Random Walks on Hyperbolic Groups III

Steve Lalley

University of Chicago

January 2014

Hyperbolic Groups

Definition, Examples Geometric Boundary

Ledrappier-Kaimanovich Formula

Martin Boundary of FRRW on Hyperbolic Group Martin Boundary
Existence of Barriers and Exponential Decay Ancona Inequalities
Convergence to Martin Kernel

Local Limit Theorems

I. Background: Hyperbolic Geometry

Hyperbolic Metric Space: A geodesic metric space such that for some $\delta>0$ all geodesic triangles are δ-thin.

Examples:
(A) The hyperbolic plane.
(B) The d-regular tree.

Definition: A finitely generated group Γ is hyperbolic (also called word-hyperbolic) if its Cayley graph (when given the usual graph metric) is a hyperbolic metric space.

Lemma: If Γ is hyperbolic with respect to generators A then it is hyperbolic with respect to any finite symmetric generating set.

Geometry of the Hyperbolic Plane

Halfplane Model: $\mathbb{H}=\{x+i y: y>0\}$ with metric $d s / y$
Disk Model: $\mathbb{D}=\left\{r e^{i \theta}: r<1\right\}$ with metric $4 d s /\left(1-r^{2}\right)$.
Miscellaneous Facts:
(0) Disk and halfplane models are isometric.
(1) Isometries are linear fractional transformations that fix $\partial \mathbb{H}$ or $\partial \mathbb{D}$.
(2) Isometry group is transitive on \mathbb{H} and $\partial \mathbb{H} \times \partial \mathbb{H}$.
(3) Geodesics are circular arcs that intersect $\partial \mathbb{H}$ or $\partial \mathbb{D}$ orthogonally.
(4) Circle of radius t has circumference $\asymp e^{t}$.

Fuchsian Groups

Fuchsian group: A discrete group of isometries of the hyperbolic plane \mathbb{H}. Examples: Surface group (fundamental group of closed surface of genus ≥ 2), free group \mathbb{F}_{d}, triangle groups.

Note: Isometries of \mathbb{H} are linear fractional transformations $z \mapsto \frac{a z+b}{c z+d}$ with $a, b, c, d \in \mathbb{R}$ where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{R})$. Hence, a Fuchsian group is really a discrete subgroup of $S L(2, \mathbb{R})$

Fact: The Cayley graph of a finitely generated Fuchsian group can be quasi-isometrically embedded in \mathbb{H}. This implies that any Fuchsian group is hyperbolic.

Consequence: Geodesics of the Cayley graph (word metric) track hyperbolic geodesics at bounded distance.

Fuchsian Groups

Hyperbolic Isometry: Any isometry ψ of \mathbb{D} that is conjugate by map $\Phi: \mathbb{H} \rightarrow \mathbb{D}$ to a linear fractional transformation $z \mapsto \lambda z$ of \mathbb{H}. The geodesic from $\Phi(0)$ to $\Phi(\infty)$ is the axis of ψ, and $\Phi(0), \Phi(\infty)$ are the fixed points.

Proposition: If Γ is a co-compact Fuchsian group then Γ contains hyperbolic elements, and fixed-point pairs ξ, ζ of such elements are dense in $\partial \mathbb{D} \times \partial \mathbb{D}$.

Free Groups are Fuchsian

Other Examples of Hyperbolic Groups

\mathbb{Z} is hyperbolic.
Free products $G_{1} * G_{2} * \cdots * G_{d}$ of finite groups are hyperbolic.
Fundamental groups of compact Riemannian manifolds with strictly negative sectional curvature are hyperbolic.

Discrete groups of isometries of n-dimensional hyperbolic space \mathbb{H}^{n}.
Theorem (Bonk-Schramm): If Γ is hyperbolic then for any finite symmetric generating set A the Cayley graph $G(\Gamma ; A)$ is quasi-isometric to a convex subset of \mathbb{H}^{n}.

