Chapter 8

Detection of sparse models: Counting

The decomposable graphs presented in the previous chapter have been partially successful in automatic
anatomy detection in medical imaging. They rely heavily on finding instances of all the local features at the
correct location on the object, and are sensitive to occlusion or other sorts of noise. Moreover when searching
for objects at a large range of scales in large images, dynamic programming becomes very slow. Finally if
several instances of an object can be present in the image dynamic programming becomes significantly more
complicated.

The solution involves a coarser model. After detecting all instances of the local features in the image,
instead of directly trying to find arrangements satisfying the complex geometrical constraints, try to find
arrangements satisfying a simpler set of constraints which is consistent with the original one. Then check if
the more complex constraints are satisfied. The idea is illustrated in figure 8.1. The original model involves
constraints on relations between pairs or larger subsets of the points. Various admissible configurations are
presented in the top three panels. Now replace this with a simple model which only constrains the locations
of the features relative to a central point, independently of each other, as illustrated in the bottom panel of
figure 8.1. A point in the image becomes a candidate ‘center’ if a sufficient number of the features are found
in their corresponding regions.

At each such candidate center search through the instantiations in ©(®), and pick the one for which the
most features are found at their expected location. If this number is below a threshold, rule out the candidate
center. For those candidate centers which remain, the locations of the features which were found together
with the expected locations of those which were not found provide an instantiation of the model.

Here again we have a coarse to fine procedure. First we use a model with a much coarser set of constraints
to find candidate centers. At this stage we expect to hit all correct locations together with a number of false
positives. Then a more detailed instantiation is computed both in order to filter out false positives from
the previous stage, and to provide the full description of the detection. Subsequently an even more refined
process can be implemented such as one of the deformable models described in earlier chapters with the
detected instantiation serving as an initial point.

In order to detect the object at a wide range of scales, say 4:1, reprocess the image using the exact same
algorithm at a number of smaller resolutions. For example if the original range of scales of the detection
scheme is +25%, subsample the object at scales 0.75,0.56,0.42,0.32,0.24, and rerun the detection algorithm
at each new resolution. Thus the model is given for the smallest range of scales at which the object is
detected. The method described here is very efficient and tpyically takes under .5 second for processing a
standard 240 x 320 image, at all resolutions, on a PENTIUM III, 700 Mhz.
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Figure 8.1: Top: Three feature arrangements consistent with complex set of constraints. Bottom: Coarse model.
Features can be found anywhere in their respective regions relative to a center point.
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8.1 Detecting candidate centers

Here we will use the instantiation set © defined by 6.1 and take a uniform prior on ©. The on object
probability p, is assumed less than one although much larger than p,. Maximizing equation 6.5 involves
finding values of 6 for which n,(6) is greater than some threshold 7. Specifically, find pairs (x.,6) with
ze € L and 0 € ©© such that

(D) There exist indices 41, ...,i, for which X;, (zc +0;,) =1for j =1,...,7.

There are several ways to find such instantiations, all of which involve counting the number of features of a
specific type present at a specific location in the image.

The brute force approach involves looping through all z. € L, 6 € O, counting how many indices satisfy
Xi(z. +0;) = 1, and recording those with a count greater than 7. This is clearly a massive loop over all
locations in the image, and for each location a large number of instantiations at that location. An alternative
is the Hough transform, (Hough (1962) and Grimson (1990),) which consists of a reordering of the loops.

Create an array H indexed by all elements in ©. Find all instances z; j,j = 1, ..., J; of each of the local
features X;,i = 1,...,n in the image.
1. Foreach¢=1,...,n,

For each j = 1,...,J;, loop through elements ©. For each 6 such that z; ; = 6; add 1 to the entry
corresponding to 6 in H.

2. Find all entries in H with value greater than 7.

If the local features are of low density in generic images, it is computationally more efficient to index
into admissible configurations through the locations of the features, rather than carrying out the brute force
loop. This algorithm is feasible provided there is an efficient way to loop over elements in ©, or some analytic
indexing mechanism to find those elements in © for which x; ; = 0;.

A more efficient way to solve this detection problem is to pursue a coarse to fine procedure. Find a product
set @](00) C L™ which contains ©(®). By product set we mean a set of the form {0 : 6; € B;, i = 1,...,n}
where B; C L. If for example ©() is defined through a set of transformations Y then take @1(70) =11, B
with

B, =Yz ={vz,ve T}, i=1,...,n. (8.1)

With the larger set of instantiations @éo) detect candidate centers namely points . satisfying

(DP) There exists some 6 € @éo) and 7 indices i1,...,4, for which X, (z. +6;,) = 1.

Any location . for which there exists § € ©(©) such that the pair (z., ) satisfies condition (D) above, will
necessarily be identified as a candidate center satisfying condition (DP); simply because 0 ¢ @éo). In all
experiments below we use ©(©) defined in equation 6.1, with A = T some subset of linear maps covering a
range of scales of £25%. Thus B; = Az;.

In a brute force search for candidate centers each location x € L would be visited, counting how many
of the regions x + B; contain an instance of the corresponding feature X;, i.e. maxye,yp, Xi(z) = 1. In
some cases, one can search over a coarse subgrid of the image grid L and the brute force method becomes
efficient. See for example the work in Fleuret & Geman (2001) and Fleuret (2000). In our context it will
be more efficient to reverse the loops and use the Hough transform, which in this case is easy to implement,

since @1(70) is a product set.

Algorithm 8.1: Sparse model: counting detector, step I
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Figure 8.2: An illustration of the voting procedure of the Hough transform.

1. For ¢ =1,...,n find all instances of X;, at ; ;,7 =1,...,J;.
2. Initialize to 0 an array C the size of the image.
3. Fori=1,...,n,do

(a) Initialize to 0 an array D the size of the image.
(b) Forj=1,...,J;

Set D(y) =1forall y € z; ; — B;.
(c) Set C(z) =C(x) + D(z),z € L.

4. Find those locations z in C for which C'(z) > 7.

The idea behind this loop is illustrated in figure 8.2 in terms of the coarse model shown in figure 8.1. Each
instance of feature X; detected at location z, ‘votes’ for a region = — B; of candidate centers. Here n = 5 and
7 = 3. In the upper left hand corner a location has received three votes and becomes a candidate center.

The calculation done in item 1 is efficient and only requires lookups in small subregions of the lattice
determined by the subregions defining the local features. The calculations in item 2 are very efficient because
the loops are only over locations of local features, which are rare, and over the regions x; ; — B;. The size of
these regions depends on the distance of the point z; from the origin and the size of the set A. As indicated
we restrict the range of scales covered by A to +25% and +15 degrees rotation. The size of the reference
grid is approximately 30 x 30, so that typically the regions B; are on the order of several tens to one hundred
pixels.

In figure 8.3 we show four of the 20 stages of the implementation of the Hough transform for step I of
the counting detector, with the face model shown in figure 6.9. In the first two stages we show an image
with the locations of the corresponding local features (denoted as +’) and the distribution of the counts
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Figure 8.3: Four stages of the Hough transform. Top: First two local features. Locations marked as ‘+’ and count
maps (0-black, 1-gray, 2- white). Bottom: Count maps after detection of two other local features later on in the
process. Candidate centers for faces emerge as bright regions.

recorded in the array C used in item 3c above. For the other two stages we show only the distribution of
counts. At each of these stages it is possible to make out the shape of the corresponding region B;. Note
how the distribution of counts gets more and more peaked at the face. The image being processed here is
shown, with the results of the entire counting algorithm, in figure 8.5 on the right.

8.2 Computing pose and instantiation parameters

At each candidate center, ., identified by first step of the counting detector we need to recover information
regarding the instantiation. First we estimate pose parameters such as scale and rotation. The most straight
forward method, used in the examples below, involves brute force search through the range of allowable
linear maps. Add a small range of translation to the set of allowable linear maps A. Let C be a small 3 x 3
or 5 x 5 neighborhood of the origin. Let 7, = 7, the threshold used in condition (D).

Algorithm 8.2: Sparse model: counting algorithm, step II
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1. At candidate center z., for each a € A.

2. Loop over i = 1,...,n. If there is an instance of X; at some point x in the region z. + az; + C;, add
one to a counter N,. Also record the location of z in a list, X4 (i) = .

3. Let a* = argmaxac 4Na, be the map with highest count. If Ny« < 7, the location z. is discarded.
Otherwise the detection is assigned the affine map a defined through a(z) = . + a*z.

Steps I and II together represent the full counting algorithm. The main computational cost is in
implementing step I since it involves image wide detection of the local features. Among the few locations
which it detects it is very fast to implement step II to obtain the instantiation.

Edge based model for step II

Step II is described in terms of the features used in the original object model. It yields locations satisfying
condition (D). But in practice the features used for this step do not have to be the same features used for the
first step. One of the important properties of the more complex features, employed in the initial detection
step, is their low density in the background. This is essential for computational efficiency and to keep a tab
on the number of false positives. However once a location z. is selected these issues are irrelevant. Indeed
in step II, one can use the simpler edge features which have already been extracted in the process of finding
the edge arrangements. These are stored and used for step II.

Training of the edge based model used for this step, would proceed as described in section 6.4. There are
much larger numbers of high probability edges on the reference grid, than edge arrangements.

Determining thresholds

Now there are two thresholds to determine, 7 for step I, and 7, for step II. We thus use the following
modification of the threshold training procedure given in section 6.4.

e Find the largest value of 7 for which at least (1 — )T of the training images has a candidate center,
resulting from step I, within D pixels of x.; - the mean of the three anchor points for image ¢.

e Find the largest value of 7, for which at least (1 —7)T of the training images, has at least one candidate
center resulting from steps I (using 7 determined above) and II, within D pixels of z. ;.

From pose to instantiation

The outcome of this stage is a list of affine maps ax,k = 1,..., K of the reference grid into the image,
corresponding to detected instantiations of the object. These are represented through a detection triangle
ayz1,az2,akz3. In addition, for each such map, there is a list X5, of the locations of those model points
which were detected in the correct regions: agz; +C. For those model points z; which were not detected, it is
possible to ‘extrapolate’ their location by taking Xa, (i) = agz;. In this way we recover an entire instantiation
element 6 € O for each detection.. Note that this instantiation is not simply given by agzi,...,agz,. For
those features that were found in step II, their original location in the region ajz; + C is recorded. The
larger the neighborhood C, the more flexibility there is in terms of the final instantiation, at the price of
more false positives.
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Clustering

The local features occur in clusters. Since they are only used for the crude initial detection of candidate
locations they can be clustered without significant loss of information. Typically we find all features of the
same type in disjoint 5 x 5 blocks and replace them by one such feature at the mean location.

Further efficiency can be gained if instead of recording the local features on the original lattice and then
clustering they are directly recorded on a coarse sub-lattice and the Hough transform is performed using a
coarse version of the B; sets on the coarser lattice. Candidate centers are then properly injected into the
original lattice where the full instantiation information is then recovered in step II.

Detected instantiations will also occur in clusters. Given that only one instance of the object is present
in a certain region it is necessary to pick one detection from the cluster. This can be done in a variety of
ways. In the examples below the detections are clustered according to the distance between the detection
triangles. In each cluster the map a with highest count N, of detected features, is chosen.

Invariance

The detection scheme described here covers the range of poses determined by the set A as well as a range of
non-linear deformations which is difficult to quantify. It is also quite robust to non-smooth variations such
as occlusion of part of the object and changes in internal structures. The examples below will illustrate these
points. The invariance to the range of poses in A is explicitly obtained through the definition of the sets B;
defined in equation 8.1, as well as in the implementation of Step II. Invariance to other deformations and
degradations comes from two sources. The first is again the large degree of slack introduced in the counting
detector. The decoupling of the constraints resulting from the use of the product set @éo) allows for rather
large non-linear deformations. In addition, the fact that in both Step I and II a detection survives if the
number of counts is above some threshold, allows for certain parts of the object to change quite drastically
or be entirely occluded.

8.3 Density of candidate centers and false positives.

In section 6.5 we studied the false positive density of the sparse models, disregarding the means by which these
models are detected. Some additional statistics are relevant at this point which bear upon the computation
time and shed some more light on the false positive density. Recall that originally the model simply involved a
configuration of local features of predetermined complexity n... However now we have split the detection into
two steps. The first detects a coarser model and the second recovers the pose and instantiation parameters
using the basic edges.

The density of the candidate centers detected by step I will now be higher than the density of false positives
presented in table 6.2, see for example column 4 of table 8.1. In the former an instance of the feature could
be anywhere in the 5 x 5 neighborhood of the expected feature location az;, just to accommodate small local
variations. However now an instance can be anywhere in the region B, which is much larger and may contain
close to 100 pixels. Still for the various values of n, the number of candidate centers in a 240 x 320 image
varies between several tens to several hundreds. As long as the number is on the order of tens, subsequent
computations at these candidate centers do not amount to a large fraction of the computing time. However
as this number grows, Step II starts dominating in terms of computation time. It is then necessary to devise
more efficient algorithms for Step II. We emphasize that the statistics shown here are obtained from outdoor
images which have a very large density of edges. On indoor scenes the numbers are much lower.

In this context we see why a model solely based on edge features would be problematic. Edge densities
range between .03 to .06 edges per pixel, for each edge type. Even for a restricted set of admissible trans-
formations A the minimal size of the B neighborhoods would be on the order of 30-40 pixels. But then the
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n, T Cand. Ta False
5% Fn. | Centers | 5% Fn. | Pos. I+I1I

1 29 9.10~4 58 8-107°
2 25 2.1074 58 3.107°
3 21 5-107° 53 3.107°
4 15 8.107° 58 2.107°
5 8 2.1074 58 5.107°
6 5 3.-1074 57 7-107°

Table 8.1: 7 and 7,, candidate location and false positive rates for false negative rates under 5%.

expected number of edges of any one type in any of the regions becomes very close to 1 if not greater. This
implies that the number of false positives is on the order of the number of pixels in the image and nothing
has been gained in this step.

Taking into account step II of the algorithm which is based on edge features the density of false positive
turns out to be even lower than that recorded in table 6.2 in section 6.5. This is shown in table 8.1. The
thresholds 7 and 7, were estimated with the procedure outlined above for each value of n,.. The values of 7
are larger here than in table 6.2 because the constraints in step I are now defined in terms of @,(,0) which is
much larger than ©(®). These thresholds are determined with a small set of 100 faces which were not used
for creating the model. For different values of n, the final false positive rates are quite similar due to the
fact that the same edge based model is used in step II. However the density of candidate centers detected in
step I varies quite significantly. This has an important affect on the the final computation time, in terms of
the time required to compute step II.

8.4 Further analysis of a detection

After an instantiation 6 is detected a map from the reference grid into the image can be defined. This
map could be the affine map a or a more complex map obtained through some form of interpolation of the
correspondence between z; and 6; for ¢ = 1,...,n. The best known method involves thin plate splines, see
Bookstein (1991), a much more computationally intensive alternative is proposed in Joshi (1997) where the
interpolated map is guaranteed to be a homeomorphism, an more efficient computation of such homeomor-
phisms can be found in Camion & Younes (2001). In the examples below we restrict ourselves to the affine
map. The region of interest (ROI) aG, is obtained by applying the map a to each point of the reference
grid. The data I (z),z € aG can be registered back to the reference grid to produce,

I.(z) = I(az),z € G, (8.2)

and can then be further analyzed using any of the deformable models described in earlier chapters. These
can serve not only to provide a more detailed instantiation but also to filter out false detections, by keeping
only those detections which yield a fit of the template below some cost level, determined using training data.

Detection as classification

The detection scheme provides a classification at each possible instantiation 6, between the two classes
‘object’ and ‘non-object’. Note that in the first two steps of the algorithm there was hardly any use of ‘non-
object’ or background images, in terms of training. The reason is that the background image population is
so large and diverse that a very large sample would be needed to yield reliable estimates for a global classifier
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Figure 8.4: Top: Registered ROD’s of false positives from the face detector. Middle: Edge maps for this population.
Bottom: Edge maps for face population. Reference grid is reduced to a 16 x 16 lattice covering the immediate region

around the eyes and mouth.
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between object and non-object images. Large data sets of many thousands of images have been used for
this purpose in Rowley et al. (1998), Sung & Poggio (1998). The sparse object models described here can
be trained successfully with several tens of examples. The only information regarding background in the
counting algorithm involves the densities of the local features, studied in Chapter 6. Only a crude estimate
of these is needed simply to ensure the feasibility of the first step of the algorithm. However once a detector
is produced, the population of false positives is much more homogeneous and constrained.

Using the original training sample of the object, together with a sample of false positives, a classifier
can be trained. Run the detector on all the images of the object in the training set, and register the pixel
intensities, or the edge data, or the edge arrangement data, from the ROI defined by the detection, to the
reference grid, as specified in equation 8.2. The same is done on images containing no object, each of which
may yield a number of registered detections, to produce a population of false positives. This data is then
used to train classifiers of the type described in Chapter 9. In figure 8.4 we show a sample of ROI’s of
false positives for the face detector. The reference grid has been reduced to a 16 x 16 lattice immediately
surrounding the area around the eyes and mouth. Below in the middle panel we show the histogram maps
of four edge types (two vertical and two horizontal) on this population, compared to the maps for the face
population shown in the bottom panel. The similarity is quite striking, indicating that this false positive
population is quite restricted. The edge histograms for randomly selected 16 x 16 images in the background
population are uniform. And still for the human eye there is no question that most of the false positives are
not faces.

8.5 Examples

In this section we illustrate some aspects of the counting detector for a variety of of objects: faces, randomly
perturbed ETEX symbols in cluttered scenes, the axial MRI scans and an example of a 3d object at a
limited range of viewpoints. In addition to detections of the sparse model we show examples of how these
detections can provide automatic initialization for the deformable models described in Chapters 3, 4, and 5.
Specifically we will use the maps a estimated in Step II, to initialize the templates. Recall that the sparse
model represents the smallest range of scales at which the object is detected, and the algorithm is applied
at 6 different resolutions to cover a range of scales of 4:1.

The edge arrangements in the examples are defined with the 16 smaller wedges shown in the top row of
image 6.7. The complexity of the arrangements is 3, i.e. n,, = 3, and apart from the MRI example we always
pick n = 20 arrangements for the model with lower bound p = .5 (see algorithm 6.4).

Faces

The face model shown in figure 6.9 was trained from 300 face images of the Olivetti data set. Much smaller
datasets yield very similar results. The original images were downscaled to 44 x 36. The centers of the
two eyes and the mouth were manually marked on each image and used as the three anchor points. The
mean locations of each of these three landmarks are used for the three reference points pi,p2,ps on the
reference grid, as defined in section 6.4. At this scale the mean distance between the center of the eyes is 14
pixels and the distance between the center of the mouth and the middle point between the two eyes is also
14 pixels. Edges are extracted on each downscaled image, after which their locations are registered to the
reference grid using the affine map taking the anchor points to the reference points. The edge statistics are
graphically represented in figure 6.8, and in terms of these, an edge model for Step II was derived with 110
edge-type/location pairs. The 20 edge arrangements of complexity n, = 3 obtained from training are shown
in figure 6.9. A model using n,, = 1 is shown in Chapter 11. The range A of linear maps at which we expect
to detect a face at a given resolution covers £25% scaling and +£15 degrees of rotation. The smallest scale
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at which a face is detected is approximately 10 pixels between the two eyes. Faces at much larger scales are
detected by sub-sampling the image and rerunning the detection algorithm.

The results of Step I of the detection algorithm using this model, and processing 6 resolutions covering
a range of scales of 4:1, are shown in the top row of figures 8.5 and 8.6. In the middle row are shown all
detected affine maps obtained from Step II. The affine maps are represented using the detection triangle
showing the locations of the two eyes and mouth.

A final classifier was produced for face versus non-face using randomized classification trees (see chapter
9). These trees were trained using the registered edge data of the face training set against registered edge
data from false detections obtained on a collection of random images, as shown in figure 8.4. The results are
shown on the bottom row of the two figures. Some additional detections are shown in figure 8.7. The training
set for this classifier is quite small - 300 face images of 30 dfiferent people (10 per person ) and a similar
number of false detections. This is therefore the least stable component of the algorithm and increases the
number of false negatives.

Deformable models initialized at detections of sparse model

In figure 8.8 we show a close-up on the four faces of the previous figures and the locations of the points in
the instantiation obtained from step II. The white dots show edge features detected at the estimated pose
and the black dots show the extrapolated features which were not detected. If the features in the model
are labeled according to the components of the face to which they belong, we obtain an estimate not only
of where the centers of the two eyes and mouth are but other parts of the face as well. For example the
location of other parts of the eyes, or part of the nose, the hairline etc.

One can also initialize a deformable image algorithm at the detected pose . Due to the high variability
in lighting and illumination of faces we implement the Bernoulli data model from section 5.4. This data
model, being based on probabilities of edges which are very robust to illumination changes, inherits some of
these properties. On the left in figure 8.9 we show the location of a set of points chosen on the reference grid
mapped into the image by the detected pose. In the middle we show the outcome of a global search on a
range of scale and location parameters for updating the pose. On the right is the outcome of the deformable
image algorithm using a small number of basis coefficients. Note how the outlines of the eyes have been
adjusted as well as the hairline which in the initial instantiation was outside the face. The first example of
this procedure was shown in figure 5.4 in Chapter 5, together with the edge maps and the edge data used to
drive the algorithm.

Randomized BETEX symbols

Displays with randomized deformations of IMTEX symbols are useful for investigating properties of the sparse
models. The background has objects with many similarities to the one being detected, making the problem
of particular interest. We use 32 randomly perturbed versions of the prototype as shown in figure 8.10
for training. The random perturbations involve random rotation of up to 15 degrees, and +25% scaling
independently in each coordinate. The 20 local features identified in the training step are given in the
bottom panel of figure 8.10. The reference grid is approximately 30 x 30.

Here it is possible to produce a detector from the prototype alone, by simply picking some existing
arrangement of edges extracted from the prototype, in each region of the reference grid. Such a procedure
may pick an edge or a particular arrangement that is very unstable and only present in the particular image
of the prototype. This is avoided by producing a small randomly perturbed training set as above, in which
case unstable arrangements are eliminated.

Some detections in randomly generated scenes containing a large number of randomly deformed IATEX
symbols are shown in figure 8.11. Again these are obtained from six different resolutions. There are at most
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Figure 8.5: Top: Detections from step I. Middle: Detections from step II. Bottom: Detections remaining after final
classifier. Detection triangles - mapping of the reference points into the image by a.
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Figure 8.6: Top: Detections from step I. Middle: Detections from step II. Bottom: Detections remaining after final
classifier. Detection triangles - mapping of the reference points into the image by a.



CHAPTER 8. DETECTION II 134

Figure 8.7: Some additional examples of face detections: steps I and II

three instances of an £ in each image. The top panels show the outcome of steps I and II, and in the bottom
panels the outcome of running the classifier of object versus false positives, based on registered edges. In the
bottom panels the triangle vertices are shown, to enhance the view of the symbols underlying symbols. The
use of a classifier among different object classes, detected by the same model, is discussed in Chapter 10. In
the top row of figure 8.12 is an example of a deformable contour initialized with the scale and location of
the detection, then the final detection of the deformable contour algorithm. In the bottom row we show a
similar experiment with the deformable curve algorithm.

Very similar results are obtained for any of the symbols in the data base. However certain symbols are
more ‘generic’ in their shape and share many features with a substantial number of other symbols. The
best example being the digit 0 which has much in common with many round symbols. The representations
trained for these symbols usually produce more false positives. Although a drawback from the point of
view of accurate detection we turn this vice into a virtue in Chapter 10 where we discuss ways to integrate
detection and recognition.

The random IXTEX displays are artificial and do not represent all the complexities of real scenes. However
in many respects these scenes force us to deal with some important issues such as clutter, confusing classes,
and detection at a variety of poses. The background clutter in these images contains many components and
parts of the detected object itself. This reinforces the point that detection can not rely on individual local
features, and forces us to think about detecting configurations. The existence of objects very similar to the
one we want to detect forces us to deal with recognition as well as detection. It seems there is still much to
be explored in this controlled synthetic context.
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Figure 8.8: Estimated instantiation 6 on the four faces detected above. White dots show detected edge features,
black dots show extrapolated features.
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Figure 8.10: Top: 32 randomly perturbed &’s used for training. Bottom: The 20 features of the model represented
on the reference grid. The three reference points are shown in black.

3d object - range of viewing angles

Detecting a rigid 3d object from multiple views is a complex problem. Some of the original work in the field
attempted to construct 3d models and match them to data. Many of these models are described in Grimson
(1990) and Haralick & Shapiro (1992). We take the ‘view based’ approach in which significantly different
views of the object are to be considered as ‘different’ 2d objects which are linked together symbolically.
Much as if in the I’TEX scene we set out to detect a subset of symbols as opposed to a particular one. Thus
detection involves a sequence of searches for each of these possible objects or views.

Here we focus on developing a sparse model to detect an object from a limited range of views. The
problem then reduces to the detection of a non-rigid two-dimensional object and can be addressed with the
tools we have developed. The object model is trained as the ITEX symbols using only one prototype image
which is deformed 32 times with random affine transformations. A sample of these deformed images is show
in figure 8.13, together with the model which is constructed of 20 local features of complexity n, = 3 on a
reference grid of approximately 40 x 40. Note that the local features describe a rectangle of certain aspect
ratio to which are attached, on the top and the bottom, two additional wire-like rectangular structures.
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Figure 8.11: Top: Three examples of detections of the £ model, steps I and II. Detection triangles are shown.
Bottom: Results after applying the classifier of object vs. false positives. Triangles shown as 3 points for better
viewing.

The outcome of the counting detector are shown on images in figure 8.14. No final classifier has been
implemented. The algorithm is run at the six resolutions. The detections appear to be invariant to changes
in viewing angle around the vertical axis, clutter, occlusion, variable lighting, and articulation of the handles,
despite the fact that no such examples were shown in training. Here we see the advantage of treating a rigid
object in the same way as deformable objects. In the discussion section and in chapter 10 we offer some
preliminary ideas on the idea of detecting 3d objects as unions of their 2d views. How can this be integrated
into a more general scheme of object detection and recognition, and how to avoid the combinatoric explosion
of representing multiple objects at multiple views.

