f(rθ̂) dS(θ). Note that f1 is an even function of r and has compact
support in [0,∆), where ∆ denotes the diameter of X. It is also dm+d

2 e times continuously differentiable and
for every 0 ≤ α ≤ dm+d

2 e there exist a constant Cα such that

‖f1‖Cα[0,∆) ≤ Cα‖f‖Cα(X).

Applying a polar change of variable to (5.1), we get

I =
∫ ∞

0

rm+d−1f1(r)e−iωϕ(r) dr.

Now notice that the ratio h(r) = r
ϕ′(r) is a smooth, bounded function and that by means of bm+d−1

2 c
integrations by parts with zero boundary terms, one can write I as

I =
(

1
iω

)bm+d−1
2 c ∫ ∞

0

(
d

dr
◦ 1
ϕ′
·
)bm+d−1

2 c (
rm+d−1f1(r)

)
e−iωϕ(r) dr.

We now split cases: if m+ d is even, then bm+d−1
2 c = m+d

2 − 1 and we have that(
d

dr
◦ h(r)

r
·
)m+d

2 −1 (
rm+d−1f1(r)

)
= rf2(r),

where f2 ∈ C1([0,∆)) after counting derivatives. Thus we can integrate by parts one more time and get that

I =
(

1
iω

)m+d
2 −1 1

iω

{
f2(0)h(0)−

∫ ∞
0

d

dr
(f2h) e−iωϕ dr

}
,

in which case we get the bound

|I| ≤ C

ω
m+d

2

‖f‖
C
m+d

2
.

Now if m + d is odd, then bm+d−1
2 c = m+d−1

2 . We call f3(r) :=
(
d
dr ◦

1
ϕ′ ·
)m+d−1

2 (
rm+d−1f1(r)

)
, and I has

the expression

I =
(

1
iω

)m+d−1
2

∫ ∞
0

f3(r)e−iωϕ(r)dr.

Using Morse lemma, there is an interval [0, η] where the change of variable v(r) =
√
ϕ(r) is a diffeomorphism.

Let χ ∈ C∞([0,+∞)) be identically one on a neighborhood of 0 and χ(s) = 0 for s ≥ η. Then I can be split
into two integrals:

I =
(

1
iω

)m+d−1
2

(∫ v(η)

0

χ(r(v))f3(r(v))
dr

dv
e−iωv

2
dv +

∫ ∞
0

(1− χ(r))f3(r)e−iωϕ(r)dr

)
, (5.2)

where we applied the change of variable v =
√
ϕ(r) in the first integral. In the first integral, we integrate

by parts and obtain that∫ v(η)

0

χ(r(v))f3(r(v))
dr

dv
e−iωv

2
dv = − 1

ω
1
2

∫ ∞
0

d

dv

(
χ(r(v))f3(r(v))

dr

dv

)
H(
√
ωv)dv,

where the function H(t) :=
∫ t

0
e−iv

2
dv is related to the Fresnel integral and is known to be uniformly

bounded on [0,∞). For the second integral in (5.2) the integrand is supported away from zero, so we can
write e−iωϕ(r) = −1

iωϕ′(r)
d
dr e
−iωϕ(r) and integrate by parts. We obtain that∫ ∞

0

(1− χ(r))f3(r)e−iωϕ(r)dr =
1
iω

∫ ∞
0

d

dr

(
(1− χ(r))f3(r)

ϕ′(r)

)
e−iωϕ(r)dr.
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This finally shows that

|I| ≤ C

ω
m+d

2

‖f3‖C1 ≤
C

ω
m+d

2

‖f‖
C
m+d+1

2
.

The proof is complete.

Note also the following two lemmas, useful to get uniform bounds in theorem 2.2

Lemma 5.2. Under hypothesis 2.1, there exists δ1 > 0 such that for all (x0, xc) ∈ (∂X)2

|x0 − xc| ≤ δ1 ⇒ dist ([x0, xc], suppXk) > δ1. (5.3)

Lemma 5.3. Assume hypothesis 2.1 and let δ1 > 0 be given by lemma 5.2. Then there exists δ2 > 0
such that for all (x, x0, xc) ∈ suppXk × (∂X)2 with |x0 − xc| ≥ δ1, we have (denote e0 := x̂c − x0 and
Px := x0 + [(x− x0) · e0]e0 the orthogonal projection of x onto the segment [x0, xc])

dist (x, [x0, xc]) ≤ δ2 ⇒ min(|Px− x0|, |Px− xc|) > δ2. (5.4)

Proof of theorem 2.2. Pick (x0, xc) ∈ (∂X)2 with x0 6= xc, and define e0 := x̂c − x0 as well as d0 := |x0−xc|.
The stationary points of ϕ with respect to x solve the equation

x̂− xc + x̂− x0 = 0,

which characterizes exactly the points located on the segment [x0, xc]. Hence it is convenient to introduce
the notation x(x0, xc, u, v) = x0 + ue0 + v, where u ∈ R and v ∈ e0

⊥. Then {v = 0, u ∈ [0, d0]} is a
parametrization of the stationary segment. In this new set of variables the phase function is given by

ϕ(u, v) = −(u2 + |v|2)
1
2 − ((d0 − u)2 + |v|2)

1
2 , (5.5)

and the function f(x0, xc, x) (defined in (2.9)) with x = x(x0, xc, u, v) is now supported in{
u ∈ [−∆,∆], v ∈ e0

⊥, |v| ≤ ∆, s.t. x(x0, xc, u, v) ∈ suppXk
}
.