Geometric Boundary and Gromov Compactification

Two geodesic rays $\left(x_{n}\right)_{n \geq 0}$ and $\left(y_{n}\right)_{n \geq 0}$ are equivalent if there exists $k \in \mathbb{Z}$ such that for all large n,

$$
d\left(x_{n}, y_{n+k}\right) \leq 2 \delta .
$$

Geometric Boundary $\partial \Gamma$: Set of equivalence classes of geodesic rays.
Topology on $\Gamma \cup \partial\ulcorner$: Basic open sets:
(a) singletons $\{x\}$ with $x \in \Gamma$; and
(b) sets $B_{m}(\xi)$ with $m \geq 1$ and $\xi \in \partial \Gamma$ where $B_{m}(\xi)=$ set of $x \in \Gamma$ and $\zeta \in \partial \Gamma$ such that there exists geodesic rays (x_{n}) and (y_{n}) with initial points $x_{0}=y_{0}=1$, endpoints ξ and ζ (or ξ and x), and such that

$$
d\left(x_{j}, y_{j}\right) \leq 2 \delta \quad \forall j \leq m
$$

Non-elementary Hyperbolic Group: $|\partial \Gamma|=\infty$.

Geometric Boundary and Gromov Compactification

Basic Facts

Proposition 1: $\partial \Gamma$ is compact in the Gromov topology.
Proposition 2: Γ acts by homeomorphisms on $\partial \Gamma$, and if Γ is nonelementary then every Γ-orbit is dense in $\partial \Gamma$.

Proposition 3: If Γ is a finitely generated, nonelementary hyperbolic group then Γ is nonamenable.

In fact, the action of Γ on $\partial \Gamma$ has no invariant probability measure.

Geometric Boundary and Gromov Compactification

Fact: If Γ is a co-compact Fuchsian group (i.e., if \mathbb{H} / Γ is compact) then the geometric boundary is homeomorphic to the circle.

Fact: If Γ is a co-compact Fuchsian group then the set of pairs $\left(\xi-, \xi_{+}\right)$of fixed points of hyperbolic elements of Γ is dense in $\partial \mathbb{D} \times \partial \mathbb{D}$.

Convergence to the Boundary

Theorem: Let X_{n} be a symmetric, irreducible FRRW on a nonamenable hyperbolic group Γ. Then with probability one the sequence X_{n} converges to a (random) point $X_{\infty} \in \partial \Gamma$.

Proof: (Sketch) Since Γ is nonamenable the random walk has positive speed. Since the random walk has bounded step size, the (word) distance between successive points X_{n} and X_{n+1} is $O(1)$. Now use:

Lemma: If x_{n} is any sequence of points such that $d\left(1, x_{n}\right) / n \rightarrow \alpha>0$ and $d\left(x_{n}, x_{n+1}\right)$ is bounded then x_{n} converges to a point of the Gromov boundary.

Convergence to the Boundary

Theorem: Let X_{n} be a symmetric, irreducible FRRW on a nonamenable hyperbolic group Γ. Then with probability one the sequence X_{n} converges to a (random) point $X_{\infty} \in \partial \Gamma$.

Proposition: The distribution of X_{∞} is nonatomic, and attaches positive probability to every nonempty open set $U \subset \partial \Gamma$.

Note: The result is due to Furstenberg (?). For an exposition see Kaimanovich, Ann. Math. v. 152

Visual Metric on $\partial \Gamma$

Visual Metric: A metric d_{a} on $\partial \Gamma$ such that for any $\xi, \zeta \in \partial \Gamma$, any bi-infinite geodesic γ from ξ to ζ, and any vertex y on γ minimizing distance to 1 ,

$$
C_{1} a^{-d(1, y)} \leq d_{a}(\xi, \zeta) \leq C_{2} a^{-d(1, y)}
$$

Visual Metric on $\partial \Gamma$

Visual Metric: A metric d_{a} on $\partial \Gamma$ such that for any $\xi, \zeta \in \partial \Gamma$, any bi-infinite geodesic γ from ξ to ζ, and any vertex y on γ minimizing distance to 1 ,

$$
C_{1} a^{-d(1, y)} \leq d_{a}(\xi, \zeta) \leq C_{2} a^{-d(1, y)}
$$

Proposition: For some $a>1$ a visual metric exists.
Remark: For the hyperbolic plane \mathbb{D}, the Euclidean metric on $\partial \mathbb{D}$ is a visual metric.

