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Abstract

We consider the homogenization of the wave equation with high frequency
initial conditions propagating in a medium with highly oscillatory random coeffi-
cients. By appropriate mixing assumptions on the random medium, we obtain an
error estimate between the exact wave solution and the homogenized wave solution
in the energy norm. This allows us to consider the limiting behavior of the energy
density of high frequency waves propagating in highly heterogeneous media when
the wavelength is much larger than the correlation length in the medium.

1 Introduction

Homogenization in random environment. Homogenization of second-order linear
elliptic operators in divergence form with highly oscillatory coefficients has a long history,
both when the coefficients are periodic and when they are modeled as random fields;
see e.g. [4, 10]. Such results can then be used to approximate solutions to elliptic,
hyperbolic, or parabolic equations with oscillatory coefficients by solutions to the same
equations with effective constant coefficients.

In the case of random coefficients with proper ergodic properties, the first rigorous
results in homogenization theory were obtained in [11, 15]. They are based on the
analysis of a local problem that may be written in the form: Find a tensor ψ = (ψij)ij

such that
−∇ · (aψ)(x, ω) = 0, x ∈ Rd, ω ∈ Ω,

E{ψ} = I, ∇× ψ = 0.
(1)

Here, a(x, ω) is the random diffusion tensor constructed on a probability space (Ω,F , P ),
I is the identity tensor, and E denotes mathematical expectation associated to P . The
tensor ψ may be approximated by ψβ = I + ∇ ⊗ θβ, where θβ is the solution of the
regularized problem

−∇ · a∇θβ(x, ω) + βθβ(x, ω) = ∇ · a(x, ω), x ∈ Rd. (2)
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Here 0 < β � 1 is a regularizing parameter. The properties of θβ are used in [11, 15]
to approximate operators with random ergodic coefficients by homogenized operators
involving the constant coefficient a∗ = E{aψ}.

Provided that a(x, ω) has additional mixing properties, it is shown in [17] when the
space dimension d ≥ 3 that θβ(ω) and aψβ(ω) satisfy appropriate mixing conditions.
Such results, which will be reviewed later in the text, are used to derive error esti-
mates for correctors, which measure the difference between the exact solution of the
heterogeneous equation and the solution of the effective medium equation. These error
estimates then allow us to address the homogenization of the energy density of high
frequency waves propagating in random media. In the one-dimensional case, where ex-
plicit expressions for the solutions to the heterogeneous problems are available, optimal
error estimates can be found in [5].

This paper reconsiders the derivation of such error estimates for the homogenization
corrector in a simplified setting. Let us introduce the harmonic coordinates zε defined
in [11] as

zε(x) = εz
(x

ε

)
=

∫ 1

0

ψ
(tx
ε

)
xdt. (3)

Harmonic coordinates, which verify that ∇ · a∇z(x) = 0 thanks to (1) and the fact
that ∇zε(x) = ψ(x

ε
), have also been used successfully to derive efficient algorithms in

numerical homogenization [1, 14].
The main assumptions of the simplified setting are that the random fields ψ(ω) and

aψ(ω) are mixing. Such assumptions are much stronger than a(ω) being mixing, except
in the one-dimensional case where ψ is proportional to a−1. We will present restrictive
cases in which such assumptions are valid and heuristic arguments indicating that they
should be satisfied in other practical situations. The advantage of such assumptions
is that they considerably simplify the derivation of estimates for the homogenization
corrector and that they are independent of space dimension.

High frequency wave equation. Error estimates for the difference between the
random and the homogenized solutions allow us to address the homogenization of high
frequency waves in highly oscillatory heterogeneous media. We consider here the ho-
mogenization of the following wave equation:

κ
(x

ε
, ω

)∂2pε(t,x, ω)

∂t2
−∇ · a

(x

ε
, ω

)
∇pε(t,x, ω) = 0, t > 0, x ∈ Rd,

pε(0,x) = gε(x),
∂pε

∂t
(0,x) = jε(x), x ∈ Rd.

(4)

The compressibility κ(x, ω) and the inverse density tensor a(x, ω) are random fields
defined for x ∈ Rd, where spatial dimension d ≥ 1, and ω ∈ Ω, a set such that (Ω,F , P )
is an abstract probability space. We assume that (x, ω) 7→ κ(x, ω) and the symmetric
matrix (x, ω) 7→ a(x, ω) = {aij(x, ω)}1≤i,j≤d, are jointly measurable in (Rd,B, dx) ×
(Ω,F , P ), where B is the Borel σ-algebra on Rd and dx is Lebesgue measure, and that
they satisfy the uniform ellipticity constraints

0 < κ0 ≤ κ(x, ω) ≤ κ−1
0 , dx× P − a.s.

0 < a0 ≤ ξ · a(x, ω)ξ ≤ a−1
0 dx× P − a.s. for all ξ ∈ Sd−1.

(5)
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The pressure potential pε(t,x, ω) has for initial conditions the potential field gε(x) and
the pressure field jε(x), which we assume are compactly supported. For concreteness
(see Theorem 5.1 below for a general statement), let us consider highly oscillatory initial
conditions of the form:

gε(x) = εαϕg(x)g0

( x

εα

)
, jε(x) = ϕj(x)j0

( x

εα

)
, (6)

where α > 0, where ϕg and ϕj are compactly supported and where all functions above
are of class Cn(Rd) for n ≥ 5 + d

2
. The choice of the scaling is meant to ensure that the

wave energy density is independent of ε; see section 4.
When the initial conditions are independent of ε, i.e., when α = 0, the above problem

is a classical effective medium theory problem. Using the techniques developed in [11,
15], we can show that pε converges strongly in L2(Rd) to the solution p0 of an effective
medium equation with effective compressibility κ∗ = E{κ} and effective diffusion tensor
a∗ = E{aψ}.

When α > 0, it is well-known that the relationship between the typical wavelength
of the wave fields and the typical correlation length of the underlying medium charac-
terizes the macroscopic regime of wave propagation. When α is large, high frequency
waves strongly interact with the underlying structure and we do not expect the effective
medium theory to hold. For instance, when both the correlation length (here ε) and the
wavelength (here εα) are of the same order, we expect in the so-called weak coupling
regime that wave propagation be characterized by a radiative transfer equation; see e.g.
[3, 7, 13, 16]. When the correlation length is much larger than the wavelength, then
wave propagation is best modeled by a Fokker-Planck equation [2].

In this paper, we address the reverse case, where the correlation length is much
smaller than the wavelength. In such a configuration, we expect the following double-
limit process to hold. We first replace the heterogeneous wave equation by an effective
medium wave equation with constant constitutive coefficients κ∗ and a∗, and then ad-
dress high frequency wave propagation in the medium with constant coefficients. That
we are allowed to do so, i.e., that the double-limit process may be justified as a single
parameter tends to 0, is one of the main objectives of this paper. Provided that the
wavelength is of order εα for α > 0 sufficiently small, we show that in the limit of ε→ 0,
the energy density of the wave equation with random coefficients is indeed approximated
by the energy density of waves propagating in the appropriate effective medium. We
use the theory of Wigner transforms [9, 12] to do so.