MRI images

The MRI images are trained on 18 examples of more or less the same axial slice. The reference grid in this
case is larger because we have attempted to create a model for the entire structure and reducing to a small
40 x 40 grid destroys many of the important components. Thus the reference grid is 128 x 128, and 100
features are identified. These are shown in figure 8.15. In this case the same features are used for step II as
well. This experiment demonstrates the applicability of the counting detector for highly deformable objects.

In figure 8.16 we show the outcome of steps I and II in terms of the estimated instantiation. Note how
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Figure 8.12: Top row: A deformable contour algorithm initialized by a detection in the middle panel of figure 8.11.

On the right is the initial contour. On the left the final contour. Bottom row: The result of the deformable curve
algorithm initialized the same way. .
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Figure 8.13: A sample of the synthetically generated training images for the clip, and the 20 features identified in
training.

the multiplicity of features introduces a large degree of flexibility. Even if parts of the internal structure
are missing or significantly deformed the detection succeeds. We show only the close-ups on the ventricle
region for those images which actually contained such structures. On those parts which are present or are
not severely deformed, the detected instantiation has local features found in the data. For the rest we
show the extrapolated location of the undetected edge features. In order to illustrate the correspondence
between the detected features a number is attached to each point. [p] Subsequent to detection a deformable
contour algorithm is implemented, initialized at the expected location of the anterior ventricles, determined
automatically relative to the detected instantiation . The initial contour has a shape similar to the outline of
these ventricles, see figure 8.17. Four points have been marked on the contour to show the correspondences
derived from the contour match. A more efficient approach, that has not been implemented here, would
initialize the elastic contour using the local features detected in step II which are know to lie on the outline
of the anterior ventricles. The important fact to remember here is that the entire process is completely
automatic, no user initialization is required.

8.6 Bibliographical notes and discussion

The material in this Chapter is based on Amit et al. (1998), Amit & Geman (1999), and Amit (2000) where it
is shown how the counting algorithm can be implemented in a neural network architecture. The network can
detect any model evoked in memory using a priming mechanism. This architecture is described in Chapter
11.

Object detection with arrangements of local features

The idea of using local feature arrangements for object detection both for faces and other objects can
also be found in Burl et al. (1995), Burl et al. (1998), Van Rullen et al. (1998), Wiskott et al. (1997),



CHAPTER 8. DETECTION II 140

Figure 8.14: Eight examples of detections of steps I and II combined.
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Figure 8.16: Instantiations in four axial MRI brain images. Ordinal numbers are shown for detected features. A
black dot denotes an undetected feature at location az;.
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Figure 8.17: Two examples of a deformable contour initialized at the location of the anterior ventricles and the final
state after running the elastic deformation algorithm.
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Cootes & Taylor (1996) and most recently in Viola & Jones (2002). In these approaches the features,
or certain relevant parameters, are also identified through training. However the models presented here
make use of a hierarchy of binary features with hardwired invariances, and employs a very simple form
spatial arrangement for the object representation. This leads to an efficient implementation of the detection
algorithm. The representations described in the other papers make use of various types of linear filters
with a rather large support. The invariance properties of the filters are not clear, neither with respect to
photometric transformations nor with respect to deformations. In the models described in Burl et al. (1995)
and Van Rullen et al. (1998) only a small number of features are used which appear to be more complex than
the ones suggested here, and for faces are typically concentrated around the eyes and mouth. One problem
with over-dedicating resources to only a small number of locations is the issue of noise and occlusion which
may eliminate some locations. Again in the context of faces, if the goal is to detect faces on a large range of
scales from 50-60 pixels between the eyes down to 10-14 pixels between the eyes, local information can be
quite ambiguous.

In the work by Viola & Jones (2002) and interesting collection of binary features is defined by comparing
mean intensities in rather large rectangular regions. These appear very robust to illumination changes, and
are computed extremely fast. Using cumulative sums of the image intensities computed once at the start,
the sum of the values in a given rectangle can be obtained with a simple operation of the cumulative sums
at each of the corners.

Cutting the invariance pie

The Hough transform has been extensively used in object detection, see Ballard (1981), Grimson (1990),
Rojer & Schwartz (1992). However in contrast to most previous implementations, the local features used here
are more complex, and are identified through training. On the other hand in many of the implementations of
the Hough transform referred to in Grimson (1990) there is an attempt to obtain full rotation invariance in
one shot. Our implementation is intentionally not fully rotation invariant. It allows the use of much richer
features and hence rarer in the background, reducing false positives and computation time.

This brings up the recurrent question of how to cut up the ‘invariance pie’ which came up in the discussion
section of Chapter 5. Should the detection of a face be done at once for all rotations, including upside down
faces. Or should we define ranges of pose parameters for which detection is done with one procedure, but
using different procedures for different ranges, or the same procedure at rotated versions of the image. Should
features be photometric invariant or should different detection models deal with different lighting conditions.
For example none of the models used in this Chapter can detect the object if the polarity is flipped and
the object becomes lighter than the background. The edge features on which the entire model is based are
sensitive to the direction of the gradient modulo 27. To detect the objects at both polarities one can either
incorporate polarity invariance by taking oriented edges modulo 7, detect even faces which are half darker
and half lighter than the background at the price of more false positives; or run the face detector twice with
the edge polarities flipped.

View based detection of 3d objects

This issue also comes up regarding the detection of 3d objects. The use of full 3d models, as suggested
in Marr & Nishihara (1978) and found in much of the work described in Grimson (1990), is an extreme
approach which claims the model should be invariant to all viewing angles. On the other hand the view
based approach recently being proposed in Riesenhuber & Poggio (2000), Ullman (1996) and Tarr & Biilthoff
(1998) requires only invariance within a range of viewing angles which represent smooth changes in the image
of the object as we have done for the clip, or for chess pieces in Chapter 10. This implies that even rigid 3d
objects should be modeled as deformable objects since their 2d views are not rigid at all. Moreover working
with sparse models for non-rigid objects allows us to cover quite a wide range of viewing angles with one
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detector. Working in this context makes the understanding of 2d non-rigid object detection and recognition
even more important since all the analysis has been reduced to the two dimensional domain.

On the other hand significant changes in viewing angle which completely change the resulting image,
for example viewing the clip from the side or from the front, lead to separate models. Indeed significantly
different views can be considered as different 2d objects.

Parts

In Biederman (1995) there is a strong emphasis on the role of generic 3d parts, called ‘geons’, as the building
blocks for 3d object representations. These objects which consist of blocks, cylinders and other simple
geometric structures, are detected in a view-based manner, but the idea is that not too many views are
required to model them, and that the entire library of 3d objects can than be modeled quite simply in terms
of rather coarse relationships between the geons. We have not experimented with this idea, but in terms of
the models used in this Chapter, it implies introducing an intermediate level between the local features and
the object models. Sparse models using local features would be constructed for the geons, and the complex
object models would be constructed in terms of very coarse geometric relationships between the geons. If
the geon detectors have very low false positive rates, such as for example the ‘clip’ detector, then there is no
need for refined definition of the relationships between the geons, since very few spurious elements will be
detected. We return to related ideas in Chapter 10.

Hierarchy of detection models

Comparing the various models described in this manuscript in terms of the set Z of points defining the
template, we see that the smallest set was used in the sparse models whereas the largest sets were used for
the deformable image models. In between lie the deformable contour and deformable curve models. But the
size of the template in the sparse models is really a matter of choice. The number of stable local features
can be rather large, in particular if the probability threshold p used in training is lowered. Indeed taking
more and more local features and representing them as in figure 6.9 we would get a very dense configuration
of edges, see for example face models shown in Chapter 11.

In most detection experiments in this Chapter we limited ourselves to 20 local features. However in
training for edge arrangements on faces for example, close to 100 were found, with above threshold probability.
There may be two reasons not to use all 100 local features. The first is that the main computational burden
of the algorithm, for n, = 3 is in Step I, in particular the calculation of the locations of all the local
features. The second is that some of these features may be highly correlated on background. Ignoring the
computational cost, and assuming that the correlations are not strong - it would be preferable to use more
local features from the point of view of false positive and false negative probabilities.

Following a detection, one could smoothly deform the model to best fit the transformed data - i.e. the
local features extracted from the image. This is precisely what is done by the Bernoulli model for deformable
images. In other words feature based image deformation is a natural algorithmic sequel to the feature based
detection using sparse models. It is a refinement of the detection process. On the other hand the ‘dense’
Bernoulli model can be viewed as the ‘true’ model, which is difficult to compute if pose is not predetermined.
This is obtained using a sparse subset which enables efficient detection of coarse instantiation information,
providing an initialization to the smooth deformable model which fine tunes the instantiation in terms of
the full model. The one-dimensional models can be viewed as intermediate approximations which identify
continuous curves given the initial matching of the sparse set of local features. So rather than a collection of
different models we can embed all these models as successive approximations to a ‘dense’ two dimensional
model.

A related but different approach to coarse to fine modeling and computation is presented in Fleuret &
Geman (2001). Pose space is recursively partitioned and a detector is trained for each cell of pose space
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using examples with poses randomly sampled from the cell. In contrast to the approach here where training
is performed at a reference pose. There is then a systematic method of exploring the image first in terms of
detecting the object at one of the coarse poses and subsequently narrowing down to more refined poses.

The use of only eight edges types to define the local arrangements is quite limited. This family of
elementary features should be extended to include texture information, and color and motion information
when available. Texture discontinuities may define important transitions which are not well captured using
the simple edge detectors. However once an appropriate set of elementary features is defined, the same
mechanism can be used to construct the more complex local features, and finally the global models. The
models described in the experiments above were all trained with the same parameters. Some small choices
had to be made regarding the size of the reference grid and locations of the reference points, but no particular
information we might have regarding the object is used. Other parameters produce similar results perhaps
at some computational cost. In this sense we have here a generic method of producing object models from
very primitive elementary features, using very small training sets.



Chapter 9

Object recognition

Recognition refers to the classification of an object or shape present in an image. Classification is meaningful
only when the image under investigation contains a single object. Thus it must be preceded by some
procedure whereby a subimage of the entire scene is selected, in which hopefully only one object is present.
This is still quite vague since the subimage could for example contain only one whole object, but parts of
many others. These may not necessarily pass as objects however they are part of the subimage and need to
be ignored in the classification. In other words one would want to identify on-object pixels, and use only
those to classify. This is precisely the segmentation problem discussed in the Introduction. Some preliminary
ideas for ‘segmentation’ based on top-down flow of information, as opposed to a purely bottom-up approach,
are explored in Chapter 10. There detection is used to identify instantiations of coarse models, which detect
object clusters with elements from several object classes, and following detection a classification among these
classes is performed.

In this Chapter we proceed as though some mechanism is able to identify a region of interest in the large
image, which contains an object and not much else. The goal is to classify which object is present. We
can even assume that the region is registered to a fixed size reference grid. Either a bounding rectangle is
provided and the ratio between the largest dimension (width or height) and the dimension of the reference
grid determines a scaling. Alternatively a pose has been estimated, determining a region of interest in the
image, which is mapped into the reference grid.

We work in the context of characters and symbols since it is easy to produce data, and study various
aspects of the classifiers. The two examples used in this chapter are the I#TEX database which we have
already encountered and some handwritten digit databases. In the first case it is possible to control the
degree of variability in each class and study the behavior of the classifiers in different situations. Moreover
it is interesting to study how classifiers behave in the presence of hundreds of classes. Ultimately one would
hope to be able to recognize among the thousands of objects the human is familiar with (see Biederman
(1995)). Figure 9.1 shows the 293 prototypes, and figure 9.2 shows 20 samples of one deformed symbol,
as well as some examples of deformations of a random collection of other symbols. The handwritten digit
databases are used as a reality check to see how well one can perform on real data. We use the NIST
Special Database, Garris & Wilkinson (1996), and parts of the USPS database produced and distributed
by CEDAR, SUNY Buffalo. One could also experiment with recognizing views of 3d objects placed against
homogeneous backgrounds, but then there is hardly any difference from recognizing shapes and characters,
where more abundant data bases are available. Object recognition in more complex gray level images is
explored in Chapter 10.

It is important to note that the particular domain of optical character recognition (OCR) has many
interesting dedicated solutions, some of the most successful being Simard et al. (2000) and LeCun et al.
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(1998), which are discussed in the last section. Extensive reviews can also be found in Nagy (2000) and
Plamondon & Srihari (2000). Although we will be working with binary character data, we want to be able
to extend the methods to objects in gray level images. For that reason we will also experiment with the
photometric invariant binary features introduced in earlier sections, which have proved to be powerful for
detection in gray level images.

Shape classification with arrangements of local features

In the preceding chapters we have seen that objects and shapes can be detected in terms of sparse models
defined as flexible arrangements of local image features. The simplest model encountered corresponds to
the first step of the counting detector and has the form of a star type arrangement where the features are
constrained to lie in regions defined relative to a center, see figure 8.1. In this chapter we consider the
problem of classification among several shapes using similar ingredients. Arrangements of local features are
used to discriminate among objects. Geometric and photometric invariance are explicitly incorporated in
the flexibility introduced in the arrangements, as well as in the definition of the local features.

Two alternatives to defining the local features are explored. The first employs a form of local image
coding which is adapted to the particular family of images being analyzed, in this case binary images. The
alternative to such dedicated local features is to employ the same edges and edge arrangements used for
detection in the previous chapters. These are generic and not adapted to a particular data set, but have
proven to have the desired invariance properties. As we will see, the results with the two families of features
are comparable. Two approaches to describing the local feature arrangements are explored.

e Absolute. An arrangement is a list of feature/region pairs denoting which features are expected to be
found in which region of the reference grid. The larger the regions the more invariant is the arrangement
to various linear and non-linear deformations but then the arrangement is less discriminating. Since
information is expressed in terms of absolute regions in the reference grid, pre-registration to the
reference grid is assumed here.

e Relational. Arrangements are described in terms of coarse constraints on the relative angles between
pairs of features. There are no fixed regions or locations in the definition of these arrangements. The
information is not coded in terms of absolute locations. This means that there is no need for pre-
registration of the image to the reference grid. This approach will allow us to classify images which
are of different dimensions. The arrangements are similar to those employed in the graphical template
algorithm in Chapter 7, and in the object detection algorithm in Chapter 8.

9.1 Classification trees

Most literature on classification methods assumes that a fixed size predictor vector, X, f € F, is precom-
puted for each data point. The main focus is then which type of classifier to employ, how to train and
how to predict test error. A large variety of classifiers have been proposed over the years, the most popular
ones being Fisher’s linear discriminant analysis and variations thereof, discussed in Duda & Hart (1973),
and Ripley (1994), feed-forward neural networks, extensively covered in Bishop (1995), and Ripley (1994),
support vector machines, see Vapnik (1995), and binary classification trees, see Breiman et al. (1984).

In this chapter recognition will be achieved using binary classification trees, which are especially well
suited for tapping into the information provided by the feature arrangements, in particular the relational
arrangements. A binary query is associated to each node in the tree. The query at the top node is applied
to a data point. If the answer is ‘yes’ the data point moves to the right hand child node, if it is ‘no’ the
data point moves on to the left hand child node. At the new node the associated query is applied. Again
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according to whether the answer was positive or negative the data point proceeds right or left. When the
point reaches a terminal node it reads out a label associated to that node. The queries attached to the nodes
are found during training. The goal is to split the training data at a node so that the distribution on class
in the children nodes will be as peaked as possible.

As we will see it is crucial to produce multiple classification trees, from the same training set. Relying on
one classifier is unstable even with rather large training sets. Using a randomization procedure classification
trees are produced, which are significantly different from each other. They classify the data from ‘different
points of view’. Combining the output of such collections of classifiers yields drastic reductions in error
rates. Randomization also allows us to grow a tree trained on tens of thousands of images in a few seconds.
Typically other classifiers take much more time to train. Moreover there are very few parameters to set in
growing the tree and it appears that the results are not too sensitive to the setting of these parameters.

Recognition with trees is also fast. A data point simply proceeds down the tree and at each node the
appropriate query is applied. The number of operations is thus determined by the depth of the tree. This is
typically no more than 10 on average with the large datasets employed here. We start by describing how a
classification tree is grown.

Training

Let £ be the training data set with data from K classes. For an element w € £ let 1 < Y (w) < K denote
the class label and let X (w) = {Xs}sex be the vector of predictors, assumed to be binary. Let £, be the
data at node t, let P; be the empirical distribution determined by the data points at node ¢, i.e. the uniform

distribution on L, and let F; be some subset of the full set of predictors F. For each f € F} calculate the
conditional entropy on class given Xy, i.e.

(/)

Hy(Y[Xy)
—P(Xy=1)) P(Y =|X; = 1)log P(Y = ¢|X; = 1)

—Pu(X;=0))_ P(Y =X =0)log P,(Y = ¢|X; = 0). (9.1)

This is a special case of the conditional entropy defined in equation 4.19 since Xy is binary.

The function C(f) is a measure of the ‘purity’ of the split induced by X ;. The aim is to produce children
nodes where the data is more concentrated around one class or a small number of classes. Other purity
measures have been used to determine node purity and are described in Breiman et al. (1984). The overall
performance is typically not affected by choice of purity measure. Pick f; which minimizes C(f), over f € F;.
The associated predictor Xy, most reduces the entropy or uncertainty regarding class, and f; becomes the
query associated to node ¢ in the tree.

All training data points in £; for which Xy, = 1 proceed to the ‘yes’ node ¢, and form the set £, and all
those for which Xy, = 0 proceed to the ‘no’ node t,, and form the set £;,. Note that f; is chosen based on
the training data at node ¢, which determines Py. All these data points have answered the same way to all
queries along the path from the root node to ¢. Thus using B is equivalent to using the original empirical
distribution at the root node, but conditioning on the sequence of answers to the queries along the path.

The set of predictors F; inspected at node ¢ depends on the context. In all applications reported here it
is a random subset of F. The nodes of the tree are split depth first starting from the root node. Various
criteria can be used to stop the splitting. For example a lower bound on the number of data points at a
node, or on the number of data points in the top two classes, or on the entropy on class. Also if none of the
candidate predictors further reduces entropy, the node is not split and becomes a terminal node.

Once the tree T is grown, at each terminal node ¢ we denote the conditional distribution on class given
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that node by P(Y = ¢|t). This distribution is estimated using the training data through

- 24|
pr(Q) = P(Y = elt) = T2,

where £§C> is the set of training points of class ¢ at node ¢. These estimates are not necessarily reliable, and
depend on the number of training data points that reached the node. Finally the terminal node ¢ is labeled
by the mode of u, i.e. R

Y: = argmazi<c<i it ().

Testing and error

A test data point w can now be ‘dropped’ down the tree. At each node ¢ the point goes left or right according
to whether the value of Xy, (w) = 0 or 1. The data point reaches some terminal node denoted T'(w), and is
classified according to the label ?T(w) attached to that node.

It is possible to grow the tree until pure nodes are reached, meaning that the error rate on the training
set is 0. This of course does not imply a 0 error rate on the test set, since the estimated ‘pure’ conditional
distributions in the terminal nodes are unreliable. More reliable estimates are obtained with shallower trees
where more training data is present in each terminal node. Then the error rate on the training set is non-
zero however the difference between training error rate and testing error rate may be smaller. There have
been many attempts to deal with this payoff by growing pure trees and then pruning them backwards, see
Breiman et al. (1984). This more refined processing becomes unnecessary when multiple trees are grown.

Note that if the depth of the tree is say 10, a data point dropped down the tree has been classified with
only 10 predictors having been evaluated. In our case there may be thousands of predictors, and obviously a
very small number has been used to classify the data point. One way to access this large pool of predictors
is to grow very deep trees, but even with datasets of several tens of thousands one runs out of data quite
quickly. Only very few terminal nodes will be of depth greater than, say, 20. The alternative is to grow
multiple trees instead of only one and then somehow combine the information.

Unsupervised trees

There are situations when data is provided without labels and we seek to find clusters of similar shapes,
which can subsequently be labeled. This is called unsupervised learning, also known as clustering or vector
quantization. For a broad range of methods see Duda & Hart (1973), Gersho & Gray (1992), Ripley (1994),
and Bishop (1995). Here we describe one way to achieve this using binary trees.

Since no labels are provided all data points with exactly the same values of all the predictors are a ‘class’.
Thus there are 2/ classes, where |F| denotes the number of predictors, and the ‘class’ variable Y and
the predictor vector X uniquely determine each other. Recall that at node ¢ we denote by P, the empirical
distribution on the data at that node, and Hy is the entropy with respect to that distribution. Using the same
cost function introduced in equation 9.1 for the case of labelled data, and the relation between conditional
entropy and joint entropy of equation 4.20, we write

Hy(Y|Xy) = Hi (Y, Xy) — Hi(Xy)
— HL(Y) = Hy(X). 9.2)

The second equality follows from the fact that ¥ completely determines X and in particular X ¢, so that the
joint entropy of ¥ and Xy is the same as the entropy of Y. Since Hy(Y") does not depend on f,

argmingHy (Y| Xy) = argmaxyHy (X ). (9.3)
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Since X is binary, setting p; = P;(X; = 1) we have

Hy(Xy) = —pyslogps — (1 —py)log(l —py).

The function —plogp— (1 —p) log(1—p) is concave and maximized at the value 1/2, so that the maximization
in 9.3 reduces to searching for that predictor f which is closest to splitting the data at the node in half, or

C(f) =1P(Xy =1)~1/2].

A stopping criterion based on depth or number of data in a node can be used.

Such trees provide some form of partitioning of the population of images. Typically images falling into
the same terminal node will be similar in shape since they have in common the answers to the sequence of
queries on the path from the root of the tree to the terminal node. Furthermore if class labels are assigned
to some collection of images, possibly different images from those used to produce the unsupervised tree, it
is possible to drop these down the tree and obtain class distributions at the terminal nodes. The tree can
then be used as a classification tree.

Multiple trees
Randomization

In the description of the basic tree growing protocol we already mentioned the possibility of choosing the set
F; randomly from all possible predictors F. This could be a rather small subset, indeed in the experiments
reported below we sometimes sample several tens from a collection of hundreds of thousands of possible
predictors. This randomization allows us to generate different trees from the same training data set. A data
point dropped down two such trees will have had different predictors evaluated along the paths from root to
terminal nodes.

There are two ingredients in randomization. The most important is choosing the sets F; of candidate
predictors at each node as a random sample from the collection of all possible predictors. The second is
estimating the optimal predictor using a random sample of the data points at each node. The sizes of these
two random samples are parameters which need to be set. In most experiments below both are on the order
of a few hundred or less.

Aggregation

After N trees 11, ..., T have been produced, the optimal way to aggregate the information is to maximize
the posterior given the N random variables defined by the trees. Namely classify a test point w as

Y (w) = argmazi<.<x P(Y = |Th(w), ..., Tn (w)),
where T}, (w) is the terminal node reached by w in tree T),. This posterior is impossible to estimate for much

the same reason it was impossible to grow a very deep tree. There is not enough data.
However if the random variables T),, defined by the trees, were conditionally independent given Y, i.e.

N
P(T1:T1,---7TN:TN|Y:C):HP(Ti:THY:C)a
n=1

the posterior on class given the N trees could be given analytically in terms of the individual posteriors.
Specifically given a sample point w let 7, = T;(w),i = 1,..., N. If the prior on class is uniform, P(Y =¢) =
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1/K, then using Bayes’ rule twice, and the fact that the trees are conditionally independent we have

C
PY =cTi=m,....,Tn =7n) = P(leTl,...,TN:TN|Y:c)-f1
N
= Cy [[ P(Tn =7alY =0)
n=1

N
= C3 [[ P(Y = |0 = 1) P(T0 = 70)
n=1

N
=Cy [[ P(Y =|T0 = 7),
n=1

where C1,Cs,Cs,Cy do not depend on the class ¢. Thus maximizing the posterior given the output of all
the trees is equivalent to maximizing

N
> log P(Y = d|T,, = 7),
n=1

over c =1,..., K. Using estimates of these conditional probabilities the classifier would be
N
Y (w) = argmaz, Z log i, (w)-
n=1

This assumption of conditional independence is of course very strong and unrealistic. Also using loga-
rithms may be somewhat unstable. The simplest alternative is to directly average the terminal distributions,
namely to classify by maximizing

Ya(w) = argmazi<c<kx An(c,w), where

N
1
An(c,w) = NZuTn(w)(0)7 c=1,...,K. (9.4)
n=1

We call ANY) the aggregate distribution and Y4 the aggregate classifier. As will be shown below aggregating
multiple trees leads to drastic decreases in error rates relative to the best achievable individual tree in the
context of shape recognition. It provides very robust classification even with quite small data sets and is
quite insensitive to parameter settings. In section 9.5 we provide some additional pointers as to why this
aggregation produces significant improvements.

Boosting

Thus far we have described a mechanism for generating different trees using randomization. Each tree is
produced disregarding all the others according to the same protocol, determined by the number of random
queries sampled at each node, and the stopping criterion on splitting nodes. Another related approach to
producing multiple trees is known as boosting, as described in Freund & Shapire (1997), Schapire, Freund,
Bartlett & Lee (1998), where the trees or more generally the classifiers are produced with some dependence on
the previously generated classifiers. The idea is that more effort should be dedicated to the ‘hard’ examples,
namely those examples in the training set which have been misclassified by the trees already grown. This is
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done by using a weight vector on the training data, with the weight on a data point increasing every time it
is misclassified and decreasing if it is correctly classified.