Ledrappier-Kaimanovich Formula

Billingsley Dimension: Let ν be a probability measure on metric space (\mathcal{Y}, d). Define

$$
\operatorname{dim}(\nu)=\inf \{H-\operatorname{dim}(A): \nu(A)=1\} .
$$

Theorem: (Le Prince; BHM) Let Γ be a hyperbolic group with geometric boundary $\partial \Gamma$ and visual metric d_{a} on $\partial \Gamma$. For any FRRW on Γ with Avez entropy h, speed ℓ, and exit measure ν_{1},

$$
\operatorname{dim}\left(\nu_{1}\right)=\frac{1}{\log a} \frac{h}{\ell}
$$

Theorem: (Furstenberg) For any co-compact Fuchsian group Γ there is a symmetric probability measure μ on 「 such that the RW with step distribution μ has exit distribution absolutely continuous relative to Lebesgue on S^{1}. The measure μ does not have finite support.

Conjecture: For any finite symmetric generating set A there is a constant $C_{A}<\operatorname{dim}_{H}(\partial \Gamma)$ such that for any symmetric FRRW with step distribution supported by A

$$
\operatorname{dim}\left(\nu_{1}\right) \leq C_{A} .
$$

II. Martin Kernel and Martin Boundary

Martin Kernel:

$$
\begin{gathered}
k_{y}(x)=K_{r}(x, y)=\frac{G_{r}(x, y)}{G_{r}(1, y)} \text { where } \\
G_{r}(x, y)=\sum_{n=0} r^{n} P^{x}\left\{X_{n}=y\right\}
\end{gathered}
$$

Martin Compactification $\hat{\Gamma}$: Unique minimal compactification of Γ to which each function $y \mapsto k_{y}(x)$ extends continuously.

Martin Boundary: Set $\partial \hat{\Gamma}$ of all pointwise limits $\lim _{n \rightarrow \infty} k_{y_{n}}(\cdot)$ not already included in $\left\{k_{y}\right\}_{y \in \Gamma}$. The functions in $\partial \hat{\Gamma}$ are r-harmonic.

Martin Kernel and Martin Boundary

Theorem: (Series-Ancona-Gouezel-Lalley) Let Γ be a nonelementary hyperbolic group. Then for any symmetric FRRW on Γ and any $1 \leq r \leq R$ the Martin boundary is homeomorphic to the geometric boundary.

Series: $r=1$, Fuchsian groups Ancona: $r<R$, Hyperbolic groups
Gouezel-Lalley: $r=R$, Fuchsian groups
Gouezel: $r=R$, Hyperbolic groups

Martin Kernel and Martin Boundary

Theorem: (GL) Let Γ be a nonelementary hyperbolic group. Then for any symmetric FRRW on $\Gamma \exists \beta<1$ such that for every $1 \leq r \leq R$ and any geodesic ray $1 y_{1} y_{2} y_{3} \cdots$ converging to a point $\xi \in \partial \Gamma$ of the geometric boundary,

$$
\left|\frac{G_{r}\left(x, y_{n}\right)}{G_{r}\left(1, y_{n}\right)}-K_{r}(x, \zeta)\right| \leq C_{x} \beta^{n} .
$$

Consequently, for each $x \in \Gamma$ the function $(r, \xi) \mapsto K_{r}(x, \xi)$ is Hölder continuous relative to visual metric on $\partial \Gamma$.

Martin Kernel and Martin Boundary

Question: Is the Martin boundary of a symmetric, FRRW on a co-compact lattice of a connected semisimple Lie group with finite center determined, up to homeomorphism type, by the ambient Lie group?

Question: Is the Martin boundary of a symmetric, FRRW on a nonamenable discrete group determined, up to homeomorphism type, by the group.

Ancona Inequalities

Key to the Martin Boundary:

Theorem A: (Ancona Inequalities) Let Γ be a nonelementary hyperbolic group. Then for any symmetric FRRW on Γ with spectral radius $\varrho=1 / R$ there exists $C<\infty$ such that for any $x, y, z \in \Gamma$, if y lies on the geodesic segment from x to z then for all $1 \leq r \leq R$,

$$
G_{r}(x, z) \leq C G_{r}(x, y) G_{r}(y, z)
$$

Note: Reverse inequality with $C=1$ is trivial. The two inequalities imply that the multiplicative relation exploited in the Dynkin-Malyutov proof almost holds.

Exponential Decay of the Green's function

Theorem B: (Exponential Decay of Green's Function) Let Γ be a nonelementary hyperbolic group. Then for any symmetric FRRW on Γ there exist $C<\infty$ and $0<\beta<1$ such that for all $1 \leq r \leq R$ and all $x \in \Gamma$,

$$
G_{r}(1, x) \leq C \beta^{d(1, x)}
$$

Remark: For an irreducible random walk it is always the case that the Green's function decays no faster than exponentially in distance.