In the sequel, we make the dependency on x0 and xc implicit for readability. Let δ1, δ2 be given by lemmas
5.2, 5.3 respectively, denote δ := min(δ1, δ2) > 0, and let χ ∈ C∞(Rn−1), χ ≥ 0, χ ≡ 1 on {|v| ≤ δ

2} and
χ ≡ 0 on {|v| ≥ δ}. We then write

Tω1 (x0, xc) = I1(x0, xc) + I2(x0, xc), where

I1(x0, xc) :=
∫ ∆

−∆

∫
|v|≤∆

f(x0, xc, u, v)χ(v)eiωϕ(u,v) dv du

I2(x0, xc) :=
∫ ∆

−∆

∫
|v|≤∆

f(x0, xc, u, v)(1− χ(v))eiωϕ(u,v) dv du.

The integral I1 contains stationary points whereas I2 does not.
Let us take care of I1 first. We start by saying that if |x0 − xc| ≤ δ1, then lemma 5.2 ensures that

χ(v)f(x0, xc, u, v) = 0 everywhere, hence I1(u) = 0 in this case. Now assume |x0 − xc| ≥ δ1. Then lemma
5.3 ensures that for any (u, v) in the support of χ(·)f(x0, xc, ·, ·), we have that |v| ≤ δ ≤ δ2 < min(u, d0−u),
therefore both squareroots in (5.5) are analytic in v, and ϕ can be identically written as

ϕ(u, v) = −d0 +
1
2
q(u)|v|2 + |v|4g(u, |v|),

where g is a smooth function, −d0 = ϕ(u, 0) and the quadratic term in v comes from the Hessian matrix
with respect to v at v = 0

Hϕ(u, 0) =
−d0

u(d0 − u)
In−1 := q(u)In−1,
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where In−1 is the (n−1)× (n−1) identity matrix. Since u and d0−u are bounded away from zero uniformly
over the support of χ(·)f(x0, xc, ·, ·), the Hessian matrix is never degenerate, i.e. the function q(u) is bounded
away from zero. Following Hörmander’s approach to the stationary phase method [12], for s ∈ [0, 1], we
define the phase

ϕs(u, v) := −d0 +
1
2
q(u)|v|2 + s|v|4g(u, |v|),

so that ϕ0(u, v) = −d0 + 1
2q(u)|v|2 and ϕs = ϕ for s = 1. We now write a Taylor formula with integral

remainder with respect to the parameter s:∫
|v|≤∆

χ(v)f(u, v)eiωϕ1(u,v) dv =
∫
|v|≤∆

χ(v)f(u, v)eiωϕ0(u,v) dv

+ iω

∫ 1

0

∫
|v|≤∆

|v|4g(u, |v|)χ(v)f(u, v)eiωϕs(u,v) dv ds

:= I11(u) + I12(u).

The term I12(u) is dealt with by applying lemma 5.1 with (m, d) = (4, n− 1), so m+d
2 = n+3

2 . Therefore we
can bound by the following, everything being continuous with respect to the parameter s:

|I12(u)| ≤ C

ω
n+1

2

‖f(x0, xc, ·, ·)‖Cdn+3
2 e . (5.6)

For the first integral I11(u), we write for u ∈ [δ2, d0 − δ2] and v ∈ Rn−1

χ(v)f(u, v) = f(u, 0)χ(v) + v · f1(u, v)χ(v), f1(u, v) :=
∫ 1

0

∇vf(u, tv) dt,

and I11 becomes

I11(u) = f(u, 0)
∫

Rn−1
eiωϕ0(u,v) dv − f(u, 0)

∫
Rn−1

(1− χ(v))eiωϕ0(u,v) dv

+
∫
|v|≤∆

χ(v)v · f1(u, v)eiωϕ0(u,v) dv

:= I111(u) + I112(u) + I113(u).

