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Abstract. High frequency waves propagating in highly oscillatory media are
often modeled by radiative transfer equations that describes the propagation of
the energy density of the waves. When the medium is statistically homogeneous,
averaging effects occur in such a way that in the limit of vanishing wavelength,
the wave energy density solves a deterministic radiative transfer equation. In
this paper, we are interested in the remaining stochasticity of the energy density.
More precisely, we wish to understand how such stochasticity depends on the
statistics of the random medium and on the initial phase-space structure of the
propagating wave packets.

The analysis of stochasticity is a formidable task involving complicated ana-
lytical calculations. In this paper, we consider the propagation of waves modeled
by a scalar Schrödinger equation and limit the interaction of the waves with the
underlying structure to second order. We calculate the scintillation function
(second statistical moment) for such signals, which thus involve fourth-order
moments of the random fluctuations, which we assume have Gaussian statistics.
Our main result is a detailed analysis of the scintillation function in that setting.
This requires the analysis of non-trivial oscillatory integrals, which is carried out
in detail.

1. Introduction

In this paper, wave propagation is modeled by the following Schrödinger equation:(
iε
∂

∂t
+
ε2

2
Δ−√

εV
(x
ε

))
uε(t, x) = 0, t > 0, x ∈ R

d,

augmented with a deterministic initial condition uε(0, ·) uniformly bounded in L2(Rd)
with respect to ε, for d ≥ 1. Here, V is a mean-zero Gaussian stationary random
field with autocorrelation R(x) := EV (x + y)V (y) and is time-independent. The
symbol E denotes the ensemble average with respect to a given probability space
(Ω,F ,P) on which V is defined. The Wigner transform of uε is defined as [8]:

Wε(t, x, k) :=
1

(2π)d

∫
R

eik·yuε
(
t, x− εy

2

)
ūε

(
t, x+

εy

2

)
dy,

where ūε is the complex conjugate of uε and Wε solves the Wigner equation

∂

∂t
Wε + k · ∇xWε = AεWε, (1.1)
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with

(AεWε)(x, k) :=

∫
Rd

fε(x, k − η)Wε(x, η)dη,

fε(x, ξ) :=
i√
επd

[
V̂ (−2ξ)e−i2ξ·x/ε − V̂ (2ξ)ei2ξ·x/ε

]
,

where V̂ denotes the Fourier transform of V with the convention

V̂ (k) =

∫
Rd

e−ik·xV (x)dx.

The initial condition of (1.1), denoted by W 0
ε (x, k), is the Wigner transform of

uε(0, ·). We denote by aε := EWε the ensemble average of Wε. For sufficiently
rapidly decaying correlation function R and Gaussian potentials, aε is known to
converge in a proper functional setting to the solution a0 of a radiative transfer
equation, see [11, 5]:

∂

∂t
a0 + k · ∇xa0 =

∫
Rd

σ(p, k)[a0(t, x, p)− a0(t, x, k)]dp, (1.2)

with a scattering cross section σ(p, k) = R̂(p − k)δ(|k|2 − |p|2), where δ is the
Dirac distribution and the power spectrum R̂(k) is the Fourier transform of the
correlation function R(x). The above radiative transfer equation is known to hold
for other frameworks involving the Schrödinger equation or classical wave equations
[1, 3, 9, 10]. Although we are interested in classical as well as quantum waves,
we restrict ourselves to the Schrödinger model because of its simpler mathematical
structure.

Long-range correlations. We are interested in random fields with possibly long
range interactions, which can be modeled with slowly decaying autocorrelations that
are not integrable. Assuming R(x) ∼|x|→∞ xδ−d, with 0 < δ < d, some standard
rescaling arguments show that R̂ is singular in the origin and behaves like |k|−δ.
This leads us to consider correlation functions with singular Fourier transforms near
the origin of the form

R̂(k) =
S(k)

|k|δ , 0 < δ < d, (1.3)

with S ∈ L1(Rd) ∩ Cb(Rd), Cb(Rd) denoting the space of bounded continuous fonc-
tions. Since, 0 < δ < d, R̂ is locally integrable. Physically realizable media impose
that

∫
R̂(k)dk = (2π)dR(0) <∞. Short-range correlations correspond to integrable

R. In this case R̂ is bounded so we may take δ = 0 in (1.3).

Scintillation function. An appropriate tool in the analysis is the scintillation
function Jε (or covariance function), defined as

Jε(t, x, k, y, p) = EWε(t, x, k)Wε(t, y, p)− EWε(t, x, k)EWε(t, y, p), (1.4)
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whose weak convergence to zero implies the convergence in probability thanks to
the Chebyshev inequality

P

(
|〈Wε(t), ϕ〉 − 〈aε(z), ϕ〉| ≥ ε

)
≤ 1

ε2
〈Jε(t), ϕ ⊗ ϕ〉.

Convergence in probability shows that Wε is self-averaging as ε → 0. Introducing
first the free transport semigroup J , Jh(t, x, k) := h(x− tk, k), and the operator

D−1h(t, x, k) :=

∫ t

0
h(t− s, x− sk, k)ds,

then (1.1) can be recast as the integral equation

(I −D−1Aε)Wε = JW 0
ε ,

whose solution can be decomposed formally as the multiple scattering expansion:

Wε =

∞∑
j=0

(D−1Aε)
jJW 0

ε . (1.5)

We cannot obtain closed form equations for statistical moments of Wε as can be
done in the Itô-Schrödinger regime. Nevertheless, it is shown in the Itô-Schrödinger
regime that the single and double scattering contributions give the leading terms of
the scintillation function. We expect such a property to still hold in our regime of
interest. Retaining only the terms j ≤ 2 in the latter decomposition, and writing

Wε ≈ B + SS +DS,

where B = JW 0
ε is the ballistic part, SS = D−1AεJW

0
ε the single scattering con-

tribution and DS = D−1AεJW
0
εD

−1AεJW
0
ε the double scattering one, we have:

Jε ≈ E ((B + SS +DS)(B + SS +DS))− E(B + SS +DS)E(B + SS +DS),

= JSS + E (DS(B + SS +DS)) + E ((B + SS)DS)

−E(DS)E(B + SS +DS)− E(B + SS)E(DS).

Since the potential is mean-zero and Gaussian, E(DSSS) = 0, and we have

Jε = JSS + JDS := JSS + E (DSDS)− E(DS)E(DS).

Here, JSS is the scintillation function of single scattering. It was analyzed in [2]
and the main results of that study are recalled below. The purpose of this work is
to carefully analyze the convergence properties of JDS to complement that of JSS .

Initial conditions. The scintillation function is known to strongly depend on the
structure of the initial conditions, see [2, 4]. We consider initial conditions uε(0, ·)
oscillating at frequencies of order ε−1 and with a spatial support of size εα for
0 ≤ α ≤ 1. The parameter α quantifies the macroscopic concentration of the initial
condition. The simplest example is a modulated plane wave of the form (or a pure
state):

uε(0, x) =
1

ε
dα
2

χ
( x
εα

)
ei

x·q0
ε , (1.6)

where χ ∈ S(Rd) and S denotes the Schwarz class of functions. The direction of
propagation is given by q0, and we suppose for simplicity that |q0| = 1. Note that
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the above sequence of initial conditions is uniformly bounded in L2(Rd), and that
the corresponding Wigner transform reads

W 0
ε (x, q) =

1

εd
W0

(
x

εα
,
q − q0
ε1−α

)
, (1.7)

where W0(x, k) is the Wigner transform of the rescaled initial condition uε=1 and
is real-valued. We restrict α to be less than 1 to ensure that ε−1 is the highest fre-
quency in the problem. Such an initial condition allows for a precise characterization
of the convergence of JDS .

Some notation. We denote by Ff the Fourier transform of f(x, q) with respect
to both variables x and q. For a function f(z1, · · · , zn) ∈ Cm(Rnd), zj ∈ R

d,
j = 1, · · · , n and a multi-index i = (i1, · · · , ind) ∈ N

nd with |i| = i1 + · · ·+ ind ≤ m,
we introduce

∂iz1,··· ,znf :=
∂i1

∂z11
· · · ∂

ind

∂znd
f.

Let 〈x〉 := (1+ |x|2)1/2 for x ∈ R
d, |x| being the Euclidian norm of the vector x and

let a ∧ b (resp. a ∨ b) be the minimum (resp. maximum) of a and b. All along the
paper C denotes a universal constant that might differ from line to line.

2. Results

This section summarizes our main results on the scintillation function. For a real
test function ϕ ∈ S(R2d), we define

wε(τ) =

∫
R4d

dxdydpdqϕ(x, p)ϕ(y, q)JDS (τ, x, p, y, q). (2.1)

Simple but lengthy calculations show that wε admits the expression

wε(τ) =
1

ε2(2π)4d

∫
R4d

dξ1dη1dξ2dη2 E{V̂ (η1)V̂ (ξ1)V̂ (η2)V̂ (ξ2)}
×F ε(τ, ξ1 + η1, η1)F

ε(τ, ξ2 + η2, η2)

−
∫
R4d

dxdydpdqϕ(x, p)ϕ(y, q)E(DS)(τ, x, p)E(DS)(τ, y, q), (2.2)

where we have defined

F ε(τ, ξ, η) =
∑

σ1,σ2=±1

σ1σ2

∫ τ

0

∫ t

0
dtds exp

{
− i

ε

[1
2
σ2s(ξ − η) · η + q0 · (tξ − sη)

]}

×
∫
R2d

dxdp exp
{
− i

ε1−α
x · ξ
}
exp
{
− i

εα
p · (tξ − sη)

}
W0(x, p)ψ

ε(x, p, [z]),

ψε(x, p, [z]) =
∑

σ1=±1

σ1ϕ
(
εαx+

1

2
(τ − t)σ1(ξ − η) + τ(q0 + ε1−αp)

+
1

2
σ2(τ − t+ s)η, q0 + ε1−αp+

1

2
σ1(ξ − η) +

1

2
σ2η
)
.
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Above (and also in the sequel), we used the shorthand notation [z] = (τ, t, s, ξ, η, σ2)
to denote the variables (after possible rescaling) related to the function ψ. Since
the potential is Gaussian, we have the property

(2π)−2d
E(V̂ (η1)V̂ (ξ1)V̂ (η2)V̂ (ξ2)) = R̂(η1)δ(η1 + ξ1)R̂(η2)δ(η2 + ξ2)

+R̂(η1)δ(η1 + η2)R̂(ξ1)δ(ξ1 + ξ2) + R̂(η1)δ(η1 + ξ2)R̂(ξ1)δ(ξ1 + η2),

where δ denotes the Dirac measure. The first term on the right of the latter equation
generates a scintillation that is equal to the second term on the right of (2.2), so
that only two terms remain in wε:

wε(τ) = w1
ε(τ) + w2

ε(τ), (2.3)

w1
ε(τ) =

1

ε2(2π)2d

∫
R2d

dξdηR̂(ξ − η)R̂(η)|F ε(τ, ξ, η)|2, (2.4)

w2
ε(τ) =

1

ε2(2π)2d

∫
R2d

dξdηR̂(ξ − η)R̂(η)F ε(τ, ξ, η)F ε(τ,−ξ,−ξ + η). (2.5)

As will be explained at the end of section 3.2, the two terms above are actually
equal in the limit ε → 0 and we will therefore only consider w1

ε in our analysis.
When d ≥ 2, we decompose the variables ξ and η according to the line defined by
the vector q0 (recall that |q0| = 1) as

η = (η‖, η⊥) ∈ R
d ; ξ = (ξ‖, ξ⊥) ∈ R

d, (2.6)

where (ξ‖, η‖) ∈ R
2, (ξ⊥, η⊥) ∈ R

2(d−1), ξ‖ = ξ · q0, η‖ = η · q0, ξ0 · q0 = η0 · q0 = 0,
with ξ0 and η0 denoting the vectors (0, ξ⊥) and (0, η⊥). When d = 1, such a
transformation is not necessary as ξ and η are always aligned with q0. Let B1 be
the unit ball of R

d−1. When |η⊥| ≤ 1, we define η�±(η⊥) = 1 ±√1− |η⊥|2 and
η± = (η�±, η⊥). The theorem below characterizes the limit of w1

ε (and therefore
that of w2

ε ) in the limit ε → 0 according to the physically relevant parameters
α and δ. When d ≥ 2, we do not address the case α = 1 in detail as it is of
lesser interest since the double scattering contribution is of higher order in ε than
the single scattering contribution and is therefore asymptotically negligible. When
d = 1, single and double scattering contributions have the same order when α = 1
and the corresponding case is treated in theorem 2.2. All convergences below are
pointwise in time and can be shown to be uniform provided an initial layer is avoided.
More precisely, we have the following result when d ≥ 2:

Theorem 2.1. We have, pointwise in τ , ∀δ ∈ (0, d), ∀α ∈ [0, 1]:

w1
ε(τ) → 0 as ε→ 0,

and when α = 1
2 , there exists a positive non-identically vanishing function f such

that, pointwise in τ ,
f(τ) ≤ lim inf

ε→0
εδ−dw1

ε(τ). (2.7)

Besides, when δ = 0 and d ≥ 3:

ε−d(1−α)−(2α−1)−(2α−1)∨0w1
ε(τ) → w(τ). (2.8)



6 G. BAL AND O. PINAUD

The limits depend on several parameters. When 0 < α < 1, we have:

w(τ) = Cd

∑
±

∫ τα

0

∫ ∞

0

∫
Rd−1

∫
B1

dtdsdξ⊥dη⊥
R̂2(η±)

(1− |η⊥|2) 1
2

∣∣ψαF(W0)
(
ξ0, tξα − sη±

)∣∣2 ,
Cd =

2

(2π)2(d−1)
, ψα =

∑
σ1=±1

σ1ϕ

(
τq0 − 1

2
(1 + σ1)(τ − tα)η

±, q0 − 1

2
(1 + σ1)η

±
)
,

with τα = τ when α ≤ 1
2 , τα = ∞ when α > 1

2 , ξα = 0 when α < 1
2 , ξα = ξ0 when α ≥ 1

2 ,
tα = t when α ≤ 1

2 , and tα = 0 when α > 1
2 .

