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Abstract

Our long-range goal is detecting instances from a large
number of object classes in a computationally efficient man-
ner. Detectors involving a hierarchy of tests based on edges
have been used elsewhere and shown to be quite fast on-
line. However, significant further gains in efficiency - in
representation, error rates and computation - can be re-
alized if the family of detectors is constructed from com-
mon parts. Our parts are flexible, extended edge configura-
tions; they are learned, not pre-designed. In training, object
classes are presented sequentially; the objective is then to
accommodate new classes by maximally reusing parts. Ide-
ally, the number of distinct parts in the system would grow
much more slowly than linearly with the number of classes.
Initial experiments on learning to detect several hundred
LATEXsymbols are encouraging.

1. Introduction
One of the grand but largely unrealized objectives of com-
puter vision is semantic scene labeling - identify all in-
stances of ordinary objects in natural images or video se-
quences, including object poses and occlusion patterns.
One obstacle is certainly the sheer number of different ob-
ject categories that might appear in typical indoor and out-
door scenes. Whereas in any given application this number
might be severely limited by specific goals, it is not unreal-
istic to imagine hundreds or even thousands of categories of
interest. Add another order of magnitude if the challenge is
to emulate human capabilities.

Naturally, computation then becomes the paramount is-
sue, both for constructing the detectors (whether from
models or samples) and for implementing them online.
Throughout this paper a “detector” is a binary classifier for
some instance of object/background separation. Fast detec-
tors have recently been built based on some type of coarse-
to-fine search. The particular ones we train are a variant

of these: There is a hierarchy of individual Boolean de-
tectors dedicated to various subsets of presentations, each
of which is based on checking for a minimum number of
“parts” which are chosen during training from a virtually
infinite candidate pool. Our aim is to design the underly-
ing object representations to share as many parts as possi-
ble. This opens the way to still faster online execution as
well as more efficient representation. It can also reduce the
error rates if the parts are extended structures which are sig-
nificantly rarer in the “background” than on the objects of
interest.

Finding a universal “alphabet” of features has of course
intrigued researchers for a long time, both in computational
and biological vision. The advantages are numerous, in-
cluding simplifying object recognition and scene parsing
by basing the search on the parts, some of which could be
precomputed. Ideally, not too many total parts would be
needed in order to represent each object in terms of a rela-
tively small number of them together with rough geometric
constraints among them [2],[5]. In addition, methods based
on stochastic and structural grammars are by nature hier-
archical; indeed, the concept of “parts” lies at the heart of
“compositional vision” [4]. From the point of view of bi-
ological vision, this provides a model for the responses of
neurons at higher level retinotopic layers such as V4 and
some part of IT [11]. Previous attempts have focused on
pre-designed parts (see e.g. [5] and [8]). In contrast, our
approach is statistical, learning-based and recursive.

Our parts are medium-scale, binary features which are
defined in terms of flexible and extended configurations
of edges. The learning scenario is sequential: new object
classes are continually being added to an existing library.
In fact, we imagine beginning with a single object class and
successively adding one new class at each iteration. The
objective is then to modify the existing system in order to
accommodate the new category. We simply build a detector
for the new class and add it to the existing collection. When
the detector for thek + 1’st class is constructed, the parts
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which constitute the previousk detectors are examined first
and favored in the construction of the new one. Only if the
quota of necessary parts is not reached in this way are new
parts learned from data. Initially, most parts are learned and
unique; eventually, many are reused in new classifiers. Ide-
ally, the total number of distinct parts in the system afterk
constructions will grow slowly, for instance logarithmically,
with k, which directly reduces storage and opens the way to
online efficiency by basing scene parsing on the parts rather
than the individual detectors.

We describe some steps along this path. The parts
are described inx2 and the method for integrating them
into a detector is outlined in Section 3. Obvious tradeoffs
emerge among measures of reusability, discrimination and
part complexity. The sequential learning algorithm is ex-
plained in Section 4 and experiments in character recogni-
tion, specifically detectingLATEX symbols, are presented in
Section 5. Finally, in Section 6, we mention some open
issues, for instance the scaling behavior and exploiting re-
dundancy to minimize online computation.

