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Few studies have investigated how the cortex encodes the preshaping of the hand as an object is grasped, an ethological movement
referred to as prehension. We developed an encoding model of hand kinematics to test whether primary motor cortex (MI) neurons
encode temporally extensive combinations of joint motions that characterize a prehensile movement. Two female rhesus macaque
monkeys were trained to grasp 4 different objects presented by a robot while their arm was held in place by a thermoplastic brace.
We used multielectrode arrays to record MI neurons and an infrared camera motion tracking system to record the 3-D positions of
14 markers placed on the monkeys’ wrist and digits. A generalized linear model framework was used to predict the firing rate of
each neuron in a 4 ms time interval, based on its own spiking history and the spatiotemporal kinematics of the joint angles of the
hand. Our results show that the variability of the firing rate of MI neurons is better described by temporally extensive combinations
of finger and wrist joint angle kinematics rather than any individual joint motion or any combination of static kinematic param-
eters at their optimal lag. Moreover, a higher percentage of neurons encoded joint angular velocities than joint angular positions.
These results suggest that neurons encode the covarying trajectories of the hand’s joints during a prehensile movement.

Introduction
Whereas a motor act like playing the piano often requires inde-
pendent control of many of the 20 degrees of freedom of the
hand, prehension—preshaping the hand to grasp an object—
involves a small set of synergistic movements of the segments of
the hand. As such, studies often characterize prehension in a
lower dimensional space either by considering grip aperture
alone or by reducing the dimensionality using a small set of prin-
cipal components on the joint angle kinematics (Paulignan et al.,
1991; Mason et al., 2002, 2004; Santello et al., 2002; Todorov and
Ghahramani, 2004; Hendrix et al., 2009).

Though extensive psychophysics studies suggest that the CNS
controls prehension with a limited set of kinematic synergies, few
studies in cortex investigate how neurons might encode these
synergies. Instead, previous motor cortical encoding studies have
shown that the discharge rates of MI neurons, in large time win-
dows (�150 ms), vary with discrete states such as whether a
finger joint is flexed or extended, grasp postures, or object cate-
gories (Schieber and Hibbard, 1993; Georgopoulos et al., 1999;
Poliakov and Schieber, 1999; Umilta et al., 2007; Aggarwal et al.,
2009). Recently, one study showed that single MI neurons vary

their discharge rates in time with respect to grip aperture and
force and another showed that populations of neurons simulta-
neously decode the joint kinematics of the arm and hand during
reach-to-grasp movements (Hendrix et al., 2009; Vargas-Irwin et
al., 2010).

Here, we extend these previous studies by describing how
single MI neurons encode the temporal evolution of a set of
joint kinematic features of the hand during prehension. In
particular, we demonstrate that single MI neurons encode a
synergistic set of temporally extensive joint trajectories of the
fingers and wrist. We used a generalized linear model frame-
work to predict each neuron’s response based on the finger
and wrist kinematics as well the spiking history of the neuron
(Truccolo et al., 2005, 2008; Hatsopoulos et al., 2007). These
spike history terms may capture intrinsic temporal dependen-
cies in the neuron’s response (Pillow et al., 2008; Stevenson et
al., 2009). We show that both kinematic and spike history
terms contributed significantly to the predictive power of the
majority of neurons. The model’s predictive power signifi-
cantly increased when we replaced the kinematic parameters
at their optimal lag by temporally extensive kinematic trajec-
tories. A larger percentage of neurons encoded joint velocities
compared with angular positions and more neurons encoded
flexion/extension movements about the wrist and the meta-
carpophalangeal joint of the index finger compared with other
kinematic trajectories. In 51% of neurons, 10 of 12 trajectories
were required to reach the maximum predictive power of the
kinematics which indicates that neurons tend to encode more
than one joint angle parameter. We also tested the contribu-
tion of each principal component where each component rep-
resented a linear combination of the kinematic trajectories of
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the joint angles: in a majority of neu-
rons, one or two principal components
accounted for all the predictive power of
the kinematics which suggests that neu-
rons encode a low dimensional repre-
sentation of the joint trajectories that
characterize prehension.

Materials and Methods
Behavioral task
Two subjects (female rhesus macaques, mon-
key O 6.6 kg, monkey A 6.5 kg) were trained to
grasp objects with their right hand. The arm
was constrained with a thermoplastic brace, at
170° extension in the elbow joint, and 80° ele-
vation (abduction) in the shoulder joint. A
grasp trial consisted of 4 different periods: a
premovement period, a movement period pre-
ceding the grasp, a hold period when the sub-
ject held the object, and a release period when
the robot retracted the object (Fig. 1A). At the
start of a trial, the robot moved the object to-
ward the subject’s hand. The trajectory and
speed of the robot were designed to approxi-
mately simulate actual hand transport. Trajec-
tories were fine tuned so that the object
approached the subject’s hand in the same ori-
entation that the subject’s hand approached
the object in a free reaching condition. The
subject preshaped her hand to grasp the ap-
proaching object. The subject was instructed to
hold the object until the robot retracted it.
Three objects were presented, requiring a total
of 4 hand configurations (Fig. 1 B). The first
configuration was a key grip, where the mon-
key held a thin flat object between the thumb
and the side of the middle phalanx of the index
finger; the second object, the D-ring, was pre-
sented twice, in configurations that elicited a
whole hand grip (power) at two different wrist
orientations. These two different configura-
tions will be treated as separate objects—D-
ring horizontal and D-ring vertical—in the rest of this paper. The third
object, a sphere, elicited a whole hand grip with a fanning of the fingers.
These objects were designed to evoke a variety of coordination patterns
among the joint angle kinematic trajectories. Each object was presented
to the subject in a block of at least 30 trials.