We consider two different scenarios. When κ(ω), ψ(ω) and aψ(ω) are mixing random
fields, we show that pε converges strongly in the energy norm to the solution of the
homogeneous problem provided that:

α <
d

(3 + d
2
)(d+ 2)

∧ 1

2(2 + d
2
)
, d ≥ 1. (7)

Here a∧ b = inf{a, b}. We then obtain error estimates between pε and the homogenized
solution of order ελ(α,d), where

λ(α, d) =
( d

d+ 2
− (3 +

d

2
)α

)
∧

(1

2
− (2 +

d

2
)α

)
+ η, (8)

for an arbitrary η > 0.
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In the second scenario, which has a more general applicability, we assume that κ(ω)
and a(ω) are mixing random fields. Based on results obtained in [17], which are restricted
to spatial dimensions d ≥ 3, and assuming to simplify that a(ω) is mixing exponentially
rapidly (the mixing coefficient ρ(r) defined in (24) below decays exponentially fast), we
can show that the error estimates between pε and the homogenized solution of order
ελβ(α,d), where λβ(α, d) is defined as

λβ(α, d) = max
0<ξ<1

[( ξd

d+ 2
− (3 +

d

2
)α

)
∧

(
ξ ∧ γ1(ξ)− (2 +

d

2
)α

)]
. (9)

Here γ1(ξ) is defined for all fixed 0 < γ < 1
4

as

γ1(ξ) =
γ(d− 2)− ξ(1 + γ(d− 1))

1 + γd
. (10)

We then obtain convergence of pε to the homogenized solution in the energy norm
provided that α is chosen small enough so that λβ(α, d) > 0.

Outline for the rest of the paper. Section 2 describes the main assumptions on
the random medium and analyzes the solutions θβ and ψ of the local problems. Section
3 describes the main mixing assumptions imposed on the random medium and derives
decorrelation estimates for the solutions to the local problems. Error estimates for the
homogenization of the wave equation are obtained in section 4. These error estimates
are then used in section 5 to establish the explicit limiting behavior of the energy density
of high frequency waves propagating in random media provided that the wavelength of
the waves is sufficiently larger than the correlation length of the medium.

2 Random medium and local problems

Following [15], we recall the construction of the random processes and some of their
properties. We first define H = L2((Ω,F , P )), the Hilbert space of square integrable
random variables on Ω with inner product E{fg} =

∫
Ω
f(ω)g(ω)dP (ω). We define H =

L2(Rd;H) = L2(Rd ×Ω) equipped with its natural inner product (u, v) =
∫

Rd E{uv}dx,
and X = C(0, T ;H). We also define H1(Rd;H) ≡ L2(Ω;H1(Rd)) by Fubini as the space
of H valued functions whose spatial derivatives are also square integrable, and equip
this Hilbert space with the usual inner product (u, v)1 = (u, v) +

∑d
j=1(

∂u
∂xj
, ∂v

∂xj
).

We assume the existence of a group of one-to-one transformations τx : Ω → Ω for
x ∈ Rd, which leave the probability measure P invariant. The group property is that
τx+y = τxτy. The invariance property is that for all F ∈ F , P (τ−1

x F ) = P (F ), where
τ−1
x F is the set of ω′ such that τxω

′ ∈ F . The group of transformations τx generates a
unitary group of operators Tx : H → H defined by

(Txf)(ω) = f(τ−xω), x ∈ Rd. (11)

By varying one coordinate of x at a time in the group Tx, we obtain d one-parameter
strongly continuous unitary groups in H. They thus admit infinitesimal generators Dj,

4



1 ≤ j ≤ d, which are closely and densely defined in their domain D(Di) ⊂ H. For
f ∈ D(Dj), we have

(Djf)(ω) =
∂

∂xj

(Txf)(ω)

∣∣∣∣
x=0

. (12)

We define D = (D1, . . . , Dd)
t the vector-valued infinitesimal generator. Because Tx is

unitary we verify the skew-adjointness property E{gDjf} = −E{fDjg}, for all f, g ∈
D(Dj). We now define the linear subspace H1 =

⋂d
j=1D(Dj), which is dense in H

and is a Hilbert space, since the Dj are closed, when equipped with the inner product

E{fg} + E{Df · Dg} = E{fg} +
∑d

j=1 E{DjfDjg}, and associated norm ‖f‖H1 =

(‖f‖2
H + ‖Df‖2

H)1/2.
For any f(ω) ∈ H, we can associate the stationary process

f(x, ω) = (Txf)(ω) = f(τ−xω), (13)

where the same notation f is used for the function in H and the function on Ω ×
Rd. Let Hloc(Rd;H) be the space of functions from Rd into H with inner product∫
O E{f(x)g(x)}dx for every bounded open set O. Then HS(Rd;H), the space of sta-

tionary random processes on Rd, i.e., processes such that f(x, ω) = f(τ−xω), is a closed
subset of Hloc(Rd;H) in one-to-one correspondence with H. The processes in HS are
thus strictly stationary, in the sense that their joint distribution at n arbitrary points xi

is the same as the distribution at the points xi + h for an arbitrary h ∈ Rd. Similarly,
one may identify H1

S(Rd;H), the set of mean square differentiable stationary processes,
with H1. We then verify that for f ∈ H1

S,

∂f(x, ω)

∂xj

= Djf(x, ω) dx× P a.e. (14)

For stationary processes, ∇x and D are thus identified.
One of the main assumption on τx is that it is P -ergodic on Ω. This means that

for any invariant set A ∈ F , i.e., a set such that τxA ⊂ A, we have either P (A) = 0
or P (A) = 1. The unitary group Tx is then ergodic on H. This implies that the only
functions in H that are invariant under Tx are the constant functions.

We now assume that the random variables aij(x, ω) and κ(x, ω) are stationary pro-
cesses. Since they are uniformly bounded, both processes belong to H at x fixed and
we assume that

a(x, ω) = a(τ−xω), κ(x, ω) = κ(τ−xω). (15)

The above assumptions are sufficient to obtain existence and uniqueness of a so-
lution to the wave equation (4) under classical assumptions on the initial conditions;
see Proposition 4.1 below. When α = 0, minor modifications of the theory developed
in [11, 15] allow us to obtain the convergence of the wave solution to its homogenized
limit (see the proof of Thm. 4.4 below). To obtain error estimates for the homoge-
nization corrector and address high frequency initial conditions, additional mixing and
smoothness conditions are required.
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Local Problem. The construction of the homogenized coefficient a∗ requires one to
solve the following local problem: Find ψ = (ψij)ij ∈ H such that

D · (aψ)(ω) = 0

Eψ = I, D× ψ = 0.
(16)

Here, the curl operator D× is defined component-wise by (D×ψ)i =
∑

j,k Dkψij−Djψik.
The matrix-valued solution ψ(ω) is uniquely defined. The proof of such a result may
be found in [10, 11, 15]. The stationary field ψ may be extended in HS(Rd;H) as
ψ(x, ω) = ψ(τ−xω). Note that ∇ · (aψ)(x, ω) = 0 and ∇× ψ = 0 as in (1).

The existence of a solution ψ is obtained by a limiting absorption principle and
requires one to solve the following local problems:

−∇ · a∇θβ(x, ω) + βθβ(x, ω) = ∇ · a(x, ω), x ∈ Rd, (17)

for almost all ω ∈ Ω, where β > 0. We use the convention that ∇θβ and Dθβ are d× d
matrices. Solutions are sought among stationary vector fields θβ(x, ω) = θβ(τ−xω), so
that the equation may be recast, using (14), as

−D · aDθβ(ω) + βθβ(ω) = D · a(ω), (18)

and more precisely, as the following variational problem: Find θβ ∈ H1 such that

E{Tr[aDθβDφ]}+ βE{θβ · φ} = −E{Tr[aDφ]}, for all φ ∈ (H1)d. (19)

Here Tr stands for matrix trace. The above variational problem admits a unique solution
[15] by application of the Lax-Milgram theorem in the Hilbert space H.

The properties of θβ are central in the results obtained in [15, 17]. We easily derive

from (19) that Dθβ and β
1
2 θβ are bounded in H independent of β. We call

ψ = lim
β→0

ψβ, where ψβ = (I + Dθβ), (20)

and verify that ψ indeed solves (16). Note that Dθβ is in gradient form. In the limit
however, it is not guaranteed that ψ − I can indeed be written as the gradient of a
stationary process. However, we verify that its solenoidal component D× ψ = 0.

