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|. Background: Hyperbolic Geometry

Hyperbolic Metric Space: A geodesic metric space such that for
some ¢ > 0 all geodesic triangles are §—thin.

Examples:
(A) The hyperbolic plane.
(B) The d—regular tree.

Definition: A finitely generated group I is hyperbolic (also called
word-hyperbolic) if its Cayley graph (when given the usual graph
metric) is a hyperbolic metric space.

Lemma: If I' is hyperbolic with respect to generators A then it is
hyperbolic with respect to any finite symmetric generating set.



Geometry of the Hyperbolic Plane

Halfplane Model: H = {x + iy : y > 0} with metric ds/y
Disk Model: D = {re’® : r < 1} with metric 4ds/(1 — r?) .

Miscellaneous Facts:

(0) Disk and halfplane models are isometric.

(1) Isometries are linear fractional transformations that fix OH or 9ID.
(2) Isometry group is transitive on H and 0H x oH.
(3) Geodesics are circular arcs that intersect 9H or oD orthogonally.
(4)

4) Circle of radius t has circumference = e'.



Fuchsian Groups

Fuchsian group: A discrete group of isometries of the hyperbolic
plane H. Examples: Surface group (fundamental group of closed
surface of genus > 2), free group Fy, triangle groups.

Note: Isometries of H are linear fractional transformations z — gjig
with a, b, ¢,d € R where (25) € SL(2,R). Hence, a Fuchsian group
is really a discrete subgroup of SL(2,R)

Fact: The Cayley graph of a finitely generated Fuchsian group can be
quasi-isometrically embedded in H. This implies that any Fuchsian
group is hyperbolic.

Consequence: Geodesics of the Cayley graph (word metric) track
hyperbolic geodesics at bounded distance.



Fuchsian Groups

Hyperbolic Isometry: Any isometry ¢ of D that is conjugate by map
¢ : H — D to a linear fractional transformation z — Az of H. The
geodesic from ¢(0) to (o) is the axis of 1, and $(0), ®(o0) are the
fixed points.

Proposition: If I' is a co-compact Fuchsian group then I contains
hyperbolic elements, and fixed-point pairs &, ¢ of such elements are
dense in 9D x oD.



Free Groups are Fuchsian




Other Examples of Hyperbolic Groups

Z is hyperbolic.
Free products G; * Gz * - - - * Gy of finite groups are hyperbolic.

Fundamental groups of compact Riemannian manifolds with strictly
negative sectional curvature are hyperbolic.

Discrete groups of isometries of n—dimensional hyperbolic space H".
Theorem (Bonk-Schramm): If " is hyperbolic then for any finite

symmetric generating set A the Cayley graph G(TI; A) is
quasi-isometric to a convex subset of H".



Geometric Boundary and Gromov Compactification

Two geodesic rays (Xn)n>0 and (yn)n>o are equivalent if there exists
k € Z such that for all large n,

d(Xn, Ynik) < 20.

Geometric Boundary or': Set of equivalence classes of geodesic rays.

Topology on I' U OI': Basic open sets:
(a) singletons {x} with x € I'; and
(b) sets Bp(&) with m > 1 and ¢ € oI where By,(§) =setof x e T
and ¢ € I such that there exists geodesic rays (x,) and (yn)
with initial points xo = yo = 1, endpoints ¢ and ¢ (or £ and x), and
such that
d(x,y) <26 Vj<m

Non-elementary Hyperbolic Group: |0l = co.



Geometric Boundary and Gromov Compactification

Basic Facts
Proposition 1: 9l is compact in the Gromov topology.

Proposition 2: I acts by homeomorphisms on drI', and if I" is
nonelementary then every '—orbit is dense in or.

Proposition 3: If I" is a finitely generated, nonelementary hyperbolic
group then I is nonamenable.

In fact, the action of I' on dI' has no invariant probability measure.



Geometric Boundary and Gromov Compactification

Fact: If T is a co-compact Fuchsian
group (i.e., if H/T is compact) then the
geometric boundary is homeomorphic
to the circle.

Fact: If I' is a co-compact Fuchsian
group then the set of pairs (§—, &) of
fixed points of hyperbolic elements of
I is dense in 9D x OD.




Convergence to the Boundary

Theorem: Let X, be a symmetric, irreducible FRRW on a
nonamenable hyperbolic group I'. Then with probability one the
sequence X, converges to a (random) point X, € or.