Neural data acquisition
Each monkey was chronically implanted with a 100 electrode (400 �m
interelectrode separation, 1.5 mm electrode length; BlackRock Microsys-
tems) microelectrode array in the arm-hand area of the primary motor
cortex in the left hemisphere, contralateral to the hand they used to grasp
the objects. The array was placed parallel and as close as possible to the
central sulcus, medial from the spur of the arcuate sulcus (Fig. 1C).
Surgical details have been described previously (Rousche and Normann,
1992; Maynard et al., 1997, 1999). During each recording session, signals
were amplified (gain 5000�), bandpass filtered between 0.3 and 7.5 kHz,
and digitized at 30 kHz using the Cerebus Neural Data Acquisition
system (BlackRock Microsystems). For each channel, a threshold was
set above the noise band: if the signal crossed the threshold, a 1.6 ms
window of the signal—as to yield 48 samples given a sampling fre-
quency of 30 kHz—was sampled around the occurrence of the thresh-
old crossing. To classify the waveforms as noise or units on the given
channel, the waveforms were spike-sorted offline using Offline Sorter
(Plexon) and/or exported to Matlab (MathWorks) and spike-sorted
using custom software.

Motion tracking
The three-dimensional (3-D) positions of monkeys’ wrists, hands, and
fingers were recorded using a video-based motion analysis system (Vicon
Motion Tracking System, Workstation 460). We used six M2 cameras at
1.2 megapixel resolution. Fourteen spherical retro-reflective markers (3
mm diameter) were glued to the monkeys’ fingers, hand and forearm
(Fig. 1 A). Their 3-D positions were used to calculate the angles of the
following joints: wrist flexion/extension (WR), the metacarpophalangeal
joint of the index finger (IMP), the proximal interphalangeal joint of the
index finger (IPIP) and ring finger (RPIP), the angle between the proxi-
mal interphalangeal joints of the index and ring fingers with the meta-
carpophalangeal joint of the middle finger as the origin (FAN), and, last,
the angle between the metacarpals of the thumb and index finger with the
vertex at the base of the radius (TI). The angle TI is projected on the plane
that is formed by the metacarpal bone of the index finger and the meta-
carpal bone of the thumb. A custom software package (TheGame, ver-
sion 2) was used to remotely control the trial capture and align the
kinematics data with the neural data via a synchronizing pulse that was
sent to both systems every 150 ms. The kinematics data were sampled at
250 Hz and bidirectionally filtered with a fourth order Butterworth low-
pass filter with 6 Hz cutoff. All data filtering and calculations were done
in MATLAB. The start of movement and the time of grasp were deter-
mined by analyzing the kinematics—the start of movement corre-
sponded to the time at which the first marker’s speed profile exceeded 10
cm/s. To determine the grasp time, we calculated the time at which the
last marker’s speed profile dropped below 10 cm/s.

Figure 1. Experimental methods. A, Top, The subject’s arm was held with a thermoplastic brace while the robot presented and
retracted the objects from the subject’s grasping range. A, Bottom, Task timeline. The trial started as the robot started to move the
object toward the subject’s hand (start of trial). As the robot moved closer to the hand, the subject preshaped her hand to grasp the
object (movement period). The subject was instructed to hold the object until the robot retracted it at which point the hand
released the object. B, Four grasp postures were tested. The first object elicited a key grip; the second object, the D-ring, was
presented in two different configurations that elicited a whole hand grip at two different wrist orientations. The third object, a
sphere, elicited a whole hand grip with a fanning of the fingers. These objects were designed to produce a variety of coordination
patterns between the joint angle kinematics trajectories. Fourteen retro-reflective markers were placed on the subject’s digits and
wrist. Six infrared cameras (Vicon) captured the 3-D position of these markers during the task. These data were used to calculate the
joint angle kinematics of the hand offline. C, While the subjects performed the task, neurons were recorded from the arm-hand area
of MI with a 100 electrode microelectrode array. The two other arrays were implanted in MI-orofacial and the ventral premotor
cortex and were intended for other studies. AS, Arcuate sulcus; CS, central sulcus.
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Computational model
We developed an encoding model to predict the spiking response of each
neuron based on a set of external and internal covariates. The external
covariates consisted of the kinematic trajectories of a group of finger and
wrist joints. The internal covariates included the history of spiking
responses of the neuron on multiple time scales. These covariates may
capture effects such as intrinsic temporal correlations due to refrac-
toriness, bursting, rhythmicity, and short-term plasticity. We used a
generalized linear modeling framework where the conditional inten-
sity function �t, the neuron’s instantaneous spike count in a 4 ms time
bin, is estimated as a function of a set of covariates—the joint kine-
matics and the neuron’s firing history. A generalized linear model has
the advantage over standard multiple linear regression in that it is
designed for discrete, integer responses (i.e., numbers of spikes emit-
ted in a time bin) that are not normally distributed as assumed by
standard regression. We linked the rate function to the covariates
through a log function, to ensure non-negative estimated rates. That
is, the logarithm of the firing rate of the neuron is a linear function of
the covariates. More details about the application of the generalized
linear model to neural data can be found previously (Paninski et al.,
2004a; Truccolo et al., 2005).