It is shown in [15] that
√
βθβ converges to 0 strongly in H. In homogenization in

periodic media, the local problem (18) is replaced by a problem on a cell of periodicity Y ,
and then θβ, whose average over the cell vanishes, is bounded in L2

#(Y ) independent of
β; see e.g. [4, 10]. Such a uniform bound generally does not hold in random media. The
asymptotic behavior as β → 0 dictates the speed of convergence of the heterogeneous
solution to its homogenized limit. The best available results on error estimates for θβ

can be found in [17]. Following [11], we also introduce the corrector

zε(x, ω) =

∫ 1

0

ψ(
tx

ε
)xdt. (21)

We verify that

∇xz
ε(x, ω) = ψ(

x

ε
, ω) = ψ(τ−x

ε
ω).

The gradient of zε may thus be written as a stationary field although zε itself is not
stationary. The gradient of (zε−x) is equal to ψ−I, whose statistical average vanishes.
We thus find that zε−x plays a similar role to that of εθβ(x

ε
). It is shown in [11] that zε

is a Hölder function P -a.s. and that zε(x)−x converges to 0 as ε→ 0 P -a.s. uniformly
on compact sets K ⊂ Rd.
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Homogenized coefficients. We have defined the tensor ψ in (16) and the corrector
θβ in (18). The effective medium coefficients that appear in the limit of solutions to (4)
are then defined by

a∗ = E{aψ}, aβ∗ = E{aψβ}, κ∗ = E{κ}. (22)

It is a classical result [11, 15] that

Lemma 2.1 The homogenized matrices aβ∗ and a∗ are positive definite and satisfy the
relations:

a∗ = E{ψtaψ}, a∗ξ · ξ ≥ a0|ξ|2, aβ∗ = E{(ψβ)taψβ}, aβ∗ξ · ξ ≥ a0|ξ|2. (23)

κ∗ is also a positive constant by assumption on κ(ω).

3 Mixing properties and decorrelations

The notation and hypotheses introduced so far allow us to show that when α = 0, i.e.,
when the initial conditions do not oscillate rapidly, the heterogeneous solution to (4)
converges to the solution of the homogeneous problem (34) below, where a(x) and κ(x)
are replaced by a∗ and κ∗. Such a convergence result is obtained using the techniques
developed in [11, 15] and the stability result stated in Proposition 4.1 below.

To obtain error estimates, the random medium needs to verify additional assump-
tions. Very few results exist in this direction. In [17], error estimates between the het-
erogeneous solution and the homogenized solution of diffusion equations are obtained
provided that the coefficient a(ω) is (strongly) mixing (see definition below), in addition
to being ergodic. The approach hinges on analyzing the mixing properties of θβ, the
solution of (2). Such a mixing is obtained from the exponential decay of the Green’s
function associated to (2). The decay is however very slow, as exp(−

√
β|x|), since β

is a small regularizing parameter. The mixing properties on θβ thus provide very slow
and presumably sub-optimal convergence estimates. The results in [17] are however the
best results available in the literature at present.

In addition to the estimates obtained in [17], we also consider a simpler setting, where
we assume that other local random fields are also mixing. More precisely, we assume
that both ψ(ω) defined in (16) and (aψ)(ω), whose average provides the homogenized
coefficient a∗, are mixing. We also assume that the compressibility coefficient κ(ω) is
mixing. We shall come back to the rationale for these mixing assumptions at the end
of the section. By mixing, we mean here the following strong mixing condition.

For two Borel sets A,B ⊂ Rd, we denote by FA and FB the sub-σ algebras of F
generated by the fields aij(x, ω), ψij(x, ω), (aψ)ij(x, ω), and κ(x, ω) for x ∈ A and
x ∈ B, respectively. We denote by L2

P (Ω,FA) the space of square integrable random
variables on (Ω,FA, P ). We then define the ρ− mixing coefficient as:

ρ(r) = sup
A,B∈Rd

dist(A,B)≥r

sup
η∈L2

P
(Ω,FA)

ξ∈L2
P

(Ω,FB)

E
{
(η − E{η})(ξ − E{ξ})

}(
E{η2}E{ξ2}

) 1
2

. (24)

We assume that ρ(r) decays sufficiently fast as r →∞ so that ρ(r) . r−υ for some
υ > 0. The notation a . b means that there exists a positive constant C such that
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a ≤ Cb. In most of the paper, we will assume short range correlations of the form
ρ(r) . e−r to simplify some expressions. In other words, the correlation of two variables
ξ and η, which depend on events restricted on spatial domains separated by a certain
distance, decays rapidly with that distance.

The mixing assumptions are used to show results of the following type, which have
already appeared in the literature under various forms, see e.g. [17].

Lemma 3.1 Let f(ω) be a random field in H with mean zero, E{f} = 0, and such
that the correlation function E{f(ω)f(τ−yω)} is bounded by the function ρ(|y|) defined
above. Let C be a cube of length M ≥ 1 and thus of volume |C| = Md. Then we find
that

E
∣∣∣ 1

|C|

∫
C
f(x, ω)dx

∣∣∣2 .
1

|C|
M (d−υ)∨0, υ 6= d

.
1

|C|
| lnM |, υ = d.

(25)

Here, a ∨ b = sup(a, b). In other words, for sufficiently rapidly decaying mixing coef-
ficients with υ > d, which we assume for now on for simplicity, the above variance is
inversely proportional to the volume |C|.

Proof. We write

E
( ∫

C

f(x, ω)dx
)2

= E
∫

C

∫
C

f(x, ω)f(y, ω)dxdy = E
∫

C

∫
C

f(ω)Ty−xf(ω)dxdy.

We deduce from the mixing assumptions on f that the above term is bounded by

‖f‖2
H

∫
C

∫
C

ρ(|x− y|)dxdy.

Classical estimates for the above integral written in spherical coordinates allow us to
conclude the proof of the lemma.

We now state the following result, which will be important in the analysis of the
error estimates in the next section.

Theorem 3.2 Let f(x, ω) be a stationary random field as in Lemma 3.1 and assume
that υ > d to simplify. Let K be a compact cube in Rd and φ(x, ω) a random field in
L2(Ω;H1(K)) equipped with its usual norm ‖ · ‖1,K. Then we have that:

E
∣∣∣∣ ∫

K

f
(x

ε
, ω

)
φ(x, ω)dx

∣∣∣∣ . ε
d

d+2‖φ‖1,K‖f‖H. (26)

Note that by Fubini, L2(Ω;H1(K)) ≡ H1(K;H). We define more generally by ‖φ‖s,K

(in this paper for s = −1, 0, 1) the norm of φ in L2(Ω;Hs(K)) ≡ Hs(K;H). The
previous theorem provides an error estimate for ‖f‖−1,K .

Proof. The proof of the theorem is similar to what is obtained in e.g. [17]. We break
up K into a finite number of non-overlapping identical cubes Ki of length l � 1 for
1 ≤ i ≤ I ≈ l−d. We denote by φ̄i the average of φ on Ki and by φ2

i the average of φ2

on Ki, and calculate∣∣∣∣ ∫
Ki

f
(x

ε
, ω

)
φ(x, ω)dx

∣∣∣∣ ≤ ∣∣∣∣ ∫
Ki

f
(x

ε
, ω

)
φ̄i(ω)dx

∣∣∣∣ +

∣∣∣∣ ∫
Ki

f
(x

ε
, ω

)
(φ− φ̄i)(x, ω)dx

∣∣∣∣
.