2 The Ensemble of Parts

As indicated above, the parts we explore are different from
those in the cited references, being inherently discrete,
learned from data rather than designed (or specified analyti-
cally) and chosen based purely on statistical criteria. Specif-
ically, we seek:� A rich pool of potential parts - geometrically and sta-

tistically diverse;� A modestly-sized subset which provides a balance be-
tween commonality and discrimination (object speci-
ficity);� A degree of geometric and photometric invariance.

Global features are therefore not appropriate since they are
unlikely to generalize and too sensitive to occlusion and
clutter; they are also unsuitable for the particular types of
coarse-to-fine detectors we design since, even for a single
object category, we require features which are simultane-
ously likely over a wide range of poses. Local features
are not sufficiently discriminating, at least if we desire to
construct our detectors from a relatively small number of
parts. Consequently, with all these constraints in mind, we
use “mid-scale” features constructed themselves from semi-
invariant local features.

The only local features we use are edges, but others
might serve equally well as long as local topographic infor-
mation is expressed in manner largely invariant to photom-
etry and small geometric perturbations. We have used both
a “home-grown” edge filter and converted a state-of-the-art

edge-detector [6] into a binary feature after quantizing the
gradient to4 canonical directions. Fig 1 illustrates the edges
found on an arc. For our purposes, the differences among
edge operators is unimportant; the key operation is “spread-
ing”, which generates a cascade of local features over many
“scales,” and hence many levels of invariance and statistical
power. -

Figure 1:The edges detected on a piece of arc.

There is one “spread edge”� for each locationx 2 L (the
pixel lattice), direction (four values), polarity (light-to-dark
or vice-versa) and “spread”� 2 f1; 2; :::g:� = 1 if there is an edge of the given direction and

polarity anywhere along a line of pixels of length�
centered atx, and orthogonal to the edge direction;
otherwise� = 0.

We will refer to the line of pixels as the “support” of the
spread edge (although the set of all pixels which participate
in the definition of the component edges is of course larger).
The case� = 1 corresponds to ordinary edges. We writeE
for this collection of binary features. Spread edges have
arisen in a variety of forms in recent studies [1], [9], moti-
vated by achieving a desired level of geometric invariance
(seex3).

A part is a subsetA = f�1; :::; �Mg � E of M spread
edges, whose positions are confined to a (reference)K�K
window (centered at the origin) and whose spreads are iden-
tical, say�(A). Given a locationx 2 L, the corresponding
binary feature isXA(x) = � 1 if

P�2A �x� � m0 otherwise
(1)

where �x� denotes the shifting of the spread edge� by
the vectorx. To avoid redundant representations of object
boundaries we require that the supports of any two spread
edges of the same direction be disjoint. The degree of in-
variance is controlled by�. For instance, if the subimage in
Figure 1 undergoes a small translation, rotation and scaling,
the set of edges found is roughly the same as before for suf-
ficiently large�, and hence the response ofXA is exactly
the same.

We takeM = K for convenience. As for reusability,
suppose the threshold1 � m � M is chosen so thatA
is rather likely to appear (meaning the eventXA = 1 has
high probability) on instances of some object category over
a range of poses. Clearly the potential forXA to capture ge-
ometric properties of other object categories, and hence be
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reused, depends critically onM and�: AsM increases and� decreases, the part becomes more and more specialized.
In all our experiments we choosem = 5 andM = K = 10
relative to objects whose scale is order40. In order to pro-
mote reusability, we also limitA to at most two types of
edges (in terms of direction and polarity).

Fig 2 shows sample parts chosen during training (seex4),
all heavily reused; the bounding boxes are10 � 10. The
graphs in Fig 3 indicate the level of discrimination of one
of the (coarse) parts in Fig 2 by showing object and back-
ground probabilities for different thresholdsm. For exam-
ple, if the threshold in (1) ism = 5, the likelihood of the
eventfXA = 1g is nearly0:7 on objects and less than0:1
on background.