Spike history. Setting aside the effects of external covariates, the
current spiking response of a neuron depends on the neuron’s spiking
response in the past. Such spike-history effects may include short
time-scale phenomena such as refractoriness and bursting and longer
time-scale oscillations, facilitation and depression phenomena occur-
ring on the order of tens to hundreds of milliseconds (Hille, 2001;
Keat et al., 2001; Chen and Fetz, 2005). To model these spiking history

components, we filtered the spike train with a basis set of raised
cosines of the form:

bj�t� �
1

2
cos�a log �t � c� � �j� �

1

2
(1)

for t, such that a log(t � c) � [�j � �, �j � �], and 0 previously (Pillow
et al., 2008). The �j are the x-axis positions of the peaks of the cosine
curves. Their positions were selected as equidistant on the regular x-axis
scale—that is, before applying the log transform, the basis centers were
equidistant from each other. After the log transform, the basis centers
were at 8 ms, 12 ms, 20 ms, 32 ms, 60 ms, 108 ms and 208 ms respectively.
The resulting basis set bj, where j � [1,7] accounts for both fine temporal
correlations near the spike and broader correlations at longer time lags
from the spike. Each basis vector was convolved with the spikes �(t) to
give rise to J 	 7 spike history vectors Hj, representing the effect of spike
history up to 200 ms in the past:

Ht, j � �
		t�T

t�1

bj�	� ��t � 	� (2)

where T is the duration of the basis vector.
The following spike history model is used as a control model excluding

all external covariates:

log �t�Ht� � 
0 � �
j	1

J


j
H Hj (3)

Figure 2. Spike rates, spike trains, and kinematics traces during the grasping task, for all objects. A–D, Spike trains across trials for 4 neurons, aligned at the start of movement. The average firing
rates are superimposed as solid black lines. E, Joint angle trajectories for all objects in one data set. The 6 joint angles that were collected were the angle between the metacarpals of the thumb and
index finger with the origin at the base of the radius (TI, red), the wrist flexion/extension (WR, pink), the metacarpophalangeal joint of the index finger (IMP, green), the proximal interphalangeal
joint of the ring finger (RPIP, blue) and index finger (IPIP, black), and the angle between the proximal interphalangeal joints of the index and ring fingers with the metacarpophalangeal joint of the
middle finger as the origin (FAN, orange).
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The 
j
H terms represent the weights associated with the history terms and


0 can be taken to be the baseline firing rate of the neuron.
Kinematic variables. To model velocity and position together with

spike history, we used the following model:

log �t�H, �̇, �� � 
0 � �
j	1

J


j
H Hj � �

f	1

F �
r	t�164

t�200


r,f
�̇ �̇r,f

� �
f	1

F �
r	t�164

t�200


r,f
� �r,f (4)

where r represents the time lags between the kinematics and the spiking,
ranging from �164 ms to 200 ms after the spiking activity, with a step size
of 52 ms, f denotes a particular kinematic feature, and F is the total
number of angular or angular velocity features (F 	 6; � is the joint angle
and �̇ is the joint angle velocity). Each term associated with a coefficient

 is a covariate. The total number of kinematic terms is, therefore, 96 	
(6 angles � 6 angular velocities) � 8 time lags. In the remainder of the
text, we use “trajectories” to denote joint angles or angular velocities of
the fingers and wrist at multiple time lags relative to the spikes. The spike
history terms and kinematic terms on the right hand side of the equation
are also referred to as covariates of the conditional intensity function.

Assessing the significance of the kinematic terms at each lag. For each
neuron, we assessed the significance of the kinematic terms at each lag by
using a goodness-of-fit test: the � 2 test on the deviances between two
models. The first model was the full model in Equation 4. The second
model was the same as the full model but with the tested term removed.
As such, the second model’s terms were a subset of the terms in the full
model. When testing two models within the generalized linear model
framework, one of which has a subset of the terms of the other model—a
model that is “nested” in the first, the difference in the deviances between
the two models follows a � 2 distribution (McCullagh and Nelder, 1989).
An increase in deviance from the full model to the nested model would
indicate an increase in fitting error due to the exclusion of the tested

term. We used the � 2 test to assess whether the change in deviance was
significant at a p-value smaller than 0.05.

Principal components. We took advantage of the fact that the kinematic
terms are correlated during grasping and computed the principal com-
ponents of all the 96 kinematic terms to reduce the number of parameters
in the model. The kinematic data were sampled in 4 ms bins, where one
observation corresponded to the trajectories of all the kinematic param-
eters (96 terms). The next observation corresponded to the same param-
eters sampled 4 ms after the samples from the previous observation such
that total number of observations corresponded to the number of trials
multiplied by the number of 4 ms samples per trial (Hatsopoulos et al.,
2007). We computed the principal components of the 96 kinematic vari-
ables for these observations such that the last two terms from the right
hand side of Equation 4 were replaced by the number of principal com-
ponents that accounted for 90% of the variance. The number of principal
components ranged between 10 and 15 principal components (P in Eq.
5) depending on the dataset. The covariates PC in Equation 5 refer to the
first P principal components; that is, the projections of the kinematic
data onto the first P eigenvectors.

log �t�H, PC� � 
0 � �
j	1

J


j
H Hj � �

p	1

P


p PCp (5)

We refer to the “full model” as a model that included all the terms in the
right hand side of Equation 5.

Prediction accuracy. To test for the prediction accuracy of a model, we
computed the area under the receiver operating characteristic (ROC)
curve (AUC) for all test data, using 10 folds of cross-validation (i.e., 10
distinct sets of test data that were not used to build the model). The
receiver operating characteristic curve is a plot of the true-positive versus
false-positive rates of prediction. To calculate true-positive and false-
positive rates at different thresholds, we started by aligning the real spike
counts with the predicted spike counts. We then looped through a set of
thresholds that matched the range of conditional intensity estimates (the
predicted data). The conditional intensity estimate represents the firing