In the simplest two class case this is done by setting an initial uniform weight vector W on the training set
L. A tree T is grown with the training data using some chosen protocol. The training error e; = P(Y # YTI)
of the tree is obtained, where we recall that P is the empirical distribution and Y, is the class label attached to
the node ¢. The misclassified points in the training set have their weight increased by a factor of (1 —ej)/e;.
The weights on the training set are then renormalized to produce the new weight vector Wa. After n — 1
trees 11, ...,T,—1 have been produced and given an updated weight vector W,,, a new tree T}, is grown with
the weighted training sample. All probabilities and entropies are calculated using the empirical distribution
Pwn determined by the current weights on the individual training points. In particular, the training error e,
of T}, is evaluated in terms of the weighted training data. The weights on the misclassified points are again
multiplied by (1 — e, )/en, and the entire weight vector normalized to produce W, ;.

After N trees are produced they are aggregated either as described in equation 9.4 or as proposed in
Schapire, Freund, Bartlett & Lee (1998) by a weighted vote between the N classifications Y7, , namely

Yp(w) = argmazri<.<x AR (w,c), where
N

¢) =D Balyip,y=e; and
=1

anlo_g(l_e") (9.5)

€n

In Friedman et al. (1998) it is shown that the somewhat mysterious protocol of boosting, together with the
particular weighting in 9.5, corresponds to a stepwise gradient descent on a cost function formulated in terms
of an exponential moment of the aggregate classifier, which is evaluated on the training set. Under quite
general conditions this gradient descent procedure is guaranteed to decrease the value of the cost function
very rapidly towards zero, on the training set. However typically on test sets this same cost function diverges
very quickly. So the success of boosting can not be attributed to the particular cost function being used.
Indeed many variations, including the one used in the experiments below, produce very good results. The
main reason for this success lies in the fact that boosting is producing weakly dependent trees, perhaps even
more so than the randomization protocol, as discussed in section 9.5 at the end of this Chapter.

The original boosting protocol encounters problems when e,, < .5, namely when the error of classifier
T, is higher than .5. This is by no means uncommon in multi-class problems. We therefore substitute a
reweighting of the form 1/e,,. The protocol no longer has the appealing interpretation of a gradient descent
on a simple cost function. However it performs just as well and produces stable results. All experiments
reported here with boosting employ this reweighting scheme. Furthermore we use the aggregation scheme
of equation 9.4 as opposed to that of equation 9.5, so that the trees are all equally weighted.

9.2 Object recognition with trees

We now return to the original problem of object recognition. The crucial question is which predictors to
use in producing the tree, or any other classifier. The most naive approach would simply use the gray level
intensities at each pixel on the reference grid, which is the original form of the data. However we have seen
throughout previous chapters that this would not accommodate the geometric and photometric variablities
inherent in the problem. The gray level intensities are therefore again transformed into collections of binary
features, robust to local geometric variations and to photometric transformations. Such binary features can
then be spread (the OR-ing operation) in various ways to obtain flexible representations invariant to global
geometric variations.
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Figure 9.3: Locations of features corresponding to depth 1,2 and 3 along one path of the code tree.

Local features

Two types of binary local features have been used in the experiments. The first is adapted to the particular
image population being analyzed and the second is generic.

Micro-image codes

In the particular setting of binary images we define local features which are adapted to the training data.
These ideas can in principle be extended to gray level images, however in this more complex context it is
not clear how to accommodate photometric invariance as well as invariance to local deformations. This is
definitely a direction requiring more research.

Start with a sample S of small 4 x 4 subimages, henceforth called micro-images, of the training data,
keeping only those which are not constant, namely those that are neither all black or all white. Produce
an unsupervised tree of depth d with this data, using the methodology described in section 9.1. There are
only 16 predictors corresponding to the pixel value (1/0) at any of the 16 locations in the 4 x 4 micro-
image, thus there are at most 2'¢ ‘classes’ in this data. Such a tree provides a partition or quantization
of the population of binary micro-images. Each terminal node of the tree contains approximately the same
number of micro-images. The path from the root to a terminal node determines a subset of the form
{s€8:s, =ai,...,8, =as} where ig,...,is are the locations (on the 4 x 4 grid) used at the nodes along
the path and aq,...,a4 are 0 or 1 according to whether the path goes left (‘no’) or right (‘yes’) at a node.
Not surprisingly the most common micro-image in the deeper nodes of the tree actually represents some
form of oriented edge.

Any local 4 X 4 micro-image is now classified by dropping it down the tree and determining which
terminal node it belongs to. The micro-image is labelled not only by the terminal node, but also by the
intermediate nodes along the path to the terminal node. Thus if the tree is of depth 5 the micro-image is
given 5 labels. The labels corresponding to depth 1 nodes are assigned to about half the data. They are
very crude characterizations of the micro-image and are very common. The labels further down along the
path to the terminal node represent finer and finer characterizations. In figure 9.3 we show the locations of
features corresponding to depth 1,2 and 3 along one path of the code tree. We perform a clustering on the
locations of the features so that only one instance of each local feature type is present in each 5 x 5 region.
Due to this clustering the locations of depth k are not precisely a subset of the locations for depth k — 1.

In the experiments we find that all levels of detail are necessary not only the finest one. The coarser
nodes are more invariant to local deformations, the finer nodes convey more information on the local binary
configuration.

In figure 9.4 we show 3 levels of this tree and the most common configuration found at each of the eight
depth 3 nodes. Observe that the tree partitions among micro-images corresponding to edges of different
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orientations. This is achieved in a purely data driven manner. The most common images in deeper nodes
typically correspond to boundaries with a slight curve or bend, and may be viewed as a conjunction of two
edges.

Generic local features produced from edges

From the quantization described above we see that oriented edges are reasonable representations of clusters of
micro-images, as are finer features, represented by local edge arrangements, of which we have made extensive
use in previous chapters. As an ‘engineered’ alternative to the features defined above we use the following
264 local features: 8 edges corresponding to the 8 basic orientations defined in section 5.4 and 256 = 8 x 8 x 4
two-edge arrangements defined in Chapter 6. We use the larger wedges shown in figure 6.7 corresponding to
the angles 0,7/4,7/2,3w /4. Due to symmetry other angles are not needed. The advantage of these features
is that they are not specifically taylored to any particular data set and can be used in both binary and gray
level images.

Absolute arrangements

Assume all images have been registered to a fixed reference grid G (say 32 x 32). The ITEX database is
created this way in the first place. In other cases one assumes that a bounding box has been identified for the
symbol or a pose has been estimated allowing us to register the data to the reference grid. The dependence
of the classifier on this step is crucial and should not be taken lightly. It implies that some form of detection
is necessary prior to classification. We continue to explore this issue in Chapter 10.

The collection of binary local features Xi,..., Xy is now applied at all locations in G to produce a
fixed dimensional binary predictor vector X,(z),a = 1,...,N,z € G, of length |G| - N. The gray level
intensities have been replaced by an N-vector of binary variables. The set F is the collection of all pairs
f=(a,2),a=1,...,N,z € G. This predictor vector, after being calculated for each image in the training
set, can be fed into any standard classifier: feed forward neural nets, classification trees, linear discriminant
analysis etc.

First we should note that any of these classifiers would produce a very sensitive and unstable classifier.
The reason being that under the smallest variations of an instance of a symbol of some class, the locations
of quite a number of the local features will move and hence completely change the corresponding predictor
vector. Invariance to local variations and a certain degree of scaling and translation must be explicitly
incorporated into the predictors. With binary features this is easily and naturally done by ‘spreading’
(OR-ing) the output of the original local feature detectors to s x s neighborhoods. Define

Xo(z) = ax Xa(y), (9.6)

where N4(z) is an s x s neighborhood of z, namely X*(z) = 1if X, (y) = 1 anywhere in the s x s neighborhood
of z. This is an explicit disjunction or ORing that is directly incorporated into the data and any resulting
classifier will inherit a certain degree of invariance. In our context spreading on rather large 15 x 15 regions
yields optimal results. It should be kept in mind that while ORing increases the stability of the classifier it
decreases the discriminating power of each of the coordinates of the predictor vector.

Multiple randomized classification trees are trained using these predictors and aggregated as described
above. Results obtained on the IXTEX and NIST databases are reported in section 9.4 where they are also
compared to results with the relational arrangements described in the following section.
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Figure 9.4: First three levels of the code tree. The location of the query at a node is shown in the children
nodes as white if the value is ‘1’, and as black if the value is ‘0’. The most common configurations at the

eight depth three nodes are shown.
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Figure 9.5: Eight images from a depth 5 node in a classification tree with the associated arrangement. Two of the
queries on the path to this node were answered ‘no’.

9.3 Relational arrangements

In this section we describe a more complex approach to the object classification problem. We no longer assume
that the object has been registered to a reference location and scale. This means that absolute locations of
features are meaningless and we can only use information regarding the relative spatial arrangement of local
features. For example information on the angles of the vectors connecting pairs of local features. Once a
relational arrangement is defined the associated query asks whether or not such an arrangement is present
anywhere in the image. The arrangement is also defined in an entirely scale invariant manner it can be
present at any scale. In the sequel we will define these arrangements more precisely, define a partial ordering
on the set of arrangements and explain how the associated queries can be incorporated into classification
trees. As will become apparent it is not clear how such ‘queries’ can be systematically employed in the
context of other types of classifiers.

In figure 9.5 we show a collection of symbols in all of which a particular relational arrangement has
been found, described in terms of a graph with edges between pairs of features between which a relation
has been defined. Note the variations on the angles and distances between the nodes of the graph. There
are no distance constraints in the relations defined between the features. All these images reached some
internal node of a classification tree grown with relational arrangements as described below. The conditional
distribution on the 293 KTEX classes given the presence of this arrangement is far more concentrated than
the original uniform distribution. The entropy is 5.74 down from the entropy on the uniform distribution on
293 class which is 8.19. Despite the large degree of flexibility introduced in the definition of the arrangement
it carries a significant amount of information on the shape in the image.

Relations between local features
2(k—1) 2(k+1)m
o to =%

Define wedges Wi,k = 1,..., K, centered at the origin spanning the angle — ——. If feature
X, is present at location x and feature X, at location y we say that they satisfy relation Ry if y € x + Wy.
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Typically we use K,, = 16 so that there are 16 possible binary relations between any two features.

A relational arrangement is a labeled graph with vertices V' = {1,...,d} and directed edges defined as
some subset of V' x V. Each vertex i € V is assigned a label 1 < a(7) < n, which corresponds to one of the
local features. Each edge (i,7) € E is assigned a label 1 < (i, j) < K,,. The arrangement is present in the
image if there exists an ordered set of locations z1, ..., x4 such that a feature of type «(i) is present at x;,
for each ¢ € V, and x; € x; + Wy j, for each (i,7) € E. Each arrangement defines a binary variable on
images: either it is present or it is not. Note that any ordered set of locations satisfying these conditions is
an instance of this arrangement. Since the relations are defined very loosely and only constrain the relative
angles, a relational arrangement can have a quite a number of possible instances.

We denote by A the set of all possible arrangements.

Note that the local edge arrangements defined in Chapter 6 are special cases of relational arrangements,
where all relations are with respect to the first vertex, with an additional constraint on the distance between
the local features in the relation.

Growing trees with relational arrangements

The arrangements are defined in terms of graphs, thus providing a natural partial ordering, under which a
graph precedes any of its extensions. The partial ordering corresponds to a hierarchy of structure. Small
arrangements with few local features produce coarse splits of shape space. As the arrangements increase
in size they convey more information about the images which contain them. However fewer images contain
these arrangements. One straightforward way to exploit this hierarchy is to build a classification tree, using
the collection of arrangements as candidates for the queries, with the complexity of the queries increasing
with the depth of the node.

Define a minimal extension of an arrangement A € A to mean the addition of exactly one local feature
and one relation binding the new local feature to an existing one. Let B C A denote the set of arrangements
involving only two local features and one relation. Now build a tree using the protocol described in 9.1. At
the root node r, F, is a random sample from B. Denote the chosen query A,. Those data points which do
not have an instance of the arrangement proceed to the ‘no’ child node r,, where again we search through
B. Those data points which do have an instance of A, proceed to the ‘yes’ child node r, and have one or
more instances of A, which we call the pending arrangement, at r, and denote it by P, .

At the node 7y, the set F}.  of candidate queries is a random sample of minimal extensions of the pending
arrangement P, . If we select A, as the query for node ry, this will be an arrangement with three local
features and two relations. The ‘no’ child node of r, inherits the same pending arrangement P,. . The ‘yes’
child node ry, has the pending arrangement P, = A, .

More generally, at any given node ¢ the pending arrangement P; is the same as at the parent node p if
t is the ‘no’ child (¢ = p,). At t = p, we have P, = A,, which again is a minimal extension of P,. F; is
always a random sample of minimal extensions of P;. There is no pending arrangement at a ‘no’ node ¢, for
which all ancestors are also ‘no’ nodes, and the set F; is again a random sample of 5.

The number of possible arrangements in A is essentially infinite. Using only minimal extensions greatly
reduces the number of candidate queries at a node. It is also very easy to check if the minimal extension exists
for each instance of the pending graph. Still there are very large numbers of possible minimal extensions
at every stage. In this context randomization not only serves to create different trees. It also reduces the
number of queries which need to be checked.

An illustration of the effects of these queries on splitting the data can be seen in figures 9.5 and 9.6.
Figure 9.5 shows a collection of images which reached a depth 5 node, with one instance of the pending
arrangement. The first row of figure 9.6 shows images which reached that same node and continued to the
‘yes’ child. The additional feature was found in these image in the proper angle relative to an existing feature
in one of the instances of the pending arrangement. The 2’s in figure 9.5 did not have such a feature and
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Figure 9.6: Examples of node splitting. All five images in the top row lie in the same node and have a pending
arrangement with four vertices. All these images were in the node represented in figure 9.5. The two’s shown in that
figure went to the ‘no’ node. One more step of the splitting separates the a’s from the X’s by asking for the presence

of an additional feature.
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Figure 9.7: The pending arrangement at the terminal node in five different trees for a single instance of a 2.

went to the ‘no’ child node. One more split of the depth 6 node is also shown in the second row of figure
9.6. The a’s have gone to the ‘no’ node and the X’s to the ‘yes’ node.

Training is more complex than for standard classification trees described earlier. At each node, a list
must be assigned to each data point consisting of all instances of the pending arrangement, including the
coordinates of each participating feature. If a data point passes to the ‘yes’ child, then only those instances
which can be incremented with the new relation are maintained and updated; the rest are deleted. The
more data points the more book-keeping. There is an inherent asymmetry in the tree, in that the pending
arrangement at terminal nodes with many “no” answers on the path from the root will be small. However
in many terminal nodes as shown in figure 9.7 the arrangement describes a complex structure, and dropping
the data down the tree automatically identifies the instantiations of this structure in the image. In this sense
the relational trees can be viewed as a classification combined with a sparse model instantiation.

The importance of using multiple randomized trees is illustrated in figure 9.7 where we show the arrange-
ment found on a single instance of a 2 in the terminal node it reached in five different trees. The five trees are
using different aspects and properties of the shape to classify this data point. A more robust classification
is then possible when the information from all trees is pooled together.

Since the arrangements are defined in an entirely scale and translation invariant manner the resulting
trees are very robust to scaling and translation. Indeed the incoming data does not need to be registered in
any way as will be illustrated in the experiments below.
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Tree Absolute | Absolute | Absolute | Relational | Relational
Protocol Q=20 | Q=100 | Q=200 Q=20 Q =100
s=15 s=15 s=15 K, =38 K, =24
Agg. Rate 98.7% 99.03% 98.9% 98.5% 98.8%
Ind. Rate. 90% 93% 94.2 % 77.2% 86.7%

Table 9.1: NIST: Different protocols. 100,000 training data and 50,000 test. Q - number of random queries sampled
at a node. s - size of ‘spread’ parameter for trees with absolute arrangements. K, - number of wedges in relative
arrangements (width of wedge is 27/K,.) m = 3 - number of data points in second largest class at a node to
stop splitting. First row: aggregate classification rate with 100 trees. Second row: average classification rate of the
individual trees.

9.4 Experiments

We experiment with the ETEX database and portions of the National Institute of Standards and Technology
(NIST) database Garris & Wilkinson (1996), which consists of approximately 223,000 binary images of
isolated digits written by more than 2000 writers. We use 100, 000 for training and 50, 000 for testing. For
this database we use micro-image codes dedicated to binary images. On the INTEX database the generic
features are used.

In all trees reported below the nodes are split as long as there are at least m data points in the second
largest class. The default value we use is m = 3, but in some experiments m can reach up to several
hundreds. The parameter Q represents the number of random queries sampled at each node while training
the tree, this can range anywhere from several tens to hundreds of thousands. For absolute arrangements
the parameter s denotes the degree of ‘spread’ (a detected feature is spread to the s x s neighborhood of
the original location,) and ranges from 3 to 15. For relational arrangements the parameter K,, determines
the number of wedges used and their width. At all nodes with over 200 training points we take a random
sample of 200 to determine the best query from among the Q randomly sampled queries; Otherwise we use
all training data at the node. Unless otherwise specified 100 trees are produced in each experiment.

NIST

The NIST data is initially pre-processed as follows. The original images are binary. Each image is blurred
with a Gaussian filter of standard deviation 1 pixel. If the dimensions of the image are less than 32, the
bounding rectangle of the digit is identified and is placed in the center of a 32 x 32 grid. If the largest
dimension d of the image is greater than 32, the image is downscaled by a ratio of 32/d and is again centered
in a 32 x 32 grid. Then the image is re-binarized using a threshold of .25 assuming the pixel values are in
the range [0, 1]. It is necessary to binarize the image to detect the micro-image codes.

The results in table 9.1 show the effect of producing multiple classification trees. The aggregate classi-
fication rate as a function of the number of trees for one of the experiments is shown in figure 9.9. Note
how very similar aggregate classification rates are obtained with very different classification rates on the
individual trees. The best result obtained on one tree using no randomization at all was 95.8%, thus the
aggregation of multiple randomized trees plays a very important role in reaching above 99% classification
rates. With absolute arrangements similar results are obtained using a coarser grid for the features. Features
are extracted on the original image, however their coordinates are rounded off to the nearest multiple of 2
or 4. The number of predictors is then reduced by a factor of 4 and 16 respectively. The s parameter is
adjusted accordingly to s = 7 and s = 2 respectively. In both settings the classification rates obtained were
98.8%. In figure 9.8 we show the first 100 of the 500 misclassified NIST digits.

The trees generalize well to other data sets. For example the relational arrangement trees were applied
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Figure 9.8: 100 misclassified NIST handwritten digits.

Sample size | 5,000 | 10,000 | 50,000 | 100,000
Agg. Rate | 97.3% | 97.9% | 98.6% | 98.7%
Ind. Rate | 80.23% | 83.3% | 88.6% | 90%

Table 9.2: NIST: Classification rates of the aggregate classifier and the individual trees as a function of the training
sample size - absolute arrangements. m = 3,s = 15, Q = 20.

to a dataset of 5000 handwritten digits obtained from the USPS database produced and distributed by
CEDAR, SUNY Buffalo. The classification rate was 97.3%. The conditions under which the postal digits
are written are very different. In writing zip-codes on an envelope no bounding box is provided, so that their
sizes and slants exhibit a larger variability than that of the NIST database.

Several other comparisons are interesting for this database. In table 9.2 we show classification rates as
a function of the size of the training set, all other parameters fixed. In table 9.3 we compare results on the
small 5000 sample training set as a function of the stopping rule, which affects the depth of the trees. As the
value of m decreases the trees get deeper. In many instances of the use of classification trees, deeper trees
may exhibit lower classification rates due to over fitting. This does not seem to occur in this case, probably
due to the large degree of spreading. For m = 1 we obtain pure trees, namely trees for which there is only
one class of training data present at each terminal node. These appear to perform best.
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Stopping criterion | m=20 | m=10 | m=3 | m=1
Agg. Rate 96.0% | 96.5% | 97.2% | 97.6%
Ind. Rate 72.8% | 76.8% | 80.2% | 80.4%
Avg. depth 6.1 6.93 8.49 9.86

Table 9.3: NIST: Absolute arrangements. Classification rates of the aggregate classifier and the individual trees
with 5000 training data, as a function of the stopping criterion. m = 3,s = 15, Q = 20.

Stopping criterion | m=20 | m=10 | m=3 | m=1
Rand. Agg. Rate | 96.0% | 96.5% | 97.2% | 97.6%
Boost. Agg. Rate | 96.8% | 96.5% | 95.2% *

Table 9.4: NIST: Absolute arrangements. Classification rates of the aggregate classifier with and without boosting
as a function of the the stopping criterion. 5000 training data are used. Boosting is not applicable for pure trees
since the training error rate is 0. Q = 20,s = 15.

Boosting

We implement the boosting protocol with the reweighting factor of 1/e, and aggregate the trees according
to equation 9.4. The terminal distributions 7, are in this case estimated during training with the weighted
training data. It appears that when deep trees are used so that the training classification rate is very high
boosting overfits the training data and performs worse than simple randomization. However for shallower
trees boosting enables the aggregate classifier to ‘overcome’ some limitations of the individual classifiers.
If certain data points of different classes are hard to separate without querying a large portion of their
respective strokes, shallow trees risk having them end up in the same terminal nodes, especially since the
trees are aiming at improving the purity of the nodes over the entire training set. Boosting will cause the
weights of such data points to increase significantly. Their relative weight in determining the purity of a
node increases and subsequent trees in the boosting procedure may be able to separate these hard examples.

For the larger data set we observe the same properties of boosting. Using the parameters yielding the
best performance with 100,000 training data for the randomized protocol produces a rather low classification
rate with boosting. However table 9.5 shows randomized boosting outperforms simple randomization with
shallower trees with m = 100, (average depth of 9.76 vs 12.)

The best result of 99.29% was achieved with boosting: m = 100 and Q = 1000. ‘

In figure 9.9 we show the aggregate classification rate as a function of the number of trees. The curves for
other experiments look very similar.

Protocol m=100 Q = 1000 | m=100 Q =20 | m=50 Q =20 | m=20 Q = 20
Boost. Agg. Rate 99.29% 99.09% 99.07 % 98.8%
Ind. Rate 74.7% 62.4% 69.3% 76.4%
Avg. depth 9.8 9.8 10.8 12.0

Table 9.5: NIST: Absolute arrangements. Classification rates of the aggregate classifier with boosting for various
protocols with boosting and 100000 training data..
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Figure 9.9: Classification rate as a function of the number of trees.

Spread parameter | s=3 | s=7 | s=15| s=23 | s=31
Agg. Rate 82.9% | 94.7% | 96.1% | 94.9% | 90%
Ind. Rate. 10% 28% 39% 40% 38%

Table 9.6: ITEX : Comparison of results for different values of the spread parameter s. Absolute arrange-
ments are used with the 264 generic features and Q = 20.

The ‘hard’ NIST dataset

One additional portion of the NIST dataset, containing approximately 50,000 samples, was produced by high
school students as opposed to employees of NIST. This data set is more challenging, the variability in shape
and size appears to be greater. Using the best trees reported above on this more difficult set we achieve
a very low classification rate of 95.2with a combination of 30,000 samples from the original set and 30,000
from the hard set, we reach over 99% on the original test set, and over 97% on a different part of the hard
set. The best results on this combination of the datasets is reported in LeCun et al. (1998) and discussed
below.

ETEX
Similar results emerge from experiments with the IXTEX database. Here however there are only 32 training
samples per image and the number of classes is 293. We use 50 samples per class for testing. Quite a
large variability is introduced in the images with the synthesized deformations. Table 9.6 illustrates the
importance of spreading showing that the optimal spreading box is around 15 which is half the image size.
From this table we also see the drastic improvement in performance enabled by aggregation. Here we use
absolute arrangements with the 264 generic features of edges and edge arrangements.

An interesting comparison in table 9.7 shows the effect of the number of randomly sampled questions
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Num. of questions | Q=20 | Q=500 | Q=1000 | Q=10000
Agg. rate 96.1 % | 96.08% | 95.9% 93.6%
Ind. rate 41.5% | 58.9% | 60.86% 64.99%

Boost Agg. 96.9% | 97.2% 97.2% 96.6
Ind. Rate. 32% 51% 52% 56%

Table 9.7: WTEX : Comparison of results for different values of Q. Top two rows randomized trees. All data points
at a node were used to select the optimal query. Absolute arrangements, m = 3,s = 15. Bottom two rows with

boosting.
Num. of Q=200 Q=200 | Q=1000 | Q=20
questions K,=8 | K,=1 | K, =16 | K, =16
Rand. Agg. Rate 94.5% 95% 95.5% 92%
Ind. Rate. 3% 35% 41% 19%

Table 9.8: XTEX : Different protocols with relational arrangements.

on performance. No randomization is done in the data points used to select the split at each node, i.e. all
data points are used to choose the optimal split. The optimal number appears to be at Q = 20. Although
the individual trees produced with higher values of Q have a higher classification rate the aggregate rate
decreases due to the fact that the trees become more similar. The optimal performance is achieved with
randomization both in the queries and in the sample used to choose the optimal split. When using Q = 200
and a random sample of 200 of the entire training sample at a node (when the size is larger than 200),
the classification rate achieved is 96.7% with mean classification rate per tree of 52%. A different pattern
emerges for boosting. Here there is improvement with the number of random queries used and the best rate
achieved is 97.2% with Q = 500. This difference is discussed in section 9.5.

Clutter

The performance of the relational arrangements under various protocols is shown in table 9.8. On the whole
it seems that the absolute arrangements perform slightly better than relative arrangements. However this is
in an idealized setting where the object is well centered in the image.

It is therefore of interest to study the effect of clutter on the classifier. The clutter is produced by taking
¢ additional random symbols, extracting a random 6 x 6 window and adding it to the image at random
locations. Examples of cluttered images are shown in figure 9.10, with ¢ = 2 in the top row and ¢ = 4 in the
bottom row. After clutter is added the bounding box of the data is recomputed and used for centering the
image. This mimics the effect of clutter on the image registration procedure. The relational arrangements
are by definition entirely translation invariant. With absolute arrangements despite the spreading there is
some sensitivity to moderate shifts.

