Textbooks:
Carlin and Louis: "Bayes and Empirical Bayes Methods for Data Analysis" 2nd Ed, Chapman and Hall/CRC.

Selected Bibliography:
Gelman, Carlin, Stern, and Rubin: "Bayesian Data Analysis", Chapman and Hall.
Gilks, Richardson, and Spiegelhalter: "MCMC in Practice", Chapman and Hall.

Prerequisites:
Stat 301-302, Stat 312-313, Stat 244-245, Stat 343, and consent of the instructor.

class participation (10%), homework (50%), project (40%)

Software:
C or C++, or you can choose any other language or software package (eg. R, Matlab).
Outline:
1. Sep 30 Introduction to Bayesian statistics (Bayesian theorem, choice of priors, conjugate families, posterior distributions)
2. Oct 2 Introduction to Bayesian statistics (cont.)
3. Oct 7 Bayesian inference (model selection and model checking in Bayesian models)
4. Oct 9 Bayesian inference (cont.)
5. Oct 14 Deterministic algorithms and Optimization of functions
6. Oct 16 The EM algorithm
7. Oct 21 The EM algorithm
8. Oct 23 Stochastic Algorithms overview; Data augmentation
9. Oct 28 Data augmentation
10. Oct 30 MCMC methods
11. Nov 4 MCMC methods
12. Nov 6 No Class
 Project proposals due
14. Nov 13 Gibbs Sampling
15. Nov 18 Advanced MCMC techniques
16. Nov 20 No Class
17. Nov 25 Advanced MCMC techniques
18. Dec 2 Final Presentations
19. Dec 4 Final Presentations
20. Dec 11 Final Project Papers due

- There will be 5 homeworks. Homework solutions must contain a detailed description of the algorithm as well as the interpretation of results. Your full code should always be provided in appendix.

- Project proposals (2-3 pages) will be due on Nov 11: describe the problem, write the likelihood and posterior of parameters of interest, and show some preliminary results (based on simple methods or just summaries). Projects should deal with real-life problems of interest to you, and should ultimately result in a 10 page (double-spaced) final report.