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We compute retrieval probabilities as a function of pattern age for
networks with binary neurons and synapses updated with the simple
Hebbian learning model studied in Amit and Fusi (1994). The analysis
depends on choosing a neural threshold that enables patterns to stabilize
in the neural dynamics. In contrast to most earlier work, where selective
neurons for each pattern are drawn independently with fixed probability
f, here we analyze the situation where f is drawn from some distribution
on a range of coding levels. In order to set a workable threshold in
this setting, it is necessary to introduce a simple inhibition in the
neural dynamics whose magnitude depends on the total activity of the
network. Proper choice of the threshold depends on the value of the
covariances between the synapses for which we provide an explicit
formula. Retrieval probabilities depend on the distribution of the fields
induced by a learned pattern. We show that the field induced by the first
learned pattern evolves as a Markov chain during subsequent learning
epochs, leading to a recursive formula for the distribution. Alternatively,
the distribution can be computed using a normal approximation, which
involves the value of the synaptic covariances. Capacity is computed as
the sum of the retrival probabilities over all ages. We show through sim-
ulation that the chosen threshold enables retrieval with asynchronous
dynamics even in the presence of significant noise in the initial state of
the pattern. The computed probabilities with both methods are shown
to be very close to probabilities estimated from simulation. The analysis
is extended to randomly connected networks.

1 Introduction

Amit and Fusi (1994) presented a simple model for Hebbian learning
where both neurons and synapses are binary. When the presynaptic and
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postsynaptic neurons are on, there is a positive probability for the synapse
to move from the depressed state to the potentiated state. If the presynap-
tic neuron is on but the postsynaptic is off, there is a positive probabil-
ity for the synapse to move from the potentiated to the depressed state.
This is the simplest possible dynamic synaptic modification rule that al-
lows continuous learning where older patterns are gradually forgotten
as new ones are learned. Patterns presented to the network are random
and independent, and are produced as collections of independent binary
variables—one for each neuron in the network. The capacity, the num-
ber of patterns the network can retain in memory, is analyzed in terms
of the signal-to-noise ratio of the local fields produced by a pattern af-
ter a given number of learning steps. Variability in the fields is due to
both the stochastic nature of the patterns and the stochastic nature of the
synaptic updating rule. The capacity is shown to depend heavily on the
coding level of the patterns, namely, the fraction of selective neurons or
units equal to 1. The interesting conclusion is that if the coding level is
on the order of log N/N, where N is the number of neurons, then asymp-
totically in N, the capacity of the network is on the order of N2/ log2 N.
This analysis is extended in Romani, Amit, and Amit (2008), where a pre-
scription for setting a threshold for the neuronal dynamics is provided
(in terms of the parameters of the network) and capacity is subsequently
defined as the number of patterns that can sustain themselves in the neu-
ronal dynamics, after the initial stimulus is removed. The signal-to-noise
estimates for capacity are then shown to be consistent with simulation.
One basic assumption of the these two papers is that the expected coding
level of the patterns is constant. This is also an assumption found in many
other papers analyzing Hebbian learning such as (Tsodyks, 1990; Amit &
Fusi, 1994; Brunel, Carusi, & Fusi, 1998; Amit & Mongillo, 2003; Del Giu-
dice, Fusi, & Mattia, 2003; Senn & Fusi, 2005; Bernacchia & Amit, 2007;
Fusi & Abbott, 2007; Ben Dayan Rubin & Fusi, 2007; Leibold & Kempter,
2008), as well as in other work analyzing network capacity indepen-
dent of the learning mechanism (Willshaw, Buneman, & Longuet-Higgins,
1969; Gardner, 1986; Nadal & Toulouse, 1990). The stochastic nature of
the inputs does allow for some variability in the coding level, and this
does have a pronounced effect, as shown in Nadal (1991); however; the
variability of the size of the selective set is small compared to the size
itself.

It would appear that real inputs cannot be of such fixed coding levels,
which motivates the first contribution of this letter, extending the analysis
of the learning process to patterns deriving from a mixture distribution
over coding levels. At each step, a pattern is chosen by first sampling a
coding level from a distribution on coding levels and then sampling the
inputs of the pattern based on the chosen coding level. Introducing a sim-
ple inhibition mechanism in the neural dynamics, and properly selecting a
threshold, we show that the network can stably retrieve learned patterns
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from this richer population. We provide a recursive formula for the covari-
ance of the synapses feeding into any given neuron. This quantity turns
out to be most important in setting the threshold level to prevent the fir-
ing of too many nonselective neurons. An order of magnitude estimate of
this covariance is provided in Amit and Fusi (1994) for low coding levels.
Here, the precise value of the covariance as a function of pattern age is
derived.

The analysis of capacity is based on a formula for the probability of a
pattern to be retrieved in the dynamics as a function of the pattern’s age.
We show that the sum of synapses feeding into a neuron from a fixed
set of other neurons evolves as a Markov chain, and we analyze its finite
time and asymptotic properties. The probability of retrieval is obtained in
terms of the distribution of these sums relative to the preset threshold that
determines the dynamics. We also develop a simpler approximate formula
for retrieval probability using normal approximations, which involves the
synaptic covariance formulas. Ignoring these covariances can overestimate
the retrieval probability.

Capacity can be redefined as the expected number of retrieved patterns
over all ages, which is nothing but the sum of retrieval probabilities over
all ages. The order of magnitude of the capacity can still be obtained using
signal-to-noise considerations conditional on coding level, and using the
predetermined threshold as a lower bound; however, precise probabilities
would in principle enable comparison to psychometric experiments, which
record retrieval as a function of pattern age. Finally the analysis is extended
to noisy inputs in retrieval and to networks with random connectivity. We
find that retrieval is very robust to rather high noise levels on the selective
neurons (up to 50%). On the other hand, assuming synaptic connectiv-
ity is random, capacity drops significantly with the fraction of connected
synapses.

The letter is organized as follows. In section 2 we define the basic net-
work setup, the learning dynamics, and the network dynamics, including
inhibition. In section 3 we introduce the new stimulus distribution, with
multiple coding levels, analyze the corresponding Markov chain on synap-
tic weights, and provide closed-form formulas for means and variances of
the fields induced by the first pattern. In section 3.3, we show how a thresh-
old can be set to allow retrieval of patterns with different coding levels, as
long as the proper level of inhibition is introduced. In section 4, we analyze
the integer-valued Markov chain defined by the sum of all synapses feeding
into a neuron from some fixed arbitrary set of other neurons. This yields a
precise formula for retrieval probability as a function of age. We also show
that this probability is well approximated through normal approximations
to the sums. The analysis is extended to noisy inputs (in retrieval) and ran-
domly connected networks. We demonstrate the accuracy of the predictions
using simulations. We conclude in section 5 with a short discussion of the
biological implication of the results.
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2 Basic Network Setup

Consider a fully connected network of N neurons with two states per
synapse, J− = 0 for depressed and J+ = 1 for potentiated. The neurons
are assumed to be binary as well—either activated or quiescent. Input stim-
uli are denoted ξ = (ξ1, . . . , ξN), where ξi = 0/1. Those ξi that are equal to
one are called the selective neurons for the stimulus. We denote by J i j the
state of the synapse for presynaptic neuron j and postsynaptic neuron i .
The synaptic process is determined by the stochastic sequence of patterns
presented to the network.