Proof: (Sketch) Since I is nonamenable the random walk has positive
speed. Since the random walk has bounded step size, the (word)
distance between successive points X, and X1 is O(1). Now use:

Lemma: If x, is any sequence of points such that d(1, x,)/n — « > 0
and d(xy, Xn+1) is bounded then x, converges to a point of the
Gromov boundary.



Convergence to the Boundary

Theorem: Let X, be a symmetric, irreducible FRRW on a
nonamenable hyperbolic group I'. Then with probability one the
sequence X, converges to a (random) point X, € or.

Proposition: The distribution of X, is nonatomic, and attaches
positive probability to every nonempty open set U C dr.

Note: The result is due to Furstenberg (?). For an exposition see
Kaimanovich, Ann. Math. v. 152



Visual Metric on oI

Visual Metric: A metric d; on 9l such that for any &, ¢ € arI, any
bi-infinite geodesic « from & to ¢, and any vertex y on v minimizing
distance to 1,

Cia %) < dy(€,¢) < Cra 90t



Visual Metric on oI

Visual Metric: A metric d; on 9l such that for any &, ¢ € arI, any
bi-infinite geodesic « from & to ¢, and any vertex y on v minimizing
distance to 1,

Cia 90 < dy(¢,¢) < Coa 1)

Proposition: For some a > 1 a visual metric exists.

Remark: For the hyperbolic plane D, the Euclidean metric on 0D is a
visual metric.



Ledrappier-Kaimanovich Formula

Billingsley Dimension: Let v be a probability measure on metric
space (Y, d). Define

dim(v) = inf{H-dim(A) : v(A) = 1}.

Theorem: (Le Prince; BHM) Let ' be a hyperbolic group with
geometric boundary oI and visual metric d; on or. For any FRRW on
I" with Avez entropy h, speed /¢, and exit measure v4,

. h

m =—=
dim(v1) loga/
Theorem: (Furstenberg) For any co-compact Fuchsian group I there
is a symmetric probability measure . on I such that the RW with step
distribution 1 has exit distribution absolutely continuous relative to
Lebesgue on S'. The measure u does not have finite support.

Conjecture: For any finite symmetric generating set A there is a
constant C4 < dimy(9I) such that for any symmetric FRRW with step
distribution supported by A

dim(l/1) < Ca.



[I. Martin Kernel and Martin Boundary

Martin Kernel:

ky(x) = Ki(x,y) = g:g:’jj; where
Gr(x,y) = r"P{Xn =y}

n=0

Martin Compactification ": Unique minimal compactification of I' to
which each function y — k;,(x) extends continuously.

Martin Boundary: Set df" of all pointwise limits lim,_, . ky,(-) not
already included in {ky} <r. The functions in f are r—harmonic.



Martin Kernel and Martin Boundary

Theorem: (Series-Ancona-Gouezel-Lalley) Let I' be a nonelementary
hyperbolic group. Then for any symmetric FRRW on I and any

1 < r < R the Martin boundary is homeomorphic to the geometric
boundary.

Series: r = 1, Fuchsian groups
Ancona: r < R, Hyperbolic groups
Gouezel-Lalley: r = R, Fuchsian groups
Gouezel: r = R, Hyperbolic groups



Martin Kernel and Martin Boundary

Theorem: (GL) Let I' be a nonelementary hyperbolic group. Then for
any symmetric FRRW on I' 38 < 1 such that for every 1 < r < R and
any geodesic ray 1y1)»y3 - - - converging to a point ¢ € I of the
geometric boundary,

Gr(Xayn)

G(1.yn) %0

< CxB".

Consequently, for each x € T the function (r, &) — K:(x, &) is Holder
continuous relative to visual metric on or.



Martin Kernel and Martin Boundary

Question: Is the Martin boundary of a symmetric, FRRW on a
co-compact lattice of a connected semisimple Lie group with finite
center determined, up to homeomorphism type, by the ambient Lie
group?

Question: Is the Martin boundary of a symmetric, FRRW on a
nonamenable discrete group determined, up to homeomorphism
type, by the group.



Ancona Inequalities

Key to the Martin Boundary:

Theorem A: (Ancona Inequalities) Let I' be a nonelementary
hyperbolic group. Then for any symmetric FRRW on I” with spectral
radius ¢ = 1/R there exists C < oo such that forany x,y,z €T, if y
lies on the geodesic segment from x to z then forall 1 < r < R,

Gi(x,2) < CG/(x,y)Gi(y, 2)
Note: Reverse inequality with C = 1 is trivial. The two inequalities

imply that the multiplicative relation exploited in the Dynkin-Malyutov
proof almost holds.