(5.7)

The first term in (5.7) will give the leading-order term of the asymptotic expansion:

I111(u) =
(

2π
ω

)n−1
2

e−iωd0
ei
π
4 σ(Hϕ(u,0))

|detHϕ(u, 0)| 12
f(u, 0),

with σ(Hϕ(u, 0)) = −(n − 1) the signature of Hϕ(u, 0), |detHϕ(u, 0)| = dn−1
0 [u(d0 − u)]1−n, and we used

the following formula (see [12, Sections 3.4, 7.6])∫
Rd
ei

1
2 〈Bx,x〉 dx = ei

π
4 σ(B) (2π)

d
2

|detB| 12
,

where B is a non-degenerate quadratic form.
The second term in (5.7) has rapid decay in ω because 1− χ is supported away from v = 0. We see that

by noting the identity

1
iωq(u)|v|2

v · ∇v
(
eiωϕ0

)
= eiωϕ0 ,

so by means of dn+1
2 e integrations by parts, I112(u) becomes

I112(u) = f(u, 0)
(
−1

iωq(u)

)dn+1
2 e ∫

Rn−1
eiωϕ0

(
∇v ·

(
v

|v|2
·
))dn+1

2 e

[1− χ(v)] dv,
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which we can bound by

|I112(u)| ≤ C

ωd
n+1

2 e
‖f‖C0‖χ‖Cdn+1

2 e .

The third term is dealt with by integration by parts with zero boundary term:

I113(u) =
−e−iωd0
iωq(u)

∫
|v|≤∆

(∇v · (χf1))eiω
1
2 q(u)|v|2 dv,

and we are now in the setting of lemma 5.1 with (m, d) = (0, n− 1), so we can bound

|I113(u)| ≤ 1
ω

C

ω
n−1

2

‖∇v · (χf1)‖
Cd
n−1

2 e ≤
C

ω
n+1

2

‖f(x0, xc, ·, ·)‖Cdn+3
2 e .

Noting that we have

f(x0, xc, u, 0) = E(x0, xc)k(x0 + ue0, e0, e0)|ν(x0) · e0||ν(x) · e0|[u(d0 − u)]−n+1,

we integrate relation (5.7) together with the estimate (5.6) in u and obtain the estimate

I1(x0, xc) = eiωd0E(x0, xc)|ν(x0) · e0||ν(x) · e0|
(

2π
ω

)n−1
2

e−i(n−1)π4

×
∫ d0

0

k(x0 + ue0, e0, e0)

[d0u(d0 − u)]
n−1

2

du+R1(x0, xc),

with |R1(x0, xc)| ≤
C

ω
n+1

2

‖f(x0, xc, ·)‖Cdn+3
2 e .

For the integral I2, let us introduce the differential operator L? := 1
|∇vϕ|2∇vϕ·∇v such that 1

iωL
?
(
eiωϕ

)
=

eiωϕ (the ? exponent denotes the formal adjoint). The function (1− χ(v))f(x0, xc, u, v) is supported where
|v| ≥ δ

2 and 1
|∇vϕ|2 ≤

4∆2

δ2 <∞ there, so we can integrate by parts dn+1
2 e times and get that

I2(x0, xc) =
(
−1
iω

)dn+1
2 e ∫ ∆

−∆

∫
|v|≤∆

eiωϕ(u,v)Ld
n+1

2 e [(1− χ(v))f(x0, xc, u, v)] dv du,

where Lg := ∇v · (g ∇vϕ|∇vϕ|2 ), from which we deduce the estimate

|I2(x0, xc)| ≤
C

ωd
n+1

2 e
‖f(x0, xc, ·)‖Cdn+1

2 e .

This completes the proof.

6 The multiple scattering estimate

For m ≥ 2, the multiple scattering of order m is given by

Tωm(x0, xc) =
∫
Xm

e−iω(
Pm−1
i=0 |xi−xi+1|+|xm−xc|)

× E(x0, x1, . . . , xm, xc)Πm
i=1k(xi, vi−1, vi)

Πm−1
i=0 |xi − xi+1|n−1|xm − xc|n−1

|v0 · νx0 ||vm · νxc | dx1 . . . dxm,

(6.1)

where vi = ̂xi+1 − xi, i = 0 . . .m− 1 and vm = ̂xc − xm. The following theorem bounds each Tωm separately.
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Theorem 6.1. Let (σ, k) ∈ Cdn+1
2 e(X̄×Sn−1)×Cdn+1

2 e(X×Sn−1×Sn−1), and assume hypothesis 2.1. Then
for any integer m ≥ 2 there exists a constant Cm such that for any ω ≥ 2, Tωm(x0, xc) is uniformly bounded
in ∂X × ∂X by

|Tωm(x0, xc)| ≤


Cm ω−1, n = 2,
Cm ω−2 ln(ω), n = 3,
Cm ω−

n+1
2 , n ≥ 4.

(6.2)

We relegate the proof of this theorem to the next section. We must now prove that one can control
the remainder RN+1 of the decomposition (3.12) for N large enough. In order to do that, let us define the
operator Kω for φ ∈ L1(X × Sn−1) as

Kωφ(x) =
∫

Sn−1
x,+

(Kωφ)|Γ+(x, v)|νx · v| dv, x ∈ ∂X. (6.3)

Then the following lemma shows that Kω is well-defined in L1,∞ := L(L1(X × Sn−1), L∞(∂X)).