2.1 Hebbian Learning. Upon the presentation of a stimulus, each
synapse in the network updates its status by the following rules:

� If both presynaptic and postsynaptic neurons are activated and the
synapse itself is in the depressed state, it will be potentiated with
probability q+.

� If the presynaptic neuron is on and the postsynaptic neuron is off
and the synapse itself is potentiated, then it will be depressed with
probability q−.

� In all other cases, the synapse remains unchanged.

This is the simplest possible Hebbian-type learning rule that stays faithful
to the assumption that synaptic updating is local; it depends only on the
activity of the pre- and postsynaptic neurons, and that synaptic states are
finite, discrete, and bounded.

2.2 Dynamics and Retrieval. In simulations we implement an asyn-
chronous updating scheme. Given a fixed synaptic matrix {J i j }N

i, j=1 and a
fixed threshold θ , the neuronal configuration ξ is repeatedly updated as
follows:

1. Randomly choose a neuron i .
2. Compute the field induced by pattern ξ :

hi (ξ ) = 1
N

∑
j : j �=i

J i jξ j . (2.1)

3. Update the status of neuron i according to

ξnew
i = 1[hi ≥ θ ], ξnew

j = ξ j , j �= i. (2.2)

4. Set ξ = ξnew and return to step 1.

If this dynamics stabilizes at a pattern similar to the initial pattern ξ , we say
the network “retrieves” ξ and can retain ξ in working memory without the
presence of external input.

Inhibition is introduced by adding a parameter η for the strength of the
inhibitory input into each neuron. We assume that inhibition is proportional



664 Y. Amit and Y. Huang

to network activity. Let ξ̄ =∑ j ξ j/N. The neuronal dynamics is now given
by

ξnew
i = 1[hi − ηξ̄ > θ ]. (2.3)

The motivation for this dynamics is as follows. Assume NI inhibitory neu-
rons all receive synaptic input of size 1 from all N excitatory neurons in the
network. Assume that the probability of firing for each inhibitory neuron
is proportional to the input. Then if all inhibitory neurons feed into each
excitatory neuron with strength η, the inhibitory input to each such neuron
will be close to ηξ̄ .

3 Stimuli Distribution and Learning Dynamics

We train the network with a stream of temporally independent and homo-
geneous stimuli {. . . , ξ (−1), ξ (0), . . . , ξ (p), . . .}, where ξ (p) = (ξ (p)

1 , . . . , ξ
(p)
N ) is

referred to as the pth stimulus or the pth pattern, and ξ
(p)
i = 0 or 1 is the

indicator of whether neuron i is activated by the pth stimulus, for all p and
i = 1, . . . , N. To relate this to sensory inputs, we will often refer to the ξi as
features, and those that are activated as features present in the stimulus.

In most previous theoretical work, the assumption is that that ξi are
independently set to 1 (selective) with some probability f , or that a fixed-
size random subset of size f N is sampled and assigned as the selective
neurons of the pattern. In other words, the average coding level is assumed
constant (see Nadal & Toulouse, 1990; Amit & Fusi, 1994; Brunel et al., 1998).
This assumption does not appear realistic as a model for real-world inputs.
It is reasonable to assume that different objects have different numbers
of features, that is, neurons, that are activated. Since there is no specific
preference to any of the inputs, we assume that the distribution of ξ j ,
j = 1, . . . N is exchangeable in j . The joint distribution then depends on
only the number of selective neurons but not on the specific set of active
neurons. It can be summarized in terms of marginal probabilities,

pm,n = P(the first m neurons are 1, the next n neurons are 0), (3.1)

where m, n are nonnegative integers with m + n ≤ N. The most general
form we will employ for the joint distribution of the features is

pm,n =
∫ 1

0
f m(1 − f )nμ(d f ), (3.2)

where μ is some distribution on the unit interval. Note that p1,0 is the
average coding level. In other words, at each step, draw a random variable
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F (p) distributed according to μ, and then draw ξ
(p)
i independently P(ξ (p)

i =
1) = F (p). The case analyzed so far corresponds to μ = δ f for some value f .

Denote the synaptic efficacy after p-steps of learning as J (p)
i j . If the net-

work is presented with a sequence of independent samples from the above
population of patterns, then J (p)

i j behaves as a Markov chain with the fol-
lowing transition matrix,

P =
(

P00 P01

P10 P11

)
=
(

1 − p2,0q+ p2,0q+
p1,1q− 1 − p1,1q−

)
(3.3)

where p1,1 and p2,0 are defined in equation 3.1.
Let α := p2,0q+, β := p1,1q−. The subleading eigenvalue of the transition

matrix is

λ := 1 − α − β, (3.4)

and the stationary distribution on the two states of the synapse is

(π0, π1) :=
(

β

α + β
,

α

α + β

)
. (3.5)

Let ρ
(p)
xy := P(J (p)

i j = 1 | ξ
(1)
i = x, ξ

(1)
j = y) be the distribution of J (p)

i j , con-
ditional on the status of the pre- and postsynaptic neuron in the first pat-
tern. Assuming the synapses are initialized at the stationary distribution
(P(J (0)

i j = 1) = π1), we have

ρ
(p)
11 = π1 + λp−1π0q+, ρ

(p)
10 = π1,

ρ
(p)
01 = π1 − λp−1π1q−, ρ

(p)
00 = π1.

(3.6)

Note that asymptotically as p → ∞, ρ
(p)
xy → π1.

We are interested in whether the network can retrieve the learned pattern
ξ (1) after learning ξ (2), . . . , ξ (p), that is, whether ξ (1) is stable with respect to
the dynamics in a network with synaptic states given by {J (p)

i j }. Denote by

h(p)
i = 1

N

∑
j : j �=i

(
J (p)

i j − η
)
ξ

(1)
j

the mean field induced by ξ (1) after p-steps of learning. The conditional
mean h(p)

i of selective and nonselective neurons induced by pattern ξ (1),
given the number of selective neurons in the first pattern (i.e., conditional
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on
∑

j ξ
(1)
j = m), is, respectively,

μ
(p)
m,1(η) := E

⎡
⎣h(p)

i | ξ
(1)
i = 1,

∑
j

ξ
(1)
j = m

⎤
⎦= m

N
E
[(

J (p)
i j − η

)
ξ

(1)
j | ξ

(1)
i = 1

]

= m
N

E
{
ξ

(1)
j E

[
(J (p)

i j − η) | ξ
(1)
i = 1, ξ

(1)
j = 1

]} = m
N

(
ρ

(p)
11 − η

)
(3.7)

μ
(p)
m,0(η) := E

⎡
⎣h(p)

i | ξ
(1)
i = 0,

∑
j

ξ
(1)
j = m

⎤
⎦ = m

N

(
ρ

(p)
01 − η

)
. (3.8)

3.1 Synaptic Covariances and Field Variance. The signal-to-noise ratio
analysis in Amit and Fusi (1994) and Romani et al. (2008) is performed
using an approximation of the asymptotic variance of the fields, which
ignores synaptic correlations. Although this is a reasonable approximation,
we provide here a closed-form formula for these covariances, both for finite
p and as p tends to infinity. This will prove important for the more refined
analysis of retrieval probability developed in section 4.