The performance with absolute arrangements degrades faster than that with relational arrangements, as
shown in table 9.9. It appears that this is not only due to shifting, but also due to higher sensitivity to
erroneous noisy features which are present in the background. However the drop in performance is too large
in both cases implying something is missing in these classification scheme. Some consolation can be found if
instead of taking the mode of Ay, we check if the correct class is among the top 5 classes. After all we start
out with 293 classes and reducing to a choice among 5 is still useful. The results are shown in table 9.9 in
parantheses.

Possibly the final discrimination between these 5 candidates should be done using some more detailed
analysis in terms of a deformable model. We have already seen that the deformable curve models are very
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Figure 9.10: XTEX symbols with clutter. Top: 2 clutter elements. Bottom: 4 clutter elements.

robust to clutter. We could try to fit each of these five models and choose the one with highest value of the
cost function given in equation 4.12. Trying all 293 models would be computationally very intensive, but
trying 5 is reasonable. Moreover it may not be necessary to try them at each classified data point, only for
those where there is evidence for ambiguity.

9.5 Why multiple trees work?

In section 9.1 we motivated the aggregation of multiple trees with an ideal situation where the trees T},
considered as random variables, are conditionally independent given the class label. Intuitively this is related
to the observation made later that different trees classify the data using different aspects of the data, or
different points of view. If we know the label of a data point w, then observing T, (w), say in terms of the
terminal distribution fi7,, (), will not help us predict the terminal distribution at the terminal node T, (w)
encountered by w in another tree. This is because the two trees are using different aspect of shape to classify
w and therefore the confusions, reflected in the terminal distribution, will probably be different. This is only
a conditional property. If we do not know the class label of w ahead of time, than the mode class in T}, (w)
would serve as a good prediction for the mode class in T,,(w). Otherwise put, these trees are in no way
unconditionally independent.

The trees are never really conditionally independent. Rather one observes that the conditional covari-
ances between these trees, computed in terms of the terminal distributions p7,, are much smaller than the
conditional variances. Let v denote a bound on the conditional variances, and let v denote some bound on all
the conditional covariances. We denote the conditional variance given Y = ¢ as Var.(), and the conditional
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Relational Absolute
Q =200 Q = 200
K, =16 s=15
c=01| 95% (99.6%) | 96.6% (99.8%)
c=2| 78.4% (91.4%) | 62.5% (80.4%)
=4 | 57.8% (73.8%) | 44.7% (63.8%)

Table 9.9: XTEX : Performance results in the presence of clutter for relational arrangements and absolute arrange-
ments. The values in parantheses denote the percentage of test points which had the correct class among the top
5.

covariance as Covar.(). The conditional variance of the aggregate An(d) is expand as follows.

N
1 1
Vare(Aw(@) = 33 3 Varenn, @)+ —y 3 Covarelpm, (@), (@)
<V/N+~, ford=1,...,K. (9.7)

Thus when the number of trees is large the conditional variance of the aggregate is dominated by ~.
For each class ¢ write the conditional mean of the aggregate as

N
0 (d) = E.(An(d)) = % S Eolur, (d), d=1,...K.

If the individual trees have reasonable classification rates, then the mean weight on class ¢, given Y = ¢ will
be larger than the mean weight on all other classes, i.e.

oM (¢) — 9N (d) > MM > 0, for all d # c,

for some constant M),

If M(N) is significantly larger than the standard deviation of each of the variables Ay (d) ford =1,..., K,
restricted to class ¢, ie. if M) >> /7, then Ay(c), with high probability, will be larger than Ay(d) for
all d # ¢ and hence the probability of error is small. We see that the key to low error rates with multiple
trees is having ~ small relative to M V). By contrast the key to low error rates with one tree is having v
small relative to M) which is approximately the same as M (V)| since it is an average of means. However
in all I¥TEX experiments v is 10 to 20 times larger than ~.

The expectations and variances used in this discussion are never known, at best they can be estimated
from training data. It is, however, interesting to observe that there is a high correlation between the
quantities v and M estimated from training data and the ultimate error rates on test data. We implemented
19 different protocols for the NIST database with absolute arrangements, with 5000 training data (500 per
class), varying the stopping rule, the number of random questions sampled, with and without boosting. The
log of the test error rate log(e) is then regressed on log(y) and log(M). Here instead of upper bounds we
redefine v and M as follows.

K
Z Var.(An(d

1d=1

)
I

=[~

]~

C

(6c(c) — argmazqze(d)).

S

I
=[ =
M=

Q
I
—



CHAPTER 9. OBJECT RECOGNITION 169

-1 -1
* " *
-1.5- -1.5 *
-2t * -2
8 S *
@ * ®
1 *
2-25 8-25
k7] * 2
2 <
-3t * _3k *
* %+
¥
P *
-35  *x * * -3t
H
*
-4 f L L L L ] -4 L L
-4 -35 -3 -2 -15 -1 -35 -3 -15 -1

-25 -25 -2
Predicted log-error Predicted log-error

Figure 9.11: Scatter plot of log-error vs. predicted log-error for a variety of protocols. Left: NIST dataset. Right:
TEX dataset.

These quantities are all estimated from training data.

We obtain R? = .92 and the regression equation is log(e) = .32 — 1.8 log(M) + 1.3log(v). The scatter plot
of log error versus predicted log-error is given in figure 9.11. Although the information in + and M is not
sufficient for precise prediction of the test error it is quite suitable for deciding which protocol is preferable
once the regression estimates are obtained. This decision can be made on the basis of training data alone.

Predicting the test error rate directly from the training error rate would be far less stable, in particular
for protocols such as boosting which typically quickly achieve close to 0 error rate on the training data, or
protocols growing pure trees, which by definition have 0 error rate on the data.

Note that the test classification rates for the different protocols ranged between 73% and 98%. The
variable M ranged between .02 and .85 whereas v ranged between .001 and .04. The best performance 98%
was achieved at M = .58 and v = .034. These values also gave the highest predicted classification rate of
97.7%. A similar regression using I TEX experiments yields R? = 97.2. It is clear from these regressions that
the error rate depends on a ratio ¥%/M?". Indeed, in some cases M can be higher but the error rate is also
higher because ~ is high as well.

Both randomization and boosting are somehow achieving low values of y relative to M. For randomization
we already discussed the intuition behind this. Different trees, using an enormous pool of features and queries,
are accessing the data from different points of view. There is no danger of overfitting because the trees are
trained in total disregard of each other.

By contrast, in boosting, the reduction of 7 is achieved through the reweighting of the training points
which are misclassified. In concentrating on these points the algorithm is actually trying to produce a
negative conditional covariance between the new classifier and the current aggregate. This general effect
can be achieved with a variety of protocols and has very little to do with the specific protocol involved in
the original derivation of the boosting algorithm. However boosting still depends on estimates provided by
the training set and risks over fitting, as seen in the deeper trees (smaller m) reported in table 9.4. On
the other hand on the NIST data base with the large training set of 10,000 data points per class, when
randomization is used in conjunction with boosting and a conservative stopping rule the best results are
achieved. On the ITEX database the best results are also achieved with boosting using somewhat larger
numbers of randomized queries.
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9.6 Bibliographical notes and discussion

The work in this Chapter is based on Amit & Geman (1997), and Amit et al. (1997), where only relational
arrangements were studied. Some of the ideas on shape quantization explored in Amit & Geman (1997) led to
the development of the sparse models described in Chapter 8. On the other hand the very large disjunctions
used in step I of the counting algorithm motivated the current experiments with absolute arrangements
where very large values of the spread parameter s is used.

In studying shape recognition we have touched on two research areas. The first is general classification
theory, otherwise known as pattern recognition or machine learning. This covers general issues such as types
of classifiers, aggregation methods, estimation of test errors etc. The literature on this subject is described
in detail in books such as Ripley (1994), Bishop (1995) and the classic book on pattern recognition Duda &
Hart (1973). The main reference for classification trees in the statistics literature is Breiman et al. (1984) and
in the computer science literature Quinlan (1986). The idea of growing multiple classifiers and aggregating
them is more recent and can be found in Kwok & Carter (1990,), Breiman (1994), Breiman (1998), and
Schapire, Fruend, Bartlett & Lee (1998). A more detailed analysis of multiple classifier from the point of
view of the discussion in section 9.5 can be found in Amit & Blanchard (2001).

The second area of research is more specific to computer vision and involves identifying what are the
appropriate predictors to be used in the shape and object classifiers. What functions of the data will have
appropriate invariance properties on one hand, and discriminatory power on the other. Descriptions of
different types of local features can be found in books on computer vision such as Haralick & Shapiro (1992)
and many proposals for local features can be found in recent work such as Wiskott et al. (1997), Malik &
Perona (1990). Any form of binary feature can be incorporated in the methodology described in this chapter.
The binary aspect is crucial for the ‘spreading’ operation in the context of absolute arrangements, or for the
definition of the relational arrangements. In principle features with continuous outputs could be quantized,
each quantile serving as one form of binary feature. Alternatively continuous outputs can be maximized over
a neighborhood, as a generalization of ORing. This has been proposed in Riesenhuber & Poggio (1999).

Much work has also gone into identifying functions of the data which are invariant to geometric transfor-
mations. In particular various functions on distances and angles between specific points which are entirely
invariant to certain groups of linear transformations. An extensive treatment of such methods can be found
in Reiss (1993). These methods are based on prior localization of very particular landmarks on the object
and do not address the stochastic aspect of images which precludes such precise localization based only on
local information. One could view the use of multiple flexible arrangements of robust local features as an
attempt to adapt such ideas to a more realistic view of the data. This adaptation however means losing full
invariance. The shape recognition methods described above, as the detection algorithms described in earlier
chapters, are not fully rotation invariant, nor are they fully invariant to other linear deformations.

Another interesting approach to the classification of characters which attempts to deal explicitly with
invariance to linear and non-linear deformations is described in Hastie & Simard (1998), and Simard et al.
(2000). The idea is to implement nearest neighbor classification, or approximations to nearest neighbors
using a deformation invariant distance. The distance is essentially based on the linearized two dimensional
template matching, described in Chapter 5. The distance betwee a sample image and a training example from
a given class is measured after the optimal deformation between the two is computed. A very low dimensional
space of deformations is used. It is very computationally demanding to do this with respect large numbers
of training examples, so the authors desribe a method for creating smaller numbers of prototypes for each
class, essentially centroids of the training data of each class, computed using the deformation distance. The
method still relies on preprocessing of the data into fixed size images, and uniform gray scale ranges.

The most succesful hand written character recognition reported to date can be found in LeCun et al.
(1998). The classification tool used are multi-layer feed forward neural networks based on the raw pixel
intensity input. Although the authors emphasize the fact that very little is done in terms of design of features,
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and that everything is left to the training procedure, the actual architecture and constraints imposed on the
network are of primary importance and interest. Due to the enforcing of translation invariance of the network
weights at certain layers, and blurring and subsampling in other layers, the network ends up producing a
sequence of feature detectors which are then in some sense ‘OR’ed to allow for local invariances. The layers
involving translation invariant weights are called convolution nets. If instead of clasification trees we had
used a feed-forward network based on conjunctions of edges, the resulting network would be qualitatively
very similar to the one reported in LeCun et al. (1998). The difference being that we would have hand
designed the input level weights defining the input convolution network, as well as the weights defining the
second layer convolution network. We revisit this issue in Chapter 11 where we design a biologically plausible
network for detection and recognition. The classification rate reported in LeCun et al. (1998) 99.2%. This
is a more powerful result than the one reported here because it involves testing on the additional part of the
NIST dataset produced by high-school students and exhibiting a larger degree of variability. An additional
aspect of the work described in LeCun et al. (1998) is the parsing of character strings, i.e. zip-codes. We
will discuss that aspect in Chapter 10.

Two aspects are clearly missing from the experiments described above, which could easily be incorporated
in the same framework, both of which may also help with the sensitivity to clutter encountered earlier. The
first is the use of features from more than one resolution. It is possible to extract edges from the data
both at the original resolution and at lower resolutions and use them all in growing the trees. The second
aspect which has been explored in the literature is the use of ‘parts’, see Shapiro (1980), Brooks (1981), and
Haralick & Shapiro (1992) for an extensive review. Usually parts are given a very clear semantic meaning
such as ‘loop’ or ‘crossing’ or ‘ending’, or a generalized cylinder in 3d. One expects to find a loop in an 8,
but not in a 4. However the description of a loop would need to be very flexible if it were to ‘hit’ all possible
8’s, and then probably loops would be found in many other places where they are not expected, including
in some 4’s. However if we view loops just as another generic object being detected as described in Chapter
8, then it becomes a feature detected at certain locations. It would have certain statistics on the different
classes which would affect its use in the classification trees. It is a more global feature than the ones used up
to now and perhaps bears more discriminating power. We will see some pointers to this in the next Chapter.
Fully incorporating features which are more global and involve a prior detection process into classification
appears to be a promising research direction.



Chapter 10

Scene analysis: merging detection and
recognition

The object detection algorithms described in earlier chapters are dedicated to finding instances of a particular
predefined object in a scene. On the other hand the input to the classification trees in Chapter 9 was an
image in which the object is more or less centered and not much else is present. What should be done when
faced with a scene containing several tens from a collection of hundreds or thousands of objects? If for each
object we had a very accurate detector with extremely low false positive and false negative rates, we could
in principle run each such model and obtain a labeling of all the objects in the image. However this would
undoubtedly be a very inefficient approach.

As discussed in the Introduction the prevailing paradigm for analyzing complex scenes assumes an initial
‘bottom-up’ stage of segmentation which does not employ any prior information on the object class or classes.
This stage provides candidate regions of objects in the scene which should in principle include the object
and not much more. The regions would subsequently be fed into a classifier.

We will explore a different approach in which the initial processing stage always involves detection of
a sparse model. However the detector is now designed to detect more than one particular class, it is a
detector for a cluster of objects which may contain subsets of some classes and the entire population of other
classes. The detection provides an estimate of pose with which data in a region of interest in the image
can be registered to the reference grid. This registered data is then classified into one of the several classes
in the object cluster. Even though the detector we use is less specific, it still selects only a small number
of candidate poses for further processing, determined by the shape information encoded in the model. The
advantage over bottom-up processing is that even if parts of the object boundaries are ambiguous, say the
object is partially covered by another, and segmentation merges the two into one region, or a lighting effect
creates an artificial boundary inside the object, the detector can still identify an approximate pose for the
target object and thus provide reasonable input into the classifier. Another advantage is the following. The
detection algorithm uses complex features such as edge arrangements which are rare in the background. If
these are the local features being registered to the reference grid and used to classify there is much less
clutter in the neighborhood of the object.

In the next section we illustrate these ideas in the context of detection and recognition among three
different chess pieces in a real image. Following that we explore detection and recognition in scenes produced
with symbols, both artificial X TEX scenes and zip-codes. Finally in section 10.3 we discuss possible strategies
for creating object clusters in a more systematic way.

172
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Figure 10.1: The prototype image of three chess pieces. Overlayed on the prototype are the three pose reference
points used to register the object to the reference grid.
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Figure 10.2: Samples of randomly perturbed prototypes of the three objects

10.1 Classification of chess pieces in gray level images

We study a very limited problem of detecting and recognizing among three different chess pieces: a knight,
a rook and a queen, all black. The difference between the queen, the bishop and the king at the resolution
of images we acquire was too small to obtain reasonable discrimination. One prototype image is acquired on
a flat background for each of the three objects as shown in figure 10.1.

Each of the prototypes is perturbed with a sequence of 100 random affine maps to produce a database for
training a sparse model and a set of classification trees. In terms of the production of the training set, this
is the very same procedure used for the ITEX data in the previous chapter as well as for the clip detector:
one prototype is used to produce a small sample for training. Samples of each are show in figure 10.2. The
coordinates of the three pose reference points chosen on the prototypes are mapped according to the random
affine map to produce three anchor points for each of the perturbed images. Edges are extracted from each
of the 300 perturbed images, 100 per class, and re-registered to the reference grid. This data is then used
to train a sparse model for the union of the three classes. We use features with three edges, a center edge
and two additional edges, (n, = 2,) requiring each feature to be present in at least 50% of the data. These
features will be used for classification as well so we take as many as are found, i.e. one for each 3 x 3 region
in the reference grid, yielding 30 features. The threshold 7, for the number of hits to declare a detection,
was set to 17, by finding the largest value with no false negatives on the training data. The local features
obtained in the model are shown in figure 10.3. The model we observe is some combination of common
elements we would obtain from producing separate models for the three different pieces. In figure 10.4 we
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Figure 10.3: The 42 model features obtained for the combined class of rooks, knights and queens

show several detections of this model on training data from the 3 classes. Note in figure 10.4 that due to
the low threshold a given instance of an object may be hit with several detections yielding several different
poses. We need to keep this in mind when training the classification trees.

The detector is run on the training data of the three classes. For every training image we register the
feature data to the reference grid, for each detection obtained in terms of the detected pose, using equation
8.2. In this case the data consists of all instances of the 30 features used for the detection. Thus if a detection
hits the upper part of the shape the registered data concentrates on the lower part of the reference grid,
and vice-versa if the lower part of the shape is hit. This is illustrated in figure 10.5 where the registered
locations of 2 of the 30 features are shown for the detections on the rook in figure 10.4. Note that we have
constrained the reference grid to a 60 by 30 window around the three reference points. This allows us to
limit the clutter to the close neighborhood of the detection. The labeled and registered local feature maps
obtained from training data are used to produce fifty randomized decision trees using absolute arrangements
and a spreading parameter s = 5.

In figure 10.6 we show a detection and classification on an image with a rook. The rook is placed on
a wood texture which responds to the edge detectors in many locations. Despite the fact that to our eyes
the rook appears perfectly well separated from the background, in terms of the initial edge input to the
algorithm, there is significant clutter in the neighborhood of the object. The left hand column of 10.6 shows
the locations of horizontal and vertical edges of the two polarities. The lower three panels of the right hand
column show the locations of three of the edge arrangements in the model. The density is significantly lower.
It is possible to employ other complex local features for classification, however from the computational point
of view it is very convenient to use features which have already been detected.

In figure 10.7 we show registered local features (0,4,12) from the region of interest around the detection.
Despite the fact that these features are less frequent they still produce noise in the background which can
potentially confuse the classifier. Constraining the reference grid to a narrow window around the three pose
reference points helps but can not entirely solve the problem, see for example the registered data for feature
0. Moreover constraining the window too far will lead to a loss of important information for classification. In
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Figure 10.4: Hits of the detector on a sample rook, knight and queen

figures 10.8, 10.9 we show some additional examples of classified detections, including some misclassifications.

First note that classification is invariant to a range of variations in scale, rotation and other transforma-
tions occurring due to the change of the position of the object relative to the camera. The reason for the
misclassifications are usually quite apparent. For example in many cases if some long dark vertical object
is standing behind the rook it will be misclassified as a queen which has no horizontal structure at the top.
If a dark structure is present near the upper left hand part of the rook it will be misclassified as a knight.
In addition there are false positives which do not correspond to any of the three pieces. The human eye
is rarely fooled by such problems. This is probably due to two factors. At the low level the visual system
probably employs a richer and more powerful collection of local features not solely based on edges. At the
high level we are probably able to simultaneously classify other objects in the immediate neighborhood of
the piece and thereby provide more convincing explanations of the data.

Further analysis of the output of the classifier is always possible. One of the deformable models for the
identified class can be fit to the data in the region of interest in order to obtain more detailed instantiation
information. Furthermore an upper bound on the fit of each model to examples of the correct class can be
estimated from training data. Any fit above this bound is rejected. We have not implemented such a step
in the current experiments.

This form of processing can also be used to solve ambiguities. Note that the output of the multiple
classification trees consists of a weight on each of the classes. If other classes have weight close to that of
the mode it may be of use to check each of these candidates in terms of a more detailed model.

Some degree of rotation invariance in detection and classification is apparent, but these are limited and
the algorithm will fail with significant rotations in the plane of view, or rotations around the vertical axis
of a piece, such as the knight, which is not rotationally symmetric. In the present context, the opposite
orientation of the knight would have to be treated as a separate object in the collection.

10.2 Detecting and classifying characters

IETEX scenes

In this section we report similar experiments with 62 IATEX symbols (10 digits, 26 upper case and 26 lower
case letters,) and handwritten zip-codes. The only difference with the previous section is that we use a
sparse model trained on a particular class, in this case the symbol ‘0’, as opposed to the entire collection
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Figure 10.5: Top: Registered local features 0 and 4 for the two detections on the rook in figure 10.4. Bottom: The
data after spreading the features in 5 x 5 neighborhoods prior to classification.

of classes. The motivation here is that training with the union of all the classes would result in a very
non-specific model with numerous false positives. There is not much in common in terms of the shapes of all
62 symbols. One alternative is to train for one class and then resolve the ambiguities due to false positives
using a classifier. The sparse model for the ‘0’ is trained with 32 random samples of the ‘0’ class. From this
sample 32 local edge arrangements were found of complexity n, = 3. The threshold 7 = 24 is needed to keep
all training samples of the ‘0’. This detector is then run on examples from all 62 classes (32 of each) with
a threshold .8 « 7 = 19. This is quite a loose threshold permitting quite a number of detections on other
classes. Detections are registered to the reference grid, and multiple classification trees are trained, using
the local features from the ‘0’ model. In the first histogram in figure 10.10 we show the distribution over the
62 classes, of the number of training examples (out of 32) hit by the ‘0’ detector.

In figure 10.11 we show results on some artificial IXTEX scenes. The entire procedure of detection and
classification on images with approximately 30 symbols takes on the order of 250 milliseconds on the PEN-
TIUM IIT 700Mhz. There are more detections present then shown in the image. Detections are clustered
according to the procedure outlined in Chapter 8. However now, to represent the cluster, we no longer
choose the detection with largest number of detected local features, rather the choice depends on the output
of the classifier. Recall that classification is performed with 50 randomized trees which are aggregated as in
equation 9.4. Each detection in the cluster is classified according to the mode of the aggregate. We choose
the detection with highest weight at the mode. This in some sense is the detection in the cluster which is
classified with most ‘confidence’. Since every detection is classified prior to clustering, there is more infor-
mation available which is not used in the present context. For example the actual weights on the different
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Figure 10.6: Right column: Locations of horizontal and vertical edges of two polarities in the image. Left
column: Top: classified detection. Locations of local features 0,4,12 of the sparse model in the image.
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Figure 10.7: Registered local features 0,4,and 12 on the reference grid from around the detection shown in figure .

classes provided by the aggregates, or the class labels assigned to other detections in the cluster. All these
could help disambiguate confusions and reduce the number of errors.

Zipcodes

For the zip-code experiment, a ‘0’ detector is trained on 1000 zeros from the NIST dataset. Due to an
erroneous setting of the scaling of the training set, the detector was produced for a ‘0’ half the size of the
standard 32 x 32. This detector is therefore hitting loops and parts of loops in the larger images. The detector
is run on a subset of 20000 images from the NIST dataset, from all classes, to produce the data for training
the classification trees. In this case the edges and not the edge arrangements were used for classification.
Twenty randomized classification trees were trained. Some results of detection and classification on zip-
code images are shown in figure 10.12. This does not represent the final analysis of a zip-code, merely the
classification of the detections of the ‘0’ detector.

In some of these images one could have easily implemented a prior segmentation using some simple
principle. This is not always the case, and any bottom-up segmentation of zip-codes must be able to identify
the misleading cases. One example is shown in figure 10.13. Here some digits are joined together. We
purposefully show all the detections in this image with no clustering to illustrate the fact that there is
information to be obtained from all detections not just those which end up representing a cluster.

There are still plenty of errors in these initial detection and recognition experiments. Less so if tested on
isolated digits. For example the same procedure was applied to 10000 USPS digits. On each USPS image all
detections are classified and if any one of them is correct the digit is counted as correctly classified. Of the
10000 images there was a detection in 7416 and of these 93% were correctly classified in this manner. The
large number of detections of the ‘0’ detector is due to the fact that the model was trained for ‘0’s half the
standard size. With the lower threshold any part of a loop is detected, for example the upper part of a ‘4’.
It appears that we have used something between a global model for a particular object, and a local feature.
The ‘0’ detector trained on the smaller scale can be viewed as a generic part that appears in many classes,
however when detected this part helps determine the location and scale of the object, as opposed to a local
feature which in itself can only loosely indicate location.

Bear in mind that these results are produced through direct implementation of the detection and classi-
fication procedures. Both the detection and classification models are trained on relatively small samples of
the NIST and are being tested on the more variable USPS database. Thus their appears to be some promise
in such a top-down approach in which scene analysis is guided by some form of sparse object model which
facilitates useful groupings of local features. It is important to recall that no prior segmentation is performed
to identify objects, and the computation time is on the order of a second or less.
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Figure 10.8: Example of detections and their classification.
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Figure 10.9: Example of detections and their classification.
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Figure 10.10: The histograms show the distribution over the 62 classes of the number of samples (out of 32) hit by
the corresponding union of detectors. For example with the ‘0’ detector alone only six classes are hit at above 28
samples out of the 32. With all 4 detectors 20 classes are hit at above 28 samples out of the 32.

10.3 Object clustering

A fundamental question arises in this context. How should the sparse detection models be constructed so
that on one hand all elements of all classes are detected by at least one detector, and on the other hand
the number of detectors and the number of false positives on generic background is minimized. This can
be formulated as a clustering problem. We want to form object clusters which cover the entire population,
minimizing the number of clusters on one hand, and the ‘diameter’ of the clusters on the other. Here the
term ‘diameter’ is used figuratively. Clusters with a large ‘diameter’ will yield detectors with many hits and
false positives. Note that there is no particular need for the clusters to be disjoint. However it is obviously
wasteful to detect the same object class multiple times.

Another question is how to produce the final scene interpretation. As we have seen the detectors hit
different parts of the object and the same object can be classified in several ways. Some classified detections
will be inconsistent as can be observed for example in the top left zip-code image. There needs to be a
clearly defined mechanism to generate candidate scene interpretations from the set of classified detections,
and to rank them according to some cost function. An interpretation involves making decisions regarding
inconsistent classifications, deciding which objects are occluded etc. This also requires deciding what are
exactly the ‘on-object’ pixels for a particular classified detection and is closely related to final processing
perhaps using some of the deformation algorithms described in earlier chapters. Solutions to the second
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Figure 10.11: Synthetic BTEX scenes with classified detections of the ‘0’ detector.

question of scene interpretation are beyond the scope of this book, although hopefully we have presented an
array of tools which can contribute towards the solution. In the discussion section we briefly mention some
scene interpretation methods dedicated to ‘linear’ scenes such as zipcodes and other images of text.