When α = 0, then we find that:

w(τ) = Cd

∑
±

∫
Rd

∫
B1

∫ τ

0

dξdη⊥ds
R̂2(η±)

(1− |η⊥|2)1/2
∣∣∣∣
∫ τ

s

dte−itξ‖F(W0ψ)
(
ξ, sη±

)∣∣∣∣
2

,

ψ =
∑

σ1=±1

σ1ϕ
(
x+

1

2
(τ − t)σ1(ξ − η±) + τq0 − 1

2
(τ − t+ s)η±, q0 +

1

2
σ1(ξ − η±)− 1

2
η±
)
.

When d = 2, δ = 0 and α ∈ [0, 12 ], (2.8) still holds while when α ∈ (12 , 1):

ε−2(1−α)−(2α−1)−(2α−1)∨0| log τε1−2α|−1w1
ε(τ) → w(τ),

w(τ) =
∑
±

∫
R

∫
B1

∫ ∞

0

dξ⊥dη⊥ds
4π2

R̂2(η±)
(1− |η⊥|2)1/2 |ψαF(W0)

(
0, ξ0 − sη±

) |2,
for the ψα previously defined.

In the one-dimensional case, we have the following result:

Theorem 2.2. ∀δ ∈ (0, d), ∀α ∈ (0, 1], pointwise in τ :

w1
ε(τ) → 0 as ε→ 0.

When δ = 0, we have lim
ε→0

ε−αwε(τ) = wα(τ), where

wα(τ) =
R̂2(2q0)

2

∫ τ

0

∫ ∞

0
dtds |F(W0ψα) (0, s)|2 , α ∈ (0, 1),

w0(τ) =
R̂2(2q0)

4π

∫ τ

0

∫
R

dsdξ

∣∣∣∣
∫ τ

s
dt exp {−itξ}F(W0ψα) (ξ, s)

∣∣∣∣
2

, α = 0,

w1(τ) = 4

∫
R

∫ τ

0

dηds

2π|η| R̂
2(η)
∣∣∣ ∑
σ2=±1

σ2

∫ ∞

0
ds exp {isΨσ2(η)}F(W0ψ) (0, sη)

∣∣∣2, α = 1,

and

ψα(x, p) =
∑

σ1=±1

σ1ϕ (xα − (τ − t)(1 + σ1)q0 + τq0 + (τ − sα)q0, q0 − (1 + σ1)q0) ,

xα = x if α = 0, xα = 0 otherwise, sα = s if α = 0, sα = 0 otherwise,

ψ(x, p) =
∑

σ1=±1

σ1ϕ

(
1

2
(τ − t)(σ2 − σ1)η + τ(p+ q0), p + q0 +

1

2
(σ2 − σ1)η

)
.
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All the expressions that appear in the above two theorems can be shown to be
finite since W0 and ϕ belong to S(R2d); see also section 6. When d ≥ 2, theorem 2.1
shows that the scintillation function of the double scattering converges to zero, even
for long-range correlations. A similar result was obtained in [2] for the single scat-
tering contribution. This means that the truncated Wigner function (including only
the ballistic part and the single and double scattering parts) is statistically stable in
the limit ε→ 0 in media with spatial long-range correlations. There is nevertheless
a striking difference with the single scattering contribution. The latter was shown in
[2] to be (approximately) of order

√
ε when δ ∼ d and not of lower order. Here, the

estimate from below (2.7) shows that the limiting scintillation of the second scat-
tering is greater than a term of order εd−δ when α = 1

2 , which is therefore close to
one as δ ∼ d. This means that long-range effects are stronger on double scattering
(and likely on any higher order scattering events) than on single scattering. This
agrees with the physical intuition since long-range effects are supposed to be seen at
large distances and double scattering events take place at a larger distance from the
source than single scattering events do. Whether or not higher order scattering are
statistically stable in media with long-range correlations remains an open problem
for the random Schrödinger equation with time-independent potentials. Getting
such a result may require an analysis of the whole series (1.5), which is already very
difficult for short-range correlations [5].

We treated in the theorems the cases that it seemed to use were most relevant.
Obtaining all the limiting expressions of w1

ε when δ > 0 is a fairly long task. Indeed,
as explained in section 3.2, three different scales have to be defined in order to handle
the singularity of R̂ around the origin. This leads to three different expressions in
the limit ε → 0. The leading term thus depends on the value of δ. We computed
the exact limit for the smallest of the three scales in section 4.3, and this allowed to
obtain the bound from below (2.7). We presented the result only for α = 1

2 as it is
the most interesting case. Indeed, it shows the scintillation is increasing as δ → d,
a result that no longer holds when α �= 1

2 .
Theorem 2.1 also shows that when d ≥ 3 and δ = 0, scintillation of double

scattering is of order εd(1−α)+(2α−1)+(2α−1)∨0 . It reaches a minimum of order εd

when α = 0, and a maximum of order ε
3
2 when α = 1

2 and d = 3 for instance. The
scintillation of single scattering was shown to be of order εd(1−α)+1−α∧(1−α) . It is
then interesting to notice that single scattering dominates when α > 2

3 , which is
precisely the same threshold observed for the Itô-Schrödinger regime in [4]. The case
d = 2 is very similar except that there is an additional logarithmic correction when
α ∈ (12 , 1). Also, the optimal estimates of our theorem together with those of [2]
allow us to quantify the (self-)averaging effects of the fast oscillations in time of the
random potential in the Itô-Schrödinger case. For the time independent potential
considered here, the highest order of single scattering is εd+1 (obtained for α = 0),
while it is εd+2 for the Itô-Schrödinger case. For double scattering, we have εd−1

when α = 0, while the order is εd for Itô-Schrödinger. The fast oscillations then
provide an additional order in ε when α = 0. It is interesting to compare with the
case of initial conditions that do not localize in the momentum variables, i.e., when



8 G. BAL AND O. PINAUD

α = 1. We find for both the stationary potential case and the Itô-Schrödinger case
that single scattering is of order ε while double scattering is of order ε2. This means
that the fast oscillations in time have no longer a self-averaging effect when α = 1
and therefore that spatial self-averaging becomes dominant as the initial condition
gets unlocalized in momentum.

Application to precursors. When δ = 0, the optimal estimates obtained in the-
orem 2.1 provide the dynamics of the statistical instabilities. The test function ϕ
appears as

ϕ
(
τq0 − 1

2
(1 + σ1)(τ − tα)η

±, q0 − 1

2
(1 + σ1)η

±
)
,

with tα = t when α ≤ 1
2 and tα = 0 if α > 1

2 . When α > 1
2 , this means that

the instabilities of double scattering propagate freely in the random medium with
momentum q0 +

1
2(1 + σ1)η

±. The instabilities are therefore created by an initial
condition as was already observed in [4] for the Itô-Schrödinger regime. When
α ≤ 1

2 , they are generated by a source term as the position is now determined by
τq0 + 1

2(1 + σ1)(τ − t)η±. It is interesting to notice that instabilities propagate
not only with the initial momentum q0, but also with a momentum q0 + η±, whose
distribution admits the following fairly complex expression when α ≤ 1

2 :

σ(η⊥) =
R̂2(η±)

(1− |η⊥|2) 1
2

∫ ∞

0

∫
Rd−1

dsdξ⊥
∣∣F(W0)

(
ξ0, sη±

)∣∣2 .
The integrated term on the right can be shown to be uniformly bounded with respect
to η⊥ so that the main characteristics of the distribution are that of

R̂2(η±)

(1− |η⊥|2) 1
2

.

This is in contrast with the dynamics of the limiting Wigner transform, which
is known to be the solution of a transport equation with a conservative collision
operator, see (1.2) and [5]. This means that if the initial condition for the transport
equation has only one frequency content, the same holds for the solution at all times.
Statistical instabilities thus propagate with a larger range of frequencies than the
average Wigner function, and this property can be used for imaging purposes as
explained below. See [7] for an exposition of precursors in a one-dimensional setting.
Recall that |q0| = 1. We have |η±| = (2 ± 2

√
1− |η⊥|2)1/2, so that since |η⊥| ≤ 1,

we have |η±| ∈ [0, 2]. Therefore, instabilities propagate with both lower and higher
frequencies than |q0|. The distribution will be maximum for momenta km with
|km⊥ | = 1. The above cross-section therefore mainly generates momenta with norm√
2|q0|. This corresponds to high frequency waves that are not suited for precursors.

Nevertheless, the cross-section also creates low frequencies kl (provided R̂ does
not vanish around the origin) whose amplitude decays like r−

1
2 if |kl⊥|2 = 1 − r.

If the related low-frequency waves can be measured, which could be a difficult
experimental task since: (i) the amplitude decreases as the frequency does; and (ii)
the amplitude is of order εd(1−α)+(2α−1) (when δ = 0 and α ≤ 1

2 ) and therefore
small, they can be of interest for imaging purposes as they weakly interact with
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the random fluctuations of the medium and thus approximately propagate in a
homogeneous medium. It is interesting to perform a comparison with the single
scattering contribution. According to the results of [2], when α < 1, the instabilities
only propagate in the direction q0, so that no low frequencies are created during the
propagation and no precursors are generated.

Comments on the one dimensional case. A first observation of theorem 2.2
is that, as for single scattering, double scattering is stable when α > 0 in the
presence of long-range correlations. There is no contradiction with the well-known
localization property of waves propagating in one-dimensional random media, see
for instance [6]. Our result shows that scattering events of order at least three are
responsible for localization when α > 0. The case α > 0 corresponds to initial
conditions localized in the spatial variables, while α = 0 corresponds to unlocalized
initial conditions. When α = 0, we find that the scintillation is of order one and
therefore is compatible with localization. The results seems to indicate that waves
need to spread spatially first in order to localize: when α = 0, waves have a wide
spatial support and statistical instability occurs for the double scattering; when α >
0, waves needs to disperse first and then double scattering is stable. Also, double
scattering is dominant whenever α < 1 and is of same order as single scattering
when α = 1.

3. Outline of the proof

3.1. Preliminary calculations. We need to perform additional computations be-
fore describing the outline: when α ∈ [0, 12 ], we make in (2.4) the change of variables
s→ εαs and ξ → ε1−αξ , ξ‖ → εαξ‖, where we used the notation (2.6). When d = 1,
by convention ξ⊥ ≡ η⊥ ≡ 0. Let ξε = (εαξ‖, ξ⊥). Still using the notation F ε for the
rescaled version of F ε, as well as dξ = dξ‖dξ⊥ and dη = dη‖dη⊥, and defining

R̂ε(ξ, η) = R̂(ε1−αξ − η), Ψσ2(η) = η‖ +
σ2
2

(
|η⊥|2 + η2‖

)
(3.1)

aε(u, v, [zε]) = F(W0(·, ·)ψε(·, ·, [zε]))(u, v), (3.2)

F ε(τ, ξε, η) =
∑

σ2=±1

σ2F
ε
σ2
(τ, ξε, η), (3.3)

with [zε] = (τ, t, εαs, ε1−αξε, η, σ2), and

F ε
σ2
(τ, ξε, η) =

∫ τ

0

∫ ε−αt

0
dtds exp {−iσ2sξε · η/2} exp

{−itξ‖} exp
{

i

ε1−α
sΨσ2(η)

}
× aε

(
ξε, ε1−2αtξε − sη, [zε]

)
, (3.4)

we find the expression for the first scintillation w1
ε

w1
ε(τ) = εd(1−α)+3α−2

∫
R2d

dξdη

(2π)2d
R̂ε(ξ

ε, η)R̂(η)|F ε(τ, ξε, η)|2. (3.5)
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When α ∈ (12 , 1], we make in addition the change of variables t → ε2α−1t and
ξ‖ → ε1−2αξ‖. This yields

w1
ε(τ) = εd(1−α)+5α−3

∫
R2d

dξdη

(2π)2d
R̂ε(ξ

ε, η)R̂(η)|F ε(τ, ξε, η)|2, (3.6)

with now ξε = (ε1−αξ‖, ξ⊥) and

F ε
σ2
(τ, ξε, η) =

∫ τε1−2α

0

∫ εα−1t

0
dtds exp {−iσ2sξε · η/2} exp

{−itξ‖}
× exp

{
i

ε1−α
sΨσ2(η)

}
aε (ξε, tξε − sη, [zε]) , (3.7)

[zε] = (τ, ε2α−1t, εαs, ε1−αξε, η, σ2).

The second scintillation contribution w2
ε is discussed below.