Denote the covariance of two synapses J (p)
i j , J (p)

ik conditional on ξ (1) as

γ (p)
xyz := Cov

(
J (p)

i j , J (p)
ik | ξ

(1)
i = x, ξ

(1)
j = y, ξ

(1)
k = z

)
.

We have the following recursive formula for γ
(p)
xyz:

Proposition 1. The conditional covariance of two synapses J (p)
i j , J (p)

ik given ξ
(1)
i =

x, ξ
(1)
j = y, ξ

(1)
k = z satisfies the recursion

γ (p)
xyz = rγ (p−1)

xyz + b(p)
xyz,

where

r = 1 − 2α − 2β + p3,0q 2
+ + p2,1q 2

−

b(p)
xyz = (

1 − ρ(p−1)
xy

)(
1 − ρ(p−1)

xz

)
p3,0q 2

+ + ρ(p−1)
xy ρ(p−1)

xz p2,1q 2
−

−[(
1 − ρ(p−1)

xy

)
α − ρ(p−1)

xy β
][(

1 − ρ(p−1)
xz

)
α − ρ(p−1)

xz β
]

and

γ := lim
p→∞

γ (p)
xyz = π2

0 q 2
+ p3,0 + π2

1 q 2
− p2,1

2α + 2β − p3,0q 2+ − p2,1q 2−

Moreover, it can be shown that γ = O(p1,0).
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Proof. See the appendix.

With proposition 1, one can calculate the conditional variance of the
field at each step. It suffices to work out the case with no inhibition
(η = 0) since the inhibition term η(

∑
jξ

(1)
j ) = mη is simply a constant when

M(1) .=∑ jξ
(1)
j = m is given. For selective neurons,

(
R(p)

m,1

)2
:= Var

(
h(p)

i | ξ
(1)
i = 1, M(1) = m

)
= m

N2 Var
(
J (p)

i j | ξ
(1)
i = ξ

(1)
j = 1

)
+ m2 − m

N2 Cov
(
J (p)

i j , J (p)
ik | ξ

(1)
i = ξ

(1)
j = ξ

(1)
k = 1

)
= mρ

(p)
11

(
1 − ρ

(p)
11

)+ m(m − 1)γ (p)
111

N2 , (3.9)

and similarly for nonselective neurons,

(
R(p)

m,0

)2
:= Var

(
h(p)

i | ξ
(1)
i = 0, M(1) = m

)
= mρ

(p)
01

(
1 − ρ

(p)
01

)+ m(m − 1)γ (p)
011

N2 . (3.10)

If ξ (1) is known to be generated with coding level f , that is, F (1) = f ,
but the pattern size M(1) is unknown, then E[M(1)] = Nf , and Var(M(1)) =
Nf (1 − f ). By equation 3.7, the mean field h(p)

i is

μ
(p)
f,x(η) := E

[
h(p)

i | ξ
(1)
i = x, F (1) = f

]
= E

[
M(1) | F (1) = f

](
ρ

(p)
x1 − η

)
/N = f

(
ρ

(p)
x1 − η

)
, (3.11)

for x = 0, 1. By equations 3.9 and 3.10, the variance of a pattern of coding
level f is

(
R(p)

f,x

)2
:= Var

(
h(p)

i | ξ
(1)
i = x, F (1) = f

)
= E

[
Var
(
h(p)

i | ξ
(1)
i = x, F (1) = f, M(1))]

+ Var
(
E
[
h(p)

i | ξ
(1)
i = x, F (1) = f, M(1)])

= 1
N2

{
E
[
M(1) | F (1) = f

]
ρ

(p)
x1

(
1 − ρ

(p)
x1

)+ E
[
M(1)(M(1) − 1) |

F (1) = f
]
γ

(p)
x11

}+ 1
N2 Var

(
M(1) | F (1) = f

)(
ρ

(p)
x1 − η

)2
.
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Dropping the terms of order f 2/N, we get

(
R(p)

f,x

)2 = f
N

[
ρ

(p)
x1

(
1 − ρ

(p)
x1

)+ (ρ(p)
x1 − η

)2]+ f 2γ
(p)
x11.

Taking the limit as p → ∞, the dependence on x disappears, and we have

R2
f

.= lim
p→∞

(
R(p)

f

)2 = f
N

[π1π0 + (π1 − η)2] + f 2γ. (3.12)

3.2 Selection of the Threshold. With low coding levels, the number of
nonselective neurons is very large, and if a small although nonnegligible
proportion of these neurons fires, the entire network will eventually be ac-
tivated in the absence of inhibition, or in the presence of inhibition some
arbitrary subset of the neurons will fire at each iteration. For this reason,
θ should be set so as to control the probability of any nonselective neuron
firing at a level δ. Assuming the fields h(p)

i are independent of each other
conditional on the pattern ξ (1), we write (omitting the conditioning):

P
(
h(p)

i < θ, for all nonselective i
)

≈ P
(
h(p)

i < θ
)N(1− f ) ≈ P

(
h(p)

i < θ
)N = 1 − δ. (3.13)

Equations 3.11 and 3.12 with x = 0 provide the mean and variance of h(p)
i

for nonselective neurons. Since we will be assuming q− = O( f ) 	 1, these
are very close to the asymptotic values μ∞

f,0(η) = f (π1 − η) and R2
f even for

p = 1.
Assume the distribution of h(p)

i for nonselective neurons is approximately
normal, and define Cδ,N as the (1 − δ)1/N-th quantile of the standard normal.
Then, setting the threshold at

θ f = f (π1 − η) + Cδ,N Rf (3.14)

will keep the probability that any nonselective neuron fires at δ.
It is important to note that the threshold is determined by the properties

of the nonselective neurons, in particular, the standard deviation Rf of their
fields. For fast learning—q+ close to 1, the standard deviation R(p)

f,1 of the
selective neurons for moderately sized p is much smaller than Rf .

If we assume that retrieval of a pattern of coding level f requires the
mean field of the selective neurons μ

(p)
f,1(η) to be at least a Rf larger than θ f ,

we get

μ
(p)
f,1(η) − μ∞

f,0(η)

Rf
= f λ(p−1)π0q+√

f [π1π0 + (π1 − η)2]/N + f 2γ
∼ Cδ,N + a .

(3.15)
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Figure 1: (a) The distribution of the fields of selective (gray) and nonselective
(black) neurons of patterns at two different coding levels f1 and f2. The gray and
black solid lines are, respectively, the mean field of selective and nonselective
neurons as a function of coding levels, and the dashed lines are 1 SD away
from the mean. There is no threshold to separate the selective and nonselective
neurons of both coding levels. (b) Without inhibition (η = 0), the threshold θ f is
nearly linear in f ; with inhibition (η = π1 + Cδ,N

√
γ ), θ f increases slightly with

f but is nearly constant.