∣∣∣∣ 1

|Ki|
1
2

∫
Ki

f
(x

ε
, ω

)
dx

∣∣∣∣|Ki|
1
2 (φ2

i )
1
2 + l

∣∣∣∣ ∫
Ki

f 2
(x

ε
, ω

)
dx

∣∣∣∣ 1
2
∣∣∣∣ ∫

Ki

|∇φ|2(x, ω)dx

∣∣∣∣ 1
2

.
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The last estimate results from using the Poincaré-Friedrichs inequality. Upon summing
all contributions, on the order of |Ki|−1 = l−d of them, we deduce from the Cauchy-
Schwarz inequality that∣∣∣∣ ∫

K

f
(x

ε
, ω

)
φ(x, ω)dx

∣∣∣∣ .

[( ∑
i

1

|Ki|

( ∫
Ki

f
(x

ε
, ω

)
dx

)2) 1
2

+ l‖f‖L2(K)

]
‖φ‖H1(K)

.

[∑
i

|Ki|
(

1

|Ki|

∫
Ki

f
(x

ε
, ω

)
dx

)2

+ l2‖f‖2
L2(K)

] 1
2

‖φ‖H1(K).

Upon taking expectation and using the Cauchy-Schwarz inequality, we obtain

E
∣∣∣∣ ∫

K

f
(x

ε
, ω

)
φ(x, ω)dx

∣∣∣∣
.

(( ∑
i

|Ki|E
{[ 1

|Ki|

∫
Ki

f
(x

ε
, ω

)
dx

]2}) 1
2

+ l
(
E‖f‖2

L2(K)

) 1
2

)(
E‖φ‖2

H1(K)

) 1
2 .

Note that the above term on the right hand side does not depend on i since f is a
stationary process. We now use (25) to obtain that

E
{[ 1

|Ki|

∫
Ki

f
(x

ε
, ω

)
dx

]2}
= E

{[ 1

|Ki

ε
|

∫
Ki
ε

f(x, ω)dx
]2}

.
εd

|Ki|
‖f‖2

H .
εd

ld
‖f‖2

H,

independent of the index 1 ≤ i ≤ I. This allows us to deduce that

E
∣∣∣∣ ∫

K

f
(x

ε
, ω

)
φ(x, ω)dx

∣∣∣∣ .
((ε

l

) d
2

+ l
)
‖φ‖1,K‖f‖H.

It remains to choose l so that both terms on the right hand side are of the same order,

namely l = ε
d

d+2 � 1, to conclude the proof of (26).
The above theorem applies to the mean zero random fields â(ω) = (aψ)(ω) − a∗

and κ̂(ω) = κ(ω)− κ∗ when by assumption, they satisfy the required mixing conditions.
Note that the error estimates given above are not optimal. For instance, in dimension
d = 1, we obtain here an error estimate of order ε

1
3 whereas we can actually obtain an

estimate of order ε
1
2 using more sophisticated techniques.

We also want to obtain similar estimates in the H−1-norm for random processes that
do not satisfy the mixing hypotheses stated in Lemma 3.1. Estimates of the form (26)
may still be established when the average of the process decays with the size of the
domain on which averaging takes place. We have the following result.

Theorem 3.3 Let f(x, ω) be a stationary random field such that

E
∣∣∣ 1

|C|

∫
C
f(x, ω)dx

∣∣∣2 .
1

δ2

1

|C|2ζ
‖f‖2

H, (27)

for some positive constants δ and ζ. Let φ(x, ω) be a random field in L2(Ω;H1(K)),
where K is a compact cube in Rd. Then we have that

E
∣∣∣∣ ∫

K

f
(x

ε
, ω

)
φ(x, ω)dx

∣∣∣∣ .
(εζ

δ

) 1
1+dζ ‖φ‖1,K‖f‖H. (28)

In other words, we get an error estimate for ‖f‖−1,K.
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Proof. The proof of the preceding theorem applies until we arrive at the estimate

E
{[ 1

|Ki

ε
|

∫
Ki
ε

f(x, ω)dx
]2}

.
1

δ2

ε2ζ

l2dζ
‖f‖2

H.

Therefore,

E
∣∣∣∣ ∫

K

f
(x

ε
, ω

)
φ(x, ω)dx

∣∣∣∣ .
(1

δ

εζ

ldζ
+ l

)
‖φ‖1,K‖f‖H.

It remains to optimize the choice of l to conclude the proof of the theorem.
We will now apply the above theorem to the vector field β

ε
θβ and to the tensor field

âβ = aψβ − E{aψβ}. The following results are proved in Lemmas 2.4 and 2.5 in [17];
see also the appendix in [6].

Lemma 3.4 Let θβ the mean-zero random field defined in (18) and âβ = aDθβ −
E{aDθβ} a tensor-valued mean-zero random field. We assume that the mixing coeffi-
cient ρ(r), defined in (24) for the sub-σ algebras of F generated by the fields aij(x, ω),
decays exponentially fast, ρ(r) . e−r. Then we have the estimates:

E
∣∣∣ 1

|C|

∫
C
θβ(x, ω)dx

∣∣∣2 .
1

(β|C|)2γ
‖θβ‖2

H, (29)

for all 0 < γ < 1
4
, and

E
∣∣∣ 1

|C|

∫
C
âβ(x, ω)dx

∣∣∣2 .
1

βd

1

|C|2
‖âβ‖2

H. (30)

Less accurate estimates are also available when ρ(r) has longer range correlations; we
refer to [17] for the details. A direct application of the previous lemma and Theorem
(3.3) allows us to deduce the following estimates:

Corollary 3.5 Let us define

β = ε2(1−ξ), 0 < ξ < 1. (31)

Under the assumptions of the previous lemma and for each random field φ(x, ω) ∈
L2(Ω;H1(K)), where K is a compact cube in Rd, we obtain that

E
∣∣∣∣ ∫

K

β

ε
θβ

(x

ε
, ω

)
φ(x, ω)dx

∣∣∣∣ . εγ1‖β 1
2 θβ‖H‖φ‖1,K ,

E
∣∣∣∣ ∫

K

âβ
ij

(x

ε
, ω

)
φ(x, ω)dx

∣∣∣∣ . ε
ξd

d+2‖âβ‖H‖φ‖1,K ,
(32)

independent of 1 ≤ i, j ≤ d, where γ1 = γ1(ξ) is defined in (10).

Note that the term γ1 may be chosen positive provided that ξ is sufficiently small.
It remains to perform a statistical analysis of the corrector zε(x)− x.

Lemma 3.6 Assuming that (24) and that υ > d, we have∣∣∣E{(zε(x)− x) · (zε(y)− y)}
∣∣∣ . ε(|x|+ |y|). (33)
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Proof. By assumption, ρ(r) is bounded by some ρ̃(r), a bounded and decreasing
function bounded by Cr−d+η for C > 0 and η > 0 as r →∞. We verify that∣∣∣E{(zε(x)− x)) · (zε(y)− y)}

∣∣∣ =
∣∣∣xt

( ∫ 1

0

∫ 1

0

E{(ψ − I)t(
tx

ε
)(ψ − I)(

sy

ε
)}dtds

)
y
∣∣∣

. |x||y|
∫ 1

0

∫ 1

0

ρ
(∣∣∣tx− sy

ε

∣∣∣)ds dt .
∫ |x|

0

∫ |y|

0

ρ̃
(√

(t− s)2 + 2st cos θ

ε

)
ds dt

.
∫ |x|

0

∫ |y|

0

ρ̃
( |t− s|

ε

)
ds dt . ε(|x|+ |y|),

since ρ̃ is integrable, where we have defined cos θ = x·y
|x||y| . This concludes the proof.

This shows that zε(x)−x is of order O(
√
ε). Note that the above estimate is not optimal

when x 6= y. It will however be sufficient in the sequel.

Remark on the mixing assumptions. The assumptions that ψ(ω) and aψ(ω) are
mixing processes are probably very difficult to verify in practical settings. We want to
present here some simple cases where they are verified and some heuristic arguments as
to why they look reasonable.