Lemma 6.2. Under hypothesis 2.1 and assuming that k is bounded, the operator Kω ∈ L1,∞ and satisfies
the estimate (independent of ω)

‖Kω‖L1,∞ ≤ D1−n‖k‖∞. (6.4)

Proof. Let φ ∈ L1(X × Sn−1) and x ∈ ∂X. Starting from (6.3), we have

Kωφ(x) =
∫

Sn−1
x,+

∫ τ−(x,v)

0

e−iωtE(x− tv, x)
∫

Sn−1
k(x− tv, v′, v)φ(x− tv, v′)|νx · v| dv′ dt dv

=
∫
X×Sn−1

e−iω|x−x
′|

|x− x′|n−1
k(x′, v′, x̂− x′)E(x′, x)φ(x′, v′)|νx · x̂− x′| dx′ dv′,

where we changed variables x′ = x−tv, v ∈ Sn−1
x,+ , t ∈ [0, τ−(x, v)]. The result is immediate since |E(x′, x)||νx ·

x̂− x′| ≤ 1 and |x′ − x| ≥ D for all x ∈ ∂X and x′ ∈ suppXk.

Proof of Theorem 2.5. Let ω ≥ ω0, ω ≥ 2, where ω0 is given in Corollary 3.3. We write the following
decomposition:

Tω2+(x0, xc) =
2α+1∑
m=2

Tωm(x0, xc) +R2α+2(x0, xc), where

R2α+2(x0, xc) = KωK2α
ω (I −Kω)−1KωJωgx0(xc),

(6.5)

and where the integer α will be chosen at the end. For the first finite number of terms in (6.5), we bound
each of them separately using Theorem 6.1 and obtain∥∥∥∥∥

2α+1∑
m=2

Tωm(x0, xc)

∥∥∥∥∥
∞

≤


C ω−1, n = 2,
C ω−2 ln(ω), n = 3,
C ω−

n+1
2 , n ≥ 4.

(6.6)

For the remainder term R2α+2(x0, xc),

sup
xc∈∂X

|R2α+2(x0, xc)| ≤ ‖Kω‖L1,∞‖K2
ω‖αL1‖(I −Kω)−1‖L1‖KωJωgx0‖L1(X×Sn−1).

≤ C0D
1−n‖k‖∞‖KωJωgx0‖L1(X×Sn−1)

 ω−
α
2 (lnω)α, n = 2,

ω−α(lnω)2α, n = 3,
ω−α(lnω)α, n ≥ 4,

where we used lemma 6.2 and corollary 3.3. Choosing α = 3 for n = 2, 3 and α = dn+3
2 e if n ≥ 4 ensures

that the latter decays are faster than those in (6.6). Taking the supremum over x0 ∈ ∂X satisfies the
same estimate because ‖KωJωgx0‖L1(X×Sn−1) is uniformly bounded in x0 as stated in (3.7), and the proof is
complete.
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7 Proof of theorem 6.1

Changes of variable: Let us put ourselves in the appropriate geometry: denote e1 := x̂c − x1 (always
well-defined and real analytic for x1 ∈ suppXk, since |xc − x1| ≥ D), and write the following changes of
variables:

x1(σ,Ω1) = x0 +
σ2(Ω1 · e0) + d0((Ω1 · e0) + 1)

2
e0 +

σ
√
σ2 + 2d0

2
(Ω1 − (Ω1 · e0)e0), (7.1)

with σ ∈ (0,∞),Ω1 ∈ Sn−1. Formula (7.1) is an elliptic change of variable, where for given σ ≥ 0, x1

describes the ellipsoid of equation |x1 − x0|+ |x1 − xc| = σ2 + d0. Moreover we have the following equalities

|x1 − x0| =
1
2
(
σ2 + d0(1 + (Ω1 · e0))

)
, d1 := |x1 − xc| =

1
2
(
σ2 + d0(1− (Ω1 · e0))

)
, (7.2)

dx1 = 21−nσn−2(σ2 + 2d0)
n−3

2 ((σ2 + d0)2 − d2
0(Ω1 · e0)2) dσ dΩ1, (7.3)

where dΩ1 denotes the standard measure on the sphere. Now for j = 2, . . . ,m, we write

xj = xj−1 + rj
(
Ωj,1e1 +

n∑
l=2

Ωj,lVl(e1)
)
, rj ∈ [0,∞), Ωj := (Ωj,1, . . . ,Ωj,n) ∈ Sn−1, (7.4)

where Vl ∈ C∞(Sn−1
xc,+), l = 2 . . . , n such that (v, V2(v), . . . , Vn(v)) is an orthonormal basis of Rn for any

v ∈ Sn−1
x,+ . (When n = 2 one can choose V2(v) = (−v2, v1) for v = (v1, v2) ∈ S1.) Note that the vectors Vl(e1)

vary when e1 varies.
Then at fixed x1(σ,Ω1) ∈ suppXk we have dxj = rn−1

j drj dΩj . Here and below, we will use the following
notations r := (r2, . . . , rm), Ω := (Ω1, . . . ,Ωm), and for a given integer 2 ≤ α ≤ m, rα := (r2, . . . , rα) and
Ωα := (Ω1, . . . ,Ωα).