This yields an estimate of the capacity

p ∼ 1
−2 log λ

log

(
Nf π2

0 q 2
+

(Cδ,N + a )2[π1π0 + (π1 − η)2 + Nf γ ]

)
,

which makes sense only if the argument of the logarithm is greater than 1.
This requirement imposes a lower bound on the coding levels,

f >
(Cδ,N + a )2(π1π0 + (π1 − η)2)

N
[
π2

0 q 2+ − (Cδ,N + a )2γ
] ,

and a constraint on q+ as well: π0q+ > (Cδ,N + a )
√

γ . With only one coding
level f ∼ log N/N and q− = O( f q+), then − log λ ∼ f 2 = O(log2 N/N2),
and the memory capacity is on the order of N2/ log2 N.

3.3 Multiple-Level Coding and Inhibition. The challenge in the case of
multiple-level coding is that both the mean and variance of the fields of se-
lective and nonselective neurons grow linearly with f (see Figure 1a). There
is no threshold that can separate the fields of selective and nonselective neu-
rons of the different coding levels simultaneously. If the threshold is set too
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high, no patterns from the lower coding level will be retrieved. If the thresh-
old is set lower, some low-coding patterns might be successfully retrieved.
However, for high-coding patterns, many nonselective neurons will be ac-
tivated, leading to blow-up: full activation of all neurons in the network.

This problem can be solved by choosing an appropriate inhibition factor
η. Setting

η = π1 + Cδ,N
√

γ , (3.16)

then from equation 3.14

θ f = f Cδ,N

⎡
⎣
√

π1π0 + C2
δ,Nγ

Nf
+ γ − √

γ

⎤
⎦

= Cδ,N

N

π1π0 + C2
δ,Nγ√

π1π0+C2
δ,Nγ

Nf + γ + √
γ

.

As a function of f , the threshold θ f grows very slowly and asymptotes
at Cδ,N(π1π0 + C2

δ,Nγ )/2N
√

γ (see Figure 1b). Taking θ = θ fmax , where fmax

is the maximum coding level, is then sufficient to keep the nonselective
neurons at all coding levels below threshold. This is our choice for all
simulations we describe.

3.4 Simulations. To illustrate the distribution of the fields relative to
the threshold, we ran a simulation with only two coding levels 0.02 and
0.04, N = 5000, q+ = 1, q− = 0.04, δ = 0.01, which yields

π1 = 0.463, λ = 0.99784, γ = 0.00250, Cδ,N = 4.61, θ = 0.0019.

Note that in each simulation, the synapses are initialized independently
according to the corresponding stationary distribution, and then P patterns
are learned. After learning, we verify retrieval of the learned patterns using
the asynchronous dynamics described in equation 2.3. Retrieval is achieved
if more than 100(1 − e)% of the selective remain active and no nonselective
neurons are active. In Figure 2 we show the fields of selective (+) and
nonselective (◦) for two very recent patterns of the two coding levels, as
well as two older patterns. Thanks to the inhibition, the chosen threshold is
able to separate selective from nonselective neurons for both coding levels.

4 Refined Capacity Analysis

The signal-to-noise analysis provides verifiable order of magnitude pre-
dictions on capacity for one coding level and can be extended to multiple
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Figure 2: Scatter plots of fields for selective (+) and nonselective neurons (◦)
for patterns of two different coding levels at different ages. The horizontal line
is the threshold θ = 0.0019.

levels at least for small fmax. Here we develop a far more detailed anal-
ysis, which provides a recursive formula for the retrieval probability at
each age. We then show that this computation can be well approximated
by a normal approximation, and both approximate the retrieval probability
from simulations very closely. Recall that according to the learning dynam-
ics described, the coding levels of incoming stimuli F (p), p = 0, 1, 2, . . ., are
independent and identically distributed (i.i.d.) with probability distribution
μ(·), and F (p) is independent of J (s)

i j for all s < p and 1 ≤ i, j ≤ N,

4.1 Markov Property of Synaptic Sums

Proposition 2. Let A be any set of indices of neurons not including i . Then
J (p)

i A := ∑
j∈A J (p)

i j is an irreducible Markov chain with state space {0, . . . , |A|},
and

J (p)
i A =

{
Bin

(
J (p−1)

i A , 1 − F (p)q−
)

if ξ
(p)
i = 0

J (p−1)
i A + Bin

(|A| − J (p−1)
i A , F (p)q+

)
if ξ

(p)
i = 1,

where F (p) is the coding level of ξ (p).
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Proof. Let m = J (p−1)
i A . According to the learning dynamics, if ξ

(p)
i = 0, only

depression can occur on the m incoming potentiated synapses, each inde-
pendently with probability F (p)q−. If ξ

(p)
i = 1, potentiation can occur only on

the |A| − m incoming depressed synapses, each independently with prob-
ability F (p)q+. The chain is irreducible since all transitions have positive
probability at any step.

As a special case, if A is taken to be the set of selective neurons of ξ (1)

(A = { j : ξ
(1)
j = 1, j �= i}), then conditional on ξ (1),

∑
j J (p)

i j ξ
(1)
j =∑ j∈A J (p)

i j
is a Markov chain.

Let G(·) be the cumulative distribution function of a probability dis-
tribution on the unit interval [0, 1]. (G(u) = 0 for u ≤ 0 and G(u) = 1
for u ≥ 1.) The corresponding binomial mixture on N trials, denoted by
X ∼ BinMix(N, G(·)), is defined as

P(X = m) =
(

N
m

)∫ 1

0
um(1 − u)N−mG(du).

We state the following result, which is proved in the appendix.

Proposition 3. Using the assumptions and notation in proposition 2, if J (p−1)
i A ∼

νp−1 = BinMix(|A|, G p−1(·)), then J (p)
i A ∼ νp = BinMix(|A|, G p(·)), where

G p(z) = R(G p−1)(z) :=
∫

f G p−1

(
z − f q+
1 − f q+

)

+ (1 − f )G p−1

(
z

1 − f q−

)
μ(d f ). (4.1)

Furthermore the iterationR is a contraction and has a unique fixed point Gs. Hence
the stationary distribution ν of the Markov chain J (p)

i A is given by BinMix(|A|, Gs).

As an example, when there are k levels { f1, . . . , fk} with weights
r1, . . . , rk , the evolution equation becomes

G p(z) =
k∑

i=1

ri

[
fi G p−1

(
z − fi q+
1 − fi q+

)
+ (1 − fi )G p−1

(
z

1 − fi q−

)]
.

Using the same arguments from the previous proposition, we have the
following:
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Proposition 4. Suppose at stage 0, the network is in the stationary state. Assume
that A is a subset of the selective neurons of the first learned pattern ξ (1). Then the
distribution of h̃(p)

i = ∑
j∈A\i J (p)

i j is as follows:

1. For p = 1,

h̃1
i ∼

{
BinMix(|A| − 1, G1(·)) i f ξ

(1)
i = 1

BinMix(|A|, G0(·)) i f ξ
(1)
i = 0

where

G1(z) =
⎧⎨
⎩

1{z≥1} i f q+ = 1

Gs(
z − q+
1 − q+

) i f q+ < 1

G0(z) = Gs

(
z

1 − q−

)
assuming q− < 1

where Gs(·) is the limit point of G p.
2. For p = 2, 3, . . .,

(h̃(p)
i |ξ (1)

i = x) ∼ BinMix(|A| − x, G p(·)), x = 0, 1,

where G p satisfies the recursion of equation 4.1 with G1 = G1 or G0 defined
above, depending on ξ

(1)
i = 1 or 0.