Explanation: Assume for simplicity that the step distribution gives probability $\geq \alpha>0$ to each generator of Γ. Then for $d(x, y)=m$ there is a path of length m from x to y with probability $\geq \alpha^{m}$, so

$$
G_{r}(x, y) \geq r^{m} \alpha^{m} .
$$

Exponential Decay of the Green's Function

Objective: Prove Theorems A-B for nearest neighbor, symmetric random walk on a co-compact Fuchsian group Γ.

Assumption: Henceforth 「 is a co-compact Fuchsian group, and only symmetric, nearest neighbor random walks will be considered.

Preliminary Observations:
(1) $\lim _{d(1, x) \rightarrow \infty} G_{R}(1, x)=0$.
(2) $G_{R}(1, x y) \geq G_{R}(1, x) G_{R}(1, y)$

Proof of (1): Backscattering argument: Concatenating any path from 1 to x with path from x to 1 gives path from 1 to 1 of length $\geq 2 d(1, x)$. Hence,

$$
\sum_{n=2 d(1, x)}^{\infty} R^{n} p^{n}(1,1) \geq G_{R}(1, x)^{2} / G_{R}(1,1)
$$

Exponential Decay of the Green's Function

Key Notion: A barrier is a triple (V, W, B) consisting of non-overlapping halfplanes V, W and a set B disjoint from $V \cup W$ such that every path from V to W passes through B; and

$$
\max _{x \in V} \sum_{y \in B} G_{R}(x, y) \leq \frac{1}{2}
$$

Theorem \mathbb{C} : For any two points $\xi \neq \zeta \in \partial \mathbb{D}$ there exists a barrier separating ξ and ζ.

Corollary: $\exists \varepsilon>0$ such that any two points $x, y \in \Gamma$ are separated by [$\varepsilon d(x, y)$] disjoint barriers.

Exponential Decay of the Green's Function

Barriers \Longrightarrow exponential decay.

Explanation: Existence of barriers and compactness of $\partial \mathbb{D}$ implies that $\exists \varepsilon>0$ such that for any $x \in \Gamma$ with $m=\operatorname{dist}(1, x)$ sufficiently large there are εm non-overlapping barriers B_{i} separating 1 from x. Hence,

$$
\begin{gathered}
G_{r}(1, x) \leq-\sum_{z_{i} \in B_{i}} \prod_{i} G_{r}\left(z_{i}, z_{i+1}\right) \\
\leq \mathbf{2}^{-\varepsilon m}
\end{gathered}
$$

Existence of Barriers

Strategy: Use random walk paths to build barriers.
Lemma: $E^{1} G_{R}\left(1, X_{n}\right) \leq G_{R}(1,1)^{2} R^{-n}$
Proof: Paths from 1 to x can be concatenated with paths from x to 1 to yield paths from 1 to 1 . Hence, by symmetry, (i.e., $\left.F_{R}(1, x)=F_{R}(x, 1)\right)$

$$
\begin{aligned}
G_{R}(1,1) & \geq \sum_{k=n}^{\infty} R^{k} P^{1}\left\{X_{k}=1\right\} \\
& \geq \sum_{x} R^{n} P^{1}\left\{X_{n}=x\right\} F_{R}(1, x) \\
& =R^{n} E^{1} F_{R}\left(X_{n}, 1\right) \\
& =R^{n} E^{1} G_{R}\left(1, X_{n}\right) / G_{R}(1,1)
\end{aligned}
$$

where $F_{R}(1, x)$ is the first-passage generating function .

Existence of Barriers

Strategy: Use random walk paths to build barriers.
Lemma: $E^{1} G_{R}\left(1, X_{n}\right) \leq G_{R}(1,1)^{2} R^{-n}$
Corollary: If X_{n} and Y_{n} are independent versions of the random walk, both started at $X_{0}=Y_{0}=1$, then

$$
\begin{aligned}
E^{1,1} G_{R}\left(Y_{m}, X_{n}\right)= & E^{1,1} G_{R}\left(1, Y_{m}^{-1} X_{n}\right) \\
& =E^{1} G_{R}\left(z, X_{m+n}\right) \\
& \leq G_{R}(1,1)^{2} R^{-m-n}
\end{aligned}
$$

Existence of Barriers

Construction: Attach independent random walk paths to the random points X_{m} and Y_{m} to obtain two-sided random paths $\left(U_{n}\right)_{n \in \mathbb{Z}}$ and $\left(V_{n}\right)_{n \in \mathbb{Z}}$ such that

$$
\sum_{n, n^{\prime} \in \mathbb{Z}} E G_{R}\left(U_{n}, V_{n^{\prime}}\right) \leq 4 G_{R}(1,1)^{2} R^{-2 m}
$$

Recall: Each random walk path a.s. converges to a point of $\partial \mathbb{D}$, and the exit distribution is nonatomic.

