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Abstract

We propose using simple mixture models to define a set
of mid-level binary local features based on binary oriented
edge input. The features capture natural local structures
in the data and yield very high classification rates when
used with a variety of classifiers trained on small train-
ing sets, exhibiting robustness to degradation with clutter.
Of particular interest are the use of the features as vari-
ables in simple statistical models for the objects thus en-
abling likelihood based classification. Pre-training deci-
sion boundaries between classes, a necessary component of
non-parametric techniques, is thus avoided. Class models
are trained separately with no need to access data of other
classes. Experimental results are presented for handwrit-
ten character recognition, classification of deformed LATEX
symbols involving hundreds of classes, and side view car
detection.

1. Introduction

Two subproblems of computer vision have received con-
siderable attention in recent years: classification of objects
in pre-segmented images and detection of a pre-specified
class of objects in large images. Ultimately a comprehen-
sive vision system will need to perform both tasks. A useful
step in this direction involves the formulation of object rep-
resentations that can be used for both tasks and allow easy
transition between the two. This raises several issues of pri-
mary importance.
Scalability: Dealing with large numbers of classes poses
problems not apparent in small-scale problems. We believe
it is important that a system be able to add new classes
without access to the training data for previously learned
classes. Moving from classification to detection, the exis-
tence of multiple objects in a large image leads to an ex-
plosion in computation. Efficient multi-class classification
will require sub-linear growth in computation as a function
of the number of classes.
Modularity: This is raised as a key challenge in [7] and

[4]. If a representation learned using pre-segmented train-
ing data is to be useful for multi-class vision, we will need
a way of composing classifiers to choose among different
scene labellings, each involving multiple objects. Proba-
bility models for objects provide a natural framework for
achieving this.
Subclass Discovery: The partition of the set of all objects
into classes is somewhat arbitrary, and elements of the same
class may be topologically quite different. A vision system
should be able to discover coherent subclasses.

We believe the issues of scalability and modularity can
only be addressed by discovering acompact and reusable
collection of mid-level local features, and using them to de-
fine simple, parsimonious statistical object models. These
models can be easily composed to describe whole scenes
and settle competitions among various scene interpreta-
tions, and they can be naturally incorporated in a coarse-
to-fine computational strategy (see [4]). Furthermore, by
using a mixture of distributions to represent each class, we
are able to automatically discover subclasses. For example,
Figure 3 demonstrates the discovery of a model for Ameri-
can sevens and one for European sevens. These issues have
guided our thinking in developing the ideas presented in this
paper.

1.1. Overview of the models

At the heart of our method is a model for local image
patches. We propose to modelnon-backgroundlocal image
patches through simple, classical, statistical mixture models
based on coarse, photometrically invariant, binary oriented
edge features which are assumed independent conditional
on the component. Each component of the mixture defines a
new binary local feature and inherits the photometric invari-
ance of the original edge features. The number of compo-
nents is on the order of several tens or hundreds, depending
on the size of the image patches. The primary motivation
for defining these features is to achieve high invariance to
object deformations without paying a heavy price in dis-
criminatory power.

Spreadingeach feature into a neighborhood of its de-



tected location greatly increases the stability of our repre-
sentation to object deformations. However, since each local
feature is a very rare event, on both generic background im-
ages and other object structures, this spreading operation
does not produce large numbers of false object detections.
Nor is there a significant loss in the discriminatory power
of the individual features. Achieving the same level of in-
variance with simpler, more common local features, such
as the original edges, would yield large numbers of false
detections and discriminatory power would be lost.

Although it is possible to use the resulting features in
any type of classifier, we extend the idea of mixture mod-
els from the feature level to the object level, now assuming
conditional independence of thefeaturesin each compo-
nent. With a statistical model defined for each class, classi-
fication reduces to maximizing likelihoods. Since the local
features are common to all classes, and since training only
requires examples from one class at a time, new classes can
be added and learned without retraining the entire classifier.
This is in contrast to non-parametric approaches which es-
timate decision boundaries directly. The use of a mixture
model also provides a natural method for discovering any
subclass structure that may be present in a class.