In this new set of variables, we have that

|xm − xc| =

∣∣∣∣∣∣x1 − xc +
m∑
j=2

rj
(
Ωj,1e1 +

n∑
l=2

Ωj,lVl(e1)
)∣∣∣∣∣∣

=


d1 −

m∑
j=2

rjΩj,1

2

+
n∑
l=2

( m∑
j=2

rjΩj,l
)2


1
2

.

(7.5)

Then we define the phase function ϕ on [0,+∞)m × (Sn−1)m by

ϕ(σ, r,Ω) =
1
2
(
σ2 + d0(1 + (Ω1 · e0))

)
+

m∑
j=2

rj

+


1

2
(
σ2 + d0(1− (Ω1 · e0))

)
−

m∑
j=2

rjΩj,1

2

+
n∑
l=2

( m∑
j=2

rjΩj,l
)2


1
2

.

(7.6)

The phase function ϕ is a continuous function on [0,+∞)m × (Sn−1)m. In addition from (7.2), (7.5) and
(7.6) it follows that ϕ ∈ C∞(D) where

D := {(σ, r,Ω) ∈ [0,+∞)m × (Sn−1)m) | x1(σ,Ω1) 6= xc and xm(σ, r,Ω) 6= xc}, (7.7)

and the first derivatives of ϕ are uniformly bounded on D. The multiple scattering integral becomes

Tωm(x0, xc) =
∫

(0,∞)m×(Sn−1)m
e−iωϕ(σ,r,Ω)σn−2g(σ, r,Ω) dσ dr dΩ, (7.8)
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where the integrand g is given by

g(σ, r,Ω) =
E(x0, x1, . . . , xm, xc)
|xc − xm|n−1

|νx0 · x̂1 − x0||νxc · ̂xc − xm|
m∏
j=1

k(xj , ̂xj − xj−1, ̂xj+1 − xj)

× 21−n(σ2 + 2d0)
n−3

2 ((σ2 + d0)2 − d2
0(Ω1 · e0)2)

(7.9)

with x1 = x1(σ,Ω1) and xj = xj(σ, rj ,Ωj) for j = 2, . . . ,m defined by (7.1) and (7.4) and xm+1 = xc.
Moreover g ∈ Cdn+1

2 e([0,+∞)m × (Sn−1)m) and g is compactly supported in the set{
(σ, r,Ω) ∈ (0,

√
2∆)× (0,∆)m−1 × (Sn−1)m

}
.

More precisely,

supp g =
{

(σ, r,Ω) ∈ [0,
√

2∆)× [0,∆)m−1 × (Sn−1)m) | x1(σ,Ω1) ∈ suppXk,

xj(σ, rj ,Ωj) ∈ suppXk, j = 2, . . . ,m
}
.

The Cdn+1
2 e norm of g is bounded by a constant depending on the Cdn+1

2 e norm of σ and k.
We now give properties of the phase function in terms of σ and rm. First note that we have

∂ϕ

∂σ
= σΦ, where Φ := 1 + x̂c − x1 · ̂xc − xm, for (σ, r,Ω) ∈ D. (7.10)

The next lemma shows that the function Φ is uniformly bounded away from zero on the set (x1, xm, xc) ∈
(suppXk)2 × ∂X.

Lemma 7.1. Assuming hypothesis 2.1, there exists a constant CD > 0 such that

1 + x̂c − x1 · ̂xc − xm ≥ CD (7.11)

for all (x1, xm, xc) ∈ (suppXk)2 × ∂X.

Proof. By contradiction, assume that (7.11) does not hold. Then using compactness of (suppXk)2 and ∂X,
and the continuity of inner products, one can construct limit points (x?1, x

?
m, x

?
c) ∈ (suppXk)2×∂X satisfying

1+x̂c − x1 · ̂xc − xm = 0. This means that x?c ∈ [x?1, x
?
m], which by convexity of X implies x?1 /∈ X or x?m /∈ X,

and this is a contradiction. Hence the result.

