
Formulas
All lectures (http://galton.uchicago.edu/~burbank/stat224/lectures)

Review
SLR model:

Model assumption (linearity)

Model for an individual observation:

Meaning of :

Meaning of :

Fitted value for an observation in the data set:

Prediction for the average of y values given :

Prediction for the an individual y value given :

Residuals

Sum of Squared Errors

Least squares estimates of  and :

Estimators are unbiased:

Estimator of the population variance:

(Note:  is called “residual standard error” on some R output.)

Standard errors for the estimators:

T-statistic:

Partitioning the sum of squares:

SST =  = total sum of squares 

SSE =  = error sum of squares
SSR =  = regression sum of squares
So, SST = SSE + SSR

 = proportion of variability in the response ( )
explained by regression on the predictor ( ) 

F-statistic

Confidence interval for  (note: not , why?):

Confidence interval for mean:

Confidence interval for prediction:

## MLR Model:

SSE:

Formula for  (others can be written with matrices, you don’t neet do know those formulas):

degrees of freedom (df)
= sample size  ### parameters estimated for the mean ( )
=  

1 Geometric interpretation of regression coefficients
1.1 One predictor (regression line)

The fitted values ( ’s) will all lie on the regression line
 is the intercept of that line
 is the slope of that line

 values may be above, below, or on the line within the ( ) plane of the data

1.2 Two predictors (regression plane)
The fitted values ( ’s) will all lie on the regression plane

 is the  value with the  variables both = 0
 is the slope of the plane along the  direction
 is the slope of the same plane along the  direction

 values may be above, below, or on the plane within the full space of the data
Recall:  is the effect of  on expected 
but only after we have “adjusted for”  in the model. 

Diagnostics
1 The model assumptions

1. Assumption about the form of the model
a. Linearity: The mean of  is a linear function of the ’s

2. Assumptions about the errors (
’s)
a. Normally distributed (and thus so are the ’s)
b. Mean zero: No systematic mis-prediction
c. Constant variance  over all values ’s
d. Independent
e. Uncorrelated with predictors ( ’s)

3. Assumptions about the predictors (
’s)
a. Non-random, “fixed”

True for many designed experiments
For observational studies, inferences are conditional on ’s

b. Measured without error
Probably not true, but doubtful ever have enough information to assess

c. Linearly independent
No predictor can be expressed as linear combination of others
Not collinear (predictor variables not interrelated)
Rarely true, but minor collinearity OK

d. Uncorrelated with errors ( ’s)
4. Assumptions about the observations:

a. Independent (values of observation  not dependent on values of observation )
b. Equally reliable and informative

The average of the hat values should be about

Categorical variables

Code 

Y = + + ϵβ0 β1X1

E(Y | X = x) = E( + x + ϵ)β0 β1

= + x + E(ϵ)β0 β1

= + x + 0 = + xβ0 β1 β0 β1

= + +Yi β0 β1xi ϵi

β0

E(Y | X = 0) = + (0) =β0 β1 β0

β1

E(Y | X = x + 1) = + (x + 1)β0 β1

= + x + = E(Y | X = x) +β0 β1 β1 β1

= +ŷi β̂0 β̂1xi

x = x0

= = +μ̂0 β̂0 β̂1x0

x = x0

= +ŷ0 β̂0 β̂1x0

residual = ei = observed − fitted
= observed − expected
= observed − predicted

= −yi ŷi

= − ( + )yi β̂0 β̂1xi

SSE = = ( − = ( − −∑
i

e2
i ∑

i
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i
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= rβ̂1
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sx

E( ) =  and E( ) =β̂0 β0 β̂1 β1

E( )β̂1 = E (∑ ) = ∑ E( ) = ∑ E( )kiYi kiYi ki Yi

= ∑ ( + ) = ∑ + ∑ki β0 β1xi β0 ki β1 kixi

= (0) + (1) =β0 β1 β1

E( )β̂0 = E( − ) = E( ) − E( )Y
⎯ ⎯⎯⎯

β̂1x⎯⎯⎯ Y
⎯ ⎯⎯⎯
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= ( + ) − =β0 β1x⎯⎯⎯ x⎯⎯⎯ β1 β0
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n− 2
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n− 2
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se( ) =β̂1
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se( ) =β̂0 σ̂ +1
n
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se( )β0
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∑( − = ∑( − + − = ∑( − + ∑( −yi y⎯⎯⎯ )2 yi ŷi ŷi y⎯⎯⎯ )2 yi ŷi)2 ŷi y⎯⎯⎯ )2
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SSE
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∑( −yi ŷi)2
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adjusted = =R2 SSR/SSR(df)
SST/SST(df)
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F = [SSE(RM) − SSE(FM)] / [df(RM) − df(FM)]
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SST

SSE
SST

Adjusted = 1 − = 1 −R2 SSE / SSE(df )
SST / SST(df )

SSE / (n− p − 1)
SST / (n− 1)

∼
−β̂j βj

se( )β̂j
tn−p−1
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S = + x + + + m + ϵβ0 β1 β2e1 β3e2 β4

risk = + smoke + OC + (OC × smoke) + ϵβ0 β1 β2 β3
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.
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What a
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Standardized residuals

- have constant variance

if the errors do
.

Observations with hat

Values > 2x this avg .

have high leverage , may be
influential .Cook 's distance :