1.2. Overview of results

We demonstrate the utility of the local features and the
object models in the problem of handwritten digit recog-
nition using the MNIST dataset. We also demonstrate
the universality of our feature set and the utility of our
method for large numbers of classes on a dataset of arti-
ficially deformed LATEX characters,using features learned
from MNIST training data. Finally, we demonstrate the
ability of the method to deal with gray-level images by ap-
plying it to the problem of side view car detection, using
generic features learned from non-car images.

We compare the model-based approach to a support vec-
tor machine (SVM) based on the same features. The con-
clusion from this experiment is that using simple and quite
classical statistical models, on rather classical input (ori-
ented edges), we can discover powerful local features from
small amounts of training data. Furthermore, using a sta-
tistical model for each class, we achieve classification rates
near the state of the art for nonparametric classifiers. The
potential gain is that these models provide possible building
blocks for a statistical model of scenes, something which
can not be easily achieved with non-parametric classifiers.

2. Prior Work

2.1. Learning parts

In recent years, emphasis has shifted from predefining
specific collections of features to discovering the features
through training. For example in [11, 15] Haar-type fea-
tures are used. In [3] informative features with low back-
ground probabilities are built from conjunctions of edges
in a specific configuration. In [14, 15] features are chosen
separately for each class to maximize discrimination, while
in [13] a training procedure discovers informative features
shared across classes, yielding more efficient algorithms.

The SIFT descriptor [10] is widely used and bears some
similarity to our method. However, the SIFT descriptor has
a very large support, even at the highest resolution, while
our features are much more local. Our features also produce
a much denser image representation, assigning features at
all but the flattest image locations.

The convolutional neural network described in [9] dis-
covers local features with shared weights across the image.
The local image patches are learned indirectly as a result
of the global optimization of the weights of the multilayer
net with a cost determined by the object-level classification
rate.

An alternative is to learn local structures from unlabeled
data. For example, a sparse representation can be found for
image patches as linear combinations of independent vari-
ables [5]. We have chosen a similar approach but prefer
a more traditional and transparent form of learning using
mixture models onnon-backgroundimage patches.

2.2. Object models

In recent years there has been growing interest in constel-
lation models under which objects are described in terms of
sparse spatial configurations of local features. See for ex-
ample the sparse models of [2] and [6]. These are used
primarily in detection tasks and in themselves do not carry
sufficient detail to classify between object classes with sig-
nificant similarities such as characters. The models we pro-
pose are ‘dense’ and yield high classification rates. How-
ever sparse models can be easily extracted as approxima-
tions in a coarse-to-fine computational framework. This,
however, is beyond the scope of this paper. There are also
several approaches to statistical modeling of object classes
that are highly dedicated to a particular category of objects,
such as handwritten characters [12, 8].

3. Models for local features and objects

The point of departure for defining our local features is
a set of eight oriented binary edges denotedXe(x), e =



1, . . . , 8, at each pixelx. These are coarsely defined in
terms of their orientation, are highly robust to photomet-
ric variations, and after a small amount of ‘spreading’ (a
local MAX operation) are also robust to local deformations.
They have been used extensively in recognition and detec-
tion experiments (see [2]).

3.1. A mixture model on non-background patches

We describe the distribution of edge maps on subwin-
dows of sizeW centered anywhere in the image:

XW+y = {Xe(x + y), x ∈ W, e = 1, . . . , 8}.

Since we are not interested in ‘wasting’ features to model
generic unstructured background, we define an elementary
background model where all edges are conditionally inde-
pendent with uniform probabilitypbgd. For each image
patch encountered, we count the number of edgesnW in
the patch and compute the probabilityPnW

of observing at
leastnW edges under the background model. We reject the
background hypothesis and model that patch as part of the
non-backgroundpopulation ifPnW

< 0.01.
We use a mixture of conditional independence models

on the binary edge variables. AssumingKF components to
the mixture, we define the probability of a particular config-
urationXW

P (XW ) =

KF
∑

f=1

τfPf (XW ) (1)

Pf (XW ) =
∏

z∈W

∏

e

p
Xe(z)
z,e,f (1 − pz,e,f )(1−Xe(z))

whereτf are the mixing probabilities. In words, an edge
of orientatione at locationz occurs with probabilitypz,e,f ,
and all edges are conditionally independent given the model
componentf . These are classical models and can be trained
with a straightforward implementation of the EM algorithm.