Figure 2:A sample of parts found during training. Top row :
Parts frequently used by pose-invariant detectors. Bot-
tom row : Parts frequently used by pose-specific detectors.
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Figure 3:Probabilities on object and background of one of
the sample parts in Fig 2. The horizontal axis represents
the numberm of spread edges in the part; the vertical axis
is the estimated probability of finding the part for different
thresholdsm in (1), both for object and non-object images.

3 Object Detectors

The detectors we train are closely related to recent work
([3], [13]) in which Boolean features at different levels of
invariance are combined in a hierarchy in order to accelerate
scene parsing. The detectors are defined as object vs. non-
object classifiers for a reference window, which are then
applied at a sparse sublattice of image locations. The cas-
cade nature of the classifier leads to quick rejection of most
image regions, allowing the computation to concentrate on
object-like structures.

The modular or “compositional” nature of these hierar-
chical detectors makes them ideal for incorporating the flex-
ible parts we have described. In the cited work, each detec-
tor in the hierarchy is based on checking for the existence of
certain number of Boolean features (exactly as in our def-
inition of a part). In effect, we are simply grouping these
primitive Boolean features (our spread edges) into clusters
(our parts) in order to make the detectors more discriminat-
ing.

Given areference gridG on which the detector is de-
fined, instead of checking whether

P�2B � � l for some
“large” family B of edges (as done before), we evaluatef = � 1 if

P(A;x)2DXA(x) � n0 otherwise
(2)

whereD is a family of part/location pairs(A; x) with x 2G. Heren is on the order of halfjDj. In the current imple-
mentation, the locations are all at leastK pixels apart. Thus
there is no overlap among the supports of the (translated)
parts.

In this way we retain the basic advantages of the above-
mentioned methods, such as very rapid processing of most
portions of the scene (due to early exit from the search)
while at the same time improving discrimination and allow-
ing for efficient sequential learning (seex4).

In order to make this paper largely self-contained, and to
formulate the learning problem in abstract terms, we briefly
describe the structure of the detector hierarchy and the man-
ner in which the scene is parsed to find instances from an
object category. All possible poses in the scene are parti-
tioned into (disjoint) subsets; for example, the object posi-
tion is divided into non-overlapping blocks. (The scale can
also be restricted to an interval commencing at the mini-
mum detectable scale and the algorithm rerun on downsam-
pled images to find larger objects.) The global procedure is
then to visit a subimage - corresponding in size to the ref-
erence gridG - surrounding each block and check for the
presence of objects with a pose in the specified subset. This
is done using a hierarchy of detectors of the form (2). In the
experiments below, the blocks are of size8�8 and the initial
scales run from the minimum size to twice the minimum.

More specifically, assume thatboth an object class or
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category
 is fixed anda subset of poses, denoted�. The
goal is to build a detector (binary classifier)F
 which re-
sponds positively when there is an instance of class
 with
pose in�. The set� is recursively partitioned into sub-
sets organized in a tree hierarchyf
lj ; j = 1; :::; nl; l =1; :::; Lg, where
lj is the j’th member of thel’th layer.
The children of
lj result from subdividing
lj based on
one of the pose parameters. The details of the recursive par-
titioning are irrelevant for our purposes. In this scheme, a
detectorflj 2 f0; 1g of the form (2) is learned for each
lj . The classifierF
 is defined in terms offfljg: If the
root detectorf11 = 0, the search is terminated; if it re-
sponds positively, the detectors forl = 2 are evaluated; and
so forth. In general,flj is evaluated if and only if all its an-
cestors are evaluated and return positive answers, and hence
the object is declared to be present (F
 = 1) if and only if
a chain of positive responses is found all the way down to
the final layer. (In that case an estimate of the pose is easily
provided.)