Let us introduce the differential operator Lσ defined by

Lσf =
1
i

∂

∂σ

(
f

σΦ

)
. (7.12)

In addition straightforward computations show that the phase function ϕ satisfies the following equality

ϕ(σ, r,Ω) = ϕ(0, r,Ω) +
1
2
σ2Ψ(σ, r,Ω), (σ, r,Ω) ∈ D, (7.13)

where

Ψ(σ, r,Ω) =
|xm(σ, r,Ω)− xc|Φ(σ, r,Ω) + |x̃m(r,Ω)− xc| − (x̃m(r,Ω)− xc) · e0

|xm(σ, r,Ω)− xc|+ |x̃m(r,Ω)− xc|
(7.14)

where x̃m(r,Ω) = x0 +
(
2−1d0(1 + Ω1 · e0) +

∑m
j=2 rjΩj,1

)
e0 +

∑
j=2...m
l=2...n

rjΩj,lVl(e0). We have x̃m(r,Ω) =
xm(0, r,Ω) when (0, r,Ω) ∈ D.

Note that ∂αΨ
∂σα ∈ C(D), ∂α+1Ψ

∂σα∂rm
∈ L∞loc(D) for any α ∈ N. In addition the function Ψ satisfies the following

estimates.

16



Lemma 7.2. Assuming hypothesis 2.1, we have

0 <
DCD
4∆

≤ Ψ(σ, r,Ω) ≤ 2, for (σ, r,Ω) ∈ supp g, (7.15)

where CD is the constant on the right-hand side of (7.11).

Proof of lemma 7.2. The estimate Ψ(σ, r,Ω) ≤ 2, for (σ, r,Ω) ∈ supp g, follows from (7.14) and the fact
that Φ ≤ 2 uniformly in (σ, r,Ω). From (7.14) and from Lemma 7.1 it also follows that

Ψ(σ, r,Ω) ≥ CD|xm(σ, r,Ω)− xc|
|xm(σ, r,Ω)− xc|+ |x̃m(r,Ω)− xc|

, (7.16)

for (σ, r,Ω) ∈ supp g. Then note that

|x̃m(r,Ω)− xc| =


1

2
(d0(1− (Ω1 · e0)))−

m∑
j=2

rjΩj,1

2

+
n∑
l=2

( m∑
j=2

rjΩj,l
)2


1
2

≤ σ2

2
+

∣∣∣∣∣∣12(σ2 + d0(1− (Ω1 · e0)))−
m∑
j=2

rjΩj,1

∣∣∣∣∣∣+

 n∑
l=2

( m∑
j=2

rjΩj,l
)2

 1
2

≤ σ2

2
+
√

2|xm(σ, r,Ω)− xc| ≤ 3∆, (7.17)

for (σ, r,Ω) ∈ supp g (we use the estimate σ2

2 ≤ ∆). The estimate (7.14) follows from (7.16),(7.17) and from
the estimate |xm − xc| ≥ D for xm ∈ suppX k.

For further use, we also rewrite

Tωm(x0, xc) =
∫

(0,∆)m−2×(Sn−1)m−1
I(rm−1,Ωm−1) drm−1 dΩm−1, where

I(rm−1,Ωm−1) =
∫ ∞

0

∫ ∞
0

∫
Sn−1

e−iωϕ(σ,r,Ω)σn−2g(σ, r,Ω) dΩm drm dσ.

(7.18)

Control of the integral in (rm,Ωm) Consider the following integral

Im(σ, rm−1,Ωm−1) =
∫ ∞

0

∫
Sn−1

e−iωϕh(σ, r,Ω) dΩm drm, (7.19)

for given (σ, rm−1,Ωm−1), which implies that x1, . . . , xm−1 are fixed. The function h is an arbitrary bounded
integrand whose dependency on rm is compactly supported in [0,∆), and h satisfies the following bounds,
uniform in all variables (σ, r,Ω):

max
(
‖h‖∞,

∥∥∥∥ ∂h∂rm
∥∥∥∥
∞

)
<∞.

For (σ, r,Ω) ∈ D, the phase function satisfies

∂ϕ

∂rm
= 1 + Ωm · ̂xm − xc, xm = xm(σ, r,Ω), Ωm =

(
Ωm,1e1 +

n∑
j=2

Ωm,jVj(e1)
)
, (7.20)

so
∂ϕ

∂rm
= 0 whenever Ωm = em−1 := ̂xc − xm−1. This illustrates the fact that |xm−xm−1|+ |xm−xc| does

not depend on rm = |xm − xm−1| when xm ∈ [xm−1, xc]. This fact motivates the change of variables

Ωm = cos θ em−1 + sin θ wm, θ ∈ (0, π), wm ∈ Sn−2(e⊥m−1), (7.21)
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with change of volume dΩm = sinn−2 θ dθ dwm. In these new variables, we have that

1
∂rmϕ

=
dm(dm − rm + dm−1 cos θ)

d2
m−1 sin2 θ

=
hm(rm, θ)

sin2 θ
, (7.22)

with hm a smooth function on the support of h. The integral (7.19) becomes

Im(σ, rm−1,Ωm−1) =
∫

Sn−2

∫ π

0

sinn−2 θ

∫ ∆

0

e−iωϕh(σ, r,Ωm−1,Ωm(θ, wm)) drm dθ dwm (7.23)

(where
∫

S0 f(w)dw := f(−1) + f(1)).
We now split cases according to the dimension n.