Existence of Barriers

Construction: Attach independent random walk paths to the random points X_{m} and Y_{m} to obtain two-sided random paths $\left(U_{n}\right)_{n \in \mathbb{Z}}$ and $\left(V_{n}\right)_{n \in \mathbb{Z}}$ such that

$$
\sum_{n, n^{\prime} \in \mathbb{Z}} E G_{R}\left(U_{n}, V_{n^{\prime}}\right) \leq 4 G_{R}(1,1)^{2} R^{-2 m}
$$

Recall: Each random walk path a.s. converges to a point of $\partial \mathbb{D}$, and the exit distribution is nonatomic.

Consequence: There exist two-sided paths $\left\{u_{n}\right\}_{n \in \mathbb{Z}}$ and $\left\{v_{n}\right\}_{n \in \mathbb{Z}}$ converging to distinct endpoints $\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4} \in \partial \mathbb{D}$ such that

$$
\sum_{n, n^{\prime} \in \mathbb{Z}} G_{R}\left(u_{n}, v_{n^{\prime}}\right) \leq 4 G_{R}(1,1)^{2} R^{-2 m}<\frac{1}{2}
$$

The endpoint pairs ξ_{1}, ξ_{2} and ξ_{3}, ξ_{4} determine nonempty open disjoint arcs of $\partial \mathbb{D}$ that are separated by the paths $\left\{u_{n}\right\}_{n \in \mathbb{Z}}$ and $\left\{v_{n}\right\}_{n \in \mathbb{Z}}$.

Existence of Barriers

Conclusion: There exist two-sided paths $\left(u_{n}\right)_{n \in \mathbb{Z}}$ and $\left(v_{n}\right)_{n \in \mathbb{Z}}$ separating disjoint open arcs J and J^{\prime} of $\partial \mathbb{D}$ such that

$$
\sum_{n} \sum_{m} G_{R}\left(u_{n}, v_{m}\right)<\varepsilon .
$$

Let U and V be halfplanes on opposite sides of the paths $\left(u_{n}\right)_{n \in \mathbb{Z}}$ and $\left(v_{n}\right)_{n \in \mathbb{Z}}$. Then the triple $\left(U, V,\left(v_{m}\right)_{m \in \mathbb{Z}}\right)$ is a barrier.

To obtain barriers separating arbitrary points $\xi, \zeta \in \mathbb{D}$, apply isometries $g \in \Gamma$.

Proof of the Ancona Inequalities

Theorem A: (Ancona Inequalities) Let Γ be a co-compact Fuchsian group. Then for any symmetric nearest neighbor RW on 「 with spectral radius $\varrho=1 / R$ there exists $C<\infty$ such that for any $x, y, z \in \Gamma$, if y lies on the geodesic segment from 1 to z then for all $1 \leq r \leq R$,

$$
G_{r}(x, z) \leq C G_{r}(x, y) G_{r}(y, z)
$$

Note: A. Ancona proved that $G_{r}(x, z) \leq C_{r} G_{r}(x, y) G_{r}(y, z)$ for $r<R$ using a coercivity technique. See
A. Ancona, Positive harmonic functions and hyperbolicity, Springer LNM vol. 1344.

Proof of the Ancona Inequalities

Theorem A: (Ancona Inequalities) Let Γ be a co-compact Fuchsian group. Then for any symmetric nearest neighbor RW on Γ with spectral radius $\varrho=1 / R$ there exists $C<\infty$ such that for any $x, y, z \in \Gamma$, if y lies on the geodesic segment from 1 to z then for all $1 \leq r \leq R$,

$$
G_{r}(x, z) \leq C G_{r}(x, y) G_{r}(y, z)
$$

Strategy: Let C_{m} be the max of $G_{R}(x, z) / G_{R}(x, y) G_{R}(y, z)$ over all triples x, y, z where y lies on the geodesic segment from 1 to z and $d(x, z) \leq m$. Since there are only finitely many possibilities, $C_{m}<\infty$.