3.2. Outline. Assume d ≥ 2. The case d = 1 is simpler and treated in section 7.
Let us start with a formal analysis for wε

1: assume α ∈ (0, 12 ) and decompose F ε as

|F ε|2 =
∑

σ2,σ′
2=±1

σ2σ
′
2F

ε
σ2
F

ε
σ′
2
.

which leads for wε
1 (before the change of variables ξ‖ → εαξ‖) to oscillatory integrals

of the form

I =

∫
R2d

∫ τ

0

∫ τ

0
dt1 dt2dξ dη R̂ε(ξ, η) R̂(η)

exp

{
− i

εα
(t1 − t2)ξ‖

}
F(t1, ξ, η, σ2)F(t2, ξ, η, σ

′
2), (3.8)

with

F(t, ξ, η, σ2) =

∫ ε−αt

0
ds exp {−iσ2sξ · η/2} exp

{
i

ε1−α
sΨσ2(η)

}
aε
(
ξ, ε1−2αtξ − sη

)
.

We drop the dependence of aε in [zε] to simplify. The product FF can be written as∫ ε−αt1

0

∫ ε−αt2

0
ds1ds2 exp

{−i(σ2s1 − s2σ
′
2)ξ · η/2

}
exp

{
i

ε1−α
(s1Ψ

σ2 − s2Ψ
σ′
2)

}
aε
(
ξ, ε1−2αt1ξ − s1η

)
āε
(
ξ, ε1−2αt2ξ − s2η

)
.

The first exponential term in the integral above plays no role. When α < 1, the
second oscillatory phase localizes η on the (hyper)surface on which the phase factor
s1Ψ

σ2 − s2Ψ
σ′
2 vanishes. The phase is equal to

s1Ψ
σ2 − s2Ψ

σ′
2 = (s1 − s2)η‖ +

s1σ2 − s2σ
′
2

2

(
|η⊥|2 + η2‖

)
.

Assume first σ′2 = σ2. Then the phase reads

s1Ψ
σ2 − s2Ψ

σ′
2 = (s1 − s2)

(
η‖ +

σ2
2

(
|η⊥|2 + η2‖

))
,
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which vanishes on the surfaces Sσ2 given by

Sσ2 = {(η‖, η⊥) ∈ R× R
d−1, 2η‖ + σ2|η⊥|2 + σ2η

2
‖ = 0},

=
{
(η‖, η⊥) ∈ R× R

d−1, |η⊥| ≤ 1, η‖ = −σ2 ±
√

1− |η⊥|2
}
.

Setting s1 = s2 + ε1−αs1 then yields formally:

F(t1, ξ, η, σ2)F(t2ξ, η, σ2) ∼

ε1−αδSσ2
(η)

∫ ε−αt2

0
ds2 a

ε
(
ξ, ε1−2αt1ξ − s2η

)
āε
(
ξ, ε1−2αt2ξ − s2η

)
,

where δSσ2
denotes here the Dirac measure on the surface Sσ2 . When σ′2 = −σ2, we

have

(s2 + ε1−αs1)Ψ
σ2 − s2Ψ

−σ2 = ε1−αs1η‖ + σ2
2s2 + ε1−αs1

2

(
|η⊥|2 + η2‖

)
,

∼ σ2s2

(
|η⊥|2 + η2‖

)
,

which therefore does not vanish except at the origin. Hence, it is expected that the
contribution of the terms corresponding to σ′2 = −σ2 will be negligible compared
to that of σ′2 = σ2 since it oscillates like exp{σ2εα−1s2(|η⊥|2 + η2‖)}. When α = 1,
the situation is different since the integral in s1 no longer displays fast oscillations
and all terms are of the same order whether σ′2 = σ2 or not. Let us now go back to
(3.8) and study integration with respect to t. When α > 0, the oscillatory integral
localizes ξ‖ around zero, so that, after the change of variables t1 = t2 + εαt1, we
find formally

I ∼ ε

∫
R2d

dξ dη R̂ε(ξ, η)) R̂(η)δSσ2
(η)δ0(ξ‖)

∫ τ

0

∫ ∞

0
dt2ds2

∣∣aε (ξ, ε1−2αt2ξ − s2η
)∣∣2 ,

∼ ε

∫
Rd−1

∫
Rd

dξ⊥ dη R̂2(η)δSσ2
(η)

∫ τ

0

∫ ∞

0
dt2ds2

∣∣aε (ξ0, ε1−2αt2ξ
0 − s2η

)∣∣2 ,
(3.9)

where following the notation (2.6), ξ0 = (0, ξ⊥). A close look at the surface Sσ2

shows that they include the origin. This is problematic since R̂2(η) is singular near
zero when δ > 0 and behaves like |η|−2δ . Even if aε ∼ |η| around the origin when
α ∈ (0, 1), as can be seen from (3.2) and the definition of ψε, the singularity is not
integrable when δ becomes too large (but less than d according to our assumptions).
One has therefore to be careful when the correlations are very long distance to justify
the formal computations. A possibility is to precisely control the rate at which η
gets closer to the origin: the term R̂ε(ξ, η) R̂(η) behaves like |ε1−αξ − η|−δ|η|−δ

which generates three natural scales:
• |η| � |ε1−αξε|, so that |ε1−αξε − η|−δ |η|−δ ∼ |η|−2δ and we will prevent in

this case η from approaching the origin because of the singularity,
• when |η| ∼ |ε1−αξε|, |ε1−αξ − η|−δ|η|−δ is integrable since δ < d,
• and finally when |η| � |ε1−αξ|, so that |ε1−αξ − η|−δ |η|−δ ∼ |ε1−αξ|−δ|η|−δ

which is also integrable.
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The last scale allows us to obtain bounds from below that show that scintillation
grows in some cases as the correlation distance gets longer. The latter analysis leads
us to decompose the domain of integration in η over R

d, as follows: let Ba be the
closed ball of Rd centered at the origin of radius a and Cb

a be the corona of radii a
and b with b > a also centered at the origin. Let

D0
± =

{
(η‖, η⊥) ∈ R× R

d−1, |η⊥| ≤ 1, 0 ≤ ±η‖ ≤ 1
}
,

D1
± =

{
(η‖, η⊥) ∈ R× R

d−1, |η⊥| ≤ 1, 1 ≤ ±η‖
}
,

C±
ε = Cεγ1

εγ2 ∩ {±η‖ ≥ 0},
D0

± = D0
±\
{
D0

± ∩Bεγ1
}
,

C = R
d\{D0

+ ∪D0
− ∪D1

+ ∪D1
−
}
.

The latter decomposition is depicted in figure 1 when d = 2. A fair amount of
calculations is redundant and we will focus our analysis only on the subdomains
D0

+, C+
ε and Bεγ2 that contain all the relevant difficulties. The techniques used to

treat these domains can then easily be transported to the other subdomains. When
α < 1, following the latter discussion, the contribution of the domain C can be
shown to be asymptotically negligible since it does not include the surfaces S1 and
S−1. It will therefore not be treated in detail. The contributions of D1

+ and D1− will
not be discussed further either as they are simpler to analyze than those of D0

+ and
D0− since the domains D1

+ and D1− do not include the origin. The domain D0−∪D1−
is similar to D0

+ ∪ D1
+ and symmetry arguments show they yield the same limit.

The related results will thus be given without proof. We will focus our attention
on the case α ≤ 1

2 . The rigorous treatment is fairly lengthy and technical. When
α ≤ 1

2 , the proofs can be performed in a relatively simple systematic manner and
we will present them in details. When α > 1

2 , the technicalities are heavier due to
the extra infinite domain integration with respect to t2 (τ has to be replaced by ∞
in (3.9)) and do not bring much novelty compared to the case α ≤ 1

2 . For the sake
of conciseness, we decided therefore to remain at a less formal level when α > 1

2 .
We set in the sequel γ1 = 1−α

3 , γ2 = 1 − α
2 and decompose w1

ε according to the
various subdomains (and omit the dependence in ε for simplicity):

w1
ε(τ) =

∑
Di∈D

wi(τ), D =
{D0

+, C
+
ε , Bεγ2 ,D0

−, C
−
ε ,D

1
+,D

1
−, C
}
, wi(τ) =

∫
Di

(· · · )dη.

The value of γ2 is the scale that allows us to capture the corrector (the exact limiting
term) around the origin, while γ1 defines a (non-optimal) scale at which the long-
range correlations have a weaker effect than around the origin. As annouced earlier,
we will focus only on the terms w1, w2 and w3. Our main technique to prove
theorems 2.1 and 2.2 is a careful estimation of the dependence of the function F ε

on ξ and η. This amounts to analyzing the different oscillatory integrals involved
in the definition of F ε so as to obtain optimal estimates. Part of this task is carried
out in the appendix in Lemma 8.2 where we study parametrized oscillatory integrals
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of the form

∫ τ

0

∫ ε−at

0
dtds exp {−isA} exp{−itB} exp {isΨ} f(t, s),

and obtain accurate estimates of their behavior as |B| and |Ψ| become large. In
sections 4.1, 4.2, 4.3, we show the terms w1, w2 and w3 tend to zero for α ≤ 1

2 and
d ≥ 2 while the optimal estimates for δ = 0 are obtained in section 5. The case
α > 1

2 is adressed in section 6 and the one-dimensional setting in section 7.

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

η‖ = 1

η⊥

η⊥ = 1

η‖

Cε
−

Cε
+

S−1

S1

C D0
+

D0−

C

D1
+

D1
−

Bεγ2

Figure 1. Decomposition of the integration domain in η when d =
2. The subdomain D0

+ corresponds to the shaded zone.

To conclude this outline, recall that the total scintillation function wε is the sum
of w1

ε and w2
ε ; see (2.3). Starting from (2.5), the expression of w2

ε may be recast as

w2
ε(τ) =

1

ε2π2d

∫
R2d

dξdηR̂(ξ − η)R̂(η)F ε(τ, ξ, η)Gε(τ, ξ, η),
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where

Gε(τ, ξ, η) =∑
σ1,σ2=±1

σ1σ2

∫ τ

0

∫ t

0
dtds exp

{
− i

ε

[
1

2
σ2s(ξ − η) · η − q0 · ((t− s)ξ + sη)

]}
∫
R2d

dxdp exp

{
i

ε1−α
x · ξ

}
exp

{
i

εα
p · ((t− s)ξ + sη)

}
W0(x, p)ψ̃

ε(x, p, [z]),

ψ̃ε(x, p, [z]) =
∑

σ1=±1

σ1ϕ

(
εαx− 1

2
(τ − t)σ1η + τ(q0 + ε1−αp)− 1

2
σ2(τ − t+ s)(ξ − η),

q0 + ε1−αp− 1

2
σ1η − 1

2
σ2(ξ − η)

)
,

and [z] = (τ, t, s, ξ, η, σ2). After the change of variables s→ εαs, Gε reads (dropping
the multiplicative ε factors):

Gε(τ, ξ, η) :=
∑

σ2=±1

σ2G
ε
σ2
(τ, ξ, η),

Gε
σ2
(τ, ξ, η) =

∫ τ

0

∫ ε−αt

0
dtds exp {−iσ2sξ · η/2} exp

{
i

εα
(t− εαs)ξ‖

}

× exp

{
i

ε1−α
sΨσ2(η)

}
aε
(−ξ,−ε1−2α(t− εαs)ξ − sη, [zε]

)
.

A simple inspection then shows that the expression of w2
ε is extremely close to that

of w1
ε (actually equal up to high order terms in ε after appropriate rescaling): the

variable η is also localized on the surfaces S1 and S−1 in the limit as well as ξ‖ at
the origin. The case α = 0 seems to yield a different result than w1

ε because of the
extra εαs factors. They actually have no influence at the limit as explained further
in the following sections. Hence, all the methods used for w1

ε can be applied to w2
ε

with very few modifications and show that w1
ε and w2

ε share the same limit. We will
therefore not analyze w2

ε in detail and focus mainly on w1
ε .

4. The Case α ∈ [0, 1
2
]

4.1. Contribution of D1 := D0
+. Our starting point is (3.5) with the related

definitions. Our goal is to estimate F ε and to prove that w1 tends to zero. For this,
we first need an estimate for the function aε: it stems from applying Lemma 8.1 of
the appendix with γ = 1 − 2α, r = r′ = 0, h = α and we find ∀n ≥ 0, k, l = 0, 1,
pointwise in all variables:

|∂kt ∂lsaε
(
ξε, ε1−2αtξε − sη, zε

) |
≤ Cn

(|ε1−αξε − η|k + |η|k)|εαη|l + |ε1−2αξε|k|η|l
(1 + |ξε|2 + |ε1−2αtξε − sη|2)n |ε1−αξε − η|. (4.1)
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As announced in the outline, we decompose F ε as

|F ε|2 = |F ε
−1|2 +Rε, Rε = |F ε

1 |2 −
∑

σ2=±1

F ε
σ2
F

ε
−σ2

, (4.2)

and split w1 := wL
1 + wN

1 accordingly as leading and negligible parts. We treat
these two terms separately. The first step of the analysis is to control F ε using
(4.1). Recall for this that the characteristic surface in D0

+ is given by{
(η‖, η⊥) ∈ R×R

d−1, |η⊥| ≤ 1, η‖ = η�(η⊥) := 1−
√

1− |η⊥|2
}
.