Figure 3. ROC analysis: prediction results. A, Spike trains for a given neuron: 30 rows of trials aligned at the start of movement for the four object conditions. B, Predicted firing rates across the
same 30 trials as in A using the full model. Grayscale color bar indicates the range of firing rates, where a white color would indicate a firing rate of 0 and a black color would indicate a firing rate of
40 Hz. C, Comparison of actual (thin line) and predicted firing rates (thick line) calculated in 4 ms bins. D, Example of ROC curve for the given neuron. The predictive power of the model for the neuron
is the area under the ROC curve, which was calculated to be 0.79. E, Distribution of predictive power (AUCs) for all neurons. AUCs can range between 0.5 and 1.
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rate estimation in a 4 ms bin and typically ranged from 0 to �0.2. A value
of 0.2 would correspond to a firing rate of 50 Hz. We looped through 50
equidistant thresholds between 0 and the maximum value of the condi-
tional intensity estimate. For each threshold, we calculate the total num-
ber of positives, namely the number of timestamps for which the
estimated conditional intensity was above the threshold. Of these, the
hits or true positives correspond to actual spikes, and the rest are false
positives. Each point in Figure 3D (see below) corresponds to one of
these calculations; that is, one false-positive and true-positive reading at
a given threshold for one cross-validation fold. For each fold, we com-
puted the AUC. Numerically, this means we connected the dots associ-
ated with one fold in Figure 3D and computed the piecewise trapezoidal
area between each set of two consecutive dots. These areas were summed
to yield the total area under the ROC curve for each fold. The AUC
provides an assessment of the predictive power of the encoding model
and ranges between 0.5 and 1.0, where 0.5 represents chance level pre-
diction and 1.0 is a perfect prediction (see Fig. 3D). Specifically, when two
different samples are randomly drawn from the data (one sample con-
tains a spike and the other does not), the AUC represents the probability
that the model will yield a higher probability for the sample with a spike.
More details about ROC curve analysis can be found in other articles
(Fawcett, 2006; Hatsopoulos et al., 2007; Truccolo et al., 2008, 2010). We
used a Wilcoxon signed rank test to compare the AUCs of neurons for
different tested models. If the test involved multiple comparisons, we
applied a Bonferroni correction to the p-values.

Results
We collected two datasets that were 10 days apart per subject,
where each dataset included at least 30 grasps to each of the 4

objects. In the first monkey, we found 23
of 41 and 22 of 39 task-related MI neurons
for the first and second experiments re-
spectively; in the second monkey, we
found 20 of 35 and 13 of 17 task-related
MI neurons. A neuron was considered to
be task-related if its mean firing rate dur-
ing the movement period was signifi-
cantly different from its mean firing rate
during the premovement period (paired t
test across trials, p 
 0.05). In the remain-
der of the text, when referring to neurons,
we mean cell samples that were task-
related. We have previously shown that
for a given subject implanted with a Utah
array, 43% of units are stable across 10 d
on average (Dickey et al., 2009). Taking
this estimation into consideration, we ex-
pect that in the same animal, �9 task-
related cell samples overlapped from one
experiment to the next. Firing rates varied
across a trial, across objects and across
neurons (Fig. 2A–D). The starting pos-
tures, the end postures, and the kinematic
trajectories varied across object task con-
ditions (Fig. 2E). IMP (green), IPIP (blue)
and RPIP (black) show patterns that re-
flect an extension and flexion of the prox-
imal and middle phalanges of the fingers.
Flexion of the fingers is least pronounced
for the sphere object indicating that the
end posture had the hand in a semi-open
configuration. TI (red) is the angle be-
tween the metacarpal bones of the thumb
and index finger with the origin at the base
of the radius and represents the abduc-
tion/adduction of the thumb. The thumb

was abducted most prominently when the monkey grasped the
vertical D-ring. This subject did not tend to oppose her thumb to
the rest of the fingers when grasping the sphere, horizontal
D-ring, or key-grip object. Instead, when grasping these objects,
she tended to keep her thumb adjacent to the metacarpal bone of
the index finger. FAN (orange) is an analog for the abduction/
adduction of the proximal phalanges. The monkey fanned her
fingers to grasp both the sphere and vertical D-ring but not the
other two objects. WR (pink) represents wrist flexion and exten-
sion. The robot brought the objects to the monkey’s hand in a
manner that prevented the need for an extension of the wrist
before the grasp. This was a necessary precaution to prevent any
injuries of their hands in the event that they would not grasp the
object.

Prediction results
The encoding model accurately predicted the precise timing
and firing rates of the cells at a 4 ms resolution. The spiking
responses as well as the predicted responses from the model
for an example neuron are shown for each of the four objects
(Fig. 3A–C). The predictive power of the model for this neu-
ron—the area under the ROC curve (AUC)—yielded a value
of 0.79. On a population level, the median predictive power of
the model for all neurons was 0.7608 which was significantly
above chance (Fig. 3E, Wilcoxon signed rank test—rankWil—to as-

Figure 4. Spike history. A, Spike history basis vectors B1 to B7. B, Actual spike raster and the same spikes convolved with the
spike basis vectors B1 to B7 to yield the spike history terms in the encoding model. Time 0 does not reflect the start of data collection
so modulation before the occurrence of the first spike corresponds to history effects from spikes that occurred before time 0. C,
Prediction results for a given neuron. The dark gray bar represents the predictive power [area under ROC curve (AUC)] of the full
model. The mean predictive power of the full model with one history term removed at a time is shown in dark blue. The error bars
are SEs across folds and are depicted in the lighter shade of blue. For this cell, removing the first, third or fourth spike history terms
significantly decreased the predictive power of the neuron at a significance level of p
0.05. Spike history terms are referred by the
centers of their respective basis vectors B1 to B7. Inset, Interspike interval distribution of a given cell. D, Percentage neurons (total
of 78) that encoded each spike history term across all experiments during movement (dark blue) and during premovement (light
blue) periods.
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sess whether the AUCs of all neurons come
from a distribution whose median is 0.5,
p 
 0.001).