To Show: $\sup C_{m}<\infty$
Will Show: $C_{m} / C_{(.9) m} \leq 1+\varepsilon_{m}$ where $\sum \varepsilon_{m}<\infty$.

Proof of Ancona Inequalities

Place points x, y, w, z approximately along a geodesic at distances

$$
\begin{aligned}
d(x, y) & =(.1) m \\
d(y, w) & =(.7) m \\
d(w, z) & =(.2) m
\end{aligned}
$$

and let C be a circle of radius \sqrt{m} centered at w. Assume m is large enough that $\sqrt{m}<(.1) m$.

Note: Any path from x to z must either enter C or go around C.

Proof of Ancona Inequalities

Fact: The hyperbolic circumference of C is $\approx e^{\sqrt{m / 10}}$. Thus, a path from x to z that goes around C must pass through $\delta \sqrt{m}$ barriers.

Consequently, the contribution to the Green's function $G_{R}(x, z)$ from such paths is bounded above by

$$
(1 / 2)^{\exp \{\delta \sqrt{m}\}}
$$

Proof of Ancona Inequalities

Any path from x to z that enters C must exit C a last time, at a point u inside C. Thus,

$$
G_{R}(x, z) \leq 2^{-\exp \{\delta \sqrt{m}\}}+\sum_{u} G_{R}(x, u) G_{R}^{*}(u, z)
$$

where $G_{R}^{*}(u, z)$ denotes sum over paths that do not re-enter C.
The distance from x to u is no larger than (.9) m, so

$$
G_{R}(x, u) \leq C_{(.9) m} G_{R}(x, y) G_{R}(y, u)
$$

Proof of Ancona Inequalities

Conclusion: Recall that there is a constant $\beta>0$ such that $G_{R}(u, v) \geq \beta^{m}$ for any two points u, v at distance $\leq m$. Consequently,

$$
\begin{aligned}
G_{R}(x, z) & \leq 2^{-\exp \{\delta \sqrt{m}\}}+C_{(.9) m} G_{R}(x, y) \sum_{u} G_{R}(y, u) G_{R}^{*}(u, z) \\
& \leq 2^{-\exp \{\delta \sqrt{m}\}}+C_{(.9) m} G_{R}(x, y) G_{R}(y, z) \\
& \leq\left(1+2^{-\exp \{\delta \sqrt{m}\}} / \beta^{m}\right) C_{(.9) m} G_{R}(x, y) G_{R}(y, z)
\end{aligned}
$$

This proves

$$
C_{m} \leq C_{(.9) m}\left(1+2^{-\exp \{\delta \sqrt{m}\}} / \beta^{m}\right)
$$

Ancona \Longrightarrow Convergence to Martin Kernel

Theorem: (GL) Let Γ be a nonelementary hyperbolic group. Then for any symmetric FRRW on $\Gamma \exists \beta<1$ such that for every $1 \leq r \leq R$ and any geodesic ray $1 y_{1} y_{2} y_{3} \cdots$ converging to a point $\xi \in \partial \Gamma$ of the geometric boundary,

$$
\left|\frac{G_{r}\left(x, y_{n}\right)}{G_{r}\left(1, y_{n}\right)}-K_{r}(x, \zeta)\right| \leq C_{x} \beta^{n}
$$

Consequently, for each $x \in \Gamma$ the function $(r, \xi) \mapsto K_{r}(x, \xi)$ is Hölder continuous relative to visual metric on $\partial \Gamma$.

Plan: Use Ancona inequalities to prove this following a template laid out by Anderson \& Schoen and Ancona.

Convergence to the Martin Kernel

Shadowing: A geodesic segment $\left[x^{\prime} y^{\prime}\right]$ shadows a geodesic segment [$x y$] if every vertex on [$x y$] lies within distance 2δ of $\left[x^{\prime} y^{\prime}\right]$. If geodesic segments $\left[x^{\prime} y^{\prime}\right]$ and $\left[x^{\prime \prime} y^{\prime \prime}\right]$ both shadow $[x y]$ then they are fellow-traveling along $[x y]$.