The resulting features are very easy to interpret. In
Figure 1 we show the mean gray-level image for several
MNIST parts, as this is easier to visualize than the actual
probability mapspz,e,f . Note that the unsupervised cluster-
ing process has discovered local structures such as curves,
endings, and even junctions.

Estimation of this model requires that we specify the
number of model componentsKF . We have found exper-
imentally that good classification results are obtained with
about 100 features. Ideally,KF would be internally esti-
mated, using only the training data, possibly by means of
either cross-validation or an information criterion like BIC.

3.2. Feature detection and spreading

Having learned a set of local features, we transform each
image from its edge representationXe(x) to a local feature

Figure 1. Mean images of ten sample clusters from MNIST feature
learning.

representationYf (x), f = 1, . . . , KF . A window, the same
size asW , is swept across the edge map, and at eachnon-
backgroundregionx + W the most likely feature under the
mixture model is recorded, i.e.

Yf∗(x) =







1 if f∗ = argmax
f

log Pf (Xx+W )

0 otherwise

Note that the computation of the log-likelihood at all loca-
tions is simply a linear convolution on thebinary edge data,
not the original image data.

The result of the image transformation is a new set of
feature maps on the same image latticeL as the the original
edge maps. Since each feature encodes an entire local struc-
ture, its exact position is no longer as important as the exact
edge positions. We take advantage of this fact by spread-
ing the detected features to a neighborhood of the original
location. This defines a set of spread features

Y s
f (x) = max

ξ∈B(x)
Yf (ξ) (2)

for x ∈ L andB(x) a neighborhood ofx. In experiments,
we tookB(x) to be a small square grid centered atx.

After spreading, the features are mapped to a coarser grid
by dividing all coordinates by some factor. Note that after
spreading and rescaling several features can be found at the
same location. This greatly increases on object stability.
However, since the features do not occur on generic back-
ground and at most one out ofKF features is allowed at
each point on the original grid, each feature type remains a
rare event.



Figure 2. Locations of horizontal edges (top) and a typical feature
with primarily horizontal structure (bottom) on a trainingimage.

Figure 2 shows a training example from the side view car
experiments along with the locations of all horizontal edges
(top) and a particular local feature with predominantly hor-
izontal structure (bottom). The contrast of the image has
been reduced for display, and the edges used in this exper-
iment are polarity-insensitive. Clearly, the presence or ab-
sence of a feature at a particular location on the grid carries
much more information about the class variable than the
presence or absence of an edge. Thus, we are able to work
on a coarser grid, dramatically decreasing training and test-
ing times without degrading classification or detection re-
sults. Note that, in the extreme, rescaling to a1 × 1 grid is
similar to the well known ‘bag of features’ paradigm: only
the identities of the detected features are retained, without
any information about their position.

3.3. Object models

Each classc was modeled as a mixture ofKc compo-
nents of the same form as (1). That is, conditional on the
model componentm, each spread featureY s

f was assumed
to occur independently at each locationz in L with some
probabilitypz,f,m,c:

P (Y s|M = m, C = c)

=
∏

z∈L

∏

f

p
Y s

f (z)

z,f,m,c(1 − pz,f,m,c)
(1−Y s

f (z))

Again the mixture is fit using the EM algorithm. Once the
model for each class is estimated, testing proceeds by cal-
culating

(Ĉ, M̂) = arg max
c,m

log P (Y |M = m, C = c).

Because of the sharp differences between the likelihood of
the data under the different component models this is essen-
tially the same as maximizing the posterior on class.

A significant computational advantage is gained from the
use of binary features because the log-likelihood is of the
form

log P (Y |M = m, C = c)

= αc,m +
∑

z,f

wz,f,c,m1{Y s
f (z) = 1}

and can thus be computed efficiently once the feature loca-
tions are established. While a similar model can be used
with the original edges as features, the use of mid-level fea-
tures as an intermediate representation incorporates some
inter-edge correlations into the model while maintaining the
conditional independence structure of the model specifica-
tion (see Section 4.1).

4. Experimental Results

We have used these features in experiments with several
datasets. Results are reported using the proposed statisti-
cal models and compared to an SVM with a quadratic ker-
nel. It is clear from the results that the features are powerful
representations for the purpose of classification even in the
presence of hundreds of classes.