Case n = 2: we split the integral in θ as follows:
∫ π

0
=
∫ ε

0
+
∫ π−ε
ε

+
∫ π
π−ε, 0 < ε ≤ 2−1. In the second

term, we write e−iωϕ = −1
iω∂rmϕ

∂

∂rm
e−iωϕ and integrate by parts in rm. We get

Im =
∫

S0

∫ ε

0

∫ ∆

0

e−iωϕh drm dθ dwm +
∫

S0

∫ π

π−ε

∫ ∆

0

e−iωϕh drm dθ dwm

+
1
iω

∫
S0

∫ π−ε

ε

1
sin2 θ

{[
hmhe

−iωϕ]
rm=0

−
∫ ∆

0

∂

∂rm
(hmh) e−iωϕ drm

}
dθ dwm.

Thus

|Im| ≤ C max
(
‖h‖∞,

∥∥∥∥ ∂h∂rm
∥∥∥∥
∞

)(
ε+

1
εω

)
≤ C max

(
‖h‖∞,

∥∥∥∥ ∂h∂rm
∥∥∥∥
∞

)
ω−

1
2

by choosing ε = ω−
1
2 .

Case n = 3: splitting the integral in a similar way to n = 2, we get

Im =
∫

S1

∫ ε

0

sin θ
∫ ∆

0

e−iωϕh dρ dθ dwm +
∫

S1

∫ π

π−ε
sin θ

∫ ∆

0

e−iωϕh dρ dθ dwm

+
1
iω

∫
S1

∫ π−ε

ε

1
sin θ

{[
hmhe

−iωϕ]
rm=0

−
∫ ∆

0

∂

∂rm
(hmh) e−iωϕ drm

}
dθ dwm.

Thus

|Im| ≤ C max
(
‖h‖∞,

∥∥∥∥ ∂h∂rm
∥∥∥∥
∞

)(
ε2 +

| ln ε|
ω

)
≤ C max

(
‖h‖∞,

∥∥∥∥ ∂h∂rm
∥∥∥∥
∞

)
lnω
ω

by choosing ε = ω−1.

Case n ≥ 4: we integrate by part without splitting the integral, and obtain

Im =
1
iω

∫
Sn−2

∫ π

0

sinn−4 θ

{[
hmhe

−iωϕ]
rm=0

−
∫ ∆

0

∂

∂rm
(hmh) e−iωϕ drm

}
dθ dwm, so

|Im| ≤ C max
(
‖h‖∞,

∥∥∥∥ ∂h∂rm
∥∥∥∥
∞

)
1
ω
.

Summary: To summarize, we have that

|Im| ≤ max
(
‖h‖∞,

∥∥∥∥ ∂h∂rm
∥∥∥∥
∞

) C ω−
1
2 n = 2,

C ω−1 lnω n = 3,
C ω−1 n ≥ 4.

(7.24)
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Completion of the proof: For fixed (rm−1,Ωm−1), let us study the integral I(rm−1,Ωm−1) from expres-
sion (7.18) and study cases according to the dimension n.

Case n even: Using the differential operator Lσ defined in (7.12), we integrate by parts w.r.t. σ with
zero boundary terms n−2

2 times. One can show that we can write

L
n−2

2
σ

(
σn−2g

)
= g1(σ, r,Ω),

and the integral I becomes

I(rm−1,Ωm−1) =
1

ω
n−2

2

∫ ∞
0

∫
Sn−1

∫ ∞
0

e−iωϕ(σ,r,Ω)g1(σ, r,Ω) dσ dΩm drm. (7.25)

Then we perform the change of variables

η = σ
√

Ψ(σ, r,Ω) =
√

2(ϕ(σ, r,Ω)− ϕ(0, r,Ω)), (7.26)

for the integral over the σ variable where Ψ is defined by (7.13) and satisfies (7.15). We have

Φ(σ, r,Ω)√
2Ψ(σ, r,Ω)

dσ = dη,

where the function Φ is defined by (7.10) and satisfies (7.11) on supp g. And we obtain

I(rm−1,Ωm−1) =
1

ω
n−2

2

∫ ∞
0

∫
Sn−1

e−iωϕ(0,r,Ω)

∫ ∞
0

e−iω
η2

2 g2(η, r,Ω) dη dΩm drm, (7.27)

where g2 ∈ C([0,∞)m × (Sn−1)m), maxα=0,1

(∥∥∥∂αg2∂ηα

∥∥∥
∞
,
∥∥∥ ∂α+1g2
∂ηα∂rm

∥∥∥
∞

)
≤ C‖g‖C n2 +1 for some constant C.