Proposition: $\exists 0<\alpha<1$ and $C<\infty$ such that if [$x y$] and [$x^{\prime} y^{\prime}$] are fellow-traveling along a geodesic segment $\left[x_{0} y_{0}\right.$] of length m then

$$
\left|\frac{G_{r}(x, y) / G_{r}\left(x^{\prime}, y\right)}{G_{r}\left(x, y^{\prime}\right) / G_{r}\left(x^{\prime}, y^{\prime}\right)}-1\right| \leq C \alpha^{m}
$$

Convergence to the Martin Kernel

Proposition: $\exists 0<\alpha<1$ and $C<\infty$ such that if [$x y$] and [$x^{\prime} y^{\prime}$] are fellow-traveling along a geodesic segment $\left[x_{0} y_{0}\right.$] of length m then

$$
\left|\frac{G_{r}(x, y) / G_{r}\left(x^{\prime}, y\right)}{G_{r}\left(x, y^{\prime}\right) / G_{r}\left(x^{\prime}, y^{\prime}\right)}-1\right| \leq C \alpha^{m}
$$

Corollary: For any geodesic ray $1 y_{1} y_{2} y_{3} \ldots$ converging to a point $\xi \in \partial \Gamma$ of the geometric boundary,

$$
\left|\frac{G_{r}\left(x, y_{n}\right)}{G_{r}\left(1, y_{n}\right)}-K_{r}(x, \zeta)\right| \leq C_{x} \alpha^{n} .
$$

Consequently, for each $x \in \Gamma$ the function $(r, \xi) \mapsto K_{r}(x, \xi)$ is Hölder continuous relative to visual metric on $\partial \Gamma$.

Preliminary: Poisson Integral Formula

Restricted Green's Function: Let Ω be a subset of the Cayley graph, let $x \in \Omega$ and $y \notin \Omega$. Define the restricted Green's function to be the sum over all paths γ from $x \rightarrow y$ that remain in Ω until last step:

$$
G_{r}(x, y ; \Omega)=\sum_{\text {paths } x \rightarrow y \text { in } \Omega} r^{|\gamma|} p(|\gamma|)
$$

Poisson Integral Formula: Let Ω be a finite set and $u: \Gamma \rightarrow \mathbb{R}_{+}$be a nonnegative function that is r-harmonic in Ω. Then for any $r \leq R$

$$
u(x)=\sum_{y \notin \Omega} G_{r}(x, y ; \Omega) u(y) \quad \forall x \in \Omega
$$

Consequently, if u is bounded in Ω and $r \leq R$ then the formula holds also for infinite Ω.

Ancona Inequalities for Restricted Green's Function

Proposition: Assume that Γ is a co-compact Fuchsian group and that its Cayley graph is embedded in \mathbb{D}. Let Ω be any halfplane, and for any $x, y, z \in \Omega$ such that y lies on the geodesic segment γ from 1 to z and γ lies entirely in Ω,

$$
G_{r}(x, z ; \Omega) \leq C G_{r}(x, y ; \Omega) G_{r}(y, z ; \Omega)
$$

The proof is virtually the same as in the unrestricted case.

Anderson-Schoen-Ancona Argument

Mark points $z_{1}, z_{2}, \ldots, z_{\varepsilon m}$ along geodesic segment [$y_{0} x_{0}$] such that the perpendicular geodesic through z_{i} divides \mathbb{D} into two halfplanes L_{i} and R_{i}. Assume that z_{i} are spaced so that any geodesic segment from L_{i} to R_{i+1} passes within distance 2δ of z_{i} and z_{i+1}.

Note: $R_{0} \supset R_{1} \supset R_{2} \supset \cdots$.

Anderson-Schoen-Ancona Argument

Define

$$
\begin{aligned}
u_{0}(z) & =G_{r}(z, y) / G_{r}(x, y) \quad \text { and } \\
v_{0}(z) & =G_{r}\left(z, y^{\prime}\right) / G_{r}\left(x, y^{\prime}\right)
\end{aligned}
$$

Note:

- Ancona inequalities imply $u_{0} \asymp v_{0}$ in L_{0}.
- Both u_{0}, v_{0} are r-harmonic in R_{0}.
- Both u_{0}, v_{0} are bounded in R_{0}.
- $u_{0}(x)=v_{0}(x)=1$.