4.1. MNIST Digit Data

The MNIST dataset of handwritten digits contains
60,000 training and 10,000 test images that have been sub-
ject to some preprocessing. We have performed experi-
ments using only a portion of the training set to demonstrate
the ability of our feature learning technique to extract pow-
erful features for classification from relatively few training
examples.

One hundred features were learned from the first 1,000
images in the training set. Ten features are shown in Fig-
ure 1, each represented by the mean of all subimages whose
conditional likelihood was maximized by the correspond-
ing model component. Clearly the simple mixture model
on non-backgroundsubimages yields features that capture
local shape structure.

Figure 3. Mean images of five sample MNIST object models.

The features were then used to train several classifiers,
using between 1,000 and 10,000 training examples taken



Classifier Deshearing
Training Examples

1,000 5,000 10,000

Parts

Mixture
On 2.82% 1.67% 1.60%
Off 3.76% 2.06% 1.64%

SVM
On 2.37% 1.40% 1.06%
Off 3.16% 1.59% 1.27%

Edges

Mixture
On 4.47% 2.81% 2.17%
Off 6.94% 3.61% 3.04%

SVM
On 3.07% 1.65% 1.26%
Off 3.81% 2.04% 1.70%

Table 1. Error rates for MNIST classification.

from the beginning of the MNIST training set. Table 1
shows classification results using the various classifiers,
with and without additional preprocessing by a ‘deshearing’
step. Some examples of the resulting object models (with-
out deshearing) are presented in Figure 3. Again we show
the mean images of the clusters, rather than the probability
maps.

The two models of class ‘7’ demonstrate the ability of
our method to discover natural subclasses, one of the prin-
ciples outlined in Section 1. Note that the clustering proce-
dure also picks up on effects that might be better handled ex-
plicitly, like rotation. Contrasting results, using only edges
as the features, are also reported in Table 1. We used the
same number of model components for each class, and the
number was tuned using a validation set of unused images
from the MNIST training set.

Classification times: Part-based classification times
with the mixture model ranged from approximately 1ms -
7ms per digit, depending on the number of model compo-
nents. For the SVM, classification time ranged from 12ms
with 1,000 training data to 42ms with 10,000. The transfor-
mation from gray-level images to parts takes an additional
11ms per digit. All experiments were conducted using a
Pentium-M 1.7GHz CPU.

Figure 4. A test digit with clutter at levels two and ten.

We also synthesized noisy test images and attempted to
classify them. This was done by selecting random4×4 non-
background regions from MNIST digits and placing them at
random locations in each test digit. Gray-level values were

Classifier Features
Level of Clutter

2 6 10

Mixture
Parts 3.61% 5.82% 8.76%
Edges 5.46% 9.53% 14.06%

SVM
Parts 2.35% 4.91% 8.16%
Edges 5.37% 8.79% 13.30%

Table 2. Error rates for cluttered MNIST digit classification, using
5,000 training digits.

combined by maximization. Figure 4 shows two examples
of the same digit with different amounts of clutter added.
Although the4 × 4 windows are smaller than the window
used to train our parts, this gives realistic-looking clutter
which is generally assigned some part label.

Deshearing is not performed since it is very sensitive to
clutter. The data are, however, centered in the frame (after
the addition of clutter) by calculating the center of mass of
the gray-level data and translating it to the center of the im-
age grid. The idea was to mimic the effect of attempting
to properly align a selected region of interest for classifica-
tion. Since the MNIST data have already been centered in
this manner, failure to recenter after adding clutter would
artificially reduce error rates. Table 2 shows error rates for
classification of artificially cluttered data using classifiers
trained with 5,000 data points. For comparison, we also
show results using the edge data alone. As predicted, clas-
sification with edges degrades faster. Furthermore, mixture
model performance with parts is competitive with the SVM,
especially for high levels of clutter.

Although the SVM results with edges are comparable to
mixture model results with parts (on clean data), the lat-
ter retains several advantages. The modular nature of the
mixture model makes it better suited for use in scene in-
terpretation. Since the parts themselves occur much more
rarely than edges, they are inherently more useful for de-
tection at low false negative rates. Also, the parts exhibit
superior classification performance in the presence of clut-
ter – a consideration that is important when dealing with
realistic scenes.

We are most interested in performance with small train-
ing sets, but the power of our features is further demon-
strated by the fact that, if we train an SVM using parts and
20,000 training digits, we achieve a classification error rate
of 0.90% with deshearing and 0.96% without.