In the next section we offer some suggestions for dealing with the problem of object clustering. We
describe two possible approaches to object clustering. In the first we do not assume all classes are presented
from the start. Classes are learned sequentially. In the second approach we assume all example ares present
at the initial stage and clusters are created using classification trees.

Sequential object clustering

Classes are presented sequentially in some predetermined order. A sparse model for the first class is trained
and the detection algorithm corresponding to this model is applied to samples from a number of new object
classes as demonstrated in the previous section. Those data points from the training set which are hit form
a cluster. The cluster is entirely defined in terms of the detector and the threshold used. A lower threshold
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Figure 10.12: Detection and classification on zip-codes

Figure 10.13: All classified detections on a zip-code with no clustering
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produces a larger cluster. The training data can be be used to estimate the conditional probabilities on class
within this cluster.

Some classes will be fully detected and need not be addressed any more. The original ‘0’ detector serves
as their detector as well. Other classes are partially detected and will need an additional detector to fully
cover all samples. One approach is to produce a detector for a class which is poorly detected by the ‘0’, for
example the ‘4’ (we skip the ‘1’ because it has very little structure). Run the identical procedure with this
detector. Identify the training data in the new cluster and produce appropriate classifiers. There will be
overlaps between the two clusters, meaning that some data will be hit by the two detectors and may even be
classified in two different ways. In the second histogram in figure 10.10 we show the distribution over the 62
classes, of the number of training examples (out of 32) hit by the ‘0’ or the ‘4’ detector, namely the union
of the two clusters. Some progress has been made in terms of covering the entire population. The third and
fourth histograms shows the same information for the union of the ‘0’, ‘4’, ‘7’ detectors and of the ‘0’, ‘4’,
‘7" and ‘a’ detectors.

One hopes that the number of models needed to cover the entire population grows much slower than the
number of classes. In the context of view-based 3d object detection and recognition each object is represented
by a number of 2d models, namely each 3d object generates a number of 2d classes, corresponding to different
viewpoints. If the number of models grows linearly with the number of 2d classes we are headed towards
an explosion in the number of required models. Hopefully different views of different objects will merge into
common clusters and this explosion can be avoided.

This clustering approach does not require having all the training data for all the classes available ahead
of time, and can be viewed as a crude way to mimic sequential learning of new classes. However it is very
redundant in that many data points will be hit by more than one detector. In other words the clusters are
far from disjoint.

Tree based class clustering

An alternative approach to creating the clusters is using the classification tree machinery introduced in
Chapter 9. We start with a simplifying assumption that all detectors are produced with a fixed set of
feature types, such as for example all two-edge arrangements such as those defined in Chapter 9. Grow a
classification tree, or an unsupervised tree, ignoring class labels (see section 9.1, of moderate depth on the
training data, using absolute arrangements, as described in Chapter 9. Each terminal node of the tree defines
an object cluster. These are images of various classes which have answered the same way to a sequence of
queries and hence necessarily have certain similarities in terms of shape. They all carry the same absolute
arrangement. In fact the queries along the path to the terminal node can serve as part of the model which
is subsequently derived for the cluster. More than one tree can be used to obtain a more robust covering of
the population.

Once a model is determined for the data at a terminal node, a classifier is trained to discriminate between
the classes in the cluster. The detector is applied to each of the training images, the labeled data is registered
to the reference grid in terms of the detected pose, and then multiple randomized classification trees are used
to produce a classifier. Note that in this context the depth of the clustering tree determines the number of
clusters. By definition the set of terminal nodes of the tree covers the entire training set. This is in contrast
to the previous clustering method where there was no way to predetermine the number of clusters. The
deeper the tree the larger the number of clusters on one hand, but then the associated models are more
specific and one would expect a smaller number of false positives from this collection of models. The hard
question is what is the appropriate balance between these two variables.

It is interesting to note that this approach closes the loop between sparse models and classification trees
based on arrangements of local features. A detection model is based on a cluster defined by a classification
tree, and the registered data around a detection is subsequently classified with additional classification trees.
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10.4 Bibliographical notes and discussion

In this chapter no model is presented for the layout of the objects in the scene or their number. Typically
there is more contextual information which can be exploited. Zip-codes are a very clear example where
there is a fixed number of objects in the scene, and there are very clear constraints on how the objects are
arranged. Given a set of multiple trees trained to classify among the digits, any candidate slice of the zipcode
image can be classified, and also assigned a ‘confidence level’ according to the magnitude of the mode of
the aggregate distribution Apn(c) (see equation 9.4.). A range of slices covering some locations and slants
is determined for each of the five digits. Dynamic programming based on the confidence levels of the slices
finds the optimal set of five slices. The labels assigned to these slices have already been recorded and provide
the outcome. This is the outline in the approach taken in Wang (1998). In LeCun et al. (1998) a much more
sophisticated version of this idea is implemented. A bottom up over-segmentation of the image is performed,
with certain segments possibly containing subsets of the digits. Dynamic programming is now performed on
possible individual segments or consecutive pairs. The system is imporved by training classifiers with ‘parts’
of other digits in the image, as well as training the weighting of the different components of the cost functions
of the dynamic programming using labeled zipcodes, where the answer is known. Another interesting idea
suggested in this work is using the classifier to determine candidate segments. The classifier is run on the
entire scene and locations with high confidence become candidate segment for the dynamic programming.
Other ideas on the use of high level knowledge on the layout of the scene has been extensively exploited in
the document analysis community, see Nagy (2000).

Typical images which our visual system encounters do not have such clear structure. Humans can quickly
and succesfully parse a scene with digits scattered about randomly with various sizeds, shapes and occlusions.
It is therefore of interest to pursue the issue of scene analysis using less restrictive models from the ‘linear’
ones described above.

It is important to reiterate that each detection carries with it much more information than has actually
been used. For example the precise locations of those features detected by the detector. So far we have
classified by registering all features found in the region of interest to the reference grid. It may be that there
is useful information in the particular features found by the detector. Other information comes in the form
of a match to a deformable model. In Chapter 8 we showed how more detailed models can be matched to
the object following detection. Quantities measured in terms of these matches may be useful in pruning out
false positives and making final determinations in classification.

The sparse models used here are quite successful in detecting objects with reasonable numbers of false
positives. These models make a ‘leap’ directly from the local features to the global models. With hundreds of
possible local features and hundreds of possible locations on the reference grid the number of possible models
is enormous. The question is whether a relatively small number of models can cover a large collection of
object clases without being too ‘trivial” in the sense that these models end up having numerous false positives.
In Chapter 8 we mentioned the ideas proposed in Biederman (1995) whereby objects are represented as coarse
arrangements of generic parts. It may be that an intermediate level is necessary, involving a rather small
number of generic shape models, much like the ‘0’ model used for the zip-codes, which effectively detects
small loops. These generic shape models are then used to produce the entire library of object models. The
object models could be even coarser than the current sparse models, since the components are more complex.
For example they could be defined on a much coarser reference grid. The chance of a particular configuration
of these components occurring at random is very small. It is possible that then detection is limited to very
simple configurations of these generic shapes. The difficult question is what price is payed in terms of false
positives, if these generic components are to be stable on the objects.
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Neural network implementations

There are fundamental differences between the form of computation performed in a serial computer and that
performed in a massively parallel system of very primitive computational units. On a computer we can learn
a model for faces or any other object using our favorite technique, the model is stored using whatever complex
data structures we need, and then by brute force, using the power of random access memory, the model can
be applied at every shifted location and scale to decide if an object is present there or not. In a parallel
system which mirrors the visual scene, with a unit or multiple units for every pixel location, processing the
data in its neighborhood, the question is how to shift a model learned and stored in some central location
to all other locations in the system.

The dominant paradigm for learning in neural systems is through modification of the value of the connec-
tions between pairs of units. If say the connections at the central location of the system have been modified
to classify face vs. non-face, we can hardly imagine the values of these connections being shifted in some
mysterious way to all other locations of the system. Moreover what happens when we want to detect a clip
and not a face. How does the entire parallel system know to change so as to detect clips and not faces.

Turning to classification, assume that the connections at the central location have been modified so that
we can classify among the ten handwritten digits. What if a digit appears at a shifted location? The visual
system can still recognize the digit without actually directly looking towards it, as long as it is not too
far out in the periphery. Again we ask, how does the classifier encoded in the central location get shifted.
One possibility is that the classifier is learned separately at each location. The appropriate connections are
modified at each location in the system using training data presented at that location. This is not a viable
solution since we can very well learn an object model or a classifier at one location and scale and then
recognize it anywhere else in the scene.

Both the sparse detection models and the recognition algorithms described in the previous chapters are
based on simple computations in terms of simple binary local features. In this chapter these ingredients will
be used to construct a parallel system able to overcome the difficulties described above. The system will
integrate learning of individual object models for detection, learning of classifiers and the implementation of
detection and recognition over the entire visual scene. Neurons and their synaptic connections are modeled
at a very simplistic level, avoiding the detailed complexities of their operation, however the entire system
does offer a ‘global” hypothesis as to how the visual system learns objects and detects them and how different
object classes are recognized. After describing this network architecture some analogies to the architecture
of the biological visual system will be discussed.

186
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Figure 11.1: k pre-synaptic units feeding into v. The output of all units is binary 0/1. The output of v; is obtained
by taking the thresholded sum of the output of the units w;.

11.1 Basic network architecture

Neurons and synapses

The building block of the model is a binary neuron v receiving input from binary neurons u; through directed
synapses with efficacies J;;, as illustrated in figure 11.1. The input connections from the neurons u; are called
afferent connections of v;. Each neuron can either be on or off, denoted 1 and 0 respectively, and has an
associated threshold #. The neuron is on if the local field of the neuron, namely the weighted sum of its
inputs, is above the threshold 6. Specifically

1 if % widi >0
oy = 4L Dty > (11.1)
0 Otherwise.

The local field h; of the neuron j is defined as
k
hj = ZuiJij (112)
i=1

Layer connections

The network architecture has the form of layers of neurons feeding into other layers. Different neurons can
have different thresholds, however in order to maintain the simplicity of the system, neurons of the same
layer all have the same threshold. In the material presented below there are no connections within a layer,
known as recurrent connections. Such connections are a crucial component of the real neural system and
have a very important role to play in stabilizing the system, and enabling consistent memory recovery, but
are beyond the scope of this chapter. Material on recurrent mechanisms can be found in Amit (1989), Brunel
et al. (1998).

In figure 11.2 we see a schematic diagram of a number of layers with connections between them. The
arrows represent synaptic connections and indicate the direction information is flowing. Given two layers A
and B we denote by A—B synapses, those directed from layer A to B. We will also assume that the maximal
synaptic efficacy for A—B synapses is constant at JAZ. Input presented at some point in the system, for
example layer A in figure 11.2, is assumed to propagate in an orderly fashion from layer to layer one step
at a time. This is a gross over simplification since the actual dynamics of a neural system is much more
complex and chaotic, with neurons typically firing asynchronously at random times.
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Figure 11.2: A schematic diagram of layers of neurons feeding into other layers. The efficacies of A-B synapses are
all fixed at JAB7 and efficacies of B~ synapses are all JBC . Neuron thresholds in B are all #5 and in C are all §c.

Visual input: edges and edge arrangements

The visual input layers are organized retinotopically, meaning that they form a two dimensional grid cor-
responding to the entire image lattice L. These layers will consist of coarse oriented edge detectors of the
same type described in Chapters 5 and 6. For any retinotopic layer B we write B(xz) = 1/0 according to
whether the unit in B corresponding to location x € L is on or off. We thus have eight retinotopic layers
E.,e=1,...,8, where a unit E.(z) =1 if an edge of type e is found at location z in the image.

The next system of layers will be wired to compute the locations of all N = 256 two-edge arrangements
consisting of a center edge and one additional edge as described in section 6.4. This particular collection
of simple two-edge arrangements was also used as input to the classification trees in Chapter 9. Let R =
{R1,...,Rn} be the collection of regions used to define the edge arrangements, see section 6.4. For each
edge type e define a system of retinotopic layers Ce , k=1,...,m. A unit x € C, j receives input from the
region x + Ry in E.. It is on, i.e. Cei(z) =1, if any unit in = + Ry, is on in E., namely if

E, =1.
jax, Bely)

Let the synaptic efficacies between layers E and C all be of value JF€ and let the threshold of all neurons

in C be §c = JPC — e. This implies that input from only one pre-synaptic neuron is sufficient to activate
the neuron in C.

The two-edge local features are computed in retinotopic layers F,,a = 1..., N. Each feature « is defined
by a triple (e, €', Ri), where e denotes the type of the center edge, ¢’ the second edge which is required to
be present somewhere in the region Ry, relative to the location of e. Each x € F,, receives input from z € F,
and from z € C¢ i, and is on only if both are on,

Fy(x) = min(E,(z), Cer 1(2)).

Let JEF = J¢F = J and for the neurons in the F layers set the threshold to r = 2J — e. In this case
two pre-synaptic neurons need to be on for the unit in the F' layer to be on. The full system of E,C and F
layers is shown in figure 11.3.
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Figure 11.3: Retinotopic layers for detecting two-edge arrangements. Four FE layers detect edge locations. For each
E. layer there is a C. j corresponding to each Ry, k = 1,...m. All in all 4 x m - C layers. There is an F' layer for
each local feature. For feature a = (4,1, R1) each location z in the F,, layer receives input from the same location x
in C1,1 and in Ejy.
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11.2 Hebbian learning

The prevailing assumption regarding synaptic modification, formulated in Hebb (1949), is that it depends
only on the state of the pre-synaptic neuron a and that of the post-synaptic neuron b. There are many possible
ways to implement this general principle, see for example Hopfield (1982), Kohonen (1984), Amit (1989),
Fusi et al. (2000). In the current context we employ a simple version of the methods used in Amit & Brunel
(1995). Information learned by the system is coded exclusively in internal states of the synapses denoted
Sap, for a synapse connecting neurons a and b. The activity of the two neurons produces modifications in
the internal synaptic states which then translates through a transfer function into the synaptic efficacy.

If both neurons are on synaptic potentiation occurs, namely the internal state increases by c4. If the pre-
synaptic neuron is on but the post-synaptic neuron is off, synaptic depression occurs, namely the internal
state decreases by c_. The values of S, are always restricted between 0 and S;,q,. This is written in

compact form as
ASup = crugup — et (1 —up), if 0 < S+ ASw < Smaz, (11.3)

otherwise ASy, = 0.
The synaptic efficacies are simple functions of this internal state, i.e. Jup = J(Sqp) where

0 for S<L
J(S)= (2L J48 for L<S<H (11.4)
JAB for S>H
for some positive L < H and JAB, which is the maximal value of the efficacy of a synapse connecting two
layers A and B. If H = L the synaptic efficacies are binary with values 0 and JAZ only. If L < H there is
a ramp between the low value 0 and the high value JA5.

11.3 Learning an object model

Images from a training set for a particular object class are now presented to the system, registered to the
reference grid G. Think of G as a subgrid placed at the center of the image grid L. Those parts of the F’
layers corresponding to the region G feed directly into a module M. This component of the network is no
longer assumed to be retinotopic and is therefore called a module. Each unit in M receives input from one
unit in the G subregion of the F' layers. Thus M has a unit for each pair consisting of local feature o and a
location z € G, namely N x |G| units. In our particular example we will be using a 32 x 32 reference grid
and 256 two-edge features so that the number of units in M is Ny = 262,144. A unit m = (a, 2z) € M is on
if Fo(z) = 1.

Also feeding into M is an ‘abstract’ module A that we use to code object classes. For each class ¢ there
is a class subset A, of A, which is randomly selected, of fixed proportion P4. The set A, is used to code for
class ¢. While the system is learning the model for class ¢ there is some hidden ‘teacher’ which is able to
activate the subset A, through channels outside the visual system. Each unit in M receives input from some
random collection of units in A, of proportion P4jp;. We place random connections because these modules
are not retinotopically organized, and there is no preference for any particular connection. During training
the local features from a registered image of class ¢ are computed in F' and the corresponding units are
turned on in M. At the same time the units in A, are turned on in A, see figure 11.4.

Let m = («, z) be an activated unit in M. About P4 - Paps - |A| units a € A, are feeding into m and all
are on. The synaptic state Sg,, from each such unit is increased by c4 as prescribed in equation 11.3. The
synaptic state of any synapse connecting a unit @ € A, to a unit m € M which is not on is decreased by c_,
see figure 11.4. As examples of objects of class ¢ are presented the internal state of each synapse, connecting
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Figure 11.4: Left: Learning the object model. A. units are activated at the same time data from class c is presented
to F' and replicated in M. Dark solid arrows: potentiating synapses (pre- and post-synaptic neurons on.) Dark
dashed arrows: depressing synapses (pre-synaptic neuron on, post-synaptic neuron off.) Dotted arrows: no change
in synaptic state. Right: An object model learned for faces using two-edge features.

a unit a € A, to some unit m € M, is performing a random walk. The mean increment of this walk is given
by
5am = C4+Pm,c — C*(l - pm,c)a

where
Pm,c = P(Fa(z) = 1Y =¢)

is the probability of feature a occurring at location z for object class ¢. Let o = ¢_/cy, then after a large
number of presentations, for those units m with

Pm,c

m > o, Or Pm,c > L = pP. (115)

l1+o

the synaptic state Sy, will tend to have a value closer to Sy,qz, otherwise the synaptic state will have a lower
value closer to 0. If the efficacies are binary, it is possible to set the value of L = H in equation 11.4 in such
a way that when py,, . > p the synapse J,,, will be enabled with high probability. This system is learning
an object model as prescribed in the learning stage of the sparse model described in section 6.4. For each
training image all two-edge arrangements are computed and detected at all locations on the reference grid.
Those above some probability are recorded as part of the model. This learning mechanism is schematically
described in figure 11.4. The efficacy JAM is set so that the input into a unit m from afferent units in A, is
above threshold only if most of these units are on. Thus we take JAM ~ (05 — €)/(Pa - Pans - |Al), for some
small € > 0.

We have already defined the visual low level input obtained in the layers of oriented edges E.. High
level input telling the system which object to look for is given through external activation of a particular
subset A., which in turn, after training, will cause the activation of the elements m; = (a;, z;),i =1,...,n,
belonging to the model for class c. Ultimately this evoked model will drive a detection system which is
capable of applying the model at every location in the image. This is described in section 11.5. On the
right panel of figure 11.4 we show a model based on two-edge features trained on the face data. A schematic
diagram showing the connections between A, M, F' and F is shown in figure 11.5.

In the sequel it will be important that the same number of features/location pairs m; are activated for
each object model. However different object classes may have different numbers of activated model units,
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Figure 11.5: Network architecture. E layers - oriented edge detection on visual input. The two-edge arrangements
are computed in the F' layers. The center part corresponding to the reference grid G is replicated in the M and W
modules. The M module receives input from the ‘abstract’ A module. The A-M synapses are used to learn object
models. A receives input from W and the W—A synapses are used to learn classifiers.

corresponding to feature-location pairs m with probability p,, . > p. If all models are epxected to have a
fixed number n of features, using inhibitory units which receive input from the M layer and feed back into it,
it is possible to ensure that only a random subset of size n of the total collection of n. units remains active.
We will not describe the details of such a mechanism here, since it requires introducing some real dynamics
into the system.

11.4 Learning classifiers

The previous section presented a mechanism for learning object models by activating the units A. at the
same time that examples from class ¢ are presented at the reference grid. The two-edge arrangements in the
central area of the F layers are computed and activate the corresponding units in M. Now we turn to the
problem of recognition or classification which involves discriminating between different object classes.

While the object models are being learned, the same visual information is copied from the F' layers into
another module W which again has a unit (o, z) for every feature/location pair, i.e. N x |G| units. A unit
w = («, z) is on if any unit in some neighborhood of Ns(z) of z in F, is on. The radius s of the neighborhood
determines the degree of ‘spreading’ which was introduced in Chapter 9 and is important to ensure geometric
invariance of recognition over local deformations and some range of linear transformations. The W module
is also connected to A but now the synapses are directed from W into A. See figure 11.5. Each neuron in A
receives connections from a random subset of proportion Py 4 in W.

Hebbian learning

When an image from class c¢ is presented in the reference grid and the neurons in A. are activated, those
synapses connecting activated neurons in W to neurons in A, are potentiated. If w corresponds to a high
probability unit for class ¢, those synapses connecting w to units in A, will all tend to have a high internal
state after several presentations of samples from class ¢. When an object from another class d is presented
to the system a different subset A, is activated in module A. If w also corresponds to a high probability
unit in class d it will tend to be on during presentations of class d but the corresponding units in A, will be
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off. This is precisely the setting in which the synapses connecting W to elements in A. get depressed, i.e.
the internal state decreases.
For each unit w = («, z), let py . denote the probability of feature « in the neighborhood of z on class ¢

w.e = P( max F, =1|Y =¢).
Puc = P( max Faly) = 11Y = o)

We introduce an additional quantity g, which is the probability of feature o at location z on the set of
images not of class ¢
qQu,c = P( max Fa(y) = 1|Y # C).
YEN,(z)

Let P(c),c=1...,K denote the prior distribution on object classes. Finally let

- . ~ . . ﬁw,c
Pw,c = pw,cP(C)7 qu,c = Qw,c(l - P(C)) Pw,c = = .

w,c

(11.6)

The mean synaptic change for a synapse connecting a unit w to a unit a € A, is given by
5Swa = c+ﬁ’w,c - C—(jw,c

With a large number of training examples for each class, Sy, will move toward one of the two reflecting
barriers 0 or Sy,q: according to whether the probability ratio

Pue>0 ==, (11.7)
C+
or not. The resulting synaptic efficacies will then be either 0 or J"4 respectively. This is in contrast to the
situation for A-M synapses, where the only relevant information is the probability p,, . (except for the case
where a € A. N A4 which we ignore.)

After learning is completed, presenting an image from class ¢ at the reference grid will bring about the
activation of units in W, which in turn will cause the activation of units in A. The goal is to have the
number of units activated in the set A, to be larger than the number activated in other sets, thus signaling
the presence of class ¢, or the fact that the system has recognized the input as being from class ¢. The
number of units activated in each class subset Ay will depend on the value of J"4, on the threshold 64 of
units in A, on the statistics Py, 4, Guw,q¢ of the units w and on the particular image presented. In real data
sets the distribution of the quantities py,c, Gu,c,w € W, and hence of py, ¢, is highly variable among different
classes. See for example figure 11.6 where we show the 2d distribution of these pg probabilities for classes
‘0’ and ‘1’ of the NIST dataset with which we worked in Chapter 9.

The ratio 64 /J" 4 determines how many enabled units w € W need to be on in order to activate a unit
in a € A.. These are necessarily units for which p,, . > o, (defined in equation 11.7), otherwise the efficacy
Jwe = 0. As an example take QA/JX/[VA = 10, i.e. input from ten afferent units is sufficient to activate a
unit in A. Assume that in class ¢ there are 64 out of 262144 units satisfying p,,. > o. For each unit in
a € A let W, be the set of afferent units of a and suppose that Py a = .5 so that W, is half the size of
W, ie. |W,| = 131072. Since W, is a random subset, the expected number of units from W, satisfying
Pw.c > 0, is 32 (one half of 64), and the corresponding synapses will have efficacy JW4. Assume that for
each such unit p, . > .5, then upon presentation of an image of class ¢ the expected number of these units
which are activated is 16. Taking the various random fluctuations into account, with high probability the
actual number of activated units will be greater than 10 so that with high probability most units in A, will
be activated.

If on the other hand in class d there are only 32 features satisfying the inequality there is high chance
that upon presentation of an image of class d only a small number of units of A4 will be activated. There is
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Figure 11.6: pq scatter plots for classes ‘0° and ‘1’ in the NIST dataset. Each point corresponds to one of the
feature/location pairs= («, z). The horizontal axis represents the on class p-probability of the feature, and the
vertical axis is the off class g-probability.

a significant probability that the number of units activated in A4 will be less than the number activated in
some other subset Ay, leading to a high error rate for class d. Lowering ¢ in equation 11.7 will enable more
synapses from class d to have non-zero efficacy, but then units in A. will tend to be activated too easily.
One solution is to adapt the threshold of the units in A, to the particular statistics of class c¢. This however
would require quite a wide range of thresholds and violates our assumption that neurons in the same module
have the same threshold.

Field dependent Hebbian learning

An alternative is to modify the learning rule to depend on the local field of the post-synaptic neuron which
is recomputed for each training image. When the subset A, is activated together with the presentation of an
image from class ¢, potentiation of an afferent synapse occurs only if the local field h,, as defined in equation
11.2, is below (1 + k), where 6 is the threshold of @ and k, > 0. Formally the internal synaptic state is
modified as follows.

e, if he <81+ kp) and uy =1,u, =1
ASypa =14 —c_, fu,=1u,=0 (11.8)

0. otherwise

The transfer from internal synaptic state to synaptic efficacy, Jyq = J(Swa), needs to be computed at every
update step of training in order to calculate the local field h, = Zwa Jwallw-

Assume that for some a € A, at some stage of training, there are K afferent units wy, € Wy, k=1,..., K
for which the internal state Sy, o > H. The efficacies of these synapses are at the maximum value JWA4.
IfK=0(1+ kp)/JWA7 and if the particular units wg, k = 1,..., K are activated by the current presented
image of class ¢, the field h, will be at least 6(1 + k,). This prevents the internal states of any synapse
feeding into a from increasing at this presentation, not only those at high internal state. Other images of
the same class ¢ may not activate all the units wy,k = 1,..., K. The resulting field on a could be smaller.
For those units w that are activated by such images, potentiation can occur on Sy4, see figure 11.7. In
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contrast to regular Hebbian learning this form of learning is not entirely local at the synaptic level due to
the dependence on the field of the neuron.