4.2 Computation of Gp. The function G p(·) is usually unavailable in
closed form. Theoretically we can evaluate each G p exactly. However, after a
few iterations, this becomes very complicated and hard to evaluate. Instead,
we use the iterating equation 4.1 to evaluate G p(z) at K + 1 grid points,

z = i
K

, i = 0, 1, . . . , K ,

where K is a large number. For nongrid points z, instead of tracing back to
G p−1 using equation 4.1, we linearly interpolate the two neighboring grid
points of z as an approximation. For example, when using equation 4.1 to
evaluate G p+1(z) at grid z, z− f q+

1− f q+
and z

1− f q−
are usually not grid points.

Once G p is approximated, the probability that P(
∑N

j=1 J (p)
i j = m) is ap-

proximated by

K∑
i=0

(
N
m

)(
i
K

)m (
1 − i

K

)N−m

gp

(
i
K

)
,
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where gp is the numerical differentiation of G p,

gp

(
i
K

)
:= G p

(
i
K

)
− G p

(
i − 1

K

)
.

4.3 Retrieval Probability. A pattern ξ is said to be retrieved with e-
error if, after the dynamics runs for a period of time, the fraction of active
selective neurons is at least 1 − e and no nonselective neurons are active,
at each step of the dynamics. Retrieval with 0 error is also called perfect
retrieval, in which case the dynamics stabilizes at a pattern identical to ξ ,

Retrieval is a function of the network dynamics. It is too difficult to
fully analyze events involving the stable point of asynchronous dynamics.
Instead, we analyze a simpler form of synchronous dynamics for which we
can compute the retrieval probability. Empirically we observe that these
computed probabilities are extremely close to the estimated probabilities
obtained from simulating the asynchronous dynamics.

The modified form of synchronous dynamics proceeds as follows. Start
at ξ (1), let A(1) be the set of selective neurons of stimulus 1, and write
m = |A(1)|, let me = (1 − e)m. Given a state of the system ξ old , let Hold be
the set of active neurons, and assume |Hold | = me . All neurons i = 1, . . . , N
are updated based on the fields determined by ξ old , yielding ξ̃new. Now
if the number of active neurons in ξ̃new is greater than me , leave only the
first (based on the given ordering of the units) me on and turn off the rest,
yielding ξnew. Let Hnew be the set of active neurons in ξnew. Retrieval with
e-error means that at each step, the set Hnew is of size me . This modification
guarantees the same number of active neurons at each step and allows us
to obtain a fixed inhibition level at each step.

Denote by h(e,p)
i = 1

N

∑
j∈H(old) J (p)

i j − ηme . The threshold determined in
equation 3.14 depended on the probability δ of any nonselective neuron
firing. Given this threshold, we are interested in the conditional probability
given A(1) that the fields generated by Hold are above θ for at least me of
the neurons in A(1) and below θ for all nonselective neurons. Assuming all
fields are independent conditional on the set A(1) and using θ defined in
equation 3.14, we have

P(p)
e

(
A(1))= (1 − δ)P

(∣∣{i ∈ A(1) : h(e,p)
i ≥ θ

}∣∣ ≥ me
∣∣A(1))

= (1 − δ)
∑

S⊂A(1):|S|>me

×
[∏

i∈S

P
(
h(e,p)

i > θ | A(1))∏
i /∈S

P
(
h(e,p)

i < θ | A(1))]

= (1 − δ)
m∑

k=me

(m
k

)
 (p)

e (θ )k(1 −  (p)
e (θ )

)m−k
, (4.2)
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where

 (p)
e (θ ) = P(h(e,p)

i > θ ).

This probability can be computed using the formulas of proposition 4 or
using the following approximation of the sums in terms of the normal
distribution. Using the normal approximation to h(e,p)

i , we write, conditional
on A(1),

Nh(e,p)
i ∼ N

(
μe,p, σ

2
e,p

)
,

where

μe,p = meρ
(p)
11 − ηme and σ 2

e,p = meρ
(p)
11

(
1 − ρ

(p)
11

)+ (m2
e − me

)
γ

(p)
111.

(4.3)

(see equation 3.9). Consequently,

 (p)
e (θ ) ≈ �̃

(
Nθ − μe,p

σe,p

)
, (4.4)

where �̃ = 1 − � is the tail of the normal distribution. Since P(p)
e (A(1)) de-

pends on A(1) only through its size, we write P(p)
e (m) = P(p)

e (A(1)). The dis-
tribution of |A(1)| is

P
(|A(1)| = m

) =
∫ (

N
m

)
um(1 − u)N−mμ(du),

and we finally approximate the retrieval probability as

P(p)
e ≈

∫ N∑
m=0

(
N
m

)
P(p)

e (m)um(1 − u)N−mμ(du).

With retrieval probabilities at hand, an alternative way to obtain capacity is
to compute the expected number of retrievable patterns, which is nothing
but the sum of the retrieval probabilities over all ages:

C =
∞∑

p=1

P (p)
e . (4.5)
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Figure 3: Predicted and simulated retrieval probabilities. The upper panel is for
perfect retrieval (e = 0), and the lower panel allows for 5% error (e = .05). The
jagged gray line is an average over 100 runs of a simulation for each age. The
smooth black line is a monotonic regression (the nonincreasing line that best
fits the observations) to the gray line. Dotted line: Binomial mixture prediction.
Dashed line: Normal approximation prediction.

4.4 Simulations. The retrieval probabilities are shown in a number of
scenarios. First, for coding levels uniformly distributed between 0.02 and
0.04, with q− = 0.04, q+ = 1, N = 5000, δ = 0.01,

π1 = 0.0445, λ = 0.9979, γ = 0.0023, Cδ,N = 4.61, θ = θ0.04 = 0.0021.

The upper panel in Figure 3 shows predicted and actual retrieval rates with
zero error (e = 0), whereas the lower panel shows the same for e = .05.
The dotted curve is based on the recursive computation of the binomial
mixture. The dashed curve is based on the normal approximation. The
jagged gray lines are averages of 100 runs of the simulation, and the black
is the nondecreasing line that best fits the gray. With the tools developed
in section 4, we can predict the retrieval rates for much larger networks
for which simulation is not practical. When we raise the network size N to
5000, 50,000, and 150,000, and decrease the coding levels accordingly at rate
log N/N, we see a perfectly quadratic increase in capacity (see Figure 4).

Finally, we note that ignoring the covariance leads to overestimating the
retrieval probabilities. This is not a major problem for q+ = 1. But taking
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Figure 4: Square root capacity computed from equation 4.5 as a function of
N, with f ∝ log N/N. The straight line verifies the nearly quadratic increase
N2/ log2 N of capacity in N.
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Figure 5: (a) Standard deviations for selective and nonselective neurons com-
puted with and without the covariance term for different ages. (b) Retrieval
probability predictions with and without covariance term. Solid line with co-
variance term, dashed line without. One coding level f = .02, q+ = .5, N =
25,000.

q+ = .5 in a network of 25,000 neurons, Figure 5 shows the difference in the
variances on the right panel and the difference in the predicted probabilities
on the left.
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4.5 Retrieval with Input Noise. The stimuli initiating the network dy-
namics could be noisy versions of the learned patterns. Of interest is how
the retrieval probability depends on the level of noise. We denote by ξ̃ (1) the
noisy version of the first pattern, with the following noise model:

P
(
ξ̃

(1)
i = 1 | ξ

(1)
i = 1

) = 1 − ε+ P
(
ξ̃

(1)
i = 1 | ξ

(1)
i = 0

) = ε−.

