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A Generalized Approach for Many Model Types

• Noting and taking advantage of commonalities among linear

models for di↵erent response variable types, Nelder and

Wedderburn and later McCullagh (UChicago) and Nelder

developed Generalized Linear Models.

• This approach generalizes many types of models into one

framework, unifying theory and estimation methods.

• For each model relating Y to predictors X, one specifies

– The link function h(·), which indicates the relationship

between the linear prediction equation and E(Y );

– The distribution for the error term ✏ of the model.

• Then, a unified theory and single estimation approach subsumes a

wide variety of models.
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A Generalized Approach for Many Model Types

- A Few of the Several Types of GLMs:

Response Link Function Error Term Model

Continuous (⇡ normal) identity normal linear

0/1 discrete logit Binomial logistic

polychotomous discrete logit multinomial multinomial logistic

Integer counts natural log Poisson Poisson regression

real valued, non-negative inverse Gamma survival
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Regression With Normal Response

• Linear regression

• Response: Continuous, ⇡ Normal (E(Y |X),�2)

• Link = identity = h(w) = w

• Error: Normal (does not depend on predictors)

h[E(Y |X)] = E(Y |X) = �0 + �1x1 + �2x2 + · · ·+ �pxp

Note: See Canvas for the examples completed with R p. 3



Regression With Binary/Bernoulli Response

• Logistic regression

• Response: Binary (0, 1), Bernoulli(p),

E(Y ) = p, var(Y ) = p(1� p)

• Link = logit = h(w) = log

✓
w

1� w

◆

• Error: Bernoulli/binomial (and depends on predictors)

h[E(Y |X)] = log


E(Y |X)

1� E(Y |X)

�
= �0+�1x1+�2x2+ · · ·+�pxp

where E(Y |X) = P (Y = 1|X) = p(X)

(p is a function of predictors)
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Regression With Poisson Response

• Poisson regression, log-linear regression

• Response: Poisson(�), E(Y ) = �, var(Y ) = �

• Link = loge h(w) = loge(w)

• Error: Poisson (and depends on predictors)

h[E(Y |X)] = loge(E(Y |X)) = �0 + �1x1 + �2x2 + · · ·+ �pxp

where E(Y |X) = �(X) (� is a function of the predictors)

Note: See Canvas for the examples completed with R p. 5



Poisson Regression

• Poisson regression is used to model count variables as outcome.

The outcome (i.e., the count variable) in a Poisson regression

cannot take on negative values (can equal 0).

• A Poisson regression model is sometimes known as a log-linear

model (link function is log) and the model takes the form:

log
�
E(Y |X)

�
= �0 + �1X1 + . . .+ �pXp.

CAUTION: This is NOT the same as the OLS transformation

E
�
log(Y |X)

�
= �0 + �1X1 + . . .+ �pXp

In fact, log
�
E(Y |X)

�
� E

�
log(Y |X)

�
,

and the latter is OLS using log transformation on Y .
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Poisson Regression

• In fact, E
�
log(Y |X)

�
 log

�
E(Y |X)

�

• The predicted mean of Poisson model is

E(Y |X) = exp
�
�0 + �1X1 + . . .+ �pXp

�
.

• For OLS exp
�
E[log(Y |X)]

�
 E(Y |X)

(bias, we tend to underestestimate the mean)

• For Poisson model (a GLM),

we model log(E(Y |X)) and hence E(Y |X) directly.

Note: See Canvas for the examples completed with R p. 7



• Recall that the mean and variance of Poisson distribution are the

same.

• Therefore, a very strong assumption in Poisson regression is –

conditional on the predictors, the conditional mean and

variance of outcome are equal.

Note: See Canvas for the examples completed with R p. 8



Poisson Regression

• Examples of Poisson observations:

1. The number of persons killed by mule or horse kicks in the Prussian

army per year. Ladislaus Bortkiewicz collected data from 20

volumes of Preussischen Statistik. These data were collected on 10

corps of the Prussian army in the late 1800s over 20 years.

2. The number of people in line in front of you at the grocery store.

Predictors may include the number of items currently o↵ered at a

special discounted price and whether a special event (e.g., a

holiday, a big sporting event) is three or fewer days away. Analyses

involving queueing frequently involve the Poisson distribution.

3. The number of awards earned by students at one high school.

Predictors of the number of awards earned include the type of

program in which the student was enrolled (e.g., vocational,

general or academic) and the score on a mathematics exam.

Note: See Canvas for the examples completed with R p. 9



Poisson Regression

We illustrate Poisson regression using Example 3 above:

– num awards is the outcome variable and indicates the number of

awards earned by students at a high school in a given year,

– math is a continuous predictor variable and represents students’

scores on their math final exam, and

– prog is a categorical predictor variable with three levels indicating

the type of program in which the students were enrolled.

For Poisson regression, we assume that the outcome variable

number of awards, conditioned on the predictor variables, will have

roughly equal mean and variance.