These assumptions are verified in the one-dimensional setting, where we find that
ψ(ω) = (E{a−1})−1a−1(ω) is inversely proportional to a(ω) and aψ is deterministic.
When a(ω) is mixing, then so are ψ(ω) and aψ(ω). The theory presented in the paper
thus applies in that setting.

More generally, we can construct a(x, ω) = a(τ−xω) as a(x, ω) = Diag(ak(xk, ω)).

In such a setting, we verify that ψ(x, ω) = Diag(
a−1

k (xk)

E{a−1
k (xk)}). Again, aψ is a deter-

ministic diagonal tensor, so that both ψ and aψ are mixing when a is mixing. A
slightly more interesting example is the case where a(x, ω) =

∏
k ak(xk, ω)I. We

can show that ψ(x, ω) = Diag( αk

ak(xk)
), where αk = E{a−1

k }−1. As a consequence,

aψ(x, ω) = Diag(αka(x)
ak(xk)

). When all the coefficients ak(xk, ω) are mixing, we deduce that
both ψ and aψ, which is no longer deterministic, are mixing as well. These examples
are of limited practical interest because of their “Cartesian grid” effects.

Other multi-dimensional processes that satisfy the hypotheses may also be con-
structed as follows. Let us assume that a(ω) takes the form

a(ω) =
I

I + D⊗Dγ(ω)
,

for some scalar-valued process γ such that |D⊗Dγ(ω)| ≤ γ0 < 1 P−a.s., so that a(ω)
is a symmetric positive-definite matrix P−a.s. Then ψ(ω) = I + D ⊗Dγ(ω) satisfies
(16). It remains to assume that γ has appropriate mixing conditions to deduce that
both ψ(ω) and aψ(ω), which is deterministic, satisfy the required assumptions. In this
case however, ψ may be written as I + Dθ with θ = Dγ. The corrector θβ is therefore
bounded independently of β in L∞(Ω) as in the periodic case [4, 10].

More generally, let us assume that

a(ω) =
I

I + λ(Dγ + D× δ)(ω)
,
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which is the Weyl decomposition [10] of a−1 for a tensor whose average is the identity
matrix. We assume that the vector γ, the matrix δ, and λ are chosen so that a(ω)
is a symmetric, positive definite matrix. Let us assume that ψ(ω) = I + λφ(ω) and
let us expand φ = φ0 + λφ1 + O(λ2). Upon performing an asymptotic expansion of
D · (aψ) = 0, we obtain that φ0 = Dγ and that

D ·
(
φ1 + (Dγ + D× δ)(D× δ)

)
= 0,

whose solution, since Eφ = 0 and D× φ = 0, is given by

φ1 = E{(Dγ + D× δ)(D× δ)}+ Ppot{(Dγ + D× δ)(D× δ)},

where Ppot is the L2-orthogonal projection onto potential stationary vector fields [10].
Up to higher-order terms in powers of λ, we thus obtain the requested mixing as-

sumptions on ψ ≈ I + λDγ + λ2φ1 and aψ ≈ I + λ2(Dγ + D × δ)(D × δ) are mixing
stationary processes. Note that aψ is no longer deterministic. It remains to see whether
higher-order expansions remain mixing under appropriate assumptions on γ and δ.
These formal calculations tend to indicate that imposing mixing conditions on ψ and
aψ is not unreasonable, even though rigorous proofs are not available at the moment.

Let us conclude this section by mentioning that the only properties on the local
solutions we use in subsequent sections are the results stated in Theorem 3.3 for the
field â and in Lemma 3.6 for the corrector zε(x) − x. In other words, we need the
correlation function of ψ(ω) to decay rapidly and the average of â over a domain D to
converge to 0 sufficiently rapidly when the size of D increases. These properties are
simpler to verify than the strong mixing assumption stated in (24).

4 Homogenization of high frequency waves

Let us now come back to the homogenization of the wave equation (4). We have de-
fined two types of homogenized problems: a first type based on the corrector zε and the
homogenized coefficient a∗, and a second type based on the corrector θβ and the cor-
responding homogenized tensor a∗β. The first homogenized problem is useful when we
assume (or can demonstrate) that ψ and aψ are mixing random processes. The second
homogenized problem needs to be considered when mixing assumptions are imposed
only on the tensor a.

Scenario with ψ and aψ mixing. The homogenized solution is given here by pε
0,

which solves the following constant-coefficient wave equation:

κ∗
∂2pε

0(t,x, ω)

∂t2
−∇ · a∗∇pε

0(t,x, ω) = 0, t > 0, x ∈ Rd,

pε
0(0,x) = gε(x),

∂pε
0

∂t
(0,x) = jε(x), x ∈ Rd.

(34)

We introduce the following ansatz

pε(t,x, ω) = pε
0(t,x) + (zε(x, ω)− x) · ∇pε

0(t,x) + ζε(t,x, ω). (35)
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Note that

∇pε(t,x, ω) = ψ(
x

ε
)∇pε

0(t,x) + (zε(x)− x) · ∇ ⊗∇pε
0 +∇ζε(t,x, ω).

Using the equation for pε
0(t,x), we find as in e.g. [11] that ζε solves the following

equation:

κ
(x

ε
, ω

)∂2ζε(t,x, ω)

∂t2
−∇ · a

(x

ε
, ω

)
∇ζε(t,x, ω) = Sε

1 +∇ · a
(x

ε
, ω

)
Sε

2,

ζε(0,x, ω) = −(zε(x)− x) · ∇gε(x),
∂ζε
∂t

(0,x, ω) = −(zε(x)− x) · ∇jε(x),

Sε
1 =

(
κ∗ − κ

(x

ε
, ω

))∂2pε
0

∂t2
− κ

(x

ε
, ω

)
(zε(x)− x) · ∇∂

2pε
0

∂t2

−
(
a∗ − (aψ)

(x

ε
, ω

))
: ∇⊗∇pε

0(t,x),

Sε
2 = (zε(x)− x) · ∇ ⊗∇pε

0.

(36)

We will show, using the results of Theorem 3.2 and Lemma 3.6 that each term above is
small as ε → 0. This will be sufficient to obtain an error estimate for ζε by using the
stability result to be established in Proposition 4.1 below.

Scenario with a mixing. We now consider the approach to homogenization based
on the corrector θβ and the homogenized tensor a∗β. The appropriate homogenized
equation is

κ∗
∂2pβ

0 (t,x, ω)

∂t2
−∇ · a∗∇pβ

0 (t,x, ω) = 0, t > 0, x ∈ Rd,

pβ
0 (0,x) = gε(x),

∂pβ
0

∂t
(0,x) = jε(x), x ∈ Rd.

(37)

In what follows, we assume that ε and β as related as in (31) for some ξ to be determined
so that λβ in (9) is maximized. The appropriate ansatz now becomes

pε(t,x, ω) = pβ
0 (t,x) + εθβ

(x

ε
, ω

)
· ∇pβ

0 (t,x) + ζβ(t,x, ω). (38)

As in e.g. [15, 17], the equation for ζβ is:

κ
(x

ε
, ω

)∂2ζβ(t,x, ω)

∂t2
−∇ · a

(x

ε
, ω

)
∇ζβ(t,x, ω) = Sβ

1 +∇ · a
(x

ε
, ω

)
Sβ

2 ,

ζβ(0,x, ω) = −εθβ
(x

ε
, ω

)
· ∇gε(x),

∂ζβ
∂t

(0,x, ω) = −εθβ
(x

ε
, ω

)
· ∇jε(x),

Sβ
1 =

(
κ∗ − κ

(x

ε
, ω

))∂2pβ
0

∂t2
− κ

(x

ε
, ω

)
εθβ

(x

ε
, ω

)
· ∇∂

2pβ
0

∂t2

−
(
a∗β − (aψβ)

(x

ε
, ω

))
: ∇⊗∇pβ

0 (t,x)− β

ε
θβ

(x

ε
, ω

)
· ∇pβ

0

Sβ
2 = εθβ

(x

ε
, ω

)
· ∇ ⊗∇pβ

0 .