We then perform the change of variables η‖ → η�(η⊥) + ε1−αη‖ and as in (2.6),
introduce the notation ηε = (η�(η⊥) + ε1−αη‖, η⊥). The phase Ψ−1 reads after this
transformation

Ψ−1(η
ε) = ε1−αη‖

(
1− η�(η⊥)− 1

2
ε1−αη‖

)
.

In order to control F ε−1, we need to bound Ψ−1 from below. This stems from the
following geometrical constraints in the domain D0

+:

ε
2
3
(1−α) ≤ |ηε|2 = |η�(η⊥) + η1−αη‖|2 + |η⊥|2, 0 ≤ η�(η⊥) + η1−αη‖ ≤ 1, (4.3)

along with |η⊥| ≤ 1. These relations yield

1− 1

2
η�(η⊥)− 1

2
(η�(η⊥) + ε1−αη‖) ≥

1

2
(1− η�(η⊥)) =

1

2

√
1− |η⊥|2,

so that

|Ψ−1| =

∣∣∣∣ε1−αη‖

(
1− 1

2
η�(η⊥)− 1

2
(η�(η⊥) + ε1−αη‖)

)∣∣∣∣ ,
≥ 1

2
ε1−α|η‖|

√
1− |η⊥|2. (4.4)

Using (4.1), we apply Lemma 8.2 of the appendix with a = h = α, γ′ = 1 − 2α,
A = ξε · ηε, B = ξ‖, Ψ = Ψ−1ε

α−1, and r = 0. Depending on the values of ξ‖ and
η‖, we use four different estimates. Lemma 8.2 gives, pointwise in ηε ∈ D0

+ and
ξε ∈ R

d, ∀n ≥ 0:

|F ε
−1(τ, ξ

ε, ηε)| ≤ Cn〈ξε〉−nΨ1 ∧Ψ2 ∧Ψ3 ∧Ψ4,

Ψ1 = 1, Ψ2 = |η‖|−1(1− |η⊥|2)−
1
2 (1 + |ξε · ηε|+ |ηε|),

Ψ3 = |ξ‖|−1(1 + |ξε|+ |ηε|),
Ψ4 = |ξ‖|−1|η‖|−1(1− |η⊥|2)−

1
2 (1 + |ξε · ηε|2 + |ηε|2 + |ξε|2 + εα|ξ‖|).

Using the fact that |ηε| ≤ 2 in the domain D0
+, together with, for n ≥ 2,

〈ξε〉−n(|ξε|2 + εα|ξ‖|) ≤ 〈ξε〉−(n−2),

we arrive at
|F ε

−1(τ, ξ
ε, ηε)| ≤ C〈ξ⊥〉−nΨ1 ∧Ψ2 ∧Ψ3 ∧Ψ4, (4.5)

Ψ1 = 1, Ψ2 = |η‖|−1(1−|η⊥|2)−
1
2 , Ψ3 = |ξ‖|−1, Ψ4 = |ξ‖|−1|η‖|−1(1−|η⊥|2)−

1
2 .
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Defining the functions f and g by

f(η‖, η⊥) = 1 ∧
(
|η‖|−3/2(1− |η⊥|2)−

3
4

)
, g(ξ‖) = 1 ∧ |ξ‖|−3/2,

with by construction g ∈ L1(R)∩L∞(R), f ∈ L1(R×B1) ∩L∞(R×B1), B1 being
the d− 1 dimensional unit ball, we can thus control |F ε

−1|2 by

|F ε
−1|2 ≤ C〈ξε〉−ng(ξ‖)f(η‖, η⊥). (4.6)

This provides us with the desired bound. In order to estimate w1, it remains to treat
the integration with respect to ξ and η and thus the multiplicative (and singular
when δ > 0) terms R̂(ηε) and R̂ε(ξ

ε, ηε) = R̂(ε1−αξε − ηε) in (3.5). For the first
term, we have using (4.3), so that |ηε| ≥ ε

1−α
3 when ηε ∈ D0

+ (recall the S below
was defined in (1.3)):

�D0
+
(ηε)S(ηε)|ηε|−δ ≤ ‖S‖L∞

(
�|η⊥|≥ε

1−α
3

(η⊥)|η⊥|−δ + �|η⊥|≤ε
1−α
3

(η⊥)ε−
1−α
3

δ

)
.

(4.7)
For the second term R̂ε(ξ

ε, ηε), assume first that |ξε| ≤ ε−γ0 , with 0 < γ0 <
2(1−α)

3 .
Since |ηε| ≥ ε

1−α
3 according to (4.3), there exists, for ε ≤ ε0 small enough, a constant

Cε0 such that |ε1−αξε − ηε| ≥ Cε0ε
1−α
3 , and therefore, for ηε ∈ D0

+:

R̂(ε1−αξε − ηε) ≤ C ′
ε0‖S‖L∞ ε−

δ(1−α)
3 , when |ξε| ≤ ε−γ0 . (4.8)

The contribution of the set {|ξε| > ε−γ0} is of higher order thanks to the arbitrary
decay of 〈ξε〉−n. More precisely, we have, introducing D1,ε = {η ∈ R

d, ηε ∈ D1}:

wL
1 (τ) = εd(1−α)+2α−1

∫
Rd

∫
D1,ε

dξdη

(2π)2d
R̂ε(ξ

ε, ηε)R̂(ηε)|F ε
−1(τ, ξ

ε, ηε)|2,

=

∫
|ξε|≤ε−γ0

(· · · )dξ +
∫
|ξε|>ε−γ0

(· · · )dξ := T1 + T2.

Using (4.8) and (4.6), T1 is controlled by

T1 ≤ Cεd(1−α)+2α−1− δ(1−α)
3 ‖S‖2L∞

∫
|ξε|≤ε−γ0

∫
D1,ε

dξdη 〈ξ⊥〉−n |ηε|−δg(ξ‖)f(η‖, η⊥),

≤ Cεd(1−α)+2α−1− δ(1−α)
3 ‖S‖2L∞

∫
D1,ε

dη |ηε|−δf(η‖, η⊥),

since g ∈ L1 ∩ L∞. Moreover, thanks to (4.7),

C−1

∫
D1,ε

dη |ηε|−δf(η‖, η⊥) ≤
∫
R

∫
ε
1−α
3 ≤|η⊥|≤1

dη‖dη⊥|η⊥|−δf(η‖, η⊥)

+ε−
δ(1−α)

3

∫
R

∫
|η⊥|≤ε

1−α
3

dη‖dη⊥f(η‖, η⊥).

Treating the domains |η‖| ≤ 1 and |η‖| > 1 separately, and using that when |η⊥| ≤ 1
2 ,

(1− |η⊥|2)−
3
4 ≤ 23/4,
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we find

C−1

∫
D1,ε

dη |ηε|−δf(η‖, η⊥) ≤
∫ 1/2

ε
1−α
3

rd−2−δ + ε(d−1−δ)(1−α)/3 + 1,

= O(1 + ε(d−1−δ)(1−α)/3), (4.9)

so that
T1 ≤ Cεd(1−α)+2α−1− δ(1−α)

3 (1 + ε(d−1−δ)(1−α)/3). (4.10)
Regarding T2, we denote by B the ball centered at εα−1ηε of radius one and by Bc

its complementary in R
d. We have

T2 ≤ Cεd(1−α)+2α−1‖S‖L∞

∫
|ξε|>ε−γ0

∫
D1,ε

dξdη R̂(ηε)

|ε1−αξε − ηε|δ 〈ξ
ε〉−ng(ξ‖)f(η‖, η⊥),

:= Cεd(1−α)+2α−1‖S‖L∞

[∫
D1,ε

∫
{|ξε|>ε−γ0}∩B

+

∫
D1,ε

∫
{|ξε|>ε−γ0}∩Bc

]
.

In the first term, we perform the change of variable ξ‖ → ε−αξ‖, which yields an
integration of ξ on the domain {|ξ| > ε−γ0} ∩ B and a loss of a factor ε−α. Since
δ < d, the function |ξ − εα−1ηε|−δ is integrable on B. This implies that the first
term is bounded by, ∀n ≥ 0:

Cε(d−δ)(1−α)+2α−1−α+γ0n

∫
D1,ε

dηR̂(ηε)f(η‖, η⊥),

which, thanks to (4.9) is controlled by

hε = Cε(d−δ)(1−α)+2α−1−α+γ0n(1 + ε(d−1−δ)(1−α)/3).

The second term controlling T2 is also readily bounded by hε. It finally suffices to
choose n large enough so that

hε � εd(1−α)+2α−1− δ(1−α)
3 (1 + ε(d−1−δ)(1−α)/3)

to obtain that T2 is higher order than T1. The main result of this section is therefore,
that, pointwise in τ :

wL
1 (τ) = O

(
εd(1−α)+2α−1− δ(1−α)

3 (1 + ε(d−1−δ)(1−α)/3)
)
. (4.11)

A close inspection then shows that ∀δ ∈ (0, d), ∀α ∈ [0, 12 ], for d ≥ 2, we have,
pointwise in τ :

wL
1 (τ) → 0 as ε→ 0.

Regarding the remainder Rε defined in (4.2), there are two contributions. They
both involve the phase factor Ψ1, that reads

Ψ1(η
ε) = 2η�(η⊥) + ε1−αη‖

(
1 + η�(η⊥) +

1

2
ε1−αη‖

)
,

≥ η�(η⊥) + η�(η⊥) + ε1−αη‖ + ε1−αη‖η�(η⊥),

≥ η�(η⊥)(1 + ε1−αη‖) ≥ η�(η⊥)
√

1− |η⊥|2,
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since
1−
√

1− |η⊥|2 + ε1−αη‖ = η�(η⊥) + ε1−αη‖ ≥ 0

according to (4.3). Contrary to Ψ−1, Ψ1 is bounded from below independently of ε,
so that the oscillatory term exp{isεα−1Ψ1} provides an additional averaging effect
that renders Rε of higher order. Proceeding as for F ε−1 and using Lemma 8.2, we
find the estimate

|F ε
1 | ≤ C〈ξ⊥〉−nΨ1 ∧Ψ2 ∧Ψ3 ∧Ψ4,

with

Ψ1 = 1, Ψ2 = ε1−α|η�|−1(1 − |η⊥|2)−
1
2 ,

Ψ3 = |ξ‖|−1, Ψ4 = ε1−α|ξ‖|−1|η�|−1(1− |η⊥|2)−
1
2 .

Therefore, using (4.5), we have

C−1|F ε
−1F

ε
1 | ≤ (4.12)

〈ξε〉−ng(ξ‖)
(
ε(1−α)|η�|(1− |η⊥|2)−

1
2

)
∧
(
ε(1−α)/2|η�|−1/2|η‖|−3/2(1− |η⊥|2)−

3
4

)
where g is as in (4.6). We then proceed as for |F ε

−1| and underline here only the
main differences. Consider first the contribution for |η‖| ≤ 1. We control |F ε

−1F
ε
1 |

using the first term on the right hand side of (4.12). Since the term η� behaves likes
|η⊥|2 near the origin, rd−2−δ in (4.9) has to be replaced by rd−4−δ and we lose a
factor ε

2(1−α)
3 compared to wL

1 . This is compensated by the multiplicative ε1−α and
yields an overall gain of a factor ε

(1−α)
3 compared to wL

1 . When εα−1 ≥ |η‖| ≥ 1,

we use the second term of (4.12). The term |η�|−1/2 creating a loss of ε
(1−α)

3 , the
overall gain is a factor ε

(1−α)
6 compared to wL

1 . We proceed exactly the same way
for |F ε

1 |2 and obtain finally that wN
1 is negligible compared to wL

1 when ε→ 0.
As claimed in the outline, the results of this section can be directly generalized

to the domain D0− and to w2
ε . This ends this section about the domain D1.

4.2. Contribution of D2 := C+
1 . The method is the same as the one for the

domain D1: we first find an estimate for F ε and then show that w2 goes to zero.
We have the following geometrical constraint in the domain D2:

ε2(1−
α
2
) ≤ |η|2 ≤ ε

2(1−α)
3 , 0 ≤ η‖. (4.13)

Starting from (3.5), we perform the change of variables η → ηε(1−α/2), s → s−αs.
This yields:

w2(τ) = εd(1−α)+d(1−α
2
)+α−2

∫
Rd×D2,ε

R̂ε(ξ
ε, ε1−α/2η)R̂(ε1−α/2η)|F ε(τ, ξε, η)|2 dξdη

(2π)2d
,

(4.14)

where D2,ε = {η ∈ R
d, ε(1−α/2)η ∈ D2}. As in the previous section, F ε is decom-

posed as, with same notations,

|F ε| = |F ε
−1|2 +Rε. (4.15)
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We split w2 := wL
2 + wN

2 accordingly into leading and negligible parts. F ε−1 reads:

F ε
−1(τ, ξ

ε, η) =

∫ τ

0

∫ t

0
dtds exp

{
iε(1−3α/2)sξε · η/2

}
exp
{−itξ‖}

× exp

{
i

εα/2
sΨ−1(η)

}
aε
(
ξε, ε1−2αtξε − ε(1−3α/2)sη, [zε]

)
,

Ψ−1(η) = η‖ −
ε1−α/2

2

(
|η⊥|2 + η2‖

)
,

with [zε] = (τ, t, s, ε1−αξε, ε(1−α/2)η,−1). The phase Ψ−1 vanishes for

η‖ = η�(η⊥) = ε−(1−α/2)

(
1−
√
1− ε2(1−α/2)|η⊥|2

)
.