Let A+ = {i : ξ
(1)
i = 1, ξ̃

(1)
i = 1} and A− = {i : ξ

(1)
i = 0, ξ̃

(1)
i = 1}. Then the

field induced by ξ̃ (1) is Nhi = J (p)
i A+ + J (p)

i A− . The distributions of J (p)
i A+ , J (p)

i A−
are again given by proposition 4. For the mean and variance conditional,
we have

E
(
J (p)

i A+ | ξ
(1)
i = x, A+

)= |A+|ρ(p)
x1 , and E

(
J (p)

i A− | ξ
(1)
i = x, A−

) = |A−|π1,

As for the variances,

Var
(
J (p)

i A+ | ξ
(1)
i = x, A+, A−

) = |A+|ρ(p)
x1

(
1 − ρ

(p)
0x1

)+ |A+|(|A+| − 1)γ (p)
x11

and

Var
(
J (p)

i A− | ξ
(1)
i = x, A+, A−

) = |A−|π1π0 + |A−|(|A−| − 1)γ.

A similar computation for the covariance between the two terms yields

Cov
(
J (p)

i A+ , J (p)
i A− | ξ

(1)
i = x, A+, A−

) = |A+||A−|γ (p)
x10.

Thus, setting m = |A(1)|, the mean and variance from equation 4.3 become

μp = m(1 − ε+)ρ(p)
11 + (N − m)ε−π1. (4.6)

And using the variance decomposition,

σ 2
p = mε+ρ

(p)
11

(
1 − ρ

(p)
11

)+ m(m − 1)ε2
+γ

(p)
111 + mε+(1 − ε+)

(
ρ

(p)
11

)2
+ (N − m)ε−π1π0 + (N − m)(N − m − 1)ε2

−γ

+ (N − m)ε−(1 − ε−)γ + m(N − m)ε+ε−γ
(p)
110.

To obtain quantities of reasonable order of magnitude, we must set ε− =
ε+ p1,0/(1 − p1,0).

In Figure 6, we show that retrieval is robust to a significant amount
of noise ε+ = .1 in the input. Assuming the learned pattern is the correct
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Figure 6: The simulated retrieval rates (averaging over 100 runs) with ε+ =
0 − .5, ε− = ε+ p1,0/(1 − p1,0) noise in the input. The parameters are as in section
4.4. Solid black: the predicted retrieval rates for ε+ = 0.1 based on the normal
approximation and the mean and variances computed in section 4.5. The dashed
line (ε+ = 0.1) is nearly indistinguishable from the solid gray line (no noise) and
is higher than the predicted retrieval rates.

prototype, when a noisy version of this prototype is presented to the net-
work, because of the asynchronous updating, the noise will gradually be
removed. Neurons that are updated later will see a cleaner input. For this
reason, the predicted retrieval probability with noise, which cannot take
into account the asynchronous updating, is actually higher than the prob-
ability observed in simulation. With inhibition and using asynchronous
updating, the network can recover the true pattern without error for a sig-
nificant fraction of patterns, even when the noise level for selective neurons
is ε+ = .5, ε− = .01.

4.6 Randomly Connected Network. If the network is randomly con-
nected, the field becomes

h(p)
i = 1

N

⎡
⎣∑

j �=i

J (p)
i j Ci jξ

(1)
j − ηc

∑
j

ξ
(1)
j

⎤
⎦ .

Here Ci j are independent Bernoulli(c), which determine the existence of the
synapse from neuron j to neuron i . Assume the Ci j ’s remain fixed through-
out learning and pattern retrieval. Given F (1) = f , ξ

(1)
i = x, using the same

arguments as in section 3,

μ
(p)
f,x(ηc) := E

[
h(p)

i | ξ
(1)
i = x, F (1) = f

]
= f

(
cρ(p)

x1 − ηc
)→ f

(
cπ1 − ηc

)
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(
R(p)

f,x

)2
:= f

N

[
cρ(p)

x1

(
1 − cρ(p)

x1

)+ (cρ(p)
x1 − ηc

)2]+ f 2c2γ
(p)
x11.

−→
p→∞

f
N

[cπ1(1 − cπ1) + (cπ1 − ηc)2] + f 2c2γ

The inhibition factor η from section 3.3 is scaled to give ηc = cη, and the
new threshold is

θ f,c = f cCδ,N

⎡
⎣
√

π1(1/c − π1) + C2
δ,Nγ

Nf
+ γ − √

γ

⎤
⎦ .

The new SNR for a single coding level is

μ
(p)
f,1(ηc) − μ

(p)
f,0(ηc)

Rf
= λ(p−1)π0q+√

π1(1/c−π1)+C2
δ,Nγ

Nf + γ

.

Compared with the fully connected SNR, equation 3.15, the network size
N has to increase by a factor of (1/c − π1)/(1 − π1) > 1/c to maintain the
memory capacity at the same level as the fully connected network. For
example, if π1 = 1/2, c = 0.1, N needs to be 19 times larger.

The plot in Figure 7 shows predicted and estimated retrieval probabilities
for c = 0.6 using the methods of section 4.3. Note that the terms in equation
4.3 become

μe,p = cme
(
ρ

(p)
11 − η

)
and σ 2

e,p = mecρ(p)
11

(
1 − cρ(p)

11

)+ (m2
e − me )c2γ

(p)
111.

All parameters are the same as in section 4.4. The gray lines are for perfect
retrieval, and the black lines allow 5% error. Again we see that the predicted
probabilities are very close to those estimated from simulation.

Finally, in Figure 8, we show plots of capacity as a function of coding level
for a number of values of the connectivity c assuming c N = 10,000, 20,000.
Note that as c decreases, even if Nc is held constant while N increases, the
capacity decreases. This is a result of the additional variability in the field
induced by the random connectivity. Assuming for simplicity that γ = 0,
the normalized ratio from equation 4.4 becomes

tp(c) = Cδ,N
√

f Nπ1(1/c − π1) − me
(
ρ

(p)
11 − η

)
√

meρ
(p)
11 (1/c − ρ

(p)
11 )

.

Retrieval is possible when tp(c) is negative of large modulus. Clearly when
c grows, the right-hand term in the numerator grows, and this is lost,
irrespective of the magnitude of N. This problem could be alleviated in
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Figure 7: Simulated (solid lines) and predicted (dashed lines) retrieval probabil-
ities for a randomly connected network with N = 5000 neurons and c = .6. The
gray lines are for perfect retrieval, and the black lines allow 5% error (e = .05).
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Figure 8: Capacities as a function of coding level for fixed cN. (a) cN = 10,000.
(b) cN = 20,000. Same parameter values as for Figure 7.

an artificial way if the fraction of existing synapses among the potentiated
synapses feeding into a neuron was always exactly c. In this case, retrieval
would depend on only c N and f .