The main purpose of field constraints on synaptic potentiation is to ensure that after training the average
field at a unit @ € A, is at approximately the same level upon presentation of an example of class c,
irrespective of the specific class distribution of feature probabilities.

For example after field dependent training is completed for the NIST database, a certain distribution on
the local field of units in Ay and A7 will be observed for examples from the correct and incorrect class. This
is illustrated in the two panels on the left of figure 11.8. The top panels show the distribution of the field
for 0 and 7 respectively, when the correct class is presented. The bottom two panels show the distributions
for the incorrect class. It is clear that the average fields are very similar for both cases. This allows us to
use a fized threshold for all neurons in A. Note that the separation between the correct and incorrect class
distributions does not reflect on the classification rate of the network as a whole as will emerge from the
discussion below. For comparison, on the right of figure 11.8 we show the histograms of the fields when
standard Hebbian learning is employed, all else remaining the same. The large variation in the location of
these histograms between the two classes precludes the use of a fixed threshold for both classes.

Field dependent Hebbian learning and feature statistics

An interesting question is which synapses does the field dependent Hebbian learning tend to enable. There is
some form of competition over ‘synaptic resources’ and if there are many units w connected to a unit a € A,
with a high value of py ., not all will be enabled. On the other hand if there is only a small number of
such units, the learning rule will tend to employ more features with lower ratios. In all cases those synapses
coming from units with a higher p,, . have a higher chance of being enabled after presentations of examples
from class c. Those with higher on-class probability p,, . may get potentiated sooner, but synapses with low
Dw,c but large p, . gradually get potentiated as well.

If the W—A synapses are binary the outcome of the potentiation rule can be approximated quite well as
follows. Sort all units according to their py, . ratio. Let p(y),. denote the sorted probabilities on class ¢ in
decreasing order of p. Pick as many features from the top of the sorted list as are necessary to obtain an
expected field of (1 + k).

e
>IN APy ~ 0L+ Fp). (11.9)
(w)=1

The number g. depend on the class c.
If the transfer function J(S) is not a simple step function but has a ‘ramp’, the situation is somewhat
more complex. However this allows the network greater flexibility and the classification rates are better.

Classification with multiple randomized perceptrons

After training is completed each unit @ € A, has a number of afferent connections, (approximately g. as
defined in equation 11.9,) from the set W, C W that have been enabled. Due to the randomized connections
from W to A these subsets W, are different. Now each unit a € A. can be viewed as a simple classifier P,
which discriminates between class ¢ and all the rest.

1 if Jwallw > 0
p, = b Duew, Jwattw > 02 (11.10)
0 otherwise.

In other words unit a is a simple two-class linear classifier, also known as a perceptron, see Minsky & Papert
(1969), Duda & Hart (1973). It is a very simple and constrained perceptron in that the weights on the
synapses are all positive and bounded by J"4. The classical perceptron can have negative weights on the
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Activated features

Activated features

Figure 11.7: Training of classification network. Top: class c is presented. Bottom: class d is presented. Activity
on the same synapses is compared. Thin solid line arrows: nothing happens in these synapses. Thick solid line
arrows: potentiating synapses (the local field is not too large.) Thick dashed arrows: local field at neuron is high
(three incoming enabled synapses) hence no potentiation, although both pre- and post-synaptic neurons are on. Thin
dashed arrows: depressing synapses, pre-synaptic neuron is on, post-synaptic neuron is off.
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Figure 11.8: Left panel: Field dependent Hebbian learning. Right: Hebbian learning. In each panel the top two
histograms are of fields at neurons belonging to class ‘0’ on the left, class ‘7’ on the right, when data points from the
correct class are presented. The bottom row in each panel shows histograms of fields at neurons belonging to class
‘0’, ‘7" when data points from the other classes are presented.

connections. Since there are many units in A., and since W, is selected randomly, we have produced a large
number of such simple classifiers with different sets of enabled synapses.

Visual input is presented at the reference grid and activates units in the W module through the E and
F layers. The W layer then causes certain units in A to be activated. Classification is represented by the
set A, with the largest number of activated neurons. Namely the class that received most votes from its set
of perceptrons.

This classifier based on multiple randomized perceptrons that are aggregated by voting is based on the
same principle that led to the production of multiple randomized trees in Chapter 9. The difference is that
each of the classifiers employed here distinguishes only between one class and all other classes joined together.
This aggregation of simple classifiers yields surprisingly good results given the limitations imposed on each
of the individual classifiers. For example on the NIST data set, with 10000 training samples, a network
with 3000 neurons in the A layer, taking A, to be of size 300, and P4 = .2, JV4 = 10, 4 = 100 and
in equation 11.8, k, = .2, ¢+ = 4 and c_ = 1, the classification rate is higher than 94%. If several such
networks are used with a simple boosting procedure we observe classification rates of 97.4%. Even for the
KTEX database with 293 classes such networks can reach classification rates near 80%, which although much
less than that achieved with trees is still very encouraging. Note that currently there is no neural analogue
of the boosting procedure. For more details on the performance of such networks and the incorporation of
attractor dynamics in the A layer see Amit & Mascaro (2001).

11.5 Detection

We now construct a network for implementing the first step of the counting detector described in Chapter 8.
Recall that all features used in any object representation come from a predetermined pool F of 256 features,
and the image locations of each feature in F are detected in the arrays F,,a € F. A location z in F, is on
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if local feature « is present at location z in the image.

When a particular class A. is activated in A, the corresponding units m; = (v, 2;),i = 1,...,n of the
model are activated in M. This is a result of the learning procedure for the object representation. Step I
of the counting detector described in Chapter 8 involved counting at each location x € L how many of the
regions x + B,, contained an instance of the feature a; for i = 1,...,n, see section 8.1. To implement this
in a network we define, for each local feature array Fi,,a € F, a system of retinotopic layers @, . indexed
by the locations z in the reference grid G. A unit at location = € @), receives input from the region x + B,
in F,, and is responsible for checking whether feature « is present in = + B..

For each unit m = («, z) in M there is a corresponding Q. array. In order for x € Q. to be activated
both m = (a, z) € M must be on and at least one unit in the region =z + B, in F,. Thus the model evoked
in M primes the appropriate (o, layers to a point where they could be activated if the appropriate input
comes from below, i.e. the F,, layer. In terms of synaptic efficacies this can be achieved by having a very
strong connection JM®@ = —§ from m = (« z) to each unit in Q,, . but very weak connections JE? of order
d such that |B,|0 < 0. Input from the region x + B, in F,, alone cannot activate x € Q.. It is necessary
for Qq,» to also receive input from m = («, z). This form of ‘priming’ is rather unrealistic since it assumes a
very strong input from one unit m € M to an entire ) layer of units. One solution is to have a population of
units corresponding to each (o, z) € M that collectively increase the input to all units in Q4 .. The system
of @ layers sum into a retinotopic detection layer S. A unit at location € S receives input from all Q..

arrays at location x, and is on if
Z Z Qa z > 957
aeF zeG

where g = 7 is the threshold for step I of the counting detector. Since the only units active in the @ layers
are those corresponding to a count for the specific sparse model activated in M, the active units in the S
layer are precisely those locations detected by step I of the counting detector.

Note that if we traverse the Qa, z layers at a fixed location x those units which are primed by input
from M constitute a shifted copy of the object model to the region x + GG. Thus the @ layers are the means
by which the model learned in the central M module gets shifted to all locations. Since the detector is a
simple thresholded sum with uniform weights all that needs to be ‘shifted’ is the information on the features
and their relative locations, and as we see this can be achieved by a fixed wiring. No connections need to
be changed. If the detector was more complex, even involving a weighted sum, it is not at all clear how the
weights in the sum could be shifted in a simple and transparent manner.

This detection network is described in figure 11.9. This is a clear example of location selection driven
by top-down flow of information. If a unique location needs to be selected, say for the next saccade (eye
movement), then picking z € S with the highest sum seems a natural choice and can be achieved through
competitive mechanisms within S using recurrent connections.

11.6 Gating and off center recognition

The visual system is able to recognize objects that are not present in the center of the visual field. So far
our recognition scheme assumed that the data was present in region G, located at the center of the F' layers
and fed directly into W. We now introduce an intermediate system of layers between F' and W whose role
is to translate data from subregions of the size of the reference grid to the center. The main assumption is
that all the information needed for recognition is stored in the synaptic connections between W and A and
cannot be physically transfered to other regions of the image lattice.

For every possible location y € L define a layer U, of units corresponding to feature/location pairs
(,2),a € F,z € G asin W. A unit (o, 2) € Uy receives input from the neighborhood N,(z + y) in Fj,.
Each of the U, layers also receives input from the corresponding unit y in the detection layer S. The unit
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Figure 11.9: Detection network: The sparse model is composed of four features at four locations. Neurons of class ¢
are evoked in the A module and turn on the model of class ¢ in M. Each feature/location («, z) € M pair provides
input to all units in the corresponding Q... layer (thick lines). The locations of the feature detections in the F'
layers, are shown as dots. They provide input to regions in the @ layers shown as double thick lines. At least three
local features need to be found for a detection. Each x € S sums all inputs Qa,-(z) and is on if this sum is above a
threshold 7. In this example the fourth feature does not contribute to the detection - it is not present in the correct

location.
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(a, z) € Uy is on if any of the units in a neighborhood Ni(z + y) of z+ y is on in F,, so that U, replicates
the information in the F' layers, in a window the size of the reference grid centered at y.

The input to W no longer arrives directly from F. Rather we set w = (o, z) € W to be on if the unit
(v, z) is on in any of the U, layers. Thus the activity in W at («, z) is the union of activities of (e, z) in all
U, layers. In the absence of any gating of activity in the U system, a complex image will generate a large
amount of incoherent activity in W, since each unit (o, z) € W is on if the corresponding unit is on in any
of the Uy layers, it is on if feature a is present anywhere in the visual field.

Only when a particular location is selected for attention, namely a particular unit in S is activated, does
order emerge. If a particular location y is activated in the detection layer S, there is an increase in input to
U, through priming mechanisms similar to those suggested for the @) layers. At the same time, any activity
in S will activate a pool of inhibitory neurons which feeds into the entire system of U layers. This inhibitory
input weakens the input to all neurons in U, and the only ones surviving with inputs above threshold are
the units in Uy, corresponding to the selected location, which also received input from the F' layer. We will
not describe the details of such mechanisms but refer the reader to Amit & Brunel (1997), and Mascaro &
Amit (1999), where inhibitory units are employed to achieve similar results.

Now the only input into W is therefore a translation of the data in the neighborhood of the activated
location y € S. This is a gating procedure which singles out a particular spot in the scene for classification.
Whereas the ) layers are primed by the detection model in M in terms of which local features should be
attended to, the U layers are primed by S in terms of which location to attend to. This network is shown in
figure 11.10. Note that if y is close to y’ the windows G + y, G + 3’ can have significant overlaps, hence the
need for replication. Otherwise the priming could occur directly in the F' layers.

The location y in S can be selected through the detection process described earlier, which is initiated
with a top-down flow of information through the model evoked in M. As discussed in Chapter 10 this may
be a coarse model representing an object cluster, and further classification is needed. Once W is activated
by the translated data from U, the connections from W to A produce a classification of the data. This is
essentially equivalent to the detection and classification scheme proposed in Chapter 10.

Alternatively the selected location in S can be the outcome of very primitive bottom-up processing. For
example, if only one object is present in the scene, its location pops out easily as a ‘blob’ at very low resolution
and perhaps there is a separate mechanism whereby S gets activated by such simple ‘blob’ detections as
suggested in Olshausen et al. (1993). During learning only one example of the object is presented in the
image at each presentation. This simple form of bottom-up selection provides a mechanism whereby the
information gets properly translated into W. Since only one object is present in the scene there is no
ambiguity. Another mechanism to overcome ambiguity during the learning phase is motion. If the learned
object is moving against a static background, again a simple mechanism is able to detect the location of
interest.

11.7 Biological analogies

The system described above provides a possible answer to the main questions posed at the outset. Learning
is achieved in a central module. The object models are simple lists of binary features at particular locations
on the reference grid. This allows for simple mechanisms for transmitting model information to the entire
field of view. Those units coding for the features appropriately shifted are primed and detection is achieved
by simple counting at the S layer. Implicitly we have achieved the implementation of a centrally stored
classifier (object/non-object) at every place in the scene, since all it requires is counting and thresholding.
It would be very hard to do so for more complex types of classifiers.

Recognition is achieved by selecting a particular location for processing, and translating the data to the
central recognition module. One could argue that detection can also be achieved by simply shifting every
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Figure 11.10: The translation and gating mechanism. Each region G + y is replicated in the layer U,, which also
receives input from y € S. The W module takes in all the activity in the U layers. y’ - selected location in S, primes
U, and suppresses the other U layers. The activity in W is then a copy of U,,. The system of @ layers is shown
as one line with the arrows representing the direction of information flow. The F layers feed into the @ layers. The
object model in M primes @, and the detected location 3’ in S is obtained by summing and thresholding the Q layers
at each location.
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reference grid window to the center and classifying object/non-object. This would be prohibitive in time,
since the windows would have to be processed sequentially, whereas detections occurs very fast.
The system also has interesting analogies to the biological visual system which we describe below.

Labeling the layers.

Analogies can be drawn between the layers defined in the network and existing layers of the visual system.
Edge detector layers E.,e = 1...,8 correspond to simple orientation selective cells in layer V1. As noted in
the introduction these layers represent a schematic abstraction of the information provided by the biological
cells. However the empirical success of the algorithm on real images indicates that not much more information
is needed for the task of detection and recognition.

The C. . layers correspond to complex orientation selective cells in layer V1. One could imagine that all
cells corresponding to a fixed edge type e and fixed image location x are arranged in a cortical column. The
only difference as one proceeds down the column is the region over which spreading (ORing) is performed,
namely the receptive field. In other words the units in a column are indexed by the displacement region Ry.
Indeed any report on vertical electrode probings in V1, in which orientation selectivity is constant, will show
a variation in the displacement of the receptive fields, see Zeki (1993), Hubel (1988).

The local feature layers F,, correspond to cells in layer V2 which respond to more complex structures as
reported in von der Heydt (1995) and Hedgé & Van Essen (2000). The @ and the U layers may correspond
to layer V4 cells. These have much larger receptive fields, and the variation of the location of these fields as
one proceeds down a column is much more pronounced than in V1 or V2, it is on the order of the size of the
reference grid.

Alternatively it may be that the @ and U layers are within V2. Without an hypothesis on the particular
shifting function of the neurons in these layers, one would not be able to distinguish the behavior of @
or U layer neurons from F' layer neurons. They all respond to more complex features perhaps with some
differences in the size of the receptive field. The difference would then be in terms of their projections to
higher levels of the system. Under this hypothesis V4 is simply a collection of even more complex features,
perhaps generic parts such as the ‘loop’ encountered in Chapter 10. These are hard wired retinotopically,
since they are useful in constructing object models and classifiers. Furthermore associated @ and U layers
exist within V4 as well.

Learning

Hebbian learning is the dominant paradigm in the neural network literature, see Hebb (1949), Hopfield (1982),
Amit (1989), Oja (1989) and Durtewitz et al. (2000). The idea that synaptic potentiation is modulated as a
function of the local field or firing rate of the post-synaptic neuron is still speculative, although some form
of regulation of synaptic activity as a function of the post-synaptic neural activity is reported in Abbott &
Nelson (2000). The attractive aspect of the simple classification network described above, together with the
field dependent Hebbian learning rule, is that real data can actually be successfully classified with such a
system. High classification rates on character recognition have been achieved with two-layer feed forward
networks (LeCun et al. (1998)), but the training procedure for such networks is not local and depends on
the optimization of a global function of all the synaptic weights.

The ‘abstract’ module A which codes for the classes could well be in parts of the cortex which are not
directly involved in processing visual input, or it could be present in higher levels of infero-temporal cortex
(IT). It could fit in a location which integrates inputs from diverse sensory modules such as prefrontal cortex
or receive input from such a location. The external activation of the units corresponding to a class, during
training, could be enabled by a non-visual stimulus which is well recognized. This can be viewed in the
context of reward type stimuli, arriving from some other pathway (auditory, olfactory, tactile) as described
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in Rolls (2000), potentiating cues described in Levenex & Schenk (1997) or ‘mnemonic’ hooks introduced in
Atkinson (1975).

Interaction between bottom-up processing and top-down information flow

Top-down and bottom-up processing are explicitly modeled. Bottom-up processing is constantly occurring
in the simple cell arrays E., which feed into the complex cell arrays C. . which in turn feed into the F' -
V2 type arrays. The priming from the M module or from the S layer determines which components of the
data flowing up from the bottom will be processed at higher stages. The object class which is evoked in the
main memory module A activates the object representation in M, and this determines which of the @ arrays
will have enhanced activity towards their summation into .S. Thus the final determination of the candidate
locations is given by an interaction of the bottom-up processing and top-down information flow. The active
location in the S layer determines which data flows from the U layers to the W module to be ultimately
classified in the A module.

Gating and invariant detection.

The summation array S serves as a gating mechanism for visual selection through its input into the U layers.
This could provide a model for the somewhat puzzling behavior of IT neurons in delay match to sample
(DMS) experiments, see Chelazzi et al. (1993), Desimone et al. (1995). Two objects are selected and neurons
in IT are identified which respond to the first and not to the second and vice-versa. The subject is then
presented with one of the two objects as a target to be detected - the sample. After a delay period an
image with both objects is displayed, both displaced from the center. The subject is supposed to saccade to
the sample object. After presentation of the test image, neurons responsive to both objects become active.
About 100 milliseconds later, and a few tens of milliseconds prior to the saccade, the activity of the neurons
selective for the non-sample object decays. Only those neurons selective for the sample object remain active.

At first glance the fact that both types of neurons are active at the start could be interpreted as the brain
having very quickly recognized the two objects, as well as having identified their location. In other words
two detection and recognition tasks had already been performed. This explanation is quite unlikely if, as
discussed above, we preclude the possibility of many classifiers operating simultaneously in parallel across
the scene.

Alternatively this experiment can be explained in terms of the network described above. Assuming the
recordings were made in A, at the outset there is no gating and all information from all U layers flows into W.
Sets of features characteristic of the two objects, and probably many others, are activated and subsequently
activate quite a number of class populations in A. This activation is essentially meaningless and conveys
very little information to the higher processing centers of the brain. However once the object model, which
was evoked in M at the sample presentation stage, is detected through the S layer, the detected position
gates the activity from the U layers. Now the resulting activity in W comes from a particular window in the
field of view, which contains the target. The only activity persisting in A corresponds to the subset coding
for that object. This corresponds to the weakening of the activity of the non-sample neurons in the DMS
experiment. Indeed this weakening signals that the information conveyed by the A layer, IT in this context,
has become meaningful, and represents recognition of the sample object.

11.8 Bibliographical notes and discussion

Detailed descriptions of the human and primate visual systems can be found in Hubel (1988), Zeki (1993)
and Tovee (1996). Recent physiological experiments on object recognition and detection in primates are
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summarized in a number of reviews, see Tanaka et al. (1991), Desimone et al. (1995), Desimone & Duncan
(1995).

The detection and recognition networks described in this Chapter were proposed in Amit (2000) and
Amit & Mascaro (2001). In the use of simple/complex layers there are important similarities with Fukushima
(1986) and Fukushima & Wake (1991). Indeed in both papers the role of ORing in the complex cell layers as
a means of obtaining invariance is emphasized. However there are major differences. In the detection model
presented here training is only done for local features. The global integration of local level information is
done by a fixed architecture, driven by top-down flow of information. Therefore features do not need to get
more and more complex as in Fukushima & Wake (1991). Namely there is no need for a long sequence of
layers. Robust detection occurs directly in terms of the local feature level which has only the oriented edge
level below it. With large numbers of learned complex features it is not clear how invariant detection can
take place.

The ideas behind the translation mechanism in the U layers are very similar to that of Olshausen et al.
(1993). Here translation is simply done through replication. By contrast in Olshausen et al. (1993) a more
complex mechanism is proposed involving control neurons which directly effect synaptic connections and
allow for an orderly translation of data directly from the F' layer to W. The proposal in Olshausen et al.
(1993) for selecting a location for translation is limited to very low resolution ‘blob’ detection. This could be
useful for direct bottom-up selection, but can not accommodate top-down selection due to a specific target
object.

The network learning mechanism proposed above consists of an input module coding for feature/location
pairs feeding into an ‘abstract’ classification module. The main activity during learning involves updating
the synaptic weights of the connections between the input module and the classification module. Such simple
networks have recently been proposed both in Riesenhuber & Poggio (1999) and in Bartlett & Sejnowski
(1998). In the former the classification module is a classical output layer with individual neurons coding
for different classes. This is insufficient for classification in relatively simple problems such as character
recognition. Populations of large numbers of perceptrons are essential.

In Riesenhuber & Poggio (1999) the input layer computes large range OR-ing, or MAX operations, of
complex features which are in turn conjunctions of pairs of ‘complex’ edge type features. In an attempt to
achieve large range translation and scale invariance, the range of OR-ing is the entire central visual field,
corresponding more or less to the reference grid. This means that objects are recognized based solely on
the presence or absence of the features, entirely ignoring their relative locations. With sufficiently complex
features this may well be possible, but then the combinatorics of the number of necessary features appears
overwhelming. It should be noted that in the context of character recognition studied here we find a
significant drop in classification rates when the range of OR-ing or maximization is on the order of the
reference grid size, see for example the experiments reported in 9.6 in the context of classification trees.
This tradeoff between feature complexity, combinatorics, and invariance is a crucial issue which has yet to
be systematically investigated.

In the architecture proposed in Bartlett & Sejnowski (1998) the input features are again edge filters.
Training is semi-supervised, not directly through the association of certain neurons to a certain class, but
through the sequential presentation of slowly varying stimuli of the same class. Hebbian learning of temporal
correlations is used to increase the weight of synapses connecting units in a recurrent layer responding to
these consecutive stimuli. At the start of each class sequence the temporal interaction is suspended. This is
a very appealing alternative form of supervision which employs the fact that objects are often observed by
slowly rotating them in space. This network employs continuous valued neurons and synapses, which can in
principle achieve negative values, and learning is not really local and incremental. It would be interesting
to study whether field dependent Hebbian learning can lead to similar results without use of such global
operations on the synaptic matrix.

The field dependent learning rule is motivated on one hand by work on binary synapses in Amit & Fusi
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(1994), Mattia & Del Giudice (1999), where the synapses are modified stochastically only as a function of
the activity of the pre- and post-synaptic neurons. Here however we have replaced the stochasticity of the
learning process with a continuous internal variable for the synapse. This is more effective for neurons with a
small number of afferent synapses. On the other hand there is a close connection to the work in Diederich &
Opper (1987), where Hopfield type nets with positive and negative valued multi-state synapses are modified
using the classical Hebbian update rule, but modification stops when the local field is above or below certain
thresholds. There exists ample evidence for local synaptic modification as a function of the activities of pre
and post-synaptic neurons, Markram et al. (1997), Bliss & Collingridge (1993). However at this point we
can only speculate whether this process can be somehow be controlled by the activity of the post-synaptic
neuron.

The network described above is based on a fixed set of hard wired two-edge features. In Amit (2000) it is
shown how more complex features can be used for detection. These are no longer hardwired and are adapted
to the detection task at hand. Again top-down priming plays a central role. In this context it is operating
at the lower level of the C' layers. The complex edge arrangements are detected in certain F' layers. These
will be responding to different features depending on the detection task at hand and the models evoked in
the M module.

The suggested architecture provides and explanation to a variety of physiological experiments on one
hand and on the other performs well on detection and recognition tasks involving real data, i.e. detection
of objects in gray scale images, and classification of shapes from a large number of classes. There are many
aspects which may turn out biologically impossible, such as the particular connections required between M
and @ or between S and U, or even whether U and @) type neurons exist. Yet it appears to be a productive
framework for formulating hypotheses on the mode of operation of higher level functions of the visual system.



Chapter 12

Software

This chapter provides some information regarding the software and data sets which accompany this book.
The important data structures, as well as the most commonly used parameters are described. More informa-
tion can be found in the documentation written in the source files and the script files. There is no guarantee
attached to this software (it is not too hard to make it crash,) nor is any support to be expected. A certain
level of proficiency in C++ is essential to understand the program, and some experience with Unix and an
X11 based window manager are necessary to get things running smoothly.

12.1 Setting things up

The source code provided here will compile on Linux.
Download
detect.tgz
from
http://galton.uchicago.edu/ " amit/book.
to a directory whose full path will be called base for further reference.

Type
tar zufz detect.tgz.

The following must be set for things to work.

e Set an environment variable $DETDIR to base.
In csh add the line
setenv DETDIR base
to your .cshre file.
In bash add the line
DETDIR=base

to your .bashrc file.

e Add base/bin and base/bin/script to your path.
In csh add the line setenv PATH “SPATH”:base/bin:/base/bin/script

206
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In bash add the line
PATH="$PATH:base/bin:/base/bin/script”

Add the bash shell program to your /bin directory. All the scripts are written in bash and assume it is
in directory /bin

In directory base you will now see several directories.

source. Contains the code with graphic options. cd into source and type
make

The program will compile and face will be written to base/bin

sourcenox. Contains the code with no graphic options. cd into sourcenozr and type
make

The program will compile and facenoz will be written to base/bin

bin. Contains the compiled executables, face and facenoz, and a subdirectory scripts where all the
script files written in bash are stored.

book. This directory has subdirectories corresponding to the chapters of the book (chap1, chap2, ...), as
well as some subdirectories with data written in upper case. Within each subdirectory corresponding
to a particular chapter are parameter files that more or less reproduce the figures in that Chapter.
Running these scripts is a good way to begin getting acquainted with the program and the relevant
parameters.

The subdirectories with data are the following.