4.2. Artificially Deformed LATEX Characters

To test the scalability of this approach to a large num-
ber of classes we employed the randomly deformed LATEX
data set of [2]. A small sample from the dataset is pre-
sented in Figure 5, with classification rates presented in Ta-



ble 3. The model was trained using only thirty examples
from each class to estimate a two-component mixture.

Figure 5. Deformed LATEX characters.

This example also demonstrates the universality of our
feature set, since we did not estimate a new set of features
from the LATEX training data. Rather, we used the same lo-
cal features from the previous experiments, estimated from
the first 1,000 MNIST training examples. In essence, these
local features have captured the generic local structure of
line drawings.

Classifier
Number of Classes

100 200 293
Mixture 3.63% 3.62% 4.72%
SVM 1.80% 1.50% 2.58%

Table 3. Error rates for the LATEX experiment.

4.3. Side View Car Detection

Finally, we tested our method in a full detection frame-
work on the side view car dataset of [1]. First, a collection
of fifty 10×10 local features was learned from only the neg-
ative training examples. In order to develop local features
for use in a variety of detection tasks, no images of cars
were used at this stage. Then, a two-component mixture
model for the car class was estimated usingonly the first
fiftypositive training examples. No additional use was made
of the negative examples. In particular, while the method of
[1] requires explicit training of a classifier to discriminate
between positive and negative examples, we require no such
step.

Tests for detection were constructed by first using the
two-component clustering results to learn models for the
object at two resolutions:10 × 4 and50 × 20. (The origi-
nal training images were100 × 40.) The feature detection
algorithm was applied to each training image, the resulting
feature maps were rescaled to the required resolution, and
the model parameters were estimated.

Detection proceeded by first applying a test for the
coarse model at every image location, followed by a test
for the finer model at all locations that passed the initial
test. The test was based on the log-likelihood ratio test

statistic,log (Po(Y )/Pb(Y )), wherePo(·) denotes the like-
lihood under the object model andPb(·) denotes the like-
lihood under a generic background model. Note that the
background model isnot learned from negative examples.
Rather, it is based on all features occurring independently
at all locations with some fixed probability. The universal
background probabilitypb can be adjusted to tune the sen-
sitivity of the detector. Furthermore, since the distribution
of the test statistic can be estimated on the training data, it
is possible to select a reasonable thresholda priori, without
reference to validation data.
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Figure 6. Recall-precision curves for side view car detection.

A recall-precision curve of our results on test data with
fixed-size cars is shown in Figure 6, along with two corre-
sponding curves from [1]. ‘Neighborhood Suppression’ and
‘Part Elimination’ refer to two methods for pruning multiple
competing detections. We used only the neighborhood sup-
pression method, which assigns to each detection a region
of influence within which all weaker detections are elimi-
nated. In our framework, the strength of a detection is sim-
ply its likelihood ratio. Figure 7 shows two example test
images with cars correctly detected.

5. Discussion and Future Work

We have shown that a simple clustering procedure on
the population of local image patches yields local features
that efficiently describe local object structures, even when
trained on a generic collection of images. Simple classifiers
defined in terms of these features yield very low error rates
on standard problems with small training sets. In particular,
using these features, it is possible to describe classes as mix-
tures of conditional independence models and achieve low
error rates with likelihood based classification. The classes



Figure 7. Detected cars in test images.

can be learned sequentially, and it is not necessary to train
on background images for detection.

As mentioned our method bears some similarity to the
convolutional neural network described in [9], which al-
ternates between convolutional layers that extract local
features with shared weights across the image and sub-
sampling layers that sub-sample the image. A major dif-
ference is the form of learning and how classification is
performed. The local features are learned directly from
the population of local image patches, object models are
learned separately, and classification is likelihood based.
Furthermore very competitive results are obtained with very
small data sets. In the present setting we use only one level
of features between the elementary edges and the objects.
Using the same mechanism one can imagine discovering
higher level features as components of mixture models on
local configurations of the mid-level features.

Currently, we classify by comparing an observation to
each mixture component and choosing the component that
maximizes the likelihood. It would be more efficient to
eliminate multiple hypotheses simultaneously, in a coarse-
to-fine framework, as in [4], reserving computation of the
component likelihoods for only a few likely candidates.
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