Spike history
We used 7 basis functions to model the
effect of a neuron’s own history at differ-
ent time scales (Fig. 4A,B) (see Materials
and Methods). We tested whether partic-
ular spike history terms were encoded by
each neuron. To test the significance of
each history term for a neuron, we com-
pared the full model against one with the
test history term removed. A significant
decrease in AUC indicated that the given
history term was significant for that neu-
ron. Figure 4C displays the results of this
analysis for a given neuron: for this neu-
ron, removing the first and third spike his-
tory terms (Fig. 4A,B; B1 in green and B3
in cyan) yielded a significant decrease in
predictive power (paired rankWil, p 

0.05). We found that between 29% and
68% of neurons encoded each of the seven
history terms (Fig. 4D, dark blue). We
also examined whether history effects dif-
fered when no movement was occurring.
We recomputed the encoding model us-
ing data that were collected during the
premovement period. The proportion of
neurons with significant history effects on
a short time-scale (i.e., first through third
history terms) did not differ substantially
during the premovement period. In contrast, there was at least a
45% drop in the number of neurons that encoded the fourth,
sixth and seventh spike history terms (Fig. 4D, light blue) though
each history term was encoded by at least 21% of the neurons.

Kinematics
We tested whether neurons encode temporally extensive, kine-
matic trajectories compared with kinematic parameters mea-
sured at a single time lag with respect to the spike times. To do
this, we first built an encoding model using single time lags to
determine the optimal lag time for each neuron assessed with the
goodness-of-fit test (see Materials and Methods). Figure 5, A and
B, displays the distribution of optimal lags for all neurons, calcu-
lated for the joint angle velocities and joint angle positions re-
spectively. A plurality of neurons yielded the lowest p-value (see
Materials and Methods, � 2 test on deviance) at a positive lag of
148 ms or 200 ms. A positive lag means the kinematics lag the
neural activity whereas a negative lag indicates the kinematics
lead the neural activity. We then built a model by cumulatively
adding neighboring lags, starting at a lag of 200 ms, up to a
negative lag of �164 ms yielding a largest trajectory length of 364
ms. Figure 5C displays the mean difference in predictive power
between the tested trajectory length and the trajectory length at
which the maximum predictive power was achieved. The trajec-
tory lengths at which the lowest absolute values on this graph are
shown represent the lengths at which the highest predictive
power is achieved. The error asymptotically converged to 0 at a
path length between 312 ms and 364 ms. Since the errors at tra-
jectory lengths of 312 ms and 364 ms were significantly different
(paired rankWil, p 	 0.0092), we concluded that a trajectory

length of 364 ms was optimal. Next, we compared the predictive
power of an encoding model with the 12 kinematic terms sam-
pled at a trajectory length of 364 ms to one with the same terms
sampled only at their optimal lag (Fig. 5D). In 90% of the neu-
rons, the AUC was significantly higher for the full model com-
pared with one with spike history terms and the kinematics at just
their optimal lags (paired rankWil, p 
 0.05). The difference in
AUC between these two models represents the added predictive
power when incorporating the 364 ms trajectory. At a population
level, the AUC was higher for the full model compared with a
model with the kinematics covariates only at their optimal lags
(paired rankWil, p 
 0.001).

We also tested whether particular kinematic trajectories were
encoded by each neuron. Each kinematic trajectory will be re-
ferred to as a feature. To test the significance of each feature for a
neuron, we compared the full model against one with the test
feature removed. A significant decrease in predictive power indi-
cated that the given feature was significant for that neuron. As an
example for a single neuron, Figure 6A displays the mean AUC
for the full model in dark gray and the mean AUC for a model
with one of the 12 features removed at a time in blue. The feature
that was removed from the model is indicated on the x-axis. For
this given neuron, removing either of WRv, IMPv, IPIPv, TI, TIv,
or WR yielded a significant decrease in predictive power (paired
rankWil, pWRv 	 0.002, pIMPv 	 0.002, pIPIPv 	 0.003, pTI 	 0.037,
pTIv 	 0.041, and pWR 	 0.049). All features were represented
though IMPv and WRv were more frequently represented than
other features and joint angle velocities as a whole were also 3
times more frequently represented than joint angle positions
(Fig. 6B). Across the entire population of neurons, a median of 3

Figure 5. Kinematics: lag analysis. A, Distribution of optimal lags (see Materials and Methods) for joint angle velocities across
neurons. A plurality of neurons showed an optimal lag at 148 and 200 ms. B, Same as A, but for joint angles. More neurons also
showed an optimal lag at 148 and 200 ms. C, Increase in predictive power as a function of trajectory length. The predictive power
is given as AUC � AUCmax, which is the difference in predictive power between the model at trajectory length x and the maximum
predictive power across all trajectory lengths. We report the mean and SE of these values across all the neurons. The maximum
predictive power is generally achieved at a trajectory length of 364 ms where the difference converges to 0. Trajectories were tested
starting at a lag time of 200 ms, cumulatively extended to a negative lag time of �150 ms relative to the timing of the spikes. D,
AUC values across neurons between a model with a trajectory length of 364 ms ( y-axis) versus values with all the features only at
their respective optimal lags (x-axis).
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features were significant per neuron (paired rankWil, p 
 0.05 in
all cases; Fig. 6C).

We then tested how many features were required to attain the
full model’s predictive power for each of the neurons. To do so,
we cumulatively added features to the model until its predictive
power was not significantly different from the predictive power of
the full model. Figure 6D displays the increase in predictive
power with the addition of each feature for a given neuron, when
the features were added in their order of significance For the
example cell, the full model’s predictive power was achieved
when 10 features were added, even though only 5 features were
significant (paired rankWil, p 	 0.047). Across cells, a median of
10 features were required to attain the full model’s predictive
power (Fig. 6E). These results suggest that a majority of features
are necessary to account for the response variability of the
neurons.

