ANUP RAO
Department of Computer Science and Engineering
University of Washington

Agnostic Estimation of Mean and Covariance

THURSDAY, April 28, 2016 at 4:30 PM
133 Eckhart Hall, 5734 S. University Avenue

ABSTRACT

In this talk, we consider the problem of estimating the mean and covariance of a distribution from iid samples in \mathbb{R}^n, in the presence of an η fraction of malicious noise; this is in contrast to much recent work where the noise itself is assumed to be from a distribution of known type. We will give polynomial-time algorithms to compute estimates for the mean, covariance and operator norm of the covariance matrix, and show that the dimensional dependence of the error is optimal up to a $O(\sqrt{\log n})$ factor. This gives polynomial-time solutions to some of the questions studied in robust statistics. As one of the applications, this immediately enables one to do agnostic SVD.

This is a joint work with Kevin Lai and Santosh Vempala.