— FACES. Contains a subdirectory train with 300, 110 x 96, images of faces from the Olivetti dataset,
ten images per person. These are used to train the detectors. There is an additional directory
test with 100 faces from the same dataset. The directory pgm contains a number of pgm images
on which detectors can be tested. The directories filt1, filt_d2, filt_from_edges contain different
sparse models trained using different parameters.

— HEART. Contains ultrasound images of heart ventricles in directories patl, pat2, pat3, and a
couple of angiograms in directory ang.

— BRAIN. Contains two directories of axial MRI brain scans, train and test, as well as a directory
filt3 which contains a sparse model for these images, and a directory grmtch containing parameters
for a sparse model of these scans for detection with dynamic programming.

— LATEX. Contains a directory protos with the prototypes of all the 293 I4TEX symbols, and a
subdirectory later_0 with a sparse model for the symbol 0 as well as a classifier for the hits of this
detector (see Chapter 10). Subdirectories latex_1, latez_4, latex_7 contain models for the 1, the 4
and the 7.

— ESCR. Contains a sparse model and various templates for the £ used in Chapter 2. Also the
classifier for hits of this detector on other script style symbols.

— CLIP. Contains a sparse model for the clip shown in Chapter 8
— CHESS. Contains the sparse model and classifiers for the chess-pieces.

— NIST. Contains one set of classification trees trained on the NIST data set and a small sample of
10,000 NIST digits for testing. The full data set is very large but can be obtained upon request.
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Running the program

The program face can receive input from a parameter file or from the command line or from the parameter
file and the command line. The general form for running face from the command line is

face file pari=nl par2=n2 ...
or

face pari=nl par2=n2 ...
The parameter file, if used, must come first. Parameters set on the command line override values set in the
parameter file. Among the parameters opt must be set to a particular option which tells the program what
routine to use.

If no graphics is needed then facenox can be run the same way. The list of parameters needed for each
of the algorithms is detailed in section 12.4

In each subdirectory of book with a name corresponding to a chapter are prepared parameter files for the
figures in that chapter. Type

face f.par
on the command line to obtain the corresponding figure.

Graphics

The program will show results of the algorithms as they are computing, as well as the final result, depending
on parameter settings. Often the program will show one or several windows and will not continue until
prompted by the user. This is done by typing c inside the active window which is should be highlighted by
the window manager. Typing ¢ kills the window and the program. Typing n magnifies the window to n
times the original size of the image.

12.2 Important data structures

In this section we provide a brief summary of the important C++ templates and classes used in the program.
More details are to be found in the corresponding .h files. All classes come with some IO functions for reading,
writing and printing information.

grid
The grid, defined in grid.h, is a template for arrays of all types. It contains functions for allocating memory,

accessing coordinates, copying, copying sub-arrays, etc. dgrid, igrid, ucgrid are particular instantiations of
this template for the types double, int, and unsigned char.

image

image, defined in image.h, is a friend class to ucgrid (unsigned character grid). This class has various image
processing type member functions.

The program reads in images from Images_n files n = 0,1,..N. These files contain up to 100 images. If
N > 0 then all files for n < N contain exactly 100 images and the last one may contain less. Multiple images
created in the program can also be written in to such files. There is a function which takes a sequence of pgm
images called picO.pgm, picl.pgm .. picN.pgm and translates them into Images_n files. The corresponding
script is call pgmtolm. Images are stored with 1 byte per pixel allowing for 256 gray scale values. The only
exception is the NIST data which is stored with 1 bit per pixel. To view an image from such a dataset which
is located in directory IM type
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face opt=40 dataset=IM first=10 numdigits=30

Each image will appear and you will need to type ‘c’ in the window to proceed to the next, see script
viewim. To see a collection of images at once type

face opt=41 dataset=IM first=10 numdigits=30 last=10 scale=32

This will put up the 30 images starting from the 10’th, 10 images per row each taking up a 32x32 box.
If viewing NIST data add datadepth=1 to the command line.

viewport

viewport defined in viewport.h manages the interface between the images and the X11 graphics and has
various graphics functions such as line, point and text drawing on images. It is used in conjunction with
zobject defined in zobject.h. An image or ucgrid is attached to a viewport and then the viewport is displayed
with all the relevant information on points, lines etc. The display is interactive, the window can be magnified
by typing the magnification digit on the window, ¢ kills the entire process, ¢ continues the program, r reverses
the video.

landmarks

landmarks defined in landmark.h is a class for storing locations of detected local features of several types.
The type is coded by an increasing index from 0,1 etc. Functions are included to obtain the number of
instances of each type, coordinates of each instance of each type. The landmark (without an s) class is a
structure used within the programs to record two coordinates and a type. These are accumulated during
the actual detection process. Then a member function of landmarks called setup_from_lmarklist takes the
array of landmark - s and arranges them in one landmarks class. For the use of various training procedures,
landmarks for large numbers of images are stored in files Lands_n organized like the Images_n files in batches
of 100. The member functions for reading and writing landmarks from these files are provided. To dump
the landmarks of an image see script dumplandmarks.

tree

The tree template is defined in tree.h and includes definitions needed to create binary trees with quite general
nodes. The main component is the treeiterator which has built in functions for moving up and down the tree,
creating children nodes etc. The information in each node denoted data is defined for particular instantiations
of this template, such as an [tatree defined in ltatree.h.

e [tatree. LTA stands for local tag arrangement, where local tag refers to any local feature such as an
edge, a micro-image code, ridge-detector etc. This class is used to construct and store trees with
relational and absolute arrangements of local features, as described in Chapter 9, as well as the local
edge arrangements. The local edge arrangements can be viewed as relational trees with only a small
number of yes answers, all the relations being with respect to the first edge, and all edges constrained
to be near the center edge.

Class ltadata is used for the data entry. The ltadata class codes for the additional relational question
asked at the current node using the question class, it codes for the list of data points at the node while
growing the tree, and the histogram of frequencies, also used for growing the tree. To view an ltatree
use script dumpltatree.

e carttree. Another tree example is carttree defined in carttree.h. The query at each node is simply a
pair (f,s) where f is a predictor index, and s is a threshold for the value of the predictor. The query
is whether Xy > s. When using binary local features, s = 0, and the size of the predictor vector is
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dz-dy-N, where dx, dy are the dimensions of the image and IV is the number of local features. The class
cartdata is where the information for simple cart type questions (coordinate and threshold) are stored
as well as the list of data points and the histogram also used in training. There is some duplication in
that carttrees do exactly what ltatrees with absolute arrangements do. For various reasons the former
are used for post-detection classification: classifying one class against rest of the world, and then among
several object classes. The latter is used in the experiments on isolated object recognition. To view a
carttree use script dumpcarttree.

detection

The detection class is defined in detection.h. The important data entries are the scale which records at which
resolution the detection was found, tripts the coordinates of the detection triangle. cartprobs, cartprobs?2,
cartprobs3 are used to record the output from the various classification stages, counts used to store the
number of hits from the counting detector and other related information, locs is an igrid for storing the
coordinates of the instantiation. The number of points depends on the particular application.

12.3 Local features

All routines for detecting binary local features in an image can be found in the file edge. C. Below we list the
different types together with the relevant parameters and how they can be computed and displayed.

Edges and Ridges

These are computed through the detectedges subroutine which loops through disjoint blocks of size EdgeSize-
Block in the image, calls a routine to find all binary features in that block, sorts these detections according to
some criterion and keeps the top FdgeNumberOfPixels. The final detected features are stored in a landmarks
structure. To view the edges on an image (say no. 3) in Image- files in directory IM run

face parfile opt=53 dataset=IM showedges=1 first=3 last=4
with parfile set according to one of the parameter sets defined below. To create a database of local features.
Do

mkdir LF

face parfile opt=44 onlyedges=1 dataset=IM numdigits=num landdir=LF
with parfile set according to one of the parameter sets defined below. See also script getedges.

EdgeType=0. 0 - detect edges defined in section 5.4 using find_edge_in_block subroutine. 1 - Detect ridges
with values on the ridge higher than outside. 2 - values on the ridge lower, (see section 4.1). Last two
use find_ridg_in_block subroutine.

EdgeNumberOfPizels=2. Keep the top 2 edges found in each disjoit block, in terms of absolute value of the
differences.

EdgeSizeBlock=2. Use disjoint 2x2 blocks.

EdgeRadius. The value of distance along ridge for comparisons, j, in section 4.1.
EdgeEpsilon=.03. Minimal edge threshold is 255 x .03

edgeinc=1. Use all 8 oriented edges. edgeinc=2, use only vertical and horizontal.

primitiveedges=0. Use polarity sensitive edges. primitiveedges=50 use polarity insensitive edges (so only
four types: horizontal, vertical, and two diagonals).
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EdgeGoodTests=5. Number of inequalities defining an edge (in equation 5.11.) which are satisfied is greater
than 5. Total number is 6. Lower values make more robust and frequent edges.

Local edge arrangements - LTA’s

These arrangements are chosen through training for a particular object (see below) or a fixed pool can be
defined. The individual trees containing the information for each of the local edge arrangements are all stored
in a file ltatrees in a directory (say treesgood). These arrangements are detected in the routine edges_to_ltas
which is called from extract_landmarks. The number of local edge arrangements is also stored in this file. To
view the locations of local edge arrangements on an image (say no. 3) do

face parfile opt=53 onlyedges=0 showltas=2 ltatreedir=treesgood first=3 last=4.
where parfile contains the parameter settings for the edge extraction, as described in the previous section,
which must precede the computation of local edge arrangements. The locations of each local feature type
are shown in sequence. Press ¢ to proceed. To create a database of local edge arrangements. Do

mkdir LF

face parfile opt=44 onlyedges=0 merge=0 dataset=IM numdigits=num landdir=LF ltatreedir=treesgood

If merge=1 the edge information is appended after the local feature information in the landmarks structure.
See script getedges.

Hardwired edge pairs

A special case are local edge arrangements with only two edges and 8 possible boxes defining the relative
location of the second edge (as opposed to wedges). The advantage of these is the speed of computation.
All 256 are computed in one loop based on an initial edge extraction, in detectpairs which is called from
extract_landmarks.

face parfile opt=53 onlyedges=0 Iltausedepth=0 showltas=1 spread=1 EdgeRadius=2 first=3 last=4

spread - radius of the box, FdgeRadius - the distance of the box center from the center edge of the
arrangement. For storing the information in files do

mkdir LF

face parfile opt=44 onlyedges=0 merge=0 dataset=IM numdigits=num landdir=LF
See also script getedges.

Comparison arrays

The comparison arrays defined in section 6.3 are computed in detect_masks using a file masks.asc that has
the masks used by the current model and the minimal thresholds for the -7 and +1 regions. The format
for this file is defined through the mask class in mask.h. The file directory is given in maskdir. Also in this
directory is a parameter file defining the graph to be used and the hard constraints on the angles and lengths
in the triangles composing the graph. The format for this file is defined in the graph class in graph.h.

micro image codes

These are features used exclusively for recognition of binary images. See Chapter 9. The training procedure
is described below. The quantization tree is stored in a carttree structure in a file called codes.tree. The
micro image codes in the image are computed in detecttags. To store the codes in Lands_ codes.tree must be
in the current directory. Then do
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mkdir LF
detecttags dataset=IM numdigits=num newlanddir=LF

12.4 Deformable models

In each subsection is a list of the parameters used for a particular algorithm, some possible values, a short
description and references to the notation used in the corresponding Chapter. Further information can be
obtained in the documentation within each program. Each of these algorithms can either be run directly on
an image as described in this section, or following a detection of the sparse model as described in the next
section.

Deformable contours

These parameters refer to the deformable contour algorithms described in Chapter 3. The program file is
defcont.C.

opt=113. Option number.

tempfile=snake.circ. File with a list of coordinates for model. If tempfile="" then the program prompts the
user to point out the curve by hand and writes it to defcont.temp.

detfile=detout. File for writing out detection class with coordinates of final curve in the locs entry.
dumpdetections=1. Dump the detection info to command line.

curve_length=128. Length of curve to work with, can be larger or smaller than model, in which case the
program interpolates to the desired size.

dataset=IM. The directory containing the Images_ files.

inside=0. The average value of the inside p;, > 0. If inside=-1 the online estimation of the parameters is
enabled.

outside=.1. The average value outside pryy¢.

dt_scale_factor=1. A scaling factor for the computed time step.

base=5. Wavelet basis to use in expanding curve - base=1 - Haar, up to base=6 smoothest.
numiters=10000. Number of iterations.

post=.3. Scaling of model curve.

minenergychange=.001. If change in coeflicients is below this value add more coefficients for optimization
or exit if at maximal number of coefficients.

FIRSTDIM=1. Initial number of coefficients updated N7, for each curve component.
LASTDIM=16. Final number of coefficients to update N4.
prior_fac=0. Factor multiplying the prior term.

first=3. Index number of first image to run.
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imrange=.2. For graphic purposes, reduces gray value range of image display.
basecol=10. Color of the curve, basecol=0 - red, basecol = 10 white.
displayinter=100. Display result every 100 iterations.

pointlz="79. Initial points, if pointlz=-1 [default] the user provides the initial point by pointing with the
mouse.

pointly=67.

Deformable curves: dynamic programming

This algorithm is described in section 4.2. Only the simpler model of equation 4.9 which involves only two
parameters p, and p; has been implemented. The program file is curve_dyna.C.

opt=112. Option number.

2

tempfile=dyna.escr. File name with coordinates of model curve. If tempfile="", user is prompted to pick
points on displayed image. When finished, type c inside image. Points will be written to default file
dyna.temp.

detfile=detout. File for writing out detection class with coordinates of final curve in the locs entry.

dyna_dis=2. Distance of comparison pixels in the orthogonal direction to the curve for determining ridg type
features. u, in equation 4.1. v, is taken to be half u,.

prior_angle=10. Factor on prior term penalizing changes in angle of segment relative to model curve. A in
equation 4.10.

prior_length=30. Factor on prior term penalizing changes in length. B in equation 4.10.

dyna_regionsize=10. Radius of a square neighborhood around each pixel of model curve. This is the radius
of each of the S; neighborhoods. See section 4.2.

inside=.95. Probability of getting X, = 1 for curve of angle a, i.e. p, in equation 4.9.
outside=.05. Probability of getting X, = 1 otherwise, i.e. pp in equation 4.9.
dataset=IM. Data set with images to process.

first=3. First image to process.

revvideo=0. Reverse video graphic display.

dumpdetections=3. How much information to dump on screen and show. If value is 3, show each step of the
dynamic programming. If value is 1 only show final result.

imrange=.3. Gray level value range.
basecol=10. Color for showing curve.
pizsize=2. Size of pixel in display.

pointlz=43. Two initial points determining, location, rotation and scale of curve.
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pointly=23.
pointl2x=43.

pointly=33.

Deformable curves: tree based algorithm

This algorithm is described in section 4.3. The data structure needed for this algorithm is very similar to the
tree template except it is ternary, three children for each node and is defined in curve_tree.h. The algorithm
is coded in curve_tree.C.

opt=117. Option number

dataset=IM. Directory with images.

inside=.7. Probability p, of getting X, = 1 on segment with angle a.

outside=.4. Probability ps of getting X, = 1 otherwise.

LEN=10. Length of each arc.

ORTHLEN. Length orthogonal to arc for testing p, (same as dyna_dis above).

deg=10. Degree of change allowed from one arc to the other (53).

ZSTAR=.999. Above which posterior to declare an arc on the track and restart algorithm.

mindepth=3. Minimum depth of arc with posterior above ZSTAR to allow reinitialization. (The top arcs
quickly reach a posterior of over ZSTAR and are not so interesting).

numitrack=10. Number of times to reinitialize with high posterior arc.
numiters=10000. Maximal number of arc testings in each reinitialized run.
first=0. First image to process

last=1. Last image to process.

pixsize=2. Image magnification.

imrange=.3. Gray value range (imrange=0) maximal range.

basecol=10. Color of curve.

pointlz=43. Two initial points determining first arc. If any of these is negative user is prompted to provide
initial two points.

pointly=98.
point2x=41.

pointly=112.
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Deformable images: Gaussian data model

This corresponds to the algorithm described in 5.3 based on the least squares data term, as well as the
linearized algorithm described in section 5.5. These are implemented in defimage_gaus.C. Only a wavelet
expansion of the deformation is coded. Because of this the dimensions of the image need to be a power of 2.
If they are not, the program embedds the image in the smallest power of 2 larger than the dimensions.

opt=111. Option number.
tempdataset=TEMPIM. Dataset with template
tempnum=45 Template image number
dataset=IM. Dataset with images.

first=123. Data image number

post=1. Factor multiplying data term.

prior_fac=.3. Factor multiplying prior term. Relative weighting of prior on coefficients Ay is computed as
in equation 5.6, with p = 2.

minenergychange=.01. Minimum total change in coefficients to increase dimension N, to M, y1 by factor of
two or stop, if a = A.

linear_elas=0. Regular deformation algorithm. linear_elas=1, uses iterations of linearization step described
in section 5.5. Starts solving at FIRSTDIM and increases dimension at each iteration.

FIRSTDIM=1. First level of coefficients to be updated. This is half of N.
LASTDIM=S8. Last level of coefficients to be updated. This is half of AV4.
dt_scale_factor=1. Factor multiplying computed time step.

numiters=1200. Maximum number of iterations.

pizsize=4. Magnification

displayinter=100. Display result every 100 iterations.

arrow_spacing==2. Spacing of arrows in display of displacement field.
imrange=.2. Range of gray levels.

basecol=10. Color for displaying arrows.

Image warping with Bernoulli model

This implements the Bernoulli model for deformable images described in section 5.4.
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Training

The probabilities of the edges on a reference grid of size DIMX by DIMY are saved in a file edgetemps. The
training is implemented in routine get_edgetemps in trainstat. C, see script getedgetemps.

opt=28.
DIMX=64. Dimensions of the reference grid to which the extracted local features are registered.
DIMY=64.

pointlz=25. Coordinates of three reference points p1, p2, ps to which the anchor points in each training image
are mapped

pointly=32.

point2x=40.

pointly=32.

point3r=32.

point3y=46.

dataset=train. Dataset with training images.

num=2300. Number of training images in dataset

rt=.4. Downsampling ratio to apply to each image (this is the ratio used for the faces.)

onlyedges=1. Only use edge features. onlyedges=0 together with an ltatreedir will extract edge arrangements
and then register. Edge parameters are below.

EdgeEpsilon=.03.

edgeinc=1.

EdgeGootTests=4.

EdgeNumberOfPizels=2.

EdgeSizeBlock=1.

spread=1. Radius of box into which each detected edge is spread.
tempfile=edgetemps. File for writing out the frequencies.

showtriangles=1. Show images with the frequencies.
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Detection
Implemented in defimage_ber.C.
opt=115. Option number.

dataset=IM. Dataset with face images of more or less the correct size (DIMX by DIMY) with faces more or
less centered so that the eyes are about 14 pixels apart. Significant variation is tolerated.

tempfile=edgetemps Name of probability map file produced in training.

minval=.3. Background edge probability. All areas where the edge probabilities p; are less than minval are
set to minval.

first=0. First image to process.
last=10. Last image to process.

eyer=32. Use these dimensions of the data around the middle point. Allows use of smaller windows for
matching.

eyey=32.

shift=5. Range of shifts (4/-) in brute force search for optimal shift and scale.
lowscale=.6. Lower and upper bounds of scaling in brute force search for optimal scaling.
highscale=1.4.

spread=1. Amount of spread of detected edges in data.

dt_scale_factor=1. Factor multiplying computed time step for gradient descent stage.
manenergychange=.01 As in Gaussian model.

FIRSTDIM=1. First level of optimized coefficients. N1 =2 x FIRSTDIM x FIRSTDIM.
LASTDIM=/. Last level of optimized coefficient. Ny =2 x LASTDIM x LASTDIM.
numiters=20. Number of iterations of gradient descent.

prior_fac=.01. Factor of prior term.

post=1. Factor of data term.

pixsize=1. Magnification

displayinter=10. Display result every 10 iterations.

imrange=0.. Gray level range.

basecol=10. Color for dots and lines.
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12.5 Sparse models

Dynamic programming

There is no routine for identifying the comparison arrays and thresholds for the chosen landmarks on the
training sample. All we provide is an existing model is encoded in two files masks.asc containing the masks
being used with the corresponding thresholds and tempfile containing information on the graph and model
locations. The algorithm is implemented in sparse_dyna.C. The corresponding scripts are to be found in
directory chap7 and the files in BRAIN/grmtch

opt=116.

maskdir=grmtch. Directory where masks.asc is found as well as the tempfile.
usemasks=1. If set to 0 - use ltas defined in ltatreedir

dataset=test. Images dataset.

first=2. First image

last=30. Last image

ratio=.5. Downsampling ratio to apply to image

pirsize=2.

dumpdetections=1. Show final result. 2 - show each step in dynamic programming. 3 - show template and
locations of local features.

tempfile=PRMIla.asc. File containing graph information.
imrange=.3.

basecol=10.

Counting detector - running an existing detector

A trained detector stored in directory filt consists of some subdirectories and one parameter file pars:

pars. All edge parameters.
ltatreelx, ltatreely, ltatree2z, ltatree2y, ltatree3x, ltatree3y - coordinates of the anchor points.
hits, acchits. The thresholds 7 and 7, for Steps I and II of the counting detector.
numcarts=20. Number of classification trees - object against false positives. 0 - no classification.
fnumcarts=20. Number of classification trees among detected classes. 0 - no classification.
numratios=6. Number of resolutions at which to run detector.
testrotations=1/0. Whether to estimate rotations.
bozcluster=5. How close are two detected triangles (3 reference points) for them to be clustered.

ltatreedir=treesgood. Contains a file ltatrees with information regarding the LTA’s and their coordinates
in the reference grid.



CHAPTER 12. SOFTWARE 219

edgetreedir=treesedge. Contains a file [tatrees with information regarding the edge model for Step II.
This model is used to adjust scale if parameter edgesforscale=1. If edgesforscale=0 the LTA’s are used
to adjust for scale and treesedge is not needed.

carttreedir=treescart. Contains classification trees to classify detections of Step I and II as object or
not object. If numcarts=0 no classification is performed and this directory is not needed.

carttreedir=facecart. Contains classification trees to classify detections of Step I and IT among different
classes If fnumcarts=0 no classification is performed and this directory is not needed.

showtriangles=1. Show detection triangles. 2- Show only vertices of triangle.

dumdetections=1. Print out some information as detection procedes. 2 - Print out all information on
all detections, dump the detection structures.

If there is a list of pgm files in file image_list and the detector parameters are in directory filt run.
test_pgm_list image_list filt first=3 last=20

If the images are in a directory image_data in Images_ format
test_imaged 3 20 filt

will run the detector on images 3 through 20.

Running a deformable model initialized with a sparse model detection

The parameter templatestyle, if greater than 0, determines which deformable model is run. Depending on
the model the appropriate parameters, defined earlier must be included in the parameter file.

templatestyle=1. Apply deformable contour directly on image, the pose a, of the detection is applied to the
template contour to produce initial contour.

templatestyle=2. Apply deformable curve dynamic programming algorithm directly on image, the pose a,
of the detection is applied to the template curve to produce initial curve.

templatestyle=3,4,5,6. The region of interest around the detection is registered to a reference grid. This
reference grid could have different dimensions and the reference points could be different from those of
the sparse model. The dimensions of the reference grid are set in defsizez, defsizey and the three refer-
ence points in the reference grid are given by defpointiz, defpointly, defpoint2z, defpoint2y, defpoint3,
defpoint8y. The detection triangle det.tripts is mapped to these 3 points determining the affine map
for registration.

The registered image is then processed with a deformable model as follows
templatestyle=3. Deformable image - Gaussian model.

templatestyle=4. Deformable image - Bernoulli model.

templatestyle=5. Deformable contour.

templatestyle=6. Deformable curve -dynamic programming.

12.6 Sparse model - counting detector -Training

Here we describe how to train models for Step I and Step II of the counting detector described in Chapters
6 and 8.

Assume we are in directory object with numir training images in directory train, and numte training
images of the object in directory test. These images are used to adjust the two thresholds 7 and 7,. In
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both directories there is supposed to be a coords file with the coordinates of the three anchor points for each

image, which are marked before hand, 3 rows per image, 2 coordinates per row. The training procedure is

implemented with the script doitob. The parameters defining the edge detection are set in doitob and can

be changed. Also two parameters defining the wedges for the edge arrangements. numang=16 number of

wedges. Angle of each wedge is 360/numang (see section 6.4.) near=4 is the radius of the neighborhood

containing the wedges. The script doitob is run from the command line with 7 arguments, for example:
doitob 32 20 3 2 3 .5 1

1. Number of training data
2. Number of LTA’s to use in final model.
3. Complexity of edge arrangements, number of edges (n,).

4. The features used for the classification trees of object against the false positives. 0 - normalized and
registered gray levels, 2 - edges, 3 - edge arrangements.

5. Size of disjoint blocks in which only one edge arrangement is chosen. Typically 3 x 3.

6. In each block the highest frequency edge arrangement is found. It is taken only if its probability is
higher than objprop. p - in algorithm 6.4.

7. By what factor to dowscale the training images before edge extraction.

8. If greater or equal to 0, the classification trees are made of this object class against false positives
obtained by the detector. Otherwise, classification trees are made between the different class labels
of the detections of the detector. The false positives for this step are found on images in directory
../trainall, which contains training images from all object classes.

The steps in doitob are the following.

1. Write edge extraction parameters to pars

2. Obtain three reference points either from user written in newbasis or by taking averages of anchor
points in training images.

3. Extract edges from data in train

4. Register the edge locations to reference grid, anchor points get mapped to reference points. Script -
register_edges.

5. Find high probability edge locations (>objprop) and store them in treesedge/ltatrees. Assume nume
are found. Script - choose_edgelocs.

6. Find high probability edge arrangement locations (>objprop) and store them in treesgood/ltatrees.
Assume numl are found. Script - make_ltas.

7. Find thresholds for two steps of counting detector using test set. First find 7 by starting at 7=numl/2
and incrementing by one until a test point is missed. The estimated 7 is assigned to variable hits.
Write hits to pars. Script - findhits.