Exponential Decay of the Green’s function

Theorem B: (Exponential Decay of Green’s Function) Let ' be a
nonelementary hyperbolic group. Then for any symmetric FRRW on I
there exist C < cocand 0 < 5 < 1 suchthatforall1 <r < Rand all
xer,

G/(1,x) < cpd»)

Remark: For an irreducible random walk it is always the case that the
Green’s function decays no faster than exponentially in distance.

Explanation: Assume for simplicity that the step distribution gives
probability > « > 0 to each generator of I'. Then for d(x,y) =m
there is a path of length m from x to y with probability > o™, so

Gr(x,y) > r"a™.



Exponential Decay of the Green’s Function

Objective: Prove Theorems A-B for nearest neighbor, symmetric
random walk on a co-compact Fuchsian group .

Assumption: Henceforth I is a co-compact Fuchsian group, and only
symmetric, nearest neighbor random walks will be considered.

Preliminary Observations:
(1) limge x)—00 Gr(1,x) = 0.
(2) GR(1 y Xy) > GH(1 ’ X)GR(17y)

Proof of (1): Backscattering argument: Concatenating any path from
1 to x with path from x to 1 gives path from 1 to 1 of length
> 2d(1, x). Hence,

i R"p"(1,1) > Ggr(1,x)?/Ggr(1,1).

n=2d(1,x)



Exponential Decay of the Green’s Function

Key Notion: A barrier is a triple (V, W, B) consisting of
non-overlapping halfplanes V., W and a set B disjoint from V u W
such that every path from V to W passes through B; and

]
max >  Ga(x,y) < 5.
yeB

Theorem C: For any two points £ # ¢ € 9D there exists a barrier
separating £ and .

Corollary: 3¢ > 0 such that any two points x, y € I are separated by
[ed(x, y)] disjoint barriers.



Exponential Decay of the Green’s Function

Barriers =—> exponential decay.

Explanation: Existence of
barriers and compactness of 9D
implies that 3¢ > 0 such that for
any x € I with m = dist(1, x)
sufficiently large there are em
non-overlapping barriers B;
separating 1 from x. Hence,

G/(1,x) < — Z H Gr(zi, zi11)

ZiE€EB; i
< 2—8/77



Existence of Barriers
Strategy: Use random walk paths to build barriers.
Lemma: E'Gg(1, Xn) < Gr(1,1)2R™"

Proof: Paths from 1 to x can be concatenated with paths from x to 1
to yield paths from 1 to 1. Hence, by symmetry,
(i.e.,F/:{(1,X) = F,q(X, 1))

Gr(1,1) ziRkP1{Xk: 1}

k=n

> R"P'{X, = x}Fa(1,x)

= R"E"Fp(Xp, 1)
= R"E'Gr(1, X»)/Gr(1,1)
where Fg(1, x) is the first-passage generating function .



Existence of Barriers

Strategy: Use random walk paths to build barriers.
Lemma: E'Gg(1, X,) < Gr(1,1)?R™"

Corollary: If X, and Y, are independent versions of the random walk,
both started at Xo = Yy = 1, then
E" ' Gr(Ym, Xn) =E"'Gr(1, Y, ' Xn)
= E'GR(2, Xmin)
< Gg(1,1)?R=m="



Existence of Barriers

Construction: Attach independent random walk paths to the random
points X, and Yy, to obtain two-sided random paths (U,)ncz and
(Vn)nez such that

>~ EGa(Un, Vi) < 4Gg(1,1)2R2™

n,n' €7

Recall: Each random walk path a.s. converges to a point of 9D, and
the exit distribution is nonatomic.



Existence of Barriers

Construction: Attach independent random walk paths to the random
points X, and Yy, to obtain two-sided random paths (U,)ncz and
(Vn)nez such that

>~ EGa(Un, Vi) < 4Gg(1,1)2R2™

n,n' €7

Recall: Each random walk path a.s. converges to a point of 9D, and
the exit distribution is nonatomic.

Consequence: There exist two-sided paths {up}nez and {Vp}nez
converging to distinct endpoints &1, &, &3, &4 € 0D such that

> GrlUn, vir) < 4Gr(1,1)PR2™ <

n,n' €7

| =

The endpoint pairs &1, &2 and &3, {4 determine nonempty open disjoint
arcs of dD that are separated by the paths {up}ncz and {v,}nez.



Existence of Barriers

Conclusion: There exist two-sided paths (U;)nez and (Vi) nez
separating disjoint open arcs J and J’ of D such that

> > Galun, Vi) <e.