5 Discussion

We have shown that with simple linear inhibition and setting the threshold
appropriately, a network can retrieve noisy versions of learned patterns
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with a wide range of low coding levels. Representing the field produced
by a learned pattern as a Markov chain that evolves through subsequent
learning epochs yields an accurate formula to predict the probability of
retrieval as a function of pattern age. These predictions are nonasymptotic
and valid for a wide range of parameter values.

Retrieval probabilities and capacity in a recurrent network depend heav-
ily on the threshold, which in turn must be set to prevent even moderate
numbers of nonselective neurons from firing, because such errors propagate
in the neural dynamics and all trace of the initial pattern will disappear.
The variance of the fields of nonselective neurons, which is very close to
the field variance in the stationary state, is essential in determining the
threshold. This requires computing the covariances between the synapses.

In reality, networks are never fully connected; rather, it is estimated that
neurons receive on the order of several thousands of synaptic connections
onto their dendrites. Thus, the most meaningful capacity estimates are
those shown in the last section. We see that the loss of full connectedness
leads to a significant loss in capacity. Indeed according to Figure 8, for a
network with 105 neurons and 104 synaptic connections per neuron (c = .1)
the capacity is 0 for f = .01 and about 250 for f = .02, whereas for a fully
connected network of 104 neurons, it is approximately 1500. For smaller
values of c, retrieval effectively disappears. We also note that for higher
coding levels around f = .1, retrieval disappears as well. And yet in areas
such as prefrontal cortex, people have reported such high coding levels
during working memory.

Ben Dayan Rubin and Fusi (2007) and Fusi and Abbott (2007) attempt to
remedy this problem by introducing metastates in each synapse, which are
used to slow both learning and forgetting. The authors are also motivated
by the fact that some regions, where working memory is observed, have
higher coding rates (on the order of .1), which further decreases the capacity
for simple binary synapses. The authors report that with metaplasticity, for
a significant period of time, the rate of decay of the signal-to-noise ratio is
polynomial as opposed to exponential. Moreover realizing the importance
of synaptic covariances in Ben Dayan Rubin and Fusi (2007), a learning rule
is proposed that guarantees synaptic independence. (We note that with mul-
tiple coding levels, this method to generate independence does not work,
nor do the symmetry assumptions for potentiation seem to be realistic.)
The use of metastates is further analyzed in Leibold and Kempter (2008).

The measure of capacity is somewhat different in these two papers. In
Ben Dayan Rubin and Fusi (2007), the question is how much information is
retained in the actual synapses, which leads to very high capacity (order 107

with f ∼ .1 and around 20 metastates in a network with 105 neurons and 104

synapses per neuron), although the question of how this information can
be expressed in neural activity is not addressed. In Leibold and Kempter
(2008), the error in neural output is evaluated in a feedforward setting.
They observe that higher capacities are achieved with sparser networks and
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binary states. However, both papers conclude that for high coding levels, the
networks with more metastates achieve higher capacity. In contrast, we have
studied retrieval in neural output in a recurrent setting. Capacity results
are lower since the signal-to-noise ratio constraints are more severe; even
moderate errors in nonselective neurons can destroy retrieval. Analyzing
networks with metastates in the recurrent setting, with actual network
dynamics, is beyond the scope of this letter, but we intend to try to extend
the results here to this more general setting.

However, we raise the possibility that working memory actually employs
much more extensive areas of the brain than localized cortical columns and
that the recurrent network pools activity of multiple local networks that are
interconnected. For example, in recent years, a growing number of experi-
ments show fMRI traces of working memory in retinotopic layers of visual
cortex including primary visual cortex (Cox & Savoy, 2003; Serences, Ester,
Vogel, & Awh , 2008; Harrison & Tong, 2009). The signals in each voxel are
very weak and insignificant; however, using classification algorithms on the
ensemble of voxels covering a visual area, one can get a strong distinction
between different states of the brain. It is also well known that there are
massive feedback connections between IT and lower-level retinotopic visual
areas, which play much more than a passive feedforward role in processing
information (Bullier, 2001; Kveraga, Ghuman, & Bar, 2007). It may be that
because the fraction of neurons in V1 involved in a particular memory is so
small, it cannot be picked up by the fMRI signal in individual voxels and is
not easy to detect with single or even multiple electrode recordings.

If memory is indeed retained in a network consisting of multiple areas,
including the retinotopic areas of the visual cortex, then the number of
neurons available increases dramatically, and this may offer a way to rem-
edy the disappointing capacity results for recurrent retrieval. Even if these
speculative comments turn out to be correct, the global network is not a
homogeneous one as analyzed in this letter or others. Rather, it consists of
interacting relatively homogeneous modules with different coding levels
and different internal and external conductivities. Such recurrent networks
pose an interesting and important challenge from a modeling point of view.

Appendix: Cumulative Distribution Function

Proof of Proposition 1. The learning mechanism can be summarized as

J (p)
i j − J (p−1)

i j =

⎧⎪⎪⎨
⎪⎪⎩

B(p)
i j+ if ξ

p
i = 1, ξ

p
j = 1 and J (p−1)

i j = 0

−B(p)
i j− if ξ

p
i = 0, ξ

p
j = 1 and J (p−1)

i j = 1

0 otherwise

= ξ
(p)
i ξ

(p)
j

(
1 − J (p−1)

i j

)
B(p)

i j+ − (1 − ξ
(p)
i )ξ (p)

j J (p−1)
i j B(p)

i j−, (A.1)
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where B(p)
i j+ are i.i.d Bernoulli(q+) and B(p)

i j− are i.i.d Bernoulli(q−). All B(p)
i j+,

B(p)
i j−, and ξ ’s are mutually independent. One can further rewrite equation

A.1 as

J (p)
i j = D(p)

i j+ + (1 − D(p)
i j+ − D(p)

i j−
)
J (p−1)

i j , (A.2)

where

D(p)
i j+ = ξ

(p)
i ξ

(p)
j B(p)

i j+, D(p)
i j− = (1 − ξ

(p)
i

)
ξ

(p)
j B(p)

i j−.

Note that {D(p)
i j+, D(p)

i j−} are independent of J (p−1)
i j . By equation A.2,

γ (p)
xyz = A1 + A2 + A3 + A4,

where

A1 = Cov
(
D(p)

i j+, D(p)
ik+
)
,

A2 = Cov
(
D(p)

i j+, (1 − D(p)
ik+ − D(p)

ik−)J (p−1)
ik

)
,

A3 = Cov
(
(1 − D(p)

i j+ − D(p)
i j−)J (p−1)

i j , D(p)
ik+
)
,

A4 = Cov
((

1 − D(p)
i j+ − D(p)

i j−
)
J (p−1)

i j , (1 − D(p)
ik+ − D(p)

ik−)J (p−1)
ik

)
.