Given that our model requires combinations of multiple ki-
nematic features to most accurately predict neuronal response,
we sought to test whether neurons encode synergistic, coordina-

tion patterns of hand motion that occur
during grasp. The principal components
(PC) of all the kinematics features repre-
sent linear combinations of the joint angle
kinematics across a 364 ms time window
and can be interpreted as coordination
patterns among the 12 kinematic feature
trajectories. The first two eigenvectors of
the principal components were highly
consistent across datasets and across
monkeys (Fig. 7A). Looking at the joint
angle position terms, PC1 models a simul-
taneous flexion of the wrist and extension
of the fingers, followed by flexion of the
fingers. The IPIP feature for the second
experiment in the first subject yielded a
slightly larger magnitude in the move-
ment trajectory. This is likely due to a
different strategy used on that day. The
IMP feature also shows magnitude differ-
ences in the movement trajectories across
subjects and this is also likely due to dif-
ferences in the strategies used by the mon-
keys. TI and FAN do not show as much
modulation as the other features and are
not as consistent across experiments;
however, for three of the four experi-
ments, PC1 shows an abduction of the fin-
gers followed by an adduction. PC2 shows
an extension followed by flexion of the
wrist with a simultaneous flexion and ex-
tension of the fingers. In 3 of 4 experi-
ments, it also shows a later abduction
followed by a slight adduction of the fin-
gers. We applied the same procedure to
the PCs as we did to the features: we sys-
tematically removed one PC at a time and
determined whether there was a signifi-
cant decrease in the model’s predictive
power (Fig. 7B). In the given example cell,
a significant decrease in predictive power
could only be achieved by removing the
second principal component (Fig. 7B,
paired rankWil, p 
 0.001). On a popula-

tion level, 36% of neurons encoded the first and second principal
components (Fig. 7C). To assess how many components were
required to achieve the full predictive power of the cell, we cumu-
latively added the components to the encoding model, in their
order of significance. When the components were added in this
order, 81% of cells required between 1 and 3 components to
attain the full model’s predictive power of the model (Fig. 7E).

Spike history versus kinematics
The actual spike trains and the predicted firing rate using the full
model for an example neuron are shown in Figure 8B. To exam-
ine the relative contribution of the kinematics and history terms
of the model, we built and tested an encoding model that in-
cluded just the kinematics terms (Fig. 8C; data from all 4 objects
are shown in sequential blocks) and one that included just the
spike history terms (Fig. 8D; data from all 4 objects are shown in
sequential blocks). We observed that the kinematics model cap-
tured the coarse temporal structure of the spike train while the
spike history model captured the fine and coarse temporal

Figure 6. Single versus multiple kinematic trajectories. A, Predictive power (AUC in blue) with the removal of one kinematic
trajectory at a time for a given cell. AUC values for full model are shown in dark gray where the bar width represents the mean �SE.
AUC values for the full model with just one kinematics trajectory extracted at a time are shown in blue. The error bars are SEs across
folds and are depicted in the lighter shade of blue. For this cell, the trajectories of WRv, IMPv, IPIPv, TI, TIv, and WR significantly
decreased the predictive power of the cell when they were removed from the encoding model (Wilcoxon signed rank test at p 

0.05 in all cases). B, Percentage of neurons exhibiting a significant drop in predictive power when removing each kinematic
trajectory individually. More cells encoded the WRv and IMPv trajectories than any other kinematic trajectory though at least one
cell encoded any given kinematic trajectory. C, Number of significant trajectories across cells. D, Starting from the predictive power
of the history model, kinematic trajectories were added in their order of significance for the given cell. The predictive power of the
full model was achieved with 10 trajectories (signed rank test, p 
 0.05). E, Population results. Fifty-one percent of cells required
10 features to reach the full model’s predictive power when the trajectories were added in their order of significance (most
significant first, signed rank test. p 
 0.05 in all cases).
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structure of the spike train but at a tempo-
ral lag from the actual spiking activity
(Fig. 8E). In fact, the maximum correla-
tion between the actual spikes and the pre-
dicted firing rates of the kinematic model
occurred at an offset of �4 ms (median of
offsets across neurons). The distribution
of offsets between the actual spikes and
the predicted firing rates of the spike his-
tory model was bimodal, with a peak at 0
ms and one at �28 ms. Many more neu-
rons yielded an offset around �28 ms
such that the overall median of the distri-
bution was at �28 ms. These results indi-
cate that the kinematics yield more precise
onset timing information than the spike
history terms. In terms of predictive
power, both the kinematics and spike his-
tory models performed significantly bet-
ter than chance on a population level
(rankWil, pkins
0.001; phist
0.001). The
kinematics and the history terms contrib-
uted to varying degrees to the predictive
power of cells: for 38% of neurons, the
predictive power of the kinematic model
was significantly higher than the predic-
tive power of the history model and for
another 40% of neurons, the predictive
power of the spike history model was
significantly higher than the predictive
power of the kinematic model (paired
rankWil s 
0.05). However, as a popula-
tion, there was no significant difference
between the kinematics and history mod-
els (Fig. 8F, rankWil, p 	 0.0319). In con-
trast, for 84% of neurons, the full model,
which included both history and kine-
matic terms, performed significantly bet-
ter than the kinematics model (Fig. 8G;
paired rankWil, p 
 0.05 in all cases). And
the full model performed better than the history models alone in
96% of the neurons (Fig. 8H; paired rankWil, p 
 0.05 in all
cases).