Note: See Canvas for the examples completed with R p. 10



Poisson Regression - Assumptions

Examining the mean numbers of awards by program type and

seems to suggest that program type is a good candidate for

predicting the number of awards. Additionally, the means and

variances within each level of program – the conditional means

and variances – are similar.
. use http://statistics.uchicago.edu/~collins/data/STAT224other/poisson_sim, clear

. tabstat num_awards, by(prog) stats(mean sd n)

Summary for variables: num_awards

by categories of: prog (type of program)

prog | mean sd N

---------+------------------------------

general | .2 .4045199 45

academic | 1 1.278521 105

vocation | .24 .5174506 50

---------+------------------------------

Total | .63 1.052921 200

----------------------------------------

. histogram num_awards, discrete freq

Note: See Canvas for the examples completed with R p. 11



. qnorm num_awards
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(b) QQ plot

Can we use OLS here? Normality assumption is violated. Count

outcome variables are sometimes log-transformed and analyzed

using OLS regression. Some issues arise with this approach, for

example, more than half of the data (124 students) have zero

awards (log is undefined)

Note: See Canvas for the examples completed with R p. 12



Poisson Regression - Model and Coe�cients

- In Stata, with categories for program (general is baseline or

reference group)
. poisson num_awards i.prog math

Iteration 0: log likelihood = -182.75759

Iteration 1: log likelihood = -182.75225

Iteration 2: log likelihood = -182.75225

Poisson regression Number of obs = 200

LR chi2(3) = 98.22

Prob > chi2 = 0.0000

Log likelihood = -182.75225 Pseudo R2 = 0.2118

------------------------------------------------------------------------------

num_awards | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

prog |

academic | 1.083859 .358253 3.03 0.002 .3816962 1.786022

vocation | .3698092 .4410703 0.84 0.402 -.4946727 1.234291

|

math | .0701524 .0105992 6.62 0.000 .0493783 .0909265

_cons | -5.247124 .6584531 -7.97 0.000 -6.537669 -3.95658

------------------------------------------------------------------------------

Note: See Canvas for the examples completed with R p. 13



Poisson Regression - Model and Coe�cients

• Results (�s) are increase/decrease in log(E(counts)) on an

additive scale.

• To interpret the coe�cients, one needs to take exp(�)’s and

interpret them as the expected relative change in counts per unit

of X change.

• To get relative increase in counts per unit of X on a multiplicative

scale, use “irr” (stands for incidence-rate ratio, similar to risk ratio

or relative risk):
. poisson num_awards i.prog math, irr

Iteration 0: log likelihood = -182.75759

Iteration 1: log likelihood = -182.75225

Iteration 2: log likelihood = -182.75225

Poisson regression Number of obs = 200
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LR chi2(3) = 98.22

Prob > chi2 = 0.0000

Log likelihood = -182.75225 Pseudo R2 = 0.2118

------------------------------------------------------------------------------

num_awards | IRR Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

prog |

academic | 2.956065 1.059019 3.03 0.002 1.464767 5.965674

vocation | 1.447458 .6384309 0.84 0.402 .6097705 3.435942

|

math | 1.072672 .0113695 6.62 0.000 1.050618 1.095188

_cons | .0052626 .0034652 -7.97 0.000 .0014479 .0191284

------------------------------------------------------------------------------

Note: _cons estimates baseline incidence rate.

Note: See Canvas for the examples completed with R p. 15



Poisson Regression - Model Fit

To help assess the fit of the model, the “estat gof” command

can be used to obtain the goodness-of-fit �2 test. This is not a

test of the model coe�cients, but rather a test of the model form:

Does the Poisson model form fit our data? Thus, a large

goodness-of-fit p-value indicates the observed and the predicted

data are not too di↵erent from each other, i.e., a good fit.
. estat gof

Deviance goodness-of-fit = 189.4496

Prob > chi2(196) = 0.6182

Pearson goodness-of-fit = 212.1437

Prob > chi2(196) = 0.2040

A statistically significant (small p-value) here would indicate that

the model does not fit the data well. In that situation, we may try

to determine if there are omitted predictor variables, if our

linearity assumption holds and/or if the conditional mean and

variance of outcome are very di↵erent.

Note: See Canvas for the examples completed with R p. 16



Fitting GLMs

An alternative way to fit Poission regression is using the “glm”
function (Stata or R), specifying which “family” to use. The
default is linear regression and “binomial” is logistic regression (for
binary outcome – Bernoulli is a special case of binomial).
. glm num_awards math i.prog, family(poisson)

Iteration 0: log likelihood = -187.46951

Iteration 1: log likelihood = -182.75816

Iteration 2: log likelihood = -182.75225

Iteration 3: log likelihood = -182.75225

Generalized linear models No. of obs = 200

Optimization : ML Residual df = 196

Scale parameter = 1

Deviance = 189.4496199 (1/df) Deviance = .9665797

Pearson = 212.1437315 (1/df) Pearson = 1.082366

Variance function: V(u) = u [Poisson]

Link function : g(u) = ln(u) [Log]

AIC = 1.867523

Log likelihood = -182.7522516 BIC = -849.0206

Note: See Canvas for the examples completed with R p. 17



------------------------------------------------------------------------------

| OIM

num_awards | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

math | .0701524 .0105992 6.62 0.000 .0493783 .0909265

|

prog |

academic | 1.083859 .358253 3.03 0.002 .3816961 1.786022

vocation | .3698092 .4410703 0.84 0.402 -.4946727 1.234291

|

_cons | -5.247124 .6584531 -7.97 0.000 -6.537669 -3.95658

------------------------------------------------------------------------------

- Estimates are same as earlier. Again, the �’s are in log(counts) on

an additive scale.

- In a GLM framework, separate computer modules for logistic,

Poisson, etc. would not be needed.

Note: See Canvas for the examples completed with R p. 18



Summary – Poisson Regression and GLMs

• Poisson is a useful model for many phenomena, but has a strong

theoretical assumption, that conditional mean and variance of the

outcome variable are equal.

• When there seems to be an issue of bad fit, we should first check

if our model is appropriately specified, such as omitted variables

and functional forms.

• The assumption that the conditional variance is equal to the

conditional mean should be checked.

If not reasonably equal, there are alternative variations on Poisson

regression that may work.

Note: See Canvas for the examples completed with R p. 19