We then set η‖ → η�(η⊥) + εα/2η‖ and introduce the notation ηε = (η�(η⊥) +
εα/2η‖, η⊥). The phase reads after the latter change of variables

Ψ−1 = εα/2η‖

(
1− ε1−α/2η�(η⊥)− 1

2
εη‖

)
,

and the constraint (4.13) becomes

1 ≤ |ηε|2 = |η�(η⊥) + ηα/2η‖|2 + |η⊥|2 ≤ ε−
2(4−α)

6 , 0 ≤ η�(η⊥) + ηα/2η‖.

The definition of η� gives ε1−α/2η� ≤ 1. This, together with the constraints above
yield the following lower bound when ηε ∈ D2,ε:

1− ε1−α/2η�(η⊥)− 1

2
εη‖ = 1− 1

2
ε1−α/2(η�(η⊥) + εα/2η‖)−

1

2
ε1−α/2η�(η⊥)

≥ 1− 1

2
ε

1−α
3 − 1

2
=

1

2
(1− ε

(1−α)
3 ) ≥ C > 0, (4.16)

for ε small enough. This implies

|Ψ−1| ≥ C εα/2 |η‖|, ∀ηε ∈ D2,ε. (4.17)

In order to apply Lemma 8.2, we use first Lemma 8.1 with h = 0, r = 1 − α/2,
r′ = 1− 3α/2 and obtain the estimate

|∂kt ∂lsaε
(
ξε, ε1−2αtξε − sε1−3α/2ηε, zε

)
|

≤ C
(|ε1−αξε − ε1−α/2ηε|k + |ε1−α/2ηε|k)|ε1−3α/2ηε|l + |ε1−2αξε|k|ε1−3α/2ηε|l

(1 + |ξε|2 + |ε1−2αtξε − sε1−3α/2ηε|2)n
×|ε1−αξε − ε1−α/2ηε|.

We next apply lemma 8.2 with a = h = 0, γ′ = 1− 2α, A = ε1−3α/2ξε · ηε, B = ξ‖,
Ψ = Ψ−1ε

−α/2, r = 1− α/2, r′ = 1− 3α/2. We find, using (4.17) and the notation
of the Lemma:

I1 = ε1−α|ξε − εα/2ηε|,
I2 ≤ ε1−α|η‖|−1(1 + ε1−3α/2|ξε||ηε|+ ε1−3α/2|ηε|)|ξε − εα/2ηε|,
I3 ≤ ε1−α|ξ‖|−1(1 + |ξε|+ ε1−α/2|ηε|)|ξε − εα/2ηε|.
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Since |ηε| ≤ ε−(4−α)/6, ∀n ≥ 1, we have:

〈ξε〉−nI2 ≤ ε1−α〈ξε〉−(n−1)|η‖|−1(1 + ε(1−4α)/3)|ξε − εα/2ηε|,
〈ξε〉−nI3 ≤ ε1−α〈ξε〉−(n−1)|ξ‖|−1|ξε − εα/2ηε|,

which implies that

|F ε
−1|2 ≤ Cε2(1−α)〈ξε〉−n(1 + ε(1−4α)/3)H(ξ‖, η‖)|ξε − εα/2ηε|2, (4.18)

where
H(ξ‖, η‖) = 1 ∧

(
|ξ‖|−3/2

)
∧ (|η‖|−1|ξ‖|−1

)
.

From (4.14), the scintillation wL
2 is then controlled by

wL
2 (τ) ≤ Cεd(1−α)+d(1−α/2)−α/2

∫
Rd

∫
D2,ε

dξdηR̂ε(ξ
ε, ε1−α/2ηε)R̂(ε(1−α/2)ηε)

×〈ξε〉−n(1 + ε(1−4α)/3)H(ξ‖, η‖)|ξε − εα/2ηε|2,
≤ Cε(d−δ)(1−α)+(d−δ)(1−α/2)−α/2‖S‖2L∞

∫
Rd

∫
D2,ε

dξdη|ξε − εα/2ηε|2−δ|ηε|−δ,

×〈ξε〉−n(1 + ε(1−4α)/3)H(ξ‖, η‖).

We control the latter integral for |ξ‖| ≥ 1 and |η‖| ≥ 1 only treating the most
technical part in detail. The corresponding integral is denoted by I. The remaining
part is simpler to tackle. We have, ∀n ≥ 1, for some γ > 0:

〈ξε〉−nH(ξ‖, η‖) ≤ ε−γ |η‖|−1|ξ‖|−1−γ〈ξε〉−(n−1).

Owing to the fact that |ηε| ≥ 1 in D2,ε, this yields

|ηε|−δ ≤ �
ε−

(4−α)
6 ≥|η⊥|≥1

(η⊥)|η⊥|−δ + �|η⊥|≤1(η⊥), ∀ηε ∈ D2,ε. (4.19)

Besides, since ε1−α/2η� ≤ 1 and 0 ≤ η�(η⊥) + ηα/2η‖ ≤ ε−
(4−α)

6 , we find that
|η‖| ≤ ε−1 when ηε ∈ D2,ε. Assume first δ ≥ 2 (which implies necessarily that
d > 2). We have, using (4.19):

I ≤
∫
Rd−1

∫ ∞

1

∫
|η⊥|≤1

∫ ε−1

1
dξ⊥dξ‖dη⊥dη‖〈ξ⊥〉−n|ξ⊥ − εα/2η⊥|2−δε−γ |η‖|−1|ξ‖|−1−γ

+

∫
Rd−1

∫ ∞

1

∫
ε−

(4−α)
6 ≥|η⊥|≥1

∫ ε−1

1
dξ⊥dξ‖dη⊥dη‖

×〈ξ⊥〉−n|ξ⊥ − εα/2η⊥|2−δ |η⊥|−δε−γ |η‖|−1|ξ‖|−1−γ ,

≤ | log ε|ε−γ

∫
Rd−1

∫
|η⊥|≤1

dξ⊥dη⊥〈ξ⊥〉−n|ξ⊥ − εα/2η⊥|2−δ

+| log ε|ε−γ

∫
Rd−1

∫
ε−

(4−α)
6 ≥|η⊥|≥1

dξ⊥dη⊥〈ξ⊥〉−n|ξ⊥ − εα/2η⊥|2−δ |η⊥|−δ

This implies, since δ < d and∫
Rd−1

dξ⊥〈ξ⊥〉−n|ξ⊥ − εα/2η⊥|2−δ ≤ C, (4.20)
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where the constant C does not depend on η⊥, that

I ≤ C| log ε|ε−γ

(
1 +

∫ − (4−α)
6

1
drrd−2−δ

)
= O

(
| log ε|ε−γ− (4−α)

6
(d−1−δ)

)
. (4.21)

When 0 ≤ δ < 2, we have since |ηε| ≤ ε−(4−α)/6,

〈ξε〉−n|ξε − εα/2ηε|2−δ ≤ C〈ξε〉−(n−1)(1 + |εα/2ηε|2−δ),

≤ C〈ξε〉−(n−1)(1 + ε(α/2−(4−α)/6)(2−δ)) (4.22)

and obtain

I = O
(
| log ε|ε−γ+(α/2−(4−α)/6)(2−δ)

∫ − (4−α)
6

1
drrd−δ−2

)
,

= O
(
| log ε|ε−γ+(α/2(2−δ)− (4−α)

6
(d+1−2δ)

)
. (4.23)

The cases |η‖| ≤ 1 and |ξ‖| ≤ 1 are simpler and yield higher order terms than (4.21)
and (4.23). Therefore, going back to wL

2 , we find when δ ≥ 2:

wL
2 (τ) = O(| log ε|(1 + ε(1−4α)/3)ε(d−δ)(1−α)+(d−δ)(1−α/2)−α/2− (4−α)

6
(d−1−δ)−γ),

= O(| log ε|(1 + ε(1−4α)/3)ε
4
3
(d−δ)(1−α)+ 2

3
(1−α)−γ),

= O(| log ε|ε 4
3
(d−δ)(1−α)+ 2

3
(1−α)−γ), when α ≤ 1

4
,

= O(| log ε|ε 4
3
(d−δ)(1−α)+1−2α−γ ), when

1

4
≤ α ≤ 1

2
.

Setting for instance γ = 1
3(d − δ)(1 − α), which is strictly positive since δ < d and

α ≤ 1
2 , we have ∀δ ∈ [2, d), ∀α ∈ [0, 12 ], pointwise in τ :

wL
2 (τ) → 0 as ε→ 0. (4.24)

When 0 ≤ δ < 2, we find

wL
2 (τ) = O(| log ε|(1 + ε(1−4α)/3)ε(d−δ)(1−3α/2)+α/2−α/2δ− (4−α)

6
(d+1−2δ)−γ ),

= O(| log ε|ε 2
3
(2d−δ−1)(1−α)−γ ), when α ≤ 1

4
,

= O(| log ε|ε 2
3
(2d−δ−1)(1−α)+ 1

3
(1−4α)−γ), when

1

4
≤ α ≤ 1

2
.

Let γ0 = 2− δ > 0. Then, since d ≥ 2:

2

3
(2d − δ − 1)(1− α) +

1

3
(1− 4α)− γ ≥ 1− 2α+

2

3
γ0(1− α)− γ.

Setting for instance γ = 1
3γ0(1−α) then yields (4.24) for δ ∈ [0, 2) and α ≥ 1

4 . The
same holds for the simpler case α ≤ 1

4 . Regarding the other scintillation wN
2 and
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the related term Rε, we proceed exactly as for wN
1 in section 4.1 and notice that

the phase factor Ψ1 satisfies the following bound from below:

Ψ1 = 2η�(η⊥) + εα/2η‖

(
1 + ε1−α/2η�(η⊥) +

1

2
εη‖

)
,

≥ η�(η⊥)
√

1− ε2(1−α/2)|η⊥|2 ≥ Cε−(1−α/2),

for ε small enough. Following step by step the method used for wN
1 shows that wN

2

is negligible compared to wL
2 . We do not go into further details.

The conclusion of this section is that, ∀δ ∈ [0, d), ∀α ∈ [0, 12 ], pointwise in τ :

w2(τ) → 0 as ε→ 0. (4.25)

As for section 4.1, this last result can be generalized to the domain D0− and to w2
ε

without difficulty.

4.3. Contribution of D3 := Bεγ2 . When η ∈ D3, we have

0 ≤ |η| ≤ ε(1−
α
2
). (4.26)

Starting from (3.5), we perform the change of variables η → ηε, s→ s−αs. Then:

F ε
σ2
(τ, ξε, η) =

∫ τ

0

∫ t

0
dtds exp

{−iσ2ε1−αsξε · η/2} exp{−itξ‖}
× exp {isΨσ2(η)} aε

(
ξε, ε1−2αtξε − ε1−αsη, [zε]

)
,

Ψσ2(η) = η‖ +
σ2ε

2

(
|η⊥|2 + η2‖

)
, [zε] = (τ, t, s, ε1−αξε, εη, σ2).

In order to obtain an optimal estimate, we expand aε in powers of ε. According to
(3.2), we need to expand

ψε(x, p, [zε]) =
∑

σ1=±1

σ1ϕ
(
εαx+

1

2
(τ − t)σ1(ε

1−αξ − εη) + τ(q0 + ε1−αp)

+
1

2
σ2(τ − t+ s)εη, q0 + ε1−αp+

1

2
σ1(ε

1−αξ − εη) +
1

2
σ2εη

)
.

Easy calculations yield:

ψε = ψε
0 + εψε

1,

ψε
0 =

[
(ε1−αξ − εη) · ((τ − t)∇x +∇p)

]
ϕ(εαx+ τ(q0 + ε1−αp), q0 + ε1−αp)

where ψε
1 satisfies, for all multi-indices i and j, pointwise in η, ξε, for τ, t, s bounded,

k = 0, 1:

|∂kt ∂ix∂jpψε
1(x, p, [z

ε])| ≤ C|η||ε1−αξε − εη|. (4.27)

In the same way, we have

exp
{
−iσ2ε1−αsξε · η + iε

σ2
2
s|η|2

}
= 1− iσ2ε

1−αsξε · η + εψ3,

where the function ψ3 verifies, ∀n ≥ 2 and for s bounded:

〈ξε〉−n|ψ3| ≤ 〈ξε〉−(n−2)|η|2. (4.28)
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This implies that∑
σ2=±1

σ2 exp
{
−iσ2ε1−αsξε · η + iε

σ2
2
s|η|2

}
ψε = −2iε1−αsξε · ηψε

0 + εψε
4,

where ψε
4 satisfies, using (4.27),

|∂kt ψε
4| ≤ C〈ξε〉−n(1 + |η|2)|ε1−αξε − εη|. (4.29)

Consequently, we can write

F ε =
∑

σ2=±1

F ε
σ2

= −2iε1−α(ξε · η)
∫ τ

0

∫ t

0
dtdss exp

{−itξ‖} exp{isη‖} (aε0 + εaε1),

aε0 = F(W0ψ
ε
0)(ξ

ε, ε1−2αtξε − ε1−αsη, [zε]),

aε1 = F(W0ψ
ε
4)(ξ

ε, ε1−2αtξε − ε1−αsη, [zε]).