Generalization
A stronger test for the validity of an encoding model is to test its
predictive power in a different context. We built the encoding
model with data from 3 of the 4 object conditions and tested it on
the data from the fourth object condition. We call these the “re-
stricted” models. We repeated this procedure 4 times, to test
whether the kinematics and spike history from any 3 object con-
ditions are sufficient to predict the firing rate of a neuron re-
corded while a fourth object was grasped. The actual spike trains
and predicted firing rates for a given neuron in each test condi-
tion are displayed in Figure 9, A and B. To assess how well the
model generalizes in each test condition, we compare the differ-
ence in predictive power of the cells between the 4-object model
and each of the restricted models (Fig. 9C,D). Though the mean
ranks of the AUCs between the 4-object model and any of the
restricted models were significantly different (Kruskal Wallis
ANOVA test followed by paired rankWil, p 
 0.05 in all cases), the
predictive power of the neurons were well above chance (rankWil

against a median of 0.5, p 
 0.001 in all cases) indicating the
restricted models did generalize to a large extent.

Discussion
We found that MI neurons in the hand/arm area encode joint
trajectories that describe prehensile movements. Though a large
percentage of cells encoded the angular velocities of the flexion/
extension of the wrist and proximal phalanx of the index finger, at
least 10 of the features were required to account for all the pre-
dictive power of the kinematics in at least half the tested popula-
tion. By considering the principal components on the movement
trajectories as features, we were able to account for all the predictive
power of the majority of neurons with just up to three features. This
indicates that neurons preferentially encode coordinated move-
ments that describe a grasping movement, rather than a movement
about any one joint.

Task-related neurons
Intracortical microstimulation studies suggest that MI has a
horseshoe-like somatotopic organization, where the center is
located in the anterior bank of the central sulcus and evokes
movements of the hand and fingers while the periphery evokes
movements of the arm (Park et al., 2001). We placed the array in

Figure 7. Principal components as kinematic synergies. A, Eigenvectors for the first (top) and second (bottom) principal
components calculated for the 6 trajectories of joint angles (left) and joint angle velocities (right). The first point of each feature’s
trajectory corresponds to the same time lag. B, Predictive power (AUC in blue) with the removal of one principal component for a
given cell. For this cell, the second component significantly decreased the predictive power of the cell when it was removed from
the encoding model. We used a Wilcoxon signed rank test at  	 0.05 to test for a significant drop between the predictive power
of the full model and the predictive power of the same model with one extracted component. C, Percentage of cells exhibiting a
significant drop in predictive power when removing each principal component individually. Thirty-six percent of neurons encoded
the first and second principal components though all neurons encoded some components. D, Single cell example. Starting from the
predictive power of the history model, principal components were added in their order of significance for the given cell. The
predictive power of the full model was achieved by adding just the second component. E, Population results. Eighty-one percent of
cells required 3 or fewer principal components to reach the full model’s predictive power.
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the intermediate zone, an area between the center and peripheral
zones that evokes hand and arm movements (Fig. 1C). It is pos-
sible that the 39% of neurons that did not modulate with the
grasp task were reach-related. In fact, we recorded a reach-to-
grasp task in the same session and found that more neurons
modulated with the task (results not reported), presumably due
to arm movements. This is consistent with studies that show that
neurons in this area modulate their firing rate with arm move-
ments (Georgopoulos et al., 1986; Moran and Schwartz, 1999b;
Stark et al., 2007; Truccolo et al., 2008).

Grasping kinematics and relationship to unconstrained
reach-to-grasps
Our experimental task aimed to isolate neural responses that are
tied to grasping movements. Though the arm was constrained in
the brace, the kinematic trajectories of the hand closely match
those reported in studies that examined unconstrained reach-to-
grasp movements (Fig. 2E) (Mason et al., 2001; Santello et al.,
2002). As the kinematic trajectories in Figure 2E depict, a pre-
hensile movement begins with a simultaneous extension and ab-
duction of the fingers including the thumb. The degree to which
the hand opens is related to the size of the object (Paulignan et al.,
1991). As the hand approaches the object, all the fingers flex and
adduct to grasp the object.

Spike history terms
Neurons in MI exhibit phasic and tonic
firing rates that reflect fast and slow
changes in their biophysical properties
(Cheney et al., 1985; Kalaska et al., 1989).
The spike history terms were used to
model temporal correlations such as
these. When we compared the predictive
power of models that were built with data
from the premovement period only, we
observed that the number of cells that en-
coded the long time-scale effects dropped
by at least 45%. Two possible interpreta-
tions are that these low-frequency spike
history terms capture some aspect of the
kinematics that is not modeled by the ki-
nematic parameters or that they capture
slow changes in the biophysical properties
of cells that only occur during movement.

Time lag analysis
Assuming that neurons encode kinemat-
ics at a single time lag, the most significant
lag time across neurons was found to be at
148 ms or 200 ms for all kinematic fea-
tures, consistent with the lag times ob-
served in reaching studies (Moran and
Schwartz, 1999a; Paninski et al., 2004b).
This study shows that that the predictive
power of neurons was maximal for trajec-
tory lengths of 364 ms, compared with
shorter lengths including the kinematics
at just their significant lag. Although the
predictive power of the model increased
significantly for a temporally extensive
trajectory, the improvement was some-
what modest. Nevertheless, there was a
systematic improvement in predictive
power as the trajectory length was in-

creased suggesting that grasp trajectory information is contained
in the responses of MI neurons (Fig. 5C). Previous studies of
reaching show that neurons shift their directional tuning in time
during a movement and, as such, suggest that neurons encode
trajectories instead of static kinematic parameters at their opti-
mal lag (Hocherman and Wise, 1991; Hatsopoulos et al., 2007).

Single versus multiple features
Previous cortical encoding studies suggested that single neurons
encode more than one individuated finger movement (Schieber,
1990; Schieber and Hibbard, 1993). If we define a finger move-
ment as an angular position and velocity trajectory of a joint, we
found similar results: the predictive power of the kinematics was
only fully described by 10 kinematic trajectories in a majority of
neurons. Despite this multifeature encoding, neurons encoded
joint angular velocities more frequently than joint angular posi-
tions and preferentially encoded the velocity trajectories of the
wrist and the metacarpophalangeal joint of the index finger com-
pared with other trajectories.

