

The University of Chicago Department of Statistics

Seminar Series

RICHARD DAVIS

Department of Statistics Colorado State University

"Another Look at Estimation for MA(1) Processes with a Unit Root"

MONDAY, January 22, 2007 at 4:00 PM 133 Eckhart Hall, 5734 S. University Avenue

Refreshments following the seminar in Eckhart 110.

ABSTRACT

The first-order moving average model or MA(1) is given by $X_t = Z_t - \theta Z_{t-1}$, with independent and identically distributed $\{Z_t\}$. This is arguably the simplest time series model that one can write down. The MA(1) with unit root ($\theta = 1$) arises naturally in a variety of time series applications. For example, if an underlying time series consists of a linear trend plus white noise errors, then the differenced series is an MA(1) with unit root. In such cases, testing for a unit root of the differenced series is equivalent to testing the adequacy of the trend plus noise model. The unit root problem also arises naturally in a signal plus noise model in which the signal is modeled as a random walk. The differenced series follows a MA(1) model and has a unit root if and only if the random walk signal is in fact a constant.

The asymptotic theory of various estimators, including Gaussian maximum likelihood and least squares, has been developed for the unit root case and nearly unit root case $(\theta = 1 - \beta/n, \beta > 0)$. Unlike standard $1/\sqrt{n}$ -asymptotics, these estimation procedures have 1/n-asymptotics and a so-called pile-up effect, in which $P(\hat{\theta} = 1)$ converges to a positive value. One explanation for this pile-up phenomenon is the lack of identifiability of θ in the Gaussian case. That is, the Gaussian likelihood has the same value for the two sets of parameter values (θ, σ^2) and $(1/\theta, \theta^2 \sigma^2)$. It follows that $\theta = 1$ is always a critical point of the likelihood function. In contrast, for non-Gaussian noise, θ is identifiable for all real values. Hence it is no longer clear whether or not the same pile-up phenomenon will persist in the non-Gaussian case. We consider the asymptotic behavior of different types of least absolute deviation (LAD) estimators of θ in the non-Gaussian case. Simulation results illustrate the limit theory.

(This is joint work with Jay Breidt, Nan-Jung Hsu, and Murray Rosenblatt.)

Please send email to Mathias Drton (drton@galton.uchicago.edu) for further information. Information about building access for persons with disabilities may be obtained in advance by calling the department office at (773) 702-8333.