With obvious notation, we recast the latter system as

|F ε|2 = Lε +Rε, Rε = ε2−αrε,

Lε = 4

∣∣∣∣ε1−α(ξε · η)
∫ τ

0

∫ t

0
dtdss exp

{−itξ‖} exp{isη‖} aε0
∣∣∣∣
2

,

and the scintillation w3 reads

w3(τ) = εd(1−α)+d+α−2

∫
Rd×B

ε−α/2

dξdη

(2π)2d
R̂ε(ξ

ε, εη)R̂(εη)(Lε +Rε),

:= wL
3 (τ) + wR

3 (τ).

Consider first the leading term wL
3 . The function aε0 satisfying the estimate of

Lemma 8.1 with γ′ = 1 − 2α, r′ = r = 1, h = 0, we apply Lemma 8.2 with
γ′ = 1− 2α, A = 0, B = ξ‖, Ψ = η‖, r′ = r = 1, h = 0 and find

Lε ≤ Cε2(1−α)〈ξε〉−ng(ξ‖)|η|2|ε1−αξε − εη|2 (4.30)

where g is an in (4.6). Besides, we have

1

|ξε − εαη|δ−2
=

1

|ξε|δ−2
+ εα(2− δ)

∫ 1

0

(ξε − uεαη) · η
|ξε − uεαη|δ−4

du,

=
1

|ξε|δ−2
+ εαh(ξε, η), (4.31)

where h verifies, η and ξ⊥ a.e, since δ < d:∫
Rd−1

〈ξε〉−n|h(ξε, η)|dξ⊥ ≤ C|η|
∫
Rd−1

∫ 1

0
〈ξε〉−n|ξε − uεαη|3−δdudξ⊥,

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C|η|
∫
Rd−1

∫ 1

0
〈ξ⊥〉−n|ξ⊥ − uεαη⊥|3−δdudξ⊥ ≤ C|η|,

if 3 ≤ δ < d,

C|η|(1 + |εαη⊥|3−δ), if 0 ≤ δ < 3.

(4.32)
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Using (4.31), we then write for the contribution of Lε to the scintillation:

wL
3 (τ) = ε(d−δ)(1−α)+d−δ+α−2

×
∫
Rd

∫
B

ε−α/2

dξdη

(2π)2d
S(ε1−αξε − εη)|ξε − εαη|2−δS(εη)|η|−δ |ξε − εαη|−2Lε,

= ε(d−δ)(1−α)+d−δ+α−2

∫
Rd

∫
B

ε−α/2

dξdη

(2π)2d
S(ε1−αξε − εη)

×
(

1

|ξε|δ−2
+ εαh(ξε, η)

)
S(εη)|η|−δ |ξε − εαη|−2Lε,

:= ε(d−δ)(1−α)+d−δ+α−2(T1 + T2),

with obvious notation. The change of variable η → ε−α/2η in T1 yields

T1 = ε(δ−d)α/2

∫
Rd

∫
B1

dξdη

(2π)2d
S(ε1−αξε − ε1−α/2η)

|ξε|2−δS(ε1−α/2η)|η|−δ |ξε − εα/2η|−2Lε(ε−α/2η).

According to (4.30), the integrand is controlled by, ∀n ≥ 0:

ε4(1−α)−α‖S‖2L∞ |η|−δ |ξε|2−δ〈ξε〉−ng(ξ‖)|η|2

≤ Cε4(1−α)−α‖S‖2L∞ |η|−δ〈ξ⊥〉−ng(ξ‖)|η|2
{ |ξ⊥|2−δ if 2 ≤ δ < d,

1 if 0 ≤ δ < 2.

:= ε4(1−α)−αH(ξ, η).

This tells us that
T1 = O(ε(δ−d)α/2+4(1−α)−α). (4.33)

Assume now α = 1
2 . We will obtain an optimal estimate in this case that shows that

wL
3 is of order εd−δ. Since the function H belongs to L1(Rd×B1), we can apply the

Lebesgue dominated convergence theorem and obtain that, pointwise in τ :

ε(d−δ)α/2−4(1−α)+αT1 → S(0)2
∫
Rd

∫
B1

dξdη

(2π)2d
|ξ⊥|2−δ|η|−δ

× lim
ε→0

ε−4(1−α)+α|ξε − εα/2η|−2Lε(ε−α/2η)

with, according to the definition of Lε and aε0, when α = 1
2 :

lim
ε→0

ε−4(1−α)+α|ξε − εα/2η|−2Lε(ε−α/2η)

= 4|ξ⊥|−2

∣∣∣∣(ξ⊥ · η⊥)
∫ τ

0

∫ t

0
dtdss exp

{−itξ‖} exp{isη‖} a0(ξ⊥, τ, t)
∣∣∣∣
2

,

a0(ξ⊥, τ, t) = ψ0(τ, t)FW0(ξ
0, tξ0),

ψ0 =
[
ξ0 · ((τ − t)∇x +∇p)

]
ϕ(τq0, q0).
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Above, we used the notation ξ0 = (0, ξ⊥). Regarding, T2, using (4.30)-(4.32) and
following step by step the calculations for T1, we find:

T2 = O(ε(δ−d)α/2+α/2+4(1−α)−α),

which is an order εα/2 smaller than T1. Together with (4.33), this means first that
∀δ ∈ [0, d), ∀α ∈ [0, 12 ], pointwise in τ :

wL
3 (τ) → 0 as ε→ 0, (4.34)

and that there exists a non-identically vanishing function f such that, when α = 1
2 ,

ε−(d−δ)wL
3 (τ) → f(τ). (4.35)

Regarding the remainder Rε, it is proved to be negligible (when α > 0 and same
order when α = 0) by mimicking the steps for Lε and using estimate (4.29) together
with Lemma 8.2. We leave the details to the reader.

We treat now (2.7). The definition of wε
1 gives straightforwardly

w3(τ) ≤ w1
ε(τ),

so that, together with (4.35) and the fact that wR
3 is of higher order than wL

3 ,

f(τ) ≤ lim inf
ε→0

ε−(d−δ)w1
ε(τ),

which yields (2.7). The main results of this section are therefore (2.7), and the fact
that, ∀δ ∈ [0, d), ∀α ∈ [0, 12 ], pointwise in τ :

w3(τ) → 0 as ε→ 0.

5. Optimal estimates for δ = 0 and α ∈ [0, 1
2
].

Since R̂ is bounded in L∞ when δ = 0, we can consider the whole domain D0
+

without having to decompose it into subdomains to be able to treat the singularity
of R̂. Assume first α > 0. We follow step by the step the lines of section 4.1
and decompose |F ε|2 into leading and negligible parts. We already know from the
results of section 4.1 that the leading term is given by wL

1 and thus focus on this
term. Estimate (4.6) provides the majorizing function

〈ξ⊥〉−ng(ξ‖)f(η‖, η⊥)

that allows us to use the Lebesgue dominated convergence theorem and pass to the
limit in the expression of wL

1 . Recall that

D1,ε =
{
(η‖, η⊥) ∈ R

d, (η�(η⊥) + ε1−αη‖, η⊥) ∈ D0
+

}
,

D0
+ =

{
(η‖, η⊥) ∈ R

d, |η⊥| ≤ 1, 0 ≤ η‖ ≤ 1
}
.

This implies that, pointwise in ηε = (η�(η⊥) + ε1−αη‖, η⊥):

�D1,ε(η
ε) → �R(η‖)�B1(η⊥), (5.1)
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where B1 is d− 1 dimensional unit ball. Hence, pointwise in τ :

lim
ε→0

ε−d(1−α)−2α+1wL
1 (τ) =

∫
R2d

dξdη

(2π)2d
lim
ε→0

�D1,εR̂ε(ξ
ε, ηε)R̂(ηε)|F ε

−1(τ, ξ
ε, ηε)|2,

=

∫
Rd

∫
R×B1

dξdη

(2π)2d
R̂2(η−)|F 0(τ, ξ‖, ξ⊥, η‖, η−)|2,

where F ε−1 is defined in (3.4), η− = (η�(η⊥), η⊥) and

F 0(τ, ξ‖, ξ⊥, η‖, η−) = lim
ε→0

F ε
−1(τ, ξ

ε, ηε) a.e..

In order to identify F 0, we need another majorizing function. Assume for the
moment that α < 1

2 . We write, for ξε and ηε fixed:

aε
(
ξε, ε1−2αtξε − sη

)
= aε (ξε,−sη) + ε1−2αtξε ·

∫ 1

0
∇2a

ε
(
ξε, uε1−2αtξε − sη

)
du,

:= aε (ξε,−sη) + ε1−2αbε. (5.2)

Above, ∇2 denotes the gradient of aε(x, y) with respect to y ∈ R
d. Using the

definition of aε given in (3.2) and the fact that W0 ∈ S(R2d), we find, ∀n ≥ 0, for
k = 0 or k = 1:

|(∇2)
kaε (ξε, y) | ≤ C

1

(1 + |ξε|2 + |y|2)n |ε1−αξε − ηε|, (5.3)

so that

bε ≤ C

∫ 1

0
du

ε1−α + |ηε|
(1 + |ξε|2 + |uε1−2αtξε − sηε|2)n .

It is then clear that∫ tε−α

0
bεds ≤ tε1−2α +

d∑
i=1

∫ ∞

0

∫ 1

0
dsdu

|ηεi |
(1 + |ξε|2 + |uε1−2αtξε − sηε|2)n ≤ C,

(5.4)
where ηεi denotes the i-th component of the vector ηε and C does not depend on ε.
Hence, owing (3.4), (5.2) and (5.4), F ε−1 admits the expression

F ε
−1(τ, ξ

ε, ηε) = O(ε1−2α)+∫ τ

0

∫
R

dtds�0≤s≤ε−αt exp {isξε · ηε/2} exp
{−itξ‖} exp

{
i

ε1−α
sΨ−1

}
aε (ξε,−sηε) .

We then perform the change of variables s → s|ηε|−1 in the expression above and
introduce the notation η̃ε = ηε|ηε|−1. According to (5.3), we have, ∀n ≥ 0

|aε (ξε,−sη̃ε)| ≤ C〈ξ⊥〉−n〈s〉−n.

Applying the Lebesgue dominated convergence with the latter majorizing function,
together with

i

ε1−α
s|ηε|−1Ψ−1(η

ε) → isη‖|η−|−1(1− |η⊥|2)1/2, a.e.,
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we obtain the following limit for F ε−1:

F 0(τ, ξ‖, ξ⊥, η‖, η−) = |η−|−1

∫ τ

0

∫ ∞

0
dtds exp

{
is|η−|−1ξ⊥ · η⊥/2

}
exp
{−itξ‖}

exp
{
is(1− |η⊥|2)1/2η‖|η−|−1

}
a0
(
ξ0,−sη−|η−|−1

)
,

= (1− |η⊥|2)−1/2

∫ τ

0

∫ ∞

0
dtds exp

{
is(1− |η⊥|2)−1/2ξ⊥ · η⊥/2

}
exp
{−itξ‖} exp{isη‖} a0 (ξ0,−s(1− |η⊥|2)−1/2η−

)
where

a0 = ψ0F(W0), ψ0 =
∑

σ1=±1

σ1ϕ

(
τq0 − 1

2
(1 + σ1)(τ − t)η−, q0 − 1

2
(1 + σ1)η

−
)
.

Then, the Fourier-Plancherel theorem yields the final expression

lim
ε→0

ε−d(1−α)−2α+1wL
1 (τ) =

=

∫ τ

0

∫ ∞

0

∫
Rd−1

∫
B1

dtdsdξ⊥dη⊥
(2π)2(d−1)

R̂2(η−)
1− |η⊥|2

∣∣∣a0 (ξ0, s(1− |η⊥|2)−1/2η−
)∣∣∣2 ,

=

∫ τ

0

∫ ∞

0

∫
Rd−1

∫
B1

dtdsdξ⊥dη⊥
(2π)2(d−1)

R̂2(η−)
(1− |η⊥|2)1/2

|a0
(
ξ0, sη−

) |2. (5.5)

When α = 1
2 , we simply control aε by

|aε (ξε, tξε − sη) | ≤ C

(1 + |ξε|2 + |ε1−2αtξε − sηε|2)n ≤ C

(1 + |ξ⊥|2 + |tξ⊥ − sη⊥|2)n
which provides a majorizing function and allows us to pass to the limit. All calcu-
lations done, it comes for α = 1

2 :

lim
ε→0

ε−d(1−α)−2α+1wL
1 (τ) =

=

∫ τ

0

∫ ∞

0

∫
Rd−1

∫
B1

dtdsdξ⊥dη⊥
(2π)2(d−1)

R̂2(η−)
(1− |η⊥|2)1/2

|a0
(
ξ0, tξ0 − sη−

) |2. (5.6)

The case α = 0 is the most direct to treat and yields the result

lim
ε→0

ε−d+1wL
1 (τ) =

1

(2π)2d

∫
Rd

∫
R×B1

dξdη
R̂2(η−)

(1 − |η⊥|2)1/2
∣∣∣∣
∫ τ

0

∫ t

0
dtdseisξ·η

−
e−itξ‖eisη‖F(W0ψ)

(
ξ,−sη−)∣∣∣∣

2

,

ψ =
∑

σ1=±1

σ1ϕ
(
x+

1

2
(τ − t)σ1(ξ − η−) + τq0 − 1

2
(τ − t+ s)η−,

q0 +
1

2
σ1(ξ − η−)− 1

2
η−
)
.
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Using again the Fourier-Plancherel theorem, we find

lim
ε→0

ε−d+1wL
1 (τ) =

1

(2π)2d−1

∫
Rd

∫
B1

∫ τ

0
dξdη⊥ds

R̂2(η−)
(1− |η⊥|2)1/2

∣∣∣∣
∫ τ

s
dte−itξ‖F(W0ψ)

(
ξ,−sη−)∣∣∣∣

2

. (5.7)

Hence, the limit of the scintillation w1
ε corresponding to the domain D0

+ is given
by (5.5)-(5.6)-(5.7). The contribution of D1

+ admits the same expression with η−

replaced by η+ = (1 +
√

1− |η⊥|2, η⊥). Moreover, simple symmetry considerations
then show that the contribution of D0− ∪D1− is the same as that of D0

+ ∪D1
+. As

claimed in the outline, the contributions of the other domains are of higher order
while w2

ε shares the same limit as w1
ε since the two terms have similar expressions

up to neglibible quantities. A first look at Gσ2 when α = 0 seems to indicate that
the limit is different since the extra εαs term is now of order one. This term actually
disappears in the final expression after using the Fourier-Plancherel equality, leading
therefore to the same expression as w1

ε . This ends the section.