The motivation for this search design is that each detec-
tor flj is designed to have a null false negative error (no
missed detections) in the sense that if there is indeed an in-
stance of object class
 with pose in
lj , thenflj = 1 with
probability (close to)1. This can always be (roughly) sat-
isfied at the expense of false positive error and allows the
search to be very quickly terminated in general. (For “in-
variants” of a very different sort see, for example, the dif-
ferential ones in [7].)

4 Learning

The abstract problem is to induce a detectorfL with good
error statistics from a training setL (of images). In our work
this means that the false positive rate (or type II error) is as
small as possible subject to the false negative (type I) gen-
eralization error being close to zero:fL(I) = 0 with very
low probability for new samplesI from whatever “class”L
represents. This particular error tradeoff underlies the ra-
tionale for the classifiers described inx3. Needless to say,
observing no missed detections onL is not sufficient; in the
applications the thresholdn, which controls the tradeoff, is
chosensmallerthan necessary to achieve no missed detec-
tions onL, but symbols are still occasionally missed.

The process of learning new parts is simple but compu-
tationally intensive. GivenL, the first step is to identify a
candidate subfamilyE0 � E of spread edges. The criterion
is that� is found on at least one-half the images inL, but
the same edge with any smaller spread is not. In other
words, among “common” spread edges, take the most
precise ones possible. Now pass aK �K window over the
image lattice and check for the existence of a part, i.e., the
existence ofM elements inE0 meeting the constraints for
a part as defined inx2 as well as a “frequency” condition

that the part appear on one-half the training set.

Sequential Learning: Now consider a large libraryC
of object categories, which are incrementally presented
to the learning system in some orderf
1; 
2; :::g. More
precisely, at iterationk we obtain a learning setLk of
samples from category
k at poses in�. Our goal is
to build detectors dedicated to various subsets
 � �
(the subsets
lj defined inx3). These detectors will be
combined (as described inx3) into a Boolean classifierF
k
dedicated to finding instances of class
k. We can assume
from here on that
k and
 are fixed, and we are buildingf = f
k;
. The numberN = jDj of parts inf depends on
the range of scales in
; in practice,N ranges from about10 to 25.

At the first step (k = 0) we fill our quotaN entirely with
newly learned parts. Even in this step we try to translate a
partXA attached to locationx to new locations and check
if the frequency condition is satisfied. At stagek, we wish
to maximize the use of existing parts as follows.

Let Pk be the family of parts which appear inF
1 ; :::; F
k�1 and setD = ;. The detectorf = f
k;
,
equivalentlyD, is learned in four steps:

1. EvaluateXA(x) for each locationx 2 L and eachA 2 Pk. Retain only those part/location pairs for
which the fraction of positive responses exceeds one-
half. Call this set of part/location pairsW .

2. Choose a random element(A; x1) 2 W . Of all el-
ements inW with locationx1 find the one(A1; x1)
with lowest spread�(A1). Add it toD. The subse-
quent search is restricted to the subsetW� � W of
parts with spread�.

3. Add toD a random element(Ai; xi) in W� chosen
from among those for whichxi is at leastK pixels
apart fromx1; : : : ; xi�1. If none exist go to 4. Oth-
erwisei = i+ 1 and repeat 3.

4. If jDj < N , addN � jDj new parts and makef .

The motivation for using the minimal possible spread is
discrimination: Given a part, the false positive rate is mono-
tonically increasing with�. Of course if
 is “large,” so
thatf must be highly invariant, there may be no available
parts with small spreads. As� increases, however, more and
more parts are found which are common onL. (In practice,
only parts found at invariance levels comparable to
 are
likely to be used.) In Fig 4 we show23 parts appearing in
the detector for presentations of the symbol
 = � within a
relatively large subset
.
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Figure 4:Parts appearing in the detector for the symbol�
over a range of poses.