Let U and V be halfplanes on opposite sides of the paths (u,)ncz and
(Vn)nez- Then the triple (U, V, (Vm)mez) is a barrier.

To obtain barriers separating arbitrary points &, ¢ € D, apply
isometries g € T.



Proof of the Ancona Inequalities

Theorem A: (Ancona Inequalities) Let I' be a co-compact Fuchsian
group. Then for any symmetric nearest neighbor RW on I with
spectral radius o = 1/R there exists C < oo such that for any
x,y,z €T, if y lies on the geodesic segment from 1 to z then for all
1<r<R,

G:(x,2) < CG/(x,y)G:(y, 2)

Note: A. Ancona proved that G,(x, z) < C,G/(x, y)G,(y,z)forr < R
using a coercivity technique. See

A. Ancona, Positive harmonic functions and hyperbolicity, Springer
LNM vol. 1344.



Proof of the Ancona Inequalities

Theorem A: (Ancona Inequalities) Let I' be a co-compact Fuchsian
group. Then for any symmetric nearest neighbor RW on I with
spectral radius o = 1/R there exists C < oo such that for any
x,y,z €T, if y lies on the geodesic segment from 1 to z then for all
1<r<RA,

Gr(x,2) < CG/(x,y)Gr(y, 2)

Strategy: Let C, be the max of Gg(x, z)/Gr(X, y)Gr(y, z) over all
triples x, y, z where y lies on the geodesic segment from 1 to z and
d(x,z) < m. Since there are only finitely many possibilities, Cp, < cc.

To Show: sup Cp, < oo
Will Show: Cm/Coym < 14 em Where ) em < oo.



Proof of Ancona Inequalities

Place points x, y, w, z approximately along a geodesic at distances

dx,y)=(1)m
d(y,w)=(.7)m
d(w,z)=(.2)m

and let C be a circle of radius v/m centered at w. Assume m is large
enough that vm < (.1)m.

Note: Any path from x to z must either enter C or go around C.



Proof of Ancona Inequalities

Fact: The hyperbolic circumference of C is ~ eV™19, Thus, a path
from x to z that goes around C must pass through 6+/m barriers.

Consequently, the contribution to the Green’s function Gg(x, z) from
such paths is bounded above by

¢ /2)exp{5\/ﬁ}



Proof of Ancona Inequalities

Any path from x to z that enters C must exit C a last time, at a point u
inside C. Thus,

Gn(x,2) < 2P0V 1 3™ Gi(x, u)Gh(u, 2)
u

where Gg(u, z) denotes sum over paths that do not re-enter C.

The distance from x to u is no larger than (.9)m, so

Gr(x,u) < C(.9ymGr(X, y)Gr(Y, u)



Proof of Ancona Inequalities

Conclusion: Recall that there is a constant 8 > 0 such that
Ggr(u, v) > 8™ for any two points u, v at distance < m. Consequently,

Ga(x,z) <27 ®PPVM 4 G g)nGr(x.y) Y Gal(y, u)Gg(u, 2)
u

<27 POV 4 G o)mGr(X, y)Ga(Y, 2)
< (1 4+ 278V 3M G 6 mGR(X, ¥)GR(Y, 2)

This proves

Cm < Croym(1 + 27 &Plovm} /gm)




Ancona — Convergence to Martin Kernel

Theorem: (GL) Let I' be a nonelementary hyperbolic group. Then for
any symmetric FRRW on I 33 < 1 such that for every 1 < r < R and
any geodesic ray 1y1)»y3 - - - converging to a point ¢ € dI' of the
geometric boundary,

ST (x,)

< CB8".
G (1, ) s

Consequently, for each x € I the function (r, &) — K, (x, ) is Holder
continuous relative to visual metric on Jr.

Plan: Use Ancona inequalities to prove this following a template laid
out by Anderson & Schoen and Ancona.



Convergence to the Martin Kernel

Shadowing: A geodesic segment [x’y’] shadows a geodesic segment
[xy] if every vertex on [xy] lies within distance 26 of [x’y’]. If geodesic
segments [x’y’] and [x”y”] both shadow [xy] then they are
fellow-traveling along [xy].

AN yd
— T

Proposition: 30 < a < 1 and C < oo such that if [xy] and [x'y’] are
fellow-traveling along a geodesic segment [xoyo] of length m then

GG | - pum
‘Gr(x, V)G, y) 1’ S



Convergence to the Martin Kernel

Proposition: 30 < a < 1 and C < oo such that if [xy] and [x"y’] are
fellow-traveling along a geodesic segment [xpyo] of length m then

GG ) | - o
‘@(x, V)G, y') 1’ S6

Corollary: For any geodesic ray 1y1y»ys - - - converging to a point
& € oI of the geometric boundary,

< Cya.

|Gr(x’yn) — Ki(x, )

Gr(17}’n)

Consequently, for each x € T the function (r, &) — K (x,¢) is Holder
continuous relative to visual metric on or.