8. Then with this 7 find maximal 7, for Step II of counting detector in the same way. Assigned to variable
acchits. Write acchits to pars. Script - findacchits.
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9. (optional) Classification trees. Script findnewp.

findnewp 0 cartstyle classlabel

The parameters inside findnewp are described in section 12.10.

12.7

(a)

Extract detections from dataset ../trainall using parameter file pars. The detection triangle is
recorded in file detcoords. Each detection in an image is reported in one line with 8 numbers, 2
coordinates of 3 points, the image number and class number of that image. If no detections occur
in the image, there is a line with -1’s and the image number. Several detections are possible in
one image.

Loop over images of .. /trainall extract data (gray level, edges, or edge arrangements) and register
using affine map determined by detection triangle in detcoords. Data is stored in file ftrraw.

Read in data in ftrraw and train multiple randomized classification trees using the carttree struc-
ture.

If these trees classify object against the rest of the world set numcarts to number of carttrees and
write to pars. Store carttrees in directory treescart.

If these trees classify among detected object classes set fnumcarts to number of carttrees and store
trees in facecart.

Example - BTEX

In directory LATEX the subdirectory protos contains images of the 293 I#TEX symbols. Synthetic deforma-
tions of any number of these are obtained using the parameters bellow. Script - make_train. These synthetic
deformations also create a coords file mapping the three reference points marked on the prototype according
to the generated random map.

opt=417.

dataset=protos.

ratio=1.0. What scaling to apply to each prototype.

first=0. First prototype to be deformed.

last=292. Last prototype to be deformed.

randomize=1. Produce random deformations.

rotate=.3. Sample uniformly from +.3 radians (about 18) degrees (0 - do not rotate.)

scale=3. Sample uniformly from log-scale +(.5/3) giving approximately £20% (0 - do not scale.)

skew=3. Sample uniformly from log-skew (ratio of x-scaling and y-scaling) +(.5/3) giving approximately
+20% (0 - do not skew.)

numdigits=50. Number of random samples per prototype.

synthesize=1. Generate random non-linear deformations. Using random Gaussian wavelet coefficients with
exponential decay in variances (0 - do not deform.)

base=3. Daubechies wavelet basis to use, the coefficients for 2-6 are stored in the program.
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LASTDIM=/4. 2 x LASTDIM x LASTDIM is the number of randomly generated coefficients to use in

wavelet expansion.

latexdim. Dimension of image in which to put the randomly perturbed prototypes. Defaults is 32.

The images are written to the directory in which face is called. The above parameters would create 50
randomly deformed images for all 293 classes. These can be stored in a directory trainall.

The script makedet is called to create a directory for a particular class, create training and test sets
for this class, train the detector using doitob and run the classification on false positive obtained from the
dataset ../trainall using findnewp, that is called from doitob.

makedet latex_n n 32 20 3 2 3 .5 1.

The parameters to makedet are:

1. Name of directory which contains the object information.
2. Index number of prototype from protos to use.

Number of synthetic training data to produce.

- W

Maximal number of local features to create in model.

o

Complexity of local features (number of edges).
Type of features for the classification trees (0,2,3).
Size of disjoint regions in each of which at most one local feature is found.

Proportion of training data required to keep a local feature.

© % N>

Scaling to apply to each training image before edge extraction.

The parameters determining the type of deformations to apply to create training and test sets are written
in the file makedet and can be changed.
The steps taken in makedet are the following. Assume directory name is object

1. mkdir object. cd object.
2. Creates a train directory. cd to train. Apply make_train. cd back to object
3. Creates a test directory. cd to test. Applys make_train. cd’s back to object

4. Runs doitob with the parameters given to makedet

12.8 Other objects with synthesized training sets

We outline the steps for making object models for a collection of objects where we assume one image of each
object is taken on a flat background. (This prevents training to incorporate background information in the
object model.)

1. Make a base directory objects.

mbkdir objects
cd objects
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2. Take images of objects such as the clip or the chess pieces shown in Chapters 8, 10. Convert to
pic0.pgm, picl.pgm ...picN.pgm (assuming N objects).
3. Make a protos directory

mkdir protos
mu pic*.pgm protos
cd protos

4. Convert to Images- format.
pgmtolm numdigits=N

5. Choose anchor points by clicking on three points in each prototype image with the left mouse button.
The coordinates of the three points get stored in coords.

face opt=40 numdigits=N dataset=./ >> coords

6. Go back to objects directory and make trainall directory.
cd ..,
and prepare a trainall directory with say 50 randomly deformed images of each prototype:
mkdir trainall
cd trainall
make_train 50 first=0 last=N latexdim=40 dataset=../protos rotate=.3 skew=3
cd ..

For parameters of random deformations see above.

7. To make a model for object ‘n’ with 32 training images:
makedet object-n n 32 20 3 2 83 .5 1.

12.9 Shape recognition

In base/NIST there is a subdirectory trees with 100 classification trees trained on the NIST data base with
absolute arrangements. The directory test has 10,000 NIST test images on which to try the trees.

face par.online

will classifiy the 10,000 images using the trees, computing the landmarks on the fly.

Similarily in base/LATEX/CLASS is a subdirectory with trees made with relational arrangements. The
data for testing can be made by going to subdirectory test and running make_lands. The data is classified
by returning to base/LATEX/CLASS and running
face par.rel
To see some of the arrangements detected on an image and other images in the same terminal node run
face par.show.

Extracting features

The first step is creating the feature files for the training data and the test data.
cd train (or cd test)

face pars opt=44
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e Generic edge based features.

The file pars should contain the parameters defining the type of features.

ratio=1. What downscaling to apply to image before feature extraction.

onlyedges=1 Extract only edges. 0 - Extract edge arrangements defined in base/all.

merge=1 Merge the edge features with the edge arrangements.

ltatreedir=base/all Directory with definition of predetermined collection of edge arrangements.
dataset=./

numdigits=10 Number of data points.

EdgeParameters: See above for parameters defining the type of edges being extracted.

e Micro image codes.

First a cart tree describing quantization of the micro-images must be made. It is written to codes.tree.
The training images are assumed binary. For the NIST data set they are stored with 1 bit per pixel
and datadepth must be set to 1.

opt=48

datadepth=1 For NIST image set to 1.

codesize=4 Size of subimages to code.

mazdepth=5 Maximum depth of tree.

numdigits=100 Number of images from which to extract random codesize subimages.
numperts=5 Number of random subimages to extract from each image.

nist=1 Preprocess binary image:
- Run median filter to eliminate little spots.
- Blur image with Gaussian filter.

- If any dimension of image is greater than scale downsample to size scale. Default value for scale
is 32.

- Threshold image at fraction threshold of maximal value. Default value is .2.
For extracting code labels for all subimages of all training images.

opt=1000
numltas=62 Total number of microcodes.
datadepth=1 Binary images.

ltacluster=6 Size of blocks for clustering features of the same type.

Training and testing trees
Assume the training landmark files are in subdirectory train
opt=148.

nist=48. Class labels of NIST data are in ascii code so need to substract 48.
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althistsize=10. How many classes to keep in terminal node. This is useful for problems with many class (i.e.
ITEX ). Stores ounly top althistsize classes in the terminal node.

numcarts=100. Number of trees to grow.

class_tree=2. Absolute arrangements. 1 - Relative arrangements.

cartsizer=32. Dimension of grid on which absolute locations are defined. Must be the same for all if
class_tree=2 (absolute arrangements). cartsizey==32

cartspread=1. If absolute arrangements are used locations of features can be downsampled to coarser grid
by factor cartspread. Warning cartspread*cartsizex should equal true dimension of images.

near=38. Radius of box of spread for each feature, s = 2 x (near — 1) + 1.
numland=62. Number of local feature types.

mazdepth=20. Maximum depth of the tree.

numtreedata=100000. Number of data to use.

landdir=train. Directory with landmark data.

numclass=10. Number of classes.

numquesask=200. Number of random questions to sample at each node.
mindata=0. Minimum amount of data for splitting a node.

modetwo=3. Minimum amount of data at second largest class to stop splitting.
boost=1. Use boosting.

alpha=1. Extra factor to multiply boosting factor.

carttreedir=./. Directory to write the trees.

useques(5)=1. In case of relational trees use questions 5 and 6. 5 - asks for the first two features with a
relation. 6 - asks for an additional feature in relation to one existing in the pending graph.

useques(6)=1.
Testing is achieved as follows

opt=147. 147 - loops through test points and then through all the trees, and reports aggregate classification
rate at the end. 149 - Loops by tree and reports aggregate rate after each tree.

nist=48.

numtreedata=10000. Number of test data points.
landdir=test. Directory with landmark data.
numclass=10. Number of classes.

carttreedir=./. Directory with trees.
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12.10 Combining detection and recognition

The same scripts used above for creating a detector for a particular class and classifiers for the object against
false positives obtained from trainall will produce classifiers among the classes detected by the detector. The
only change is to run

findnewp 0 cartstyle -1 and set the parameters inside findnewp.

nd=3100. Number of data to use from trainall
ncl=62. Total number of classes.
npcl=50. Number of elements per class (usually 50).

acf=.8. The factor to apply to the threshold hits to lower it and thereby obtain more detections in other
classes.

numcarts=50. Number of classification trees.
cartdepth=10. Maximal depth of a trees.
ng=200. Number of random questions to sample.

crtsp=2. The radius of spreading for a binary feature used in the classification trees.

The program creates a file good showing how many of each class are detected. In order for the program
to know how to label detected and classified objects a file with labels for the classes must be appended to
pars
facenames(0) = marz
facenames(1) = lenin.

When classification trees for multiple classes are produced they are written to a directory called facecart,
and are used if the parameter fnumcarts is positive. Otherwise they are ignored and regular un-classified
detection is performed.
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absolute arrangements, 31, 149, 157, 162—-166, 168,
174, 184

aggregate classifier, 154, 155, 162-164

anchor points, 101, 130

angiogram, 67, 69

area integral, 40

arrangement of local features, 31, 149
absolute, see absolute arrangements
constraints, 94, 121
relational, see relational arrangements
star type, 149

backward transform, 41, 51, 78
discrete, 42, 79
basis coefficients, 35, 42, 74, 75, 77
basis functions, 35, 39, 41, 42, 44, 50, 74, 89, 90
Fourier, see Fourier basis
linear, 80
principal components, 51
wavelets, see wavelet basis
Bayes classifier, 19
Bayes’ rule, 6, 24
Bayesian modeling, 6, 20, 25
Binomial distribution, 61, 105, 110
boosting, 154, 155, 164
bottom-up processing, 14, 18, 172
brain, 87, 137
activity, 87
matching, 87
ventricle, 92, 93, 98, 99
brute force search, 123, 125

chess piece, 44, 172, 173
classification, 173
Cholesky decomposition, 85
classification tree, 7, 31, 149, 151, 153, 157, 172,
184, 188
depth, 151, 152, 163
multiple, see multiple classification trees
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node
empirical distribution, 151
query, 149, 151, 153
predictors, 31
purity measure, 151
recursive partitioning, 31
relational arrangements, 159
split, 151, 161
stopping rule, 151, 163
terminal node, 151, 152
class distribution, 151
class distribution estimates, 152
testing, 152
training, 31, 151, 161
clutter, 44, 53, 58, 67, 166, 168, 174
coarse to fine
computation, 36, 44, 50, 77, 78, 80, 85, 119,
145
object model, 145
sparse model, 119
comparison arrays, 98, 99
compositional models, 20
computer vision, 14, 40
conditional independence, 24, 37, 51, 53, 55, 61,
64, 82, 95, 105
conjugate gradient, 44, 80
continuum, 53, 74, 75, 77
continuum formulation, 34, 38, 46, 50, 72
correspondence space search, 17, 120
cost function, 25, 53, 94
deformable contour, 38
deformable image, 82
non-linear, 41, 91
covariance matrix, 51

data model
deformable contour, 37, 44
deformable curve, 55, 61
deformable image, 73, 81
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sparse model, 95
Daubechies wavelet, 35, 85
decomposability, 114
deformable contour, 16, 26, 40, 49, 51, 53, 67, 77,
145
algorithm, 37, 42, 45
coarse to fine, 44, 46, 50, 78
computation, 41
cost function, 38
data model, 37, 38, 44
deformations, 34, 36, 51, 77
detection, 134
discretization, 42
edge model, 40, 50
initialization, 67
inside-outside model, 34, 37, 51, 77
instantiation, 34, 42, 44, 51
lattice parameterization, 50
likelihood, 37, 38
parameter estimation
off-line, 44, 49
on-line, 44, 45, 48-50
posterior, 37, 38, 45
prior, 35-37
shape, 34, 139
sparse model initialization, 134, 138, 139
spectral parameterization, 35, 50
template, 34, 35, 67
time step, 42, 44
variational analysis, 39
deformable curve, 16, 26, 67, 96, 145
algorithm
dynamic programming, 57—60, 67
tree based, 59, 66, 67, 69, 71
background model, 55, 61
backtracking, 67
computation time, 58
data model, 53, 5557, 61
deformations, 53
detection, 134
image transform, 53
initialization, 67
instantiation, 53, 55, 57, 61, 67
jump ahead, 67
likelihood, 55, 56, 61
local features, 53
model, 56, 57
parameter estimation, 56
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posterior, 56, 57, 63
partial, 63, 65, 66

prior, 53, 56, 57, 69
tree structured, 59

shape, 59

template, 53, 56, 57, 67

deformable image, 27, 87, 89, 145

algorithm, 87
coarse to fine, 78, 85, 87, 89
Bernoulli model, 16, 74, 81, 83, 84, 90, 93, 99,
131, 136, 145
background, 84
image transform, 82
computation time, 85
cost function, 77, 82
linearization, 80, 84, 86, 87
deformations, 72, 75, 77, 80, 82, 87, 90
discretization, 79
displacement field, 74, 75, 81, 85
flow models, 89
Gaussian model, 73, 84, 93
image transform, 74
initialization, 80
instantiation, 73, 82, 84
lattice parameterization, 80, 86, 89
likelihood, 74, 77, 82
parameter estimation, 74, 84, 90
pose parameters, 80
posterior, 77, 82
prior, 74, 77
prototype image, 73, 77, 84, 89
regularizing term, 75
sparse model initialization, 131, 145
spectral parameterization, 74, 75, 80, 84, 87
template, 72
time step, 79
training, 84

deformable models, 6, 15, 17, 26, 29, 93

automatic initialization, 130, 131
instantiation, 128

sparse model initialization, 145
user initialization, 26

deformations

deformable contour, 34, 51
deformable curve, 53
deformable image, 72, 75, 77, 80, 82, 87, 90

dynamic programming, 25, 53, 57, 59, 97, 114, 121

deformable curve, 57, 120
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sparse model, 120
state space, 57, 115, 120

edge arrangements, 18, 94, 99, 101, 103, 105, 106,
126, 130, 149, 157, 165, 172, 174, 176
background density, 106-108
complexity, 100, 106-108
subregions, 99, 106
two-edge arrangements, 101, 157, 188, 191
wedges, 100, 101, 105
edge maps, 106, 129, 130
edges, 81, 94, 99, 149, 157, 174, 188
background density, 106, 107, 111, 127
entropy, 62, 64
conditional, 62, 151
joint, 62
Euler equations, 86

face, 105, 108, 129-131
deformations, 72, 73
detection, 83, 103
detector, 129, 130
edge arrangements
frequencies, 103
edges
frequencies, 103
instantiation, 84
matching, 72
sparse model, 103, 104, 124
Fast Fourier Transform, 42
feed forward neural net, 149, 157, 202
Fisher, 149
forward transform, 39, 41, 48, 51, 78, 82
discrete, 42, 79
Fourier basis, 37, 42, 74, 75

Gaussian, 36, 38, 45, 49, 50, 73, 74, 81

generative models, 20

geometric invariance, 19, 20, 31, 97, 100, 149, 155,
156, 170, 192

geons, 145

global optimization, 53

global optimum, 51, 67

gradient descent, 25, 34, 41, 53, 74, 77, 78, 80, 82,
85, 93

gradient flow, 39, 41, 80

Green’s theorem, 40, 48

handwritten digits, 147, 163, 186
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heart, 49

heart ventricle, 37

Hebbian learning, 33, 190, 192, 195, 197, 202, 204
field dependent, 194, 195, 197, 202, 204

Hessian, 44, 79, 85

high-level processing, 14

homeomorphisms, 89

Hopfield networks, 205

Hough transform, 17, 123, 124

hypothesis, 105

image compression, 80
image deformation, 72
image grid, 22
image normalization, 19
image registration, 19
image segmentation, 14, 18, 20, 32, 51, 147, 172,
178
image sequence analysis, 16, 86
image surface, 26, 41, 72
local topography, 22, 92, 99
topography, 72, 74
image synthesis, 16, 93
image transforms, 16, 24, 25, 27
images
background, 106, 109, 128
office, 111
inexact consistent labeling, 17, 119
initialization, 34, 51, 52
deformable contour, 67
deformable curve, 67
deformable image, 91
instantiation
deformable contour, 34
deformable curve, 53, 67
deformable image, 82, 84
region of interest, 128—-130, 147
registration, 128
sparse model, 94, 96
interpolation, 128
linear, 79

Laplacian, 86
least squares, 85
level curves, 72
level set methods, 51
likelihood
deformable contour, 37, 38
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deformable curve, 55
deformable image, 77
ratio, 55
sparse model, 95
linear discriminant analysis, 149, 157
LL symbols, 162, 165, 197
detection, 182
prototype, 131
random deformations, 131
recognition, 182
scene analysis, 175, 176, 182
sparse model, 131
detection, 137
local features, 131
training, 131
local features, 24, 26, 29, 81, 94, 149, 175

background density, 93, 105, 106, 110-112,

119, 130
background probabilities, 95, 97
binary, 24, 28
clustering, 127
comparison arrays, see comparison arrays
consistent arrangement, 17
density, 120

edge arrangements, see edge arrangements

edges, see edges
false positives, 93
invariant, 94

micro-image codes, see micro-image codes

on class probability, 195
pose invariance, 108
registered, 172, 174, 178
ridges, see ridges
spreading, 155, 157, 162, 165, 174, 192
statistics, 93, 105, 195
low-level processing, 14

machine learning, 170
maximum likelihood, 45, 56
mean curvature, 41

medical imaging, 34
micro-image codes, 156, 162
minimal cut, 51

model shifting, 186

motion estimation, 80, 87
MPEG, 81

MRI, 34, 87, 93
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brain scan, 44, 54, 58, 60, 67, 68, 88, 91, 92,
99, 117, 119
instantiation, 137
sparse model, 118, 137, 141
ventricle, 92
functional, 87

multiple classification trees, 31, 131, 153, 162, 173,

174, 176

aggregation, 1563-155, 162
boosting, 154, 155

overfit, 164
conditional covariance, 167
conditional independence, 167
experiments, 162
mean margin, 168
object recognition, 155
randomized, 131, 151-153, 157, 174, 197
with absolute arrangements, 157
with relational arrangements, 160

multiple objects, 96
mutual information, 63, 64, 91

network, 7, 21, 33

abstract module, 190, 204

class subset, 190
architecture, 187, 204
biological analogies, 200
bottom-up processing, 203
classification, 21, 33, 197
detection, 7, 21, 33, 200
detection layer, 198, 199
gating, 198, 200, 203
Hebbian learning, see Hebbian learning
inhibitory units, 192, 200
input

high level, 191

low level, 191

visual, 188
invariant detection, 203
layers, 187
learning, 21, 33, 202, 204

classifier, 192

object model, 190, 191
location selection, 198, 200

bottom-up, 200

pop-out, 200

top-down, 198, 200
module, 190
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priming, 198, 200
recognition, 7, 198, 200
off center, 198
retinotopic layers, 188, 198
top-down information flow, 198, 200, 203, 204
training, 190, 194
translation, 200
translation layer, 198, 200
neural dynamics, 187
neural system, 187
neuron
afferent connections, 187
afferent units, 191
binary, 187
local field, 187, 194
output, 187
post-synaptic, 190, 191, 194, 205
pre-synaptic, 187, 188, 190, 191, 205
threshold, 187, 188
NIST database, 162, 178, 195
misclassified digits, 162
pre-processing, 162
non-linear deformations, 26, 127
normal equations, 84

object boundary, 34, 72
object cluster, 32, 172, 181, 184, 200
object clustering, 181
sequential, 182
tree based, 184
object detection, 6, 15, 20, 26, 172, 174
and recognition, 174
and recognition, 18, 32, 172, 175, 177, 181
as classification, 30
Bayesian approach, 22
model points, 22
non-rigid 2d, 15, 18
deformable contour, see deformable contour
deformable curve, see deformable curve
deformable image, see deformable image
sparse model, see sparse model
rigid 3d, 16, 18, 144, 145
3d models, 144
sparse model, 136
view based, 184
view based models, 18, 136, 144
object model, 15, 191
admissible instantiation, 23, 24, 26
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coarse to fine, 145
complexity, 22
computation, 25, 26
cost function, 25
data model, 24
efficient computation, 24
image transforms, 24, 26
instantiation, 22-25
learning, 192
likelihood, 24, 26
model points, 22, 26
one dimensional, 34, 72, 77, 91, 145
parameter estimation, 25, 26
posterior, 24
prior, 24, 26
sparse, 92
template, 15, 22, 24, 26, 145
two dimensional, 77, 91, 145
object pose, 84
object recognition, 6, 7, 18, 20, 30, 147, 172, 174
deformable models, 19
local features, 156, 157
multiple classification trees, 155
Occam’s razor, 25
occlusion, 25, 29, 94, 121, 127
Olivetti data set, 130
optical flow, 86
ORing, 157

parameter estimation
deformable contour, 44
deformable curve, 56
deformable image, 84
sparse model, 98, 101
parts, 171, 185, 202
pattern recognition, 170
peeling, 114, 115
perceptrons, 195
multiple randomized, 195, 197, 204
voting, 197
photometric invariance, 16, 20, 24, 27, 53, 81, 82,
89, 94, 97, 99, 149, 155, 156
pose space search, 17
coarse to fine, 17
positron emission tomography, 87
posterior
deformable contour, 37, 45
deformable curve, 56
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deformable image, 77, 82
sparse model, 95, 96
pq probabilities, 193
predictors, 149, 151, 152, 156, 157
random subset, 151, 153
prefrontal cortex, 202
priming, 203
principal components, 36, 51, 90, 91
prior
deformable contour, 35
deformable curve, 53, 56
deformable image, 77
sparse model, 95, 113
prototype image, 22, 25, 27, 72-74, 76, 81, 93, 108,
173

QR, 85
quasi-Newton, 80, 85

recurrent connections, 187
reference grid, 22, 53, 84, 93, 94, 128-130, 137, 190
reference points, 101, 103
region growing, 50
region of interest, 172, 174
relational arrangements, 31, 149, 157, 159-166,
168
as labeled graph, 160
as query , 160
instances, 160, 161
minimal extension, 160
partial ordering, 159, 160
pending, 160, 161
ridges, 54, 81
road tracking, 67
rotation invariance, 109, 113, 170

saccade, 198

scale invariance, 56, 113, 117, 157, 161

scene, 22

scene analysis, 6, 7, 18, 20, 32, 172, 178

scene interpretations, 181

serial computation, 186

shape, 15, 44, 51, 72

shape classification, 149

smoothness penalty, 75

sparse model, 16, 18, 28, 29, 93, 94, 145, 172, 173,

176, 178, 181, 182, 198

admissible instantiation, 97, 109, 121
as initialization, 130
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candidate centers, 97, 121, 123—-125, 128, 199
density, 127
coarse to fine, 119, 121, 123
computation time, 120, 121, 127, 128, 145
counting detector, 29, 33, 123-125, 127, 130,
137, 149, 197, 198
step I, 29, 123, 126, 127, 130, 131, 134, 198
step II, 29, 125-128, 130, 131, 134
data model, 95
detection, 121, 130, 200
dynamic programming, 17, 29, 115-117, 120
false negative probability, 109
false positive density, 105, 109-112, 127
false positives, 121, 126
final classifier, 130, 131, 134
image transform, 95
instantiation, 94-96, 105, 109, 119, 126, 128,
161
clustering, 127
landmarks, 92, 98, 101
user defined, 92
likelihood, 95
local features, 94, 97, 114, 121, 126, 177
consistent arrangement, 93, 94, 121, 122,
149
on object probabilities, 95, 105-109, 123
multiple objects, 96
parameter estimation, 98, 101
pose detection, 119, 125, 131, 136, 172, 174
posterior, 95-97, 109
prior, 95, 113
decomposable, 29, 114
template, 95, 98
threshold, 97, 105
training, 98, 101, 126, 175, 191
edge arrangements, 102
splines, 36
statistical model, 40, 44, 50, 51, 87
statistical modeling, 25
support vector machine, 149
synapse, 187
depression, 190, 193
efficacy, 187, 188, 190, 191, 193, 194, 198
internal state, 190, 192, 194
potentiation, 190, 192, 194, 195, 202
synaptic connections, 187
directed, 187
synaptic modification, 190
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template
deformable contour, 34, 35, 72
deformable curve, 53, 72
deformable image, 72
sparse model, 98

test error rate, 152

thin plate splines, 128

tracking in time, 51

training error rate, 152

translation invariance, 157, 161

ultrasound, 37
unsupervised learning, 152
unsupervised tree, 152, 153

class distribution estimates, 153
user initialization, 15, 16, 53, 92, 120
USPS database, 163, 178

ventricles, 44

visual scene, 186

visual system, 18, 186, 198, 202
complex cells, 202
cortical column, 202
infero-temporal cortex, 202
layers, 202, 203
object detection, 186
object recognition, 186
orientation selectivity, 202
receptive field, 202

wavelet basis, 35, 37, 42, 44, 75, 77, 85
Daubechies, 35
discrete transform, 36, 42, 43, 79
packets, 36, 77, 91
pyramid, 35, 75
resolution, 36, 37, 75
two dimensional, 75
discrete transform, 79
weighted training sample, 155