(39)

We will show, using Theorem 3.3 and Corollary 3.5, that all of the source terms above
are small as ε → 0. The analysis of both error terms ζε and ζβ will then be based on
the following stability result:
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Proposition 4.1 Let us consider the wave equation

κ
∂2z

∂t2
−∇ · a∇z = S1 +∇ · aS2,

z(0,x) = g(x, ω),
∂z

∂t
(0,x, ω) = j(x, ω),

(40)

with compactly supported source terms. We assume that κ(x, ω) and a(x, ω) are smooth
processes on (Ω,F , P ), which satisfy the constraints in (5). Let X = C(0, T ;L2(Rd×H))
and X−1 = C(0, T ;H−1(Rd;H)) equipped with their natural norms. Then we have the
following estimate:

‖z‖X + ‖∂z
∂t
‖X + ‖∇z‖X ≤ C(T, a0, κ0)

(
(S ∧ S′) + S′′

)
,

S = ‖S1‖X−1 + ‖∂S1

∂t
‖X−1 + ‖S2‖X + ‖∂S2

∂t
‖X

S′ = ‖S1‖X + ‖S2‖X + ‖∂S2

∂t
‖X

S′′ = ‖g‖H1(Rd;H) + ‖j‖L2(Rd;H).

(41)

Proof. Classical theories show that the equation is well posed for almost every
realization ω ∈ Ω. We consider the bound involving S, the bound for S′ being similar
and somewhat simpler. Let us define the energy

E(t, ω) =

∫
Rd

(
κ(
∂z

∂t
)2 + a∇z · ∇z

)
dx. (42)

We find, using equation (40), that

Ė(t, ω) =

∫
Rd

∂z

∂t

(
S1 +∇ · aS2

)
dx.

Let us first assume that g = j = 0. Since E(0, ω) = 0, we deduce by integration that

E(t, ω) =

∫ t

0

∫
Rd

(
− z

∂S1

∂t
+∇z · a∂S2

∂t

)
dxdt+

∫
Rd

(S1z(t)−∇z · aS2(t))dx.

Using the properties of κ and a and the Cauchy-Schwarz inequality, we obtain that

κ0‖
∂z

∂t
(t)‖2

H + a0‖∇z(t)‖2
H ≤

∫ t

0

(
‖∂S1

∂t
(s)‖H−1‖z(s)‖H1 + a−1

0 ‖∇z(s)‖H‖
∂S2

∂t
(s)‖H

)
ds

+a−1
0 ‖∇z(t)‖H‖S2(t)‖H + ‖z(t)‖H1‖S1(t)‖H−1 .

Since ‖z(t)‖H ≤
∫ t

0
‖∂z

∂t
(s)‖Hds as ‖z(0)‖H = 0, we verify, using bounds of the form

E
∫ t

0

‖∂S1

∂t
(s)‖H−1‖z(s)‖H1ds . S2 + E

∫ t

0

(
‖∂z
∂t
‖H + ‖∇z‖H

)2

(s)ds,

and ‖∇z(t)‖H‖S2(t)‖H ≤ ε‖∇z(t)‖2
H + ε−1‖S2(t)‖2

H with ε sufficiently small, that

E
(
‖∂z
∂t
‖H + ‖∇z‖H

)2

(t) . S2 + E
∫ t

0

(
‖∂z
∂t
‖H + ‖∇z‖H

)2

(s)ds.
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Application of the Gronwall lemma shows that (41) holds for the time and spatial
derivatives of z. It remains to integrate in time to obtain (41) for ‖z‖X . The same
energy method allows us to obtain the estimate in the absence of volume source term
with non-vanishing initial conditions.
Note that the constants appearing in the preceding result depend only on the constants
of uniform ellipticity of a and κ so that the result holds with a(x

ε
) and κ(x

ε
). Because

the initial conditions for pε
0 and pβ

0 are compactly supported, then so are pε
0 and pβ

0 by
finite speed of propagation. Let K be a sufficiently large cube so that pε

0(t) and pβ
0 (t)

are supported on K for all 0 ≤ t ≤ T . We define KT = (0, T )×K. We are now ready
to obtain our main error estimates on ζε and ζβ.

Lemma 4.2 Let ζε be the solution to (36). Then we have that:

‖ζε‖X + ‖∂ζε
∂t
‖X + ‖∇ζε‖X . ε

d
d+2‖pε

0‖C4(KT ) +
√
ε‖pε

0‖C3(KT ). (43)

Lemma 4.3 Let ζβ be the solution to (39). Then we have that:

‖ζβ‖X + ‖∂ζβ
∂t
‖X + ‖∇ζβ‖X . ε

ξd
d+2‖pβ

0‖C4(KT ) + εξ∧γ1‖pβ
0‖C3(KT ), (44)

where ξ is defined in (31) and γ1 in (10).

Proof [Lemma 4.2]. Let us consider the first source term in Sε
1 in (36). Using Theorem

3.2, we verify that

E
∣∣∣ ∫

K

κ̂
(x

ε
, ω

)∂3pε
0

∂t3
φdx

∣∣∣ . ε
d

d+2‖pε
0‖C4(KT )‖φ‖1,K .

Similarly, the third contribution in Sε
1 yields

E
∣∣∣ ∫

K

â
(x

ε
, ω

)∂3pε
0

∂t3
φdx

∣∣∣ . ε
d

d+2‖pε
0‖C4(KT )‖φ‖1,K ,

thanks to (26). The other contributions involve terms proportional to zε(x)− x, which
is of order

√
ε in L2(K;H). This local estimate is sufficient since by the finite speed

of propagation, both the initial conditions and the solution pε
0 are compactly supported

in K. We thus get additional error terms of order at most
√
ε‖pε

0‖C3(KT ). The initial
conditions are dealt with in a similar fashion.

Proof [Lemma 4.3]. We also find that pβ
0 is compactly supported in K for all finite

time 0 ≤ t ≤ T . Using the stability result in Proposition 4.1, the source term Sβ
2

provides a contribution bounded by

‖εθβ
ε‖0,K‖pβ

0‖C3(KT ) . εξ‖pβ
0‖C3(KT ),

with the choice of β in (31). Here and below, we use the notation fε(x, ω) = f(x
ε
, ω) for

arbitrary stationary fields f(x, ω) = f(τ−xω). As in the proof of the preceding lemma,
the terms in Sβ

1 involving âβ and κ̂ produce a contribution bounded by

‖âβ
ε‖−1,K‖pβ

0‖C4(KT ) . ε
ξd

d+2‖pβ
0‖C4(KT ).
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Here, we have used the second estimate in Corollary 3.5. Using the S′-estimate in
Proposition 4.1, we obtain that

‖κεθ
β
ε · ∇

∂2pβ
0

∂t2
‖0,K . εξ‖pβ

0‖C3(KT ).

It remains to address the term involving the most delicate estimate in Corollary 3.5 and
obtain a contribution of the form

‖β
ε
θβ

ε‖−1,K‖pβ
0‖C3(KT ) . εγ1‖pβ

0‖C3(KT ).