Here, all the covariances are conditioned on ξ
(1)
i = x, ξ

(1)
j = y, ξ

(1)
k = z, since

{D(p)
i j+, D(p)

i j−} and J (p−1)
i j depends only on {ξ (p), B(p)

i j+, B(p)
i j−} and {ξ (k), B(k)

i j+,

B(k)
i j− : k ≤ p − 1}, respectively, and hence are independent. Using the fact

that

Cov(AX, B) = E(X)Cov(A, B)

Cov(AX, BY) = E(AB)Cov(X, Y) + E(X)E(Y)Cov(A, B),

when (A, B) and (X, Y) are independent random variables, we have

A2 = −ρ(p)
xz Cov

(
D(p)

i j+, D(p)
ik+ + D(p)

ik−
)
,

A3 = −ρ(p)
xy Cov

(
D(p)

i j+ + D(p)
i j−, D(p)

ik+
)
,

A4 = E
[(

1 − D(p)
i j+ − D(p)

i j−
)(

1 − D(p)
ik+ − D(p)

ik−
)]

γ (p−1)
xyz

+ ρ(p)
xy ρ(p)

xz Cov
(
D(p)

i j+ + D(p)
i j−, D(p)

ik+ + D(p)
ik−
)
.
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To sum up,

γ (p)
xyz = A1 + A2 + A3 + A4 = r γ (p−1)

xyz + b(p)
xyz (A.3)

where

r = E
[(

1 − D(p)
i j+ − D(p)

i j−
)(

1 − D(p)
ik+ − D(p)

ik−
)]

b(p)
xyz = Cov

((
1 − ρ(p)

xy

)
D(p)

i j+ − ρ(p−1)
xy D(p)

i j−,
(
1 − ρ(p)

xz

)
D(p)

ik+ − ρ(p−1)
xz D(p)

ik−
)
.

Note that E[D(p)
i j+] = p2,0q+ = α, E[D(p)

i j−] = p1,1q− = β, D(p)
i j+ D(p)

ik− = D(p)
i j−

D(p)
ik+ = 0, and

E
[
D(p)

i j+ D(p)
ik+
]= E

[
ξ

(p)
i ξ

(p)
j ξ

(p)
i ξ

(p)
k B(p)

i j+ B(p)
ik+
] = p3,0q 2

+,

E
[
D(p)

i j− D(p)
ik−
]= E

[(
1 − ξ

(p)
i

)
ξ

(p)
j

(
1 − ξ

(p)
i

)
ξ

(p)
k B(p)

i j− B(p)
ik−
] = p2,1q 2

−.

Thus,

r = 1 − 2α − 2β + p3,0q 2
+ + p2,1q 2

−

b(p)
xyz = (1 − ρ(p−1)

xy

)(
1 − ρ(p−1)

xz

)
p3,0q 2

+ + ρ(p−1)
xy ρ(p−1)

xz p2,1q 2
−

− [(1 − ρ(p−1)
xy

)
α − ρ(p−1)

xy β
][(

1 − ρ(p−1)
xz

)
α − ρ(p−1)

xz β
]
.

Since ρ
(p)
xy → π1 as p → ∞ and π0α = π1β, we have

lim
p→∞ b(p)

xyz = π2
0 p3,0q 2

+ + π2
1 p2,1q 2

− := b.

Furthermore from equation 3.2, it follows that p3,0 < p2,0 and p2,1 < p1,1 so
that |r | < 1. Also since the coding levels are small (the support of μ(d f ) is
bounded away from 1), clearly 0 < r < 1. Consequently by the recursion
A.3, it follows that

γ := lim
p→∞ γ (p)

xyz = b
1 − r

= π2
0 q 2

+ p3,0 + π2
1 q 2

− p2,1

2α + 2β − p3,0q 2+ − p2,1q 2−
.

If at stage 0, the network is stationary, then the six different values of γ
(1)
xyz

are

γ
(1)
111 γ

(1)
110 γ

(1)
100 γ

(1)
011 γ

(1)
010 γ

(1)
000

(1 − q+)2γ (1 − q+)γ γ (1 − q−)2γ (1 − q−)γ γ.
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Proof of Proposition 3. Note that given 0 < s < 1, if G(u) is a CDF of a
distribution on the unit interval, so are

Ĝ(a ,b)(u) = G
(

u − b
a − b

)
. (A.4)

We first prove one identity. Let 0 ≤ a , b ≤ 1. If X | Y ∼ Bin(Y, a ) + Bin(N −
Y, b) and Y ∼ BinMix(N, G(·)), then X ∼ BinMix(N, Ĝ(a ,b)).

The conditional characteristic function of X | Y is E[eitX | Y] = (eita +
1 − a )Y(eitb + 1 − b)N−Y. Thus, the unconditional characteristic function of
X is

E[eitX] = (eitb + 1 − b)NE
(

eita + 1 − a
eitb + 1 − b

)Y

= (eitb + 1 − b)N
N∑

k=0

∫ (
N
k

)(
eita + 1 − a
eitb + 1 − b

)k

uk(1 − u)N−k G(du)

= (eitb + 1 − b)N
∫ [(

eita + 1 − a
eitb + 1 − b

)
u + 1 − u

]N

G(du)

=
∫

[eit(b + (a − b)u) + (1 − b + (a − b)u]NG(du)

(let z = b + (a − b)u)

=
∫

[eitz + 1 − z]NĜ(a ,b)(dz).

Assuming J (p−1)
i A ∼ BinMix(|A|, G p−1(·)), then by proposition 2 and the

identity above, conditional on F (p) = f , we have

J p
i A|ξ (p)

i = 0 ∼ BinMix(|A|, Ĝ(1− f q−,0)
p−1 )

J p
i A|ξ (p)

i = 1 ∼ BinMix(|A|, Ĝ(1, f q+)
p−1 ).

Thus,

P(J p
i A = k) =

∫
P(J p

i A = k|F (p) = f )μ(d f )

=
∫

(1 − f )P(J p
i A = k|F (p) = f, ξ (p)

i = 0)

+ f P(J p
i A = k|F (p) = f, ξ (p)

i = 1)μ(d f )



Precise Capacity Analysis 687

=
∫ ∫ (|A|

k

)
zk(1 − z)|A|−k

×
[

(1 − f )Ĝ(1− f q−,0)
p−1 (dz) + f ˜̂G

(1, f q+)
p−1 (dz)

]
μ(d f )

=
∫ ( |A|

k

)
zk(1 − z)|A|−k G p(z) dz.

The evolution equation, 4.1, has a unique fixed point given that the initial
G1(·) is the CDF of a probability distribution on the unit interval [0, 1]. That
is, G1(u) = 0 for u ≤ 0 and G1(u) = 1 for u ≥ 1.

Let H(z) and G(z) be any CDFs on [0, 1] and R(G) the functional defined
in equation 4.1,

∫ 1

0
|R(G)(z) − R(H)(z)|dz

≤
∫ [

f
∫ 1

0

∣∣∣∣G
(

z − f q+
1 − f q+

)
− H

(
z − f q+
1 − f q+

)∣∣∣∣ dz+

(1 − f )
∫ 1

0

∣∣∣∣G
(

z
1 − f q−

)
− H

(
z

1 − f q−

)∣∣∣∣ dz
]

μ(d f )

= λ

∫ 1

0
|G(u) − H(u)|du,

where the equality comes from change of variables u = z
1− f q−

and u = z− f q+
1− f q+

and

λ =
∫

[ f (1 − f q+) + (1 − f )(1 − f q+)]μ(d f ) = 1 − p2,0q+ − p1,1q− < 1

is as defined in equation 3.4. This proves the map R is contracting, and the
claim follows from the Banach fixed point theorem.
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