To Show: In R_{n},

$$
\left|u_{0} / v_{0}-1\right|=\left|\frac{u_{n}+\sum_{i=1}^{n} \varphi_{i}}{v_{n}+\sum_{i=1}^{n} \varphi_{i}}-1\right| \leq C^{\prime}(1-\varepsilon)^{n}
$$

Anderson-Schoen-Ancona Argument

Plan: Inductively construct r-harmonic functions $\varphi_{i}, u_{i}, v_{i}$ in halfplane R_{i} such that

$$
\begin{aligned}
& u_{i-1}=u_{i}+\varphi_{i} \quad \text { and } \quad u_{i-1} \geq \varphi_{i} \geq \varepsilon u_{i-1} \text { in } A_{i} ; \\
& v_{i-1}=v_{i}+\varphi_{i} \quad \text { and } \quad v_{i-1} \geq \varphi_{i} \geq \varepsilon v_{i-1} \text { in } A_{i}
\end{aligned}
$$

This will imply

$$
\begin{aligned}
& u_{n} \leq(1-\varepsilon)^{n} u_{0} \\
& v_{n} \leq(1-\varepsilon)^{n} v_{0} \\
&\left|u_{n}-v_{n}\right| \leq C(1-\varepsilon)^{n}(u+v) \\
& \Longrightarrow\left|u_{0} / v_{0}-1\right|=\left|\frac{u_{n}+\sum_{i=1}^{n} \varphi_{i}}{v_{n}+\sum_{i=1}^{n} \varphi_{i}}-1\right| \leq C^{\prime}(1-\varepsilon)^{n}
\end{aligned}
$$

Anderson-Schoen-Ancona Argument

Assume that $u_{i}, v_{i}, \varphi_{i}$ have been constructed. Since they are r-harmonic in R_{i}, Poisson Integral Formula implies

$$
\begin{aligned}
& u_{i}(z)=\sum_{w \notin R_{i}} G_{r}\left(z, w ; R_{i}\right) u_{i}(w) \\
& v_{i}(z)=\sum_{w \notin R_{i}} G_{r}\left(z, w ; R_{i}\right) v_{i}(w) .
\end{aligned}
$$

By construction, every geodesic segment from R_{i+1} to a point w not in R_{i} must pass within 2δ of z_{i+1}. Hence, Ancona inequalities imply

$$
G_{r}\left(z, w ; R_{i}\right) \asymp G_{r}\left(z, z_{i+1} ; R_{i}\right) G_{r}\left(z_{i+1}, w ; R_{i}\right) \quad \forall z \in R_{i+1} .
$$

Anderson-Schoen-Ancona Argument

Consequently,

$$
\begin{aligned}
& u_{i}(z) \asymp G_{r}\left(z, z_{i+1} ; R_{i}\right) \sum_{w \notin R_{i}} G_{r}\left(z_{i+1}, w ; R_{i}\right) u_{i}(w) \\
& v_{i}(z) \asymp G_{r}\left(z, z_{i+1} ; R_{i}\right) \sum_{w \notin R_{i}} G_{r}\left(z_{i+1}, w ; R_{i}\right) u_{i}(w)
\end{aligned}
$$

Thus, for small $\alpha>0$

$$
\varphi_{i+1}(z)=\alpha u_{i}(x) \frac{G_{r}\left(z, z_{i+1} ; R_{i}\right)}{G_{r}\left(x, z_{i+1} ; R_{i}\right)}=\alpha v_{i}(x) \frac{G_{r}\left(z, z_{i+1} ; R_{i}\right)}{G_{r}\left(x, z_{i+1} ; R_{i}\right)}
$$

satisfies

$$
\begin{aligned}
\varepsilon u_{i} & \leq \varphi_{i+1} \leq u_{i} \\
\varepsilon v_{i} & \leq \varphi_{i+1} \leq v_{i}
\end{aligned}
$$

III. Local Limit Theorems: Hyperbolic Groups

Tomorrow:
Theorem: (Gouezel-Lalley) For any symmetric FRRW on a co-compact Fuchsian group,

$$
P^{1}\left\{X_{2 n}=1\right\} \sim C R^{-2 n}(2 n)^{-3 / 2}
$$

Theorem: (Gouezel) This also holds for any nonelementary hyperbolic group. Moreover, for Fuchsian groups the hypothesis of symmetry is unnecessary.

Note: Same local limit theorem also holds for finitely generated Fuchsian groups Γ such that \mathbb{H} / Γ has finite hyperbolic area and finitely many cusps.