We verify that the initial conditions do not generate higher-order contributions than
those already considered above. This concludes the proof of the lemma.
The above lemmas allow us to obtain the following error estimates:

Theorem 4.4 Let pε(t,x, ω) be the solution of (4) with initial conditions in (6), i.e.,
oscillating at frequencies of order ε−α with α > 0. Let pε

0(t,x) be the solution of the
homogenized problem (34). We assume that κ(ω), ψ(ω), and aψ(ω) are strongly mixing
with mixing coefficient ρ(r) . r−d−η for some η > 0. Then we have the error estimate:

‖pε − pε
0‖X +

∥∥∥∂pε

∂t
− ∂pε

0

∂t

∥∥∥
X

+
∥∥∥∇xpε − ψ

(x

ε
, ω

)
∇xp

ε
0

∥∥∥
X

. ελ(α,d), (45)

where λ(α, d) is defined in (8).

Theorem 4.5 Let pε(t,x, ω) be the solution of (4) with initial conditions in (6), i.e.,
oscillating at frequencies of order ε−α with α > 0. Let pβ

0 (t,x) be the solution of the
homogenized problem (37) with β = β(ε) chosen as in (31). We assume that a(ω) and
κ(ω) are strongly mixing with mixing coefficient ρ(r) . e−r. Then we have the error
estimate:

‖pε − pβ
0‖X +

∥∥∥∂pε

∂t
− ∂pβ

0

∂t

∥∥∥
X

+
∥∥∥∇xpε − ψβ

(x

ε
, ω

)
∇xp

β
0

∥∥∥
X

. ελβ(α,d), (46)

where λβ(α, d) is defined in (9).

Proof [Theorem 4.4]. The solution pε
0 of the wave equation with constant coefficients

and sufficiently smooth initial conditions given by (6) satisfies that εα(|m|−1)∂mpε
0 is

bounded in X independent of ε and is supported on KT = (0, T )×K for all multi-index
m = (m0, . . . ,md) of length 0 ≤ |m| ≤ 5 + d/2. To obtain this result, we use the energy
estimate∫

Rd

n0ε(t,x)dx =

∫
Rd

n0ε(0,x)dx; n0ε(t,x) = κ∗
(∂pε

0

∂t

)2

+ a∗∇pε
0 · ∇pε

0,

and the fact that ∂mpε
0 solves the same partial differential equation with appropriately

modified initial conditions. Because of concentration effects, uniform bounds require
additional regularity. Using Sobolev inequalities (in space) [8], we obtain that

‖pε
0‖Cn(K) . ‖pε

0‖Hn+ d
2 +η(K)

. ε−α(n+ d
2
+η−1), for all η > 0,
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and deduce that ‖pε
0‖Cn(KT ) . ε−α(n+ d

2
+η−1). Similar results may be obtained by using

the explicit expression of the Green’s function for the constant-coefficient wave equation
[8]. The advantage of the proposed method is that it generalizes to homogenized wave
equation with smooth spatially varying coefficients κ∗(x) and a∗(x). It remains to apply
Lemma 4.2 and Proposition 4.1 to conclude the proof of the theorem.

Proof [Theorem 4.5]. The proof is identical to that of the preceding theorem based
on the estimates obtained in Lemma 4.3.

The above error estimates are of interest only when α is small enough so that
λ(α, d) > 0 in the case of ψ(ω) and aψ(ω) mixing and so that λβ(α, d) > 0 in the
case of only a(ω) mixing. Under either assumption, we obtain below that the infinite
frequency limit of high frequency waves propagating in randomly heterogeneous media
corresponds to the infinite frequency limit of waves propagating in the proper homoge-
neous medium provided that the wavelength and the correlation length of the medium
are sufficiently well-separated.

5 Convergence of the energy densities

We have seen in the preceding section that the pressure field and its temporal and
spatial gradients converged in an appropriate sense as ε → 0. We now consider the
convergence of the energy density associated to the wave fields. The random energy
density is defined as:

nε(t,x, ω) = κ
(x

ε
, ω

)(∂pε

∂t

)2

(t,x, ω) + a
(x

ε
, ω

)
∇pε · ∇pε(t,x, ω). (47)

It is bounded in C(0, T ;L1(Rd × Ω)) and energy conservation takes the form∫
Rd

nε(t,x, ω)dx =

∫
Rd

nε(0,x, ω)dx, t > 0, P − a.s. (48)

Using Theorem 4.4, we deduce that

nε = κ
(x

ε
, ω

)(∂pε
0

∂t

)2

+ a
(x

ε
, ω

)
ψ

(x

ε
, ω

)
∇pε

0 · ψ
(x

ε
, ω

)
∇pε

0 + ελ(α,d)rε, (49)

where rε(t,x, ω) is bounded in C(0, T ;L1(Rd)) independent of ε. This implies the fol-
lowing error estimate:

‖Enε(t,x, ω)− n0ε(t,x)‖C(0,T ;L1(Rd)) . ελ(α,d), (50)

where we have defined

n0ε(t,x) = E
{
κ
(x

ε
, ω

)(∂pε
0

∂t

)2

+ a
(x

ε
, ω

)
ψ

(x

ε
, ω

)
∇pε

0 · ψ
(x

ε
, ω

)
∇pε

0

}
= κ∗

(∂pε
0

∂t

)2

+ a∗∇pε
0 · ∇pε

0,

(51)

thanks to Lemma 2.1. Similarly, we can define the energy density:

n0β(t,x) = κ∗
(∂pβ

0

∂t

)2

+ a∗β∇pβ
0 · ∇p

β
0 , (52)
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and deduce from Theorem 4.5 that

‖Enε(t,x, ω)− n0β(t,x)‖C(0,T ;L1(Rd)) . ελβ(α,d). (53)

Since for the choice of initial conditions (6), n0ε(t, ·) is uniformly bounded in L1(Rd),
we have thus, up to the extraction of a subsequence, that as ε→ 0,

n0ε(t,x) → ν(t,x), (54)

weakly as bounded measures on Rd. Since |a∗β − a∗| converges to 0 as ε→ 0 [6, 17], the
sequences n0ε(t,x) and n0β(t,x) (with β = β(ε) as in (31)) have the same accumulation
points. For concreteness, we thus analyze the limit of n0ε(t,x) as ε→ 0.

Wigner measures [9, 12] may then be used to obtain the limit of n0ε(t,x) as follows.
We assume to simplify that a∗ is scalar and define ρ∗ = (a∗)−1. We define

πε(t,x) = ∂tp
ε
0(t,x), vε(t,x) = (ρ∗)−1∇pε

0(t,x),

with initial conditions πIε(x) = jε(x) and vIε(x) = (ρ∗)−1∇gε(x).
We introduce the Wigner transform of two fields on Rd as

Wεα [φ, ψ](x,k) =

∫
Rd

eik·yψ(x− εαy

2
)φ(x + εαy

2
)
dy

(2π)d
, (55)

and define Wεα [φ] = Wεα [φ, φ]. Then we have the following result [9]:

Theorem 5.1 Let us assume that πIε and vIε (in gradient form) are εα−oscillatory
and compact at infinity [9]. A sufficient condition for this is that εα∇πIε and εα∇vIε

are compactly supported and bounded in L2(Rd) with bound independent of α. Let us
define

a0(x,k) = lim
ε→0

1

2
Wεα [

√
ρ∗k̂ · vIε +

√
κ∗πIε](x,k), k̂ =

k

|k|
, (56)

where the above limit, after possible extraction of a subsequence still denoted by (πIε,vIε),
is supposed to exist.