6. The case α ∈ (1
2
, 1)

The contributions of the domains D1, D2 and D3 can be treated with some
modifications of sections 4.1, 4.2 as well as Lemmas 8.1 and 8.2 of the appendix.
The case d ≥ 4 is relatively straightforward while the cases d = 2 and d = 3 require
a little more attention. In all cases, the corresponding scintillation is proved to
converge to zero for any δ ∈ (0, d). We do not go into further details. We remain
below at an informal level for the derivation of optimal estimates when δ = 0.

As already mentioned in section 5, it is not necessary to divide the domain D0
+

into various subdomains when δ = 0 since the power spectrum is bounded. We then
only consider the contribution of the scintillation in D0

+, that we denote by w1 and
generalize the result to the other domains of interest. We start from expression (3.6).
Assume first α < 1. It is clear from the discussions of sections 4.1 and 5 that the
leading term in |F ε|2 is |F ε−1|2 and we therefore concentrate our attention on this sole
term formally neglecting the remainder. The corresponding scintillation is denoted
by wL

1 . We perform the classical change of variables η‖ → η‖ = η�(η⊥) + ε1−αη‖
and define ηε = (η�(η⊥) + ε1−αη‖, η⊥) as well as η− = (η�(η⊥), η⊥), ξ0 = (0, ξ⊥).
According to (3.2), we have informally

aε (ξε, tξε − sηε, [zε]) = a0(ξ
0, tξ0 − sη−, [z]) + o(ε),

where

a0(u, v, [z]) = ψ0(z)F(W0)(u, v), [z] = (η−, τ),

ψ0(z) =
∑

σ1=±1

σ1ϕ

(
−1

2
(1 + σ1)τη

− + τq0, q0 − 1

2
(1 + σ1)η

−
)
.

Besides,
Ψ−1(η

ε) = ε1−αη‖(1− |η⊥|2)1/2 + o(ε1−α).
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This implies that

F ε
−1(τ, ξ

ε, η) =

∫ τε1−2α

0

∫ tεα−1

0
dtds exp {isξ⊥ · η⊥/2} exp

{−itξ‖}
× exp

{
isη‖(1− |η⊥|2)1/2

}
a0(ξ

0, tξ0 − sη−, [z]) + o(ε),

:= F ε
0 (τ, ξ‖, ξ⊥, η‖, η⊥) + o(ε).

Consequently, wL
1 reads

wL
1 (τ) = εd(1−α)+2(2α−1)

∫
R2d

dξdη

(2π)2d
�D1,εR̂

2(η−)|F ε
−1(τ, ξ

ε, ηε)|2,

= εd(1−α)+2(2α−1)

∫
R2d

dξdη

(2π)2d
�R(η‖)�B1(η⊥)R̂

2(η−)|F ε
0 (τ, ξ‖, ξ⊥, η‖, η⊥)|2

+o(εd(1−α)+2(2α−1)),

where D1,ε = {η ∈ R
d, ηε ∈ D1}. The Fourier-Plancherel theorem then yields

wL
1 (τ) = εd(1−α)+2(2α−1)w1,ε(τ) + o(εd(1−α)+2(2α−1)),

w1,ε(τ) =

∫
Rd−1

∫
B1

∫ τε1−2α

0

∫ tεα−1

0

dξ⊥dη⊥dtds
(2π)2(d−1)

R̂2(η−)
(1− |η⊥|2)1/2

|a0(ξ0, tξ0 − sη−, [z])|2.

Suppose first that d ≥ 3. Passing formally to the limit in the latter equation gives

lim
ε→0

ε−d(1−α)−2(2α−1)wL
1 (τ) =∫

Rd−1

∫
B1

∫ ∞

0

∫ ∞

0

dξ⊥dη⊥dtds
(2π)2(d−1)

R̂2(η−)
(1− |η⊥|2)1/2

|a0(ξ0, tξ0 − sη−, [z])|2. (6.1)

We claim the term on the right is finite. We only verify it for t ≥ 1, the remaining
part of the integral following directly. Notice first that, since ϕ ∈ S(R2d),

|ψ0| ≤ C|η−|.
This fact, together with the change of variables in order s→ s(η�)−1, ξ⊥ → t−1ξ⊥,
ξ⊥ → ξ⊥ + s(η�)−1η⊥ implies, ∀n ≥ 0:
∫
Rd−1

∫
B1

∫ ∞

1

∫ ∞

0

dξ⊥dη⊥dtds
(2π)2(d−1)

1

td−1η�
R̂2(η−)

(1− |η⊥|2)1/2
|a0(t−1ξ0, ξ0 − sη−(η�)−1, [z])|2

≤ C

∫
Rd−1

∫
B1

∫ ∞

1

∫ ∞

0

dtdsdξ⊥dη⊥
(2π)2(d−1)

1

td−1η�
R̂2(η−)

(1− |η⊥|2)1/2
|η−|2

(1 + |ξ⊥|2 + s2)n
,

≤ C

∫
B1

dη⊥
|η�(η⊥)|2 + |η⊥|2

(1− |η⊥|2)1/2η�(η⊥)
.

The last integral is finite since by definition |η�(η⊥)|2 + |η⊥|2 = 2η�(η⊥).
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The case d = 2 requires a little more work. We set ξ⊥ → t−1ξ⊥ and perform an
integration by parts in t when t ≥ 1. It comes, with obvious notation:

w1,ε(τ) =

∫ 1

0
dt+

∫ τε1−2α

1
dt := w1

1,ε(τ) + w2
1,ε(τ),

w2
1,ε(τ) =

∫ τε1−2α

1

Hε(t)

t
dt =

(
log τε1−2α

)
Hε(τε1−2α)−

∫ τε1−2α

1
(Hε)′(t)dt, (6.2)

Hε(t) =

∫
Rd−1

∫
B1

∫ tεα−1

0

dξ⊥dη⊥ds
(2π)2

R̂2(η−)
(1− |η⊥|2)1/2

|a0(t−1ξ0, ξ0 − sη−, [z])|2.

It is not difficult to see that w1
1,ε and the second term on the right of (6.2) are of

order one compared to ε. Besides, as ε→ 0, we have

Hε(τε1−2α) →
∫
Rd−1

∫
B1

∫ ∞

0

dξ⊥dη⊥ds
(2π)2(d−1)

R̂2(η−)|a0(0, ξ0 − sη−, [z])|2,

and is therefore also of order one compared to ε. Therefore, when d = 2, the leading
term is given by the one proportional to log τε1−2α:

lim
ε→0

ε−2(1−α)−2(2α−1)(log τε1−2α)−1wL
1 (τ) =∫

R

∫
B1

∫ ∞

0

dξ⊥dη⊥ds
(2π)2

R̂2(η−)
(1− |η⊥|2)1/2

|a0(0, ξ0 − sη−, [z])|2. (6.3)

Hence, the limit of the scintillation w1
ε corresponding to the domain D0

+ is given by
(6.1)-(6.3). The contribution of D1

+ admits the same expression with η− replaced
by η+ = (1 +

√
1− |η⊥|2, η⊥) and simple symmetry considerations then show that

the contribution of D0− ∪D1− is the same as that of D0
+ ∪D1

+. To conclude the case
1 > α > 1

2 , we finally claim as before that w2
ε shares the same limit as w1

ε . This
ends the case α ∈ (12 , 1).

7. The case d = 1.

The case d = 1 is particular in the sense that ξ and η are always aligned with q0.
Starting from expression (3.5), this implies that Fσ2 reads:

F ε
σ2
(τ, ξ, η) =

∫ τ

0

∫ ε−αt

0
dtds exp {−iσ2εαsξη/2} exp {−itξ} exp

{
i

ε1−α
sΨσ2(η)

}
× aε

(
εαξ, ε1−αtξ − sη, [zε]

)
, (7.1)

Ψσ2(η) = η +
σ2
2
η2, [zε] = (τ, t, εαs, εξ, η, σ2).

Recall that |q0| = 1, so that the phase Ψσ2 vanishes a the points η = 0 and η =
−2σ2 = ±2q0. The origin is therefore a singularity as in the multidimensional case
and requires a careful treatment. All the methods of the case α ≤ 1

2 of section
(4.1)-(4.2)-(4.3) carry on to d = 1 with some simplifications, for instance only three
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subdomains in η are necessary. It is then not difficult to show that, when α > 0,
∀δ ∈ (0, d), pointwise in τ :

wε(τ) → 0.

When δ = 0, the origin is no longer a singularity and the corresponding contribution
is negligible. In this case, when α ∈ (0, 1), we find for the contribution of the
subdomain including 2q0 (denoted by w1):

lim
ε→0

ε−αw1(τ) =

∫
R2

dξdη

(2π)2
R̂2(2q0)

∣∣∣∣
∫ τ

0

∫ ∞

0
exp {−itξ} exp {2isηq0} a0 (0,−2sq0)

∣∣∣∣
2

,

where a0 = F(W0ψ) with

ψ(x, p) =
∑

σ1=±1

σ1ϕ (−(τ − t)(1 + σ1)q0 + τq0, q0 − (1 + σ1)q0) .

Using the Fourier Plancherel equality, it comes

lim
ε→0

ε−αw1(τ) =
1

4|q0|2
∫ τ

0

∫ ∞

0
dtdsR̂2(2q0) |a0 (0, s)|2 := 1

2
wα(τ). (7.2)

Since R̂ is an even function, it follows that the contribution of the subdomain
related to −2q0 satisfies the same limit. Moreover, the second scintillation w2

ε ,
whose expression is given at the end of section 3.2 and is equal to that of w1

ε up
to vanishing terms at the limit, also converges to the same limit. Summing up
the contributions, this implies that ε−αwε converges pointwise to the wα defined in
(7.2).

When α = 0, the limiting expression becomes

lim
ε→0

w1(τ) =
R̂2(2q0)

8π|q0|2
∫ τ

0

∫
R

dsdξ

∣∣∣∣
∫ τ

s
exp {−itξ} a0 (ξ, s)

∣∣∣∣
2

:=
1

2
w0(τ), (7.3)

where now

ψ(x, p) =
∑

σ1=±1

σ1ϕ (x− (τ − t)(1 + σ1)q0 + (τ − s)q0, q0 − (1 + σ1)q0) .

Again the contribution related to −2q0 has the same expression. Regarding w2
ε ,

a first look at Gσ2 seems to indicate that the limit is different since the extra εα
terms are now of order one. They actually disappear in the final expression using
the Fourier-Plancherel equality, leading therefore to the same expression as w1

ε .
When α = 1, there is no longer localization at the zeros of Ψσ2(η), which renders

the analysis simpler. We obtain

lim
ε→0

ε−1w1(τ) :=

∫
R2

dξdη

(2π)2
R̂2(η)∣∣∣∣∣

∑
σ2=±1

σ2

∫ τ

0

∫ ∞

0
dtds exp {−itξ} exp {isΨσ2(η)} a0 (0, tξ − sη)

∣∣∣∣∣
2

:= w1(τ).
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where now

ψ(x, p) =
∑

σ1=±1

σ1ϕ

(
1

2
(τ − t)(σ2 − σ1)η + τ(p+ q0), p+ q0 +

1

2
(σ2 − σ1)η

)
.

After the change of variables sη → sη + tξ and the Fourier-Plancherel equality, we
find

w1(τ) = 4

∫
R

∫ τ

0

dη

2π|η| R̂
2(η)

∣∣∣∣∣
∑

σ2=±1

σ2

∫ ∞

0
ds exp {isΨσ2(η)} a0 (0, sη)

∣∣∣∣∣
2

. (7.4)

Again, w2
ε converges to the same limit. The final result of the section is therefore

that, pointwise in τ :
lim
ε→0

ε−αwε(τ) = wα(τ),

where wα is defined in (7.2)-(7.3)-(7.4).