Psychophysics studies suggest that the CNS controls prehen-
sion by means of two synergies, represented by the first two prin-
cipal components on the joint angle kinematics of the fingers and
wrist (Mason et al., 2001; Santello et al., 2002). Santello et al.
(2002) describe the first principal component as an extension of

Figure 8. Kinematics vs spike history. A, Spike trains aligned on the start of movement across all trials and all four object
conditions for a given cell. B, Predicted firing rates using the full model where the grayscale ranges between 0 and 40 Hz.
C, Predicted firing rates using an encoding model that only included the kinematic terms. D, Predicted firing rates using an
encoding model that only included the spike history terms. E, Comparison of the trial-averaged firing rates during grasps
to the key grip object for the actual data (gray), the full model (green), the kinematic model (blue) and the history model
(yellow). F, Comparison of the predictive power for all cells (AUCs) for the kinematic versus history models. G, Comparison
of the predictive power for all cells (AUCs) for the full model versus the kinematic model. H, Comparison of the predictive
power for all cells for the full versus history models. Each red circle represents a single motor cortical cell.
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the metacarpophalangeal and proximal interphalangeal joints to
a maximum excursion, followed by flexion of the same joints. At
the same time, the digits, are gradually abducted and later ad-
ducted toward the end of the reach while the thumb is only ab-
ducted. In this paper, we demonstrate that the first two principal
components (PCs) were more frequently encoded by the neurons
(Fig. 7C) and that a small set of principal components (between 1
and 3) account for the response variability of most MI neurons.
Together, these results suggest that each neuron encodes a par-
ticular spatiotemporal trajectory that involved the coordinated
kinematics of all the joint angles of the hand.

Spike history versus kinematics
This study extends previous encoding models of the hand by
considering the continuous hand kinematics as well as the spik-
ing history to predict the firing activity of a neuron on a fine time
scale. We found that the spike history terms account for the fast
and slow changes in firing rate whereas the kinematics only ac-
count for the slower changes. This is understandable given the
relatively slow fluctuations of the kinematics. Since the overall
modulation onset of an MI neuron is intimately linked to move-
ment onset of the hand, it follows that the kinematics tended to
more accurately model the onset of firing rate modulation. The

Figure 9. Generalization tests. The restricted model was trained on data from three objects and used to predict data collected from the fourth object where the fourth object is displayed
on the upper right of column C. A, Actual spike times and predicted firing rates for each restricted model. B, Comparison of mean firing rates of actual and predicted data. C, Distribution
of differences in predictive power (AUC) across neurons between the 4-object model and the restricted model. A difference of 0 would indicate that there was no difference between the
predictive powers obtained from the 4-object model and the given restricted model. D, Box plot of predictive power (AUC) of 4-object model and restricted models. The medians
are illustrated in red, the lower and upper quartiles are given by the bottom and top edges of the blue boxes and the full range of predictive powers are given by the dotted lines in
black.
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spike history predicted the fine and coarse temporal structure of
the firing activity but predicted modulation onset with a time lag
of 28 ms. Spike history cannot predict modulation onset accu-
rately because it carries only past spiking information. The degree
to which the fine temporal structure of the neuron could be mod-
eled is limited by the cutoff frequencies of the spike history bases,
which are a form of low-pass filter. The first spike history term
could capture spike frequencies as high as 60 Hz. Any faster
changes in spike frequency could not be captured by the spike
history terms since the other bases capture modulations at lower
frequencies. For the majority of neurons, a full model yielded
significantly higher predictive power than a model with either
spike history or kinematics terms alone. This result indicates that
spike history and kinematic terms hold non-redundant informa-
tion about the firing rate of a neuron and can be used together to
predict the firing rate of neurons at a fine time scale.

Generalization
We tested whether building an encoding model from the data
from three objects could generalize to predict the firing rate col-
lected when the monkey grasped a fourth object. The predictions
from these restricted models were well above chance. Compared
with a model that was built on data from all four objects, all four
restricted models yielded significantly lower prediction accuracy
(Fig. 9C,D). This slight decrease in performance is likely related
to the fact that each object elicited some unique aspect of move-
ment. This study was limited in the number of objects that were
used in the analysis to get repeated trials of the same object con-
dition. However, although we used a small number of objects, at
least the first principal component closely matched the one re-
ported in a human psychophysics study where 20 objects were
tested.

Conclusion
MI, as a major output pathway to the spinal cord, is thought to
elaborate the motor plan into a more detailed movement. Few
encoding studies have characterized what parameters of the
grasping movement are particularly relevant for MI neurons: one
study recently showed that neurons in MI respond to grasp di-
mension and grasp force (Hendrix et al., 2009). Our model fo-
cuses on an encoding model of single neurons and accounts for
the temporal progression of the grasp movement during pre-
shaping before grasp, an important aspect of prehension (Mason
et al., 2001; Santello et al., 2002).

We found that neurons preferentially encode different subsets
of principal components, which model the coordinated move-
ments that elicit a prehensile movement. This result suggests that
the primary motor cortex encodes parameters that reflect etho-
logically relevant movements, rather than abstract, Newtonian
parameters such as joint angular velocity. Though it is generally
assumed that simple variables will predict responses to more
complex ones, studies in different model systems have shown that
using a variable that reflects an ethologically relevant behavior or
natural sensory input, greatly sharpens the tuning properties of
neurons (Margoliash, 1983; Margoliash and Fortune, 1992;
David et al., 2004). With the advent of telemetric neural record-
ing devices and marker-less motion tracking systems, it will be
possible to further investigate primate behavior in more ethologi-
cally relevant contexts (Obeid et al., 2004).
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