The function g2 is also compactly supported in [0, 2
√

2∆)× [0,∆)m−1× (Sn−1)m. Then integrating by parts
in the η variable on the right hand side of (7.27) we obtain

I(rm−1,Ωm−1) =
√
π

2
e−i

π
4

1

ω
n−1

2

∫ ∞
0

∫
Sn−1

e−iωϕ(0,r,Ω)g2(0, r,Ω) dη dΩm drm

+
1

ω
n−1

2

∫ ∞
0

∫
Sn−1

∫ ∞
0

H̃(
√
ωη)e−iωϕ(σ(η,r,Ω),r,Ω) ∂g2

∂η
(η, r,Ω) dη dΩm drm,

(7.28)

where H̃(s) =
∫ +∞
s

e−i
t2
2 dt, s ∈ [0,+∞), is uniformly bounded on [0,+∞), and where σ(η, r,Ω) is the

unique solution of (7.26) at fixed (r,Ω) (we also used the equality
∫∞

0
e−iω

η2

2 dη =
√

π
2 e
−iπ4 ω−

1
2 ).

Hence the integral in σ in (7.25) is the sum of two terms. To each of these terms, we apply the estimate
(7.24) to the integral in the (rm,Ωm) variables, and obtain

|I| ≤ max
0≤α≤n2

(∥∥∥∥ ∂αg∂σα

∥∥∥∥
∞
,

∥∥∥∥ ∂1+αg

∂σα∂rm

∥∥∥∥
∞

){
C ω−1 n = 2,
C ω−

n+1
2 n ≥ 4, n even.

(7.29)

Case n odd: Using again the operator Lσ defined in (7.12), we integrate by parts w.r.t. σ with zero
boundary terms n−3

2 times. One can show that we can write

L
n−3

2
σ

(
σn−2g

)
= σg3(σ, r,Ω),

and the integral I becomes

I(rm−1,Ωm−1) =
1

ω
n−3

2

∫ ∞
0

∫ ∞
0

∫
Sn−1

e−iωϕ(σ,r,Ω)σg3(σ, r,Ω) dΩm drm dσ.
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Integrating by parts once again, we arrive at

I(rm−1
2 ,Ωm−1

1 ) =
1

ω
n−1

2

∫ ∆

0

∫
Sn−1

{
−
[
e−iωϕ

g3

iΦ

]
σ=0

+
∫ √2∆

0

e−iωϕ
∂

∂σ

( g3

iΦ

)
dσ

}
dΩm drm.

We then use the estimate (7.24) to treat the integral in the (rm,Ωm) variables, and obtain

|I| ≤ max
0≤α1≤n−3

2 ,0≤α2≤n−1
2

(∥∥∥∥ ∂α1g

∂σα1

∥∥∥∥
∞
,

∥∥∥∥ ∂1+α2g

∂σα2∂rm

∥∥∥∥
∞

){
C ω−2 lnω n = 3,
C ω−

n+1
2 n ≥ 4, n odd.

(7.30)

Finally, integrating (7.30) or (7.29) over (rm−1,Ωm−1) ∈ [0,∆)m−2 × (Sn−1)m−1 does not change the

estimates. The last precision to make is that the operators
∂

∂σ
and

∂

∂rm
satisfiy the following equalities:

∂

∂rm
=
∂xm
∂rm

· ∇xm = Ωm · ∇xm , and

∂

∂σ
=

m∑
j=1

∂xj
∂σ
· ∇xj =

m∑
j=1

vj(σ) · ∇xj , where

v1(σ) = σ(Ω1 · e0)e0 +
σ2 + d0√
σ2 + 2d0

(Ω1 − (Ω1 · e0)e0),

vj(σ) = v1(σ) +
j∑

m=2

(
Ωm,1

∂

∂σ
x̂c − x1 +

n∑
l=2

Ωm,l
∂

∂σ
Vl(x̂c − x1)

)
, j ≥ 2,

are infinitely smooth on the support of g. This in turn allows us to bound estimates (7.30) and (7.29) by
the suitable Cα norms in the initial variables x1, . . . , xm. This concludes the proof of Theorem 6.1.
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[12] L. V. Hörmander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and
Fourier Analysis, Springer Verlag, 1983.

[13] E. W. Larsen, Solution of thee-dimensional inverse transport problems., Transp. Theory Stat. Phys.
17 (1988), pp. 147-167

[14] M. Mokhtar-Kharroubi, Mathematical Topics in Neutron Transport Theory, World Scientific, Sin-
gapore, 1997.

[15] K. Ren, G. S. Abdoulaev, G. Bal, and A. H. Hielscher, Algorithm for solving the equation of
radiative transfer in the frequency domain, Optics Letter, 29(6) (2004), pp. 578–580.

[16] K. Ren, G. Bal, and A. H. Hielscher, Frequency domain optical tomography based on the equation
of radiative transfer, SIAM J. Sci. Comput., 28 (2006), pp. 1463–1489.

[17] P. Stefanov and A. Tamasan, Uniqueness and non-uniqueness in inverse radiative transfer, Proc.
Amer. Math. Soc., 137 (2009), pp. 2335–2344.

21