8. Appendix

Let ϕ ∈ S(R2d), (x, p, ξ, η, τ, t, s) ∈ R
d × R

d ×R
d × R

d × R× R×R and define

ψε(x, p, [z]) =∑
σ1=±1

σ1ϕ

(
εαx+

1

2
(τ − t)σ1(ε

1−αξ − εrη) + τ(q0 + ε1−αp) +
1

2
σ2(τ − t+ εhs)εrη,

q0 + ε1−αp+
1

2
σ1(ε

1−αξ − εrη) +
1

2
σ2ε

rη

)
, (8.1)

for some parameters (α, r, h) ∈ [0, 1]3. Above, we used as usual the shorthand
[z] = (τ, t, s, ξ, η, σ2). Let W0 ∈ S(R2d) and

aε(u, v, [z]) = F(W0(·, ·)ψε(·, ·, [z]))(u, v),
where F denotes the Fourier transform with respect to x and p. We have the
following lemma:

Lemma 8.1. ∀n ≥ 0, there exists Cn > 0, such that, for k, l = 0, 1:

|∂kt ∂lsaε
(
ξ, εγ

′
tξ − εr

′
sη, [z]

)
| (8.2)

≤ Cn
εkγ

′+lr′ |ξ|k + εl(h+r)(|ε1−αξ − εrη|k + |εrη|k)
(1 + |ξ|2 + |εγ′

tξ − εr
′
sη|2)n |η|l |ε1−αξ − εrη|,

pointwise in (ξ, η, τ, t, s) ∈ R
d × R

d × R
3.

Proof. We drop the dependence on [z] for simplicity. Since ϕ ∈ S(R2d), it is clear
that there exists a constant C > 0, such that, for all multi-indices i and j, for
k, l = 0, 1, uniformly in (x, p, t, s):

|∂ix∂jp∂kt ∂lsψε(x, p)| ≤ Cεl(h+r)(|ε1−αξ − εrη|k + |εrη|k)|η|l|ε1−αξ − εrη|. (8.3)
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Besides,

∂kt ∂
l
sa

ε
(
ξ, εγ

′
tξ − εr

′
sη
)

=
[
(εγ

′
ξ · ∇v)

k(−εr′η · ∇v)
laε
] (
ξ, εγ

′
tξ − εr

′
sη
)

+F(W0∂
k
t ∂

l
sψ

ε)(εγ
′
tξ − εr

′
sη),

:= a1 + a2.

Using (8.3) with k = l = 0, together with W0 ∈ S(R2d), there exists Cn > 0, such
that, ∀n ≥ 0:

|a1(ξ, εγ′
tξ − sεr

′
η)| ≤ Cn

|εγ′
ξ|k|εr′η|l

(1 + |ξ|2 + |εγ′
tξ − εr

′
sη|2)n |ε1−αξ − εrη|.

In the same way, we find for a2:

|a2(ξ, εγ′
tξ − sεr

′
η)| ≤ Cn

εl(h+r)(|ε1−αξ − εrη|k + |εrη|k)|η|l
(1 + |ξ|2 + |εγ′tξ − εr′sη|2)n |ε1−αξ − εrη|.

Gathering the last two estimates ends the proof.
�

Given (A,B,Ψ) ∈ R
3∗, (ξ, η) ∈ R

d × R
d, we study parametrized oscillatory inte-

grals for the form

I(ξ, η) =

∫ τ

0

∫ ε−at

0
dtds exp {−isA} exp{−itB} exp {isΨ} f (t, s, ξ, η) ,

where a ≥ 0. Since in our analysis I needs to be integrated with respect to
(A,B,Ψ, ξ, η), we will obtain explicit bounds according to these parameters. In
particular, we are interested in controls for large values of B and Ψ as for stationary
phase techniques. We assume that f ∈ C∞(R2d+2) and satisfies the estimate of
lemma 8.1. The case corresponding to α ∈ [12 , 1] involves integrals of the form

∫ τε1−2α

0

∫ εα−1t

0
dtds exp {−isA} exp{−itB} exp {isΨ} f (t, s, ξ, η)

that require some modifications in the analysis that we will not pursue. We have
the following result:

Lemma 8.2. ∀n ≥ 0, there exists Cn > 0, such that I satisfies the estimate,
pointwise in (A,B,Ψ) ∈ R

3∗, (ξ, η) ∈ R
d × R

d:

|I| ≤ Cn〈ξ〉−nI1 ∧ I2 ∧ I3 ∧ I4,
where:

• Case 1: when r = r′ = 0, a = h = α ≤ 1
2 , γ

′ = 1− 2α

I1 = 1, I2 = |Ψ|−1(εα + |A|+ |η|), I3 = |B|−1(1 + |ξ|+ |η|),
I4 = |BΨ|−1

(
εα|B|+ (1 + |A|+ |η|)(1 + |ξ|+ |η|)).
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• Case 2: a = h = 0, γ′ = 1− 2α

I1 = |ε1−αξ − εrη|, I4 = I1,

I2 = |Ψ|−1(1 + |A|+ εr∧r
′ |η|)|ε1−αξ − εrη|,

I3 = |B|−1(1 + |ξ|+ εr|η|)|ε1−αξ − εrη|.
Proof. For convience, we omit the dependence of f on (ξ, η) and recast I as

I =

∫ τ

0
dt exp {−itB} F(t), F(t) =

∫ ε−αt

0
dsG(t, s),

G(t, s) = exp {−isA} exp {isΨ} f(t, s).
Case 1: r = r′ = 0, a = h = α ≤ 1

2 , γ
′ = 1− 2α. We estimate first I for bounded

values of B and Ψ. We have using Lemma 8.1 with k = l = 0, ∀n ≥ 0:

|F| ≤ C

∫ tε−α

0
ds

|ε1−αξ − η|
(1 + |ξ|2 + |εγ′tξ − sη|2)n ,

≤ C

∫ tε−α

0
ds

|ε1−αξ|
(1 + |ξ|2 + |εγ′tξ − sη|2)n + C

∫ tε−α

0
ds

|η|
(1 + |ξ|2 + |εγ′tξ − sη|2)n ,

:= F1 + F2. (8.4)

Since α ≤ 1
2 and t ≤ τ , it comes that

F1 ≤ Ctε1−2α〈ξ〉−n ≤ C〈ξ〉−n. (8.5)

For a vector v ∈ R
d, and j = 1, · · · , d, we denote by ṽj ∈ R

d−1 the vector with
components ṽj = (v1, · · · , vj−1, vj+1, · · · , vd)T . Using this notation, we have for F2,
∀n ≥ 1:

F2 ≤ C
d∑

j=1

∫ tε−α

0
ds

|ηj |
(1 + |ξ|2 + |εγ′tξ̃j − sη̃j |2 + |εγ′tξj − sηj|2)n

, (8.6)

≤ C
d∑

j=1

∫
R

ds

(1 + |ξ|2 + |εγ′t(ξ̃j − ξjη
−1
j η̃j)− sη−1

j η̃j |2 + |s|2)n ≤ C〈ξ〉−(n−1).

Consequently, we obtain the first following bound for I: for all n ≥ 0, there exists
Cn > 0 such that

|I| ≤ Cn〈ξ〉−n. (8.7)

To control I for large values of Ψ, we need another estimate. It is obtained by
performing an integration by part w.r.t. s in F. It comes:

F := F1 + F2, (8.8)

where

F1(t) =
1

iΨ
G(t, ε−αt), F2(t) = − 1

iΨ

∫ ε−αt

0
ds exp {isΨ} ∂s [exp {−isA} f(t, s)] .
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Using (8.2) with k = l = 0 and the change of variables t→ tε−α, F1 is estimated as∫ τ

0
dt|F1(t)| ≤ Cεa|Ψ|−1

∫ τε−α

0
dt

|ε1−αξ − η|
(1 + |ξ|2 + t2|εγ′+αξ − η|2)n ,

≤ Cεα|Ψ|−1

∫ ∞

0

dt

(1 + |ξ|2 + t2)n
≤ εα|Ψ|−1〈ξ〉−(n−1). (8.9)

Above, we used the fact that γ′ + a = 1 − α. F2 is estimated using the same
method as (8.6) along with (8.2) with k = 0, l = 1, the only difference is that
exp {−isA} f(t, s) is replaced by ∂s [exp {−isA} f(t, s)]. We find∫ τε−b

0
dt|F2(t)| ≤ C|Ψ|−1〈ξ〉−n(|A|+ |η|).

Together with (8.9), this gives a second estimate for I, ∀n ≥ 0:

C−1
n |Ψ|〈ξ〉n|I| ≤ εα + |A|+ |η|. (8.10)

In order to control I for large B, we perform an integration by part w.r.t. t in I.
It comes:

I := I1 + I2 + I3,

where

I1 =
1

−iB exp {−iBτ} F(τ), I2 =
1

iBεα

∫ τ

0
dt exp {−itB}G(t, ε−αt),

I3 =
1

iB

∫ τ

0

∫ tε−α

0
dtds exp {−itB} ∂tG(t, s).

To control I1, we use the decomposition (8.4) with t replaced by τ and follow the
same lines. We find:

|I1| ≤ C|B|−1〈ξ〉−n. (8.11)

For I2, we set t→ εαt and obtain, using (8.2) with k = l = 0, for any n ≥ 0:

|I2| ≤ C|B|−1〈ξ〉−n

∫ τε−α

0
dt

|ε1−αξ − η|
(1 + t2(|εγ′+αξ − η|)2)n ,

≤ C|B|−1〈ξ〉−n

∫ ∞

0

dt

(1 + t2)n
≤ C|B|−1〈ξ〉−n. (8.12)

Above, we used again the fact that γ′+ a = 1−α. I3 is treated in a similar fashion
as the first estimate (8.6). The only difference is that G has to be replaced by ∂tG.
We find, using (8.2) with k = 1 and l = 0:

|I3| ≤ C|B|−1〈ξ〉−n(|ξ|+ |η|).
Together with (8.11) and (8.12), this yields the third estimate:

|I| ≤ Cn(1 + |η|+ |ξ|)|B|〈ξ〉−n. (8.13)
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It remains now to obtain a bound that allows us to control the large values of both
Ψ and B. For this, we perform an integration by parts w.r.t. s in I1 and I3, and
w.r.t. t in I2. The term I1 involves

F(τ) =
1

iΨ
G(τ, ε−ατ)− 1

iΨ

∫ ε−ατ

0
ds exp {isΨ} ∂s [exp {−isA} f(τ, s)] .

The first term is directly estimated by

|G(τ, ε−ατ)| ≤ C〈ξ〉−n|ε1−αξ − η| ≤ C〈ξ〉−n(|ξ|+ |η|).

For the second, we proceed as for (8.5)-(8.6) except that f is replaced by the ex-
pression ∂s [exp {−isA} f(τ, s)]. We then find for I1:

C−1|B||Ψ|〈ξ〉n|I1| ≤ 1 + |A|+ |η|+ |ξ|. (8.14)

Regarding I2, after an integration by part in t, we have with I2 := I12 + I22,

I12 = − 1

BΨ
exp {−iτΨ}G(τ, ε−ατ),

I22 =
1

BΨ

∫ ε−ατ

0
dt exp {itΨ} ∂t [exp {−iεαtB} f(εαt, t)] .

We find directly

|I12| ≤ C|BΨ|−1〈ξ〉−n(|ξ|+ |η|). (8.15)

For I22, according to (8.2), we have

|∂t [exp {−iεαtB} f(εαt, t)] | ≤ C

(
εα|B|+ |ξ|+ |η|

) |ε1−αξ − εrη|
(1 + t2(|εγ′+αξ − η|)2)n ,

so that, following the same technique as (8.9), and the fact that α+ γ′ = 1− α:

|I22| ≤ C|BΨ|−1〈ξ〉−n (εα|B|+ |ξ|+ |η|) . (8.16)

I3 is treated in a similar manner as F decomposed as F1 + F2 in (8.8) in order to
obtain (8.10), only G needs to be replaced by ∂tG. We find, all computations done:

C|BΨ|〈ξ〉n|I3| ≤ (εα + |A|+ |η|)(|ξ| + |η|). (8.17)

Gathering (8.14)-(8.16)-(8.16)-(8.17), this provides the last estimate,

C−1
n |BΨ||I|〈ξ〉n ≤ εα|B|+ (1 + |A|+ |η|)(1 + |ξ|+ |η|). (8.18)

The lemma is proved by taking the best estimate among (8.7)-(8.10)-(8.13)-(8.18).
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Case 2: a = h = 0, γ′ = 1−2α. . The proof is simpler and very similar to the first
case, so we only underline the differences. Since a = 0, the integration in s over R

is not required any longer in order to obtain an estimate uniform in ε, and (8.7) can
be replaced with

|I| ≤ C〈ξ〉−n|ε1−αξ − εrη|. (8.19)

For the second estimate, we remark with the help of Lemma 8.1 that

∂s [exp {−isA} f(t, s)] ≤ C
|A|+ (εr + εr

′
)|η|

(1 + |ξ|2 + |εγ′tξ − sr′η|2)n |ε
1−αξ − εrη|,

which transforms (8.10) into

|I| ≤ Cn|Ψ|−1〈ξ〉n(1 + |A|+ εr∧r
′ |η|)|ε1−αξ − εrη|. (8.20)

In the same way, it is not difficult to show that (8.13) becomes

|I| ≤ Cn|B|−1〈ξ〉n(1 + |ξ|+ εr|η|)|ε1−αξ − εrη|, (8.21)

which concludes the proof of the Lemma. �
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