5. Experiments
We have tested the system on a rich family of two-
dimensional shapes, namely the LATEXsymbols. Nothing in
the learning algorithm is adapted to this particular shape
class; the process would be exactly the same for, say, fish or
leaves or mixtures thereof, or for shapes with internal struc-
ture, such as faces or logos. However, for highly deformable
objects or 3D objects it would clearly be necessary to revisit
the basic classifiers in order to accommodate more degrees
of freedom in the presentations.

Each LATEXsymbol is first rendered in high resolution and
then normalized in size so that the larger of the dimensions
of a bounding box is64 pixels. Training data for each sym-
bol is synthetically generated for a given set of poses

by randomly translating, scaling and rotating the templates.
The ordering of the symbols is also random. Samples of
parts were shown in Fig 2 and Fig 4; the spreading of the
edges is not depicted, but can easily be imagined, so the
parts are actually quite flexible features. The somewhat ir-
regular geometry is due to the purely statistical criteria for
selection - no “regularity” is assumed other than restricting
the edges to at most two orientations.

The degree of reuse is small at the beginning but rapidly
accelerates. Indeed, even at the scale of the parts the com-
plexity of this world of shapes is limited: All the symbols
are finally composed of a limited number of sub-objects
arranged in a variety of spatial configurations. The curvek �! jPjk, depicted in Fig 5. The approximating function

is k �! 197 + 84 ln k (least-squares fit). The initial slope
is large, but more than half of the total number of parts used
for k = 170 classes are built in the first6 iterations.
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Figure 5:Growth rate of the number of distinct parts in the
system as a function of the numberk of classes learned, fork = 1; :::; 170. The superimposed curve is logarithmic.

The degree of usage varies considerably among parts.
Shown in Fig 6 is the usage distribution: The fraction of
total parts which are usedat leastj times. Recall that a part
may be used in many different detectors for thesameobject
class.
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Figure 6:Distribution of the usage of individual parts. For
eachj � 1, the graph displays the fraction of parts in the
system which at used at leastj times.

When artificial “LATEXscenes” are parsed, there are defi-
nitely false positives, particularly for categories learned late
in the process since the corresponding detectors tend to be
less discriminating than those based entirely on newly-built
parts. A sample “scene” together with the detections of the
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� symbol are shown in Fig 7. This symbol happens to be
the first one learned and hence the false positive rate is quite
low. Other results are shown in Fig 8 and Fig 9.

Figure 7: Results of detecting instances of� on a LATEX-
scene.

6 Discussion and Conclusions

Other sequential learning scenarios could be imagined. For
instance, at each iteration only a single new instances (im-
age) might be presented, or a sets of images representing
multiple object categories, some new and some previously
seen. Indeed, the single example case has been considered
in the machine learning literature; see e.g. the “Incremental
Tree Inducer” algorithm [12].

The learning algorithm has not been optimized; many
ameliorations are possible, both for accelerating the learn-
ing and for reducing the false positive rate. In particular,
the part selection process is far from optimal: Basically a
greedy, recursive search, starting from a given part and ran-
domly adding any one which is disjoint from the previous
ones. A more principled approach might be to find the best
detector in terms of some objective function which accounts
simultaneously for reusability and an estimated false posi-
tive rate.

Finally, and most importantly, the redundancy among the
detectors has not yet been exploited to reduce online com-
putation. When multiple classes are detected we simply im-
plement the separate detectors one by one. Although detec-
tion is quite rapid due to frequent early exit from the hierar-

chy, steep further gains should be possible. An interesting
question, both in practice and theory, is how to exploit the
overlap to maximally reduce the amount of online computa-
tion. Clearly, rather than loop over detectors, it makes sense
to base the search on the parts themselves, for example se-
quentially evaluating them in a tree-structured decision pro-
tocol, thereby taking advantage ofboth the hierarchyand
the commonality.
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Figure 8: Examples of detection results for other symbols,
displayed to left of the corresponding image. The oval re-
flects the detected pose in position, scale and tilt.

�

'
Figure 9:Additional results.
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