Then the solution a(t,x,k) = a0(x− c∗tk,k) of the Liouville equation

∂a

∂t
+ c∗k̂ · ∇xa = 0, a(0,x,k) = a0(x,k), (57)

may be interpreted as a phase-space energy density. More precisely, it satisfies that∫
Rd

a(t, dx, dk) = ν(dx),

∫
R2d

a(t, dx, dk) = lim
ε→0

∫
Rd

n0ε(t,x)dx = lim
ε→0

∫
Rd

E{nε}(t,x)dx. (58)

In other words, the spatial energy density ν(dx) may be recovered from the average of
a(t, dx, dk) over wavenumbers k. Moreover, the second set of equalities in (58) shows
that no energy is lost when εα converges to 0. The acoustic energy density present
in the system at time t = 0 propagates along straight lines in the direction k̂ with
homogenized speed c∗ = (κ∗ρ∗)−1/2, at least in an ensemble averaged sense. In the case
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where the initial conditions are of the specific form (6), and denoting by W0[φ, ψ] the
possible limits of Wεα [φ, ψ] as ε→ 0 and W0[φ] = W0[φ, φ], it can be verified that

a0(x,k) =
1

2ρ∗
|φp(x)|2W0[k̂ · ∇p0](x,k) +

1

2
κ∗|φj(x)|2W0[j0](x,k)

+

√
κ∗

ρ∗
|φp(x)φj(x)|<{W0[k̂ · ∇p0, j0](x,k)}.

(59)

The average energy density E{nε} of high frequency waves propagating in ran-
dom media with much smaller correlation length than the wavelength may thus be
approximated by the energy density of waves propagating with the average sound speed
c∗ = (κ∗ρ∗)−1/2. However, nε(t,x, ω) remains pointwise a non-deterministic random
variable in the limit ε→ 0. Indeed, we deduce from (49) that E{n2

ε}(t,x), which can al-
ways be defined provided that the initial conditions for the wave equation are sufficiently
smooth, involves the variance of the coefficients κ(ω) and ψtaψ(ω) and is different from(
E{nε}

)2
(t,x). Higher-order moments of nε(t,x, ω) may be calculated similarly.

Thus Theorem 5.1 characterizes the ensemble average of nε(t,x, ω), which as a ran-
dom variable does not converge pointwise (in x) to a deterministic limit. In many
regimes of wave propagation, statistical stability of the wave energy density can be ob-
tained in a weak sense, i.e., after appropriate spatial averaging; see e.g. [2, 3]. Such
a result can also be obtained in the homogenization setting is we make the following
additional assumptions.

We assume that ψtaψ(ω) has integrable correlation function. More precisely, we
assume that

Rijkl(x) = E{(ψtaψ − a∗)ij(ω)(ψtaψ − a∗)kl(τ−xω)}, (60)

is an integrable function for all indices 1 ≤ i, j, k, l ≤ d. This can be seen as a conse-
quence of imposing that ψtaψ is mixing with integrable strong mixing coefficient. Such
a result holds in the one-dimensional setting for instance where ψtaψ(ω) is inversely
proportional to a(ω). We also assume that the correlation of κ:

R(x) = E{(κ(ω)− κ∗)(κ(τ−xω)− κ∗)} (61)

is integrable, which is a consequence of the mixing property of κ when the strong mixing
coefficient is itself integrable. Following (49) and (51), we deduce that

nε(t,x, ω) = n0ε(t,x) + ελ(α,d)rε(t,x, ω) + sε(t,x, ω),

and we want to show that the error term

sε =
[
κ
(x

ε
, ω

)
− κ∗

](∂pε
0

∂t

)2

+
[
(ψtaψ − a∗)

(x

ε
, ω

)
: ∇pε

0 ⊗∇pε
0

]
, (62)

converges to 0 in a weak sense, since it does not converge to 0 in a pointwise sense.
More precisely, we have

Theorem 5.2 Let φ(x) be a smooth non-negative compactly supported test function of
total mass

∫
Rd φ(x)dx = 1. We assume that the correlation functions Rijkl(x) and R(x)

defined in (60) and (61) are integrable.
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Let θ > 0 be such that 1−min(2α+ θ, 2θ + α) > 0. We define φε(x) = ε−θdφ(x−x0

εθ )
a localized test function of mass also equal to 1 and centered around an arbitrary point
x0 ∈ Rd. Then we find that∫

Rd

sε(t,x, ω)φε(x)dx → 0 ε→ 0, (63)

uniformly in time and P -a.s. As a consequence, we find that∫
Rd

nε(t,x, ω)φε(x)dx−
∫

R2d

φε(x)a(t, dx, dk) → 0 ε→ 0, (64)

uniformly in time and P -a.s.

Proof. Since the two terms defining sε in (62) can be treated similarly, we only
consider the convergence of the term

Iε(t, ω) =

∫
Rd

[
κ
(x

ε
, ω

)
− κ∗

](∂pε
0

∂t

)2

(x)φε(x)dx.

We observe that E{Iε} = 0 and want to show that E{I2
ε} → 0 as ε → 0. This is

sufficient to conclude the proof of the theorem. We thus calculate that

E{I2
ε} =

∫
R2d

R
(x− y

ε

)
ψε(x)ψε(y)dxdy, ψε(x) =

(∂pε
0

∂t

)2

(x)φε(x).

Passing to the Fourier domain Fx→ξ, this is

E{I2
ε} .

∫
Rd

εdR̂(εξ)|ψ̂ε(ξ)|2dξ . R0ε
d

∫
Rd

|ψ̂ε(ξ)|2dξ . R0ε
d

∫
Rd

ψ2
ε(x)dx.

Here, R0 is the supremum of R̂(ξ) ≥ 0, which is finite since R(x) is integrable. From
the Hölder inequality, we thus obtain that

E{I2
ε} . ‖

(∂pε
0

∂t

)4

‖Lp(Rd)‖φ2
ε(x)‖Lp′ (Rd),

for all 1 ≤ p, p′ ≤ ∞ and p−1 + (p′)−1 = 1. Now since pε
0 is compactly supported, we

obtain from the Sobolev inequality that

‖∂p
ε
0

∂t
‖Lp(K) . ‖∂p

ε
0

∂t
‖

H
d( 1

2−
1
p )

(K)
. ε−αd( 1

2
− 1

p
),

uniformly in time on compact sets so that

‖
(∂pε

0

∂t

)4

‖Lp(Rd) . ε−αd(2− 1
p
).

Using the definition of φε, we find that ‖φ2
ε(x)‖Lp′ (Rd) . ε

−θd(2− 1
p′ ). We obtain that the

bound on E{I2
ε} is minimized by choosing p = 1 when θ < α and p = ∞ when θ > α,

and that

E{I2
ε} .

{
εd(1−2α−θ) θ > α,

εd(1−α−2θ) θ < α.
(65)
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In either case, E{I2
ε} converges to 0 with ε uniformly in time on compact intervals and

so by the Chebyshev inequality, Iε(t, ω) converges to 0 P−a.s. uniformly in time on
compact intervals. The estimate is also uniform with respect to the central point x0.
Choosing θ = 0, we thus obtain that the random variable

∫
Rd nε(t,x, ω)φ(x − x0)dx

converges to the deterministic variable
∫

R2d φ(x − x0)a(t, dx, dk) as ε → 0. The above
result shows that the stability of the energy density is obtained as soon as it is integrated
over a much smaller domain, of size εθ with e.g. θ < 1−α

2
when α < 1

3
.

We finally mention that all the results presented above generalize to the case of a
compressibility κ of the form κ(x, x

ε
, ω) = κ(x, τ−x

ε
ω) in (4) provided that the function

is sufficiently smooth in its first variable. The equation (34) would then involve κ∗(x) =
E{κ(x, ω)} and the Liouville equation for a(t,x,k) would be

∂a

∂t
+ {c∗(x)|k|, a} = 0, {a, b} = ∇ka · ∇xb−∇kb · ∇xa, c∗(x) =

1√
κ∗(x)ρ∗

, (66)

with the same initial conditions a0(x,k) in (57) and (59) with κ∗ replaced by κ∗(x).
We can then assume that c∗(x) is a random field (with statistics independent of that of
a(ω)) of the form c∗(x/δ(ε)), where δ(ε) is sufficiently large with respect to εα, and then
obtain a limiting Fokker-Planck equation for the above solution as was done in e.g. [2].
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