Preliminary: Poisson Integral Formula

Restricted Green’s Function: Let Q be a subset of the Cayley graph,
let x € Q and y ¢ Q. Define the restricted Green’s function to be the
sum over all paths v from x — y that remain in Q until last step:

G(xy:iQ= > ()

paths x—y in Q

Poisson Integral Formula: Let ©2 be a finite setand u: I — R, be a
nonnegative function that is r—harmonic in Q. Then forany r < R

u(x) =>_ Gi(x,y;Qu(y) VxeQ
yEQ

Consequently, if uis bounded in Q and r < R then the formula holds
also for infinite Q.



Ancona Inequalities for Restricted Green’s Function

Proposition: Assume that I' is a co-compact Fuchsian group and that
its Cayley graph is embedded in D. Let Q2 be any halfplane, and for
any x, y,z € Q such that y lies on the geodesic segment - from 1 to z
and ~ lies entirely in £,

Gr(x,2;Q) < CG/(x,y; Q) Gy, Z; Q).

The proof is virtually the same as in the unrestricted case.



Anderson-Schoen-Ancona Argument

Mark points zq, zo, . .., Z.m along
geodesic segment [yoXo] such
\ that the perpendicular geodesic
/ \ through z; divides D into two
\ / halfplanes L; and R;. Assume
that z; are spaced so that any
geodesic segment from L; to
Ri1 passes within distance 26
\ of z;and z;4.

\ NOteZR():)R1:)R2:)'~~.




Anderson-Schoen-Ancona Argument

Define
UO(Z): G,(Z,y)/G,(X,y) and
vo(2) = Gr(z,y')/Gr(x.y")
Note:
» Ancona inequalities imply up =< vp in Ly.

Both ug, vo are r—harmonic in Ry.
Both ug, vo are bounded in Ry.
Up(x) = vo(x) = 1.

vV vV

To Show: In R,

Un+ 304 @i _

11 <C'(1—¢)"
Vn+27:1tp,' ( )

|uo/vo — 1] =



Anderson-Schoen-Ancona Argument

Plan: Inductively construct r—harmonic functions ;, u;, v; in halfplane

R; such that
U_1=U++¢; and Ui_1> @ >clUj_1in A;;
Vig=Vitpi and V1> >ceviqinh;
This will imply
up < (1 - E)nUo
v <(1—-¢)"v
Un — Vn| < 0(1 = E)n(U+ V)

= |Up/vo — 1| = wEST o
=

Un+27:1<ﬂi_1 <c

(1—e)



Anderson-Schoen-Ancona Argument

Assume that u;, vj, ¢; have been constructed. Since they are
r—harmonic in R;, Poisson Integral Formula implies

u(z) =Y Gi(z,w; Ri)ui(w),
w¢&R;
vi(z) = Z Gr(z, w; R)vi(w).

WQR,

By construction, every geodesic segment from R;. ¢ to a point w not
in R; must pass within 20 of z;y. Hence, Ancona inequalities imply

Gi(z,w; R) < G/(2, 211, Ri)G/(Zi41,W; R)) YV ze Riq.



Anderson-Schoen-Ancona Argument

Consequently,
ui(z) < Gi(z, zi+1; Ri) Z Gr(Ziy1, w; Ri)ui(w),
W&Fﬂ'

Vi(2) < G2, 2ie1: R)) D GilZir, w; Ry)uy(w),
WQR,

Thus, for small . > 0

| Glz,zi R)
pit1(2) = aui(x) Gr(X,zit1; R)
satisfies

el < piv1 < Uj
eVi < pit1 < V.



[ll. Local Limit Theorems: Hyperbolic Groups

Tomorrow:

Theorem: (Gouezel-Lalley) For any symmetric FRRW on a
co-compact Fuchsian group,

P'Y{Xon =1} ~ CR™27(2n)~3%/2,

Theorem: (Gouezel) This also holds for any nonelementary
hyperbolic group. Moreover, for Fuchsian groups the hypothesis of
symmetry is unnecessary.

Note: Same local limit theorem also holds for finitely generated
Fuchsian groups I such that H/T has finite hyperbolic area and
finitely many cusps.
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