Random Walks on Hyperbolic Groups III

Steve Lalley

University of Chicago

January 2014

Hyperbolic Groups

Definition, Examples Geometric Boundary

Ledrappier-Kaimanovich Formula

Martin Boundary of FRRW on Hyperbolic Group

Martin Boundary Existence of Barriers and Exponential Decay Ancona Inequalities Convergence to Martin Kernel

Local Limit Theorems

I. Background: Hyperbolic Geometry

Hyperbolic Metric Space: A geodesic metric space such that for some $\delta > 0$ all geodesic triangles are δ -thin.

Examples:

- (A) The hyperbolic plane.
- (B) The d-regular tree.

Definition: A finitely generated group Γ is hyperbolic (also called word-hyperbolic) if its Cayley graph (when given the usual graph metric) is a hyperbolic metric space.

Lemma: If Γ is hyperbolic with respect to generators *A* then it is hyperbolic with respect to any finite symmetric generating set.

Geometry of the Hyperbolic Plane

Halfplane Model: $\mathbb{H} = \{x + iy : y > 0\}$ with metric ds/yDisk Model: $\mathbb{D} = \{re^{i\theta} : r < 1\}$ with metric $4 ds/(1 - r^2)$.

Miscellaneous Facts:

- (0) Disk and halfplane models are isometric.
- (1) Isometries are linear fractional transformations that fix $\partial \mathbb{H}$ or $\partial \mathbb{D}$.
- (2) Isometry group is transitive on \mathbb{H} and $\partial \mathbb{H} \times \partial \mathbb{H}$.
- (3) Geodesics are circular arcs that intersect $\partial \mathbb{H}$ or $\partial \mathbb{D}$ orthogonally.

(4) Circle of radius *t* has circumference $\approx e^t$.

Fuchsian Groups

Fuchsian group: A discrete group of isometries of the hyperbolic plane \mathbb{H} . Examples: Surface group (fundamental group of closed surface of genus ≥ 2), free group \mathbb{F}_d , triangle groups.

Note: Isometries of \mathbb{H} are linear fractional transformations $z \mapsto \frac{az+b}{cz+d}$ with $a, b, c, d \in \mathbb{R}$ where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R})$. Hence, a Fuchsian group is really a discrete subgroup of $SL(2, \mathbb{R})$

Fact: The Cayley graph of a finitely generated Fuchsian group can be quasi-isometrically embedded in \mathbb{H} . This implies that any Fuchsian group is hyperbolic.

Consequence: Geodesics of the Cayley graph (word metric) track hyperbolic geodesics at bounded distance.

Hyperbolic Isometry: Any isometry ψ of \mathbb{D} that is conjugate by map $\Phi : \mathbb{H} \to \mathbb{D}$ to a linear fractional transformation $z \mapsto \lambda z$ of \mathbb{H} . The geodesic from $\Phi(0)$ to $\Phi(\infty)$ is the axis of ψ , and $\Phi(0), \Phi(\infty)$ are the fixed points.

Proposition: If Γ is a co-compact Fuchsian group then Γ contains hyperbolic elements, and fixed-point pairs ξ , ζ of such elements are dense in $\partial \mathbb{D} \times \partial \mathbb{D}$.

Free Groups are Fuchsian

▲□ > ▲圖 > ▲目 > ▲目 > 目 のへで

Other Examples of Hyperbolic Groups

 \mathbb{Z} is hyperbolic.

Free products $G_1 * G_2 * \cdots * G_d$ of finite groups are hyperbolic.

Fundamental groups of compact Riemannian manifolds with strictly negative sectional curvature are hyperbolic.

Discrete groups of isometries of *n*-dimensional hyperbolic space \mathbb{H}^n .

Theorem (Bonk-Schramm): If Γ is hyperbolic then for any finite symmetric generating set *A* the Cayley graph $G(\Gamma; A)$ is quasi-isometric to a convex subset of \mathbb{H}^n .

Geometric Boundary and Gromov Compactification

Two geodesic rays $(x_n)_{n\geq 0}$ and $(y_n)_{n\geq 0}$ are equivalent if there exists $k \in \mathbb{Z}$ such that for all large *n*,

 $d(x_n, y_{n+k}) \leq 2\delta.$

Geometric Boundary $\partial \Gamma$: Set of equivalence classes of geodesic rays.

Topology on $\Gamma \cup \partial \Gamma$: Basic open sets:

- (a) singletons $\{x\}$ with $x \in \Gamma$; and
- (b) sets $B_m(\xi)$ with $m \ge 1$ and $\xi \in \partial \Gamma$ where $B_m(\xi) =$ set of $x \in \Gamma$ and $\zeta \in \partial \Gamma$ such that there exists geodesic rays (x_n) and (y_n) with initial points $x_0 = y_0 = 1$, endpoints ξ and ζ (or ξ and x), and such that

 $d(x_j, y_j) \leq 2\delta \quad \forall j \leq m$

Non-elementary Hyperbolic Group: $|\partial \Gamma| = \infty$.

Geometric Boundary and Gromov Compactification

Basic Facts

Proposition 1: $\partial \Gamma$ is compact in the Gromov topology.

Proposition 2: Γ acts by homeomorphisms on $\partial\Gamma$, and if Γ is nonelementary then every Γ -orbit is dense in $\partial\Gamma$.

Proposition 3: If Γ is a finitely generated, nonelementary hyperbolic group then Γ is nonamenable.

In fact, the action of Γ on $\partial\Gamma$ has no invariant probability measure.

Geometric Boundary and Gromov Compactification

Fact: If Γ is a co-compact Fuchsian group (i.e., if \mathbb{H}/Γ is compact) then the geometric boundary is homeomorphic to the circle.

Fact: If Γ is a co-compact Fuchsian group then the set of pairs $(\xi -, \xi_+)$ of fixed points of hyperbolic elements of Γ is dense in $\partial \mathbb{D} \times \partial \mathbb{D}$.

・ ロ ト ・ 雪 ト ・ 国 ト ・ 日 ト

Convergence to the Boundary

Theorem: Let X_n be a symmetric, irreducible FRRW on a nonamenable hyperbolic group Γ . Then with probability one the sequence X_n converges to a (random) point $X_{\infty} \in \partial \Gamma$.

Proof: (Sketch) Since Γ is nonamenable the random walk has positive speed. Since the random walk has bounded step size, the (word) distance between successive points X_n and X_{n+1} is O(1). Now use:

Lemma: If x_n is any sequence of points such that $d(1, x_n)/n \rightarrow \alpha > 0$ and $d(x_n, x_{n+1})$ is bounded then x_n converges to a point of the Gromov boundary. Theorem: Let X_n be a symmetric, irreducible FRRW on a nonamenable hyperbolic group Γ . Then with probability one the sequence X_n converges to a (random) point $X_{\infty} \in \partial \Gamma$.

Proposition: The distribution of X_{∞} is nonatomic, and attaches positive probability to every nonempty open set $U \subset \partial \Gamma$.

Note: The result is due to Furstenberg (?). For an exposition see Kaimanovich, *Ann. Math.* v. 152

Visual Metric: A metric d_a on $\partial\Gamma$ such that for any $\xi, \zeta \in \partial\Gamma$, any bi-infinite geodesic γ from ξ to ζ , and any vertex y on γ minimizing distance to 1,

$$C_1 a^{-d(1,y)} \leq d_a(\xi,\zeta) \leq C_2 a^{-d(1,y)}$$

(日)

Visual Metric: A metric d_a on $\partial\Gamma$ such that for any $\xi, \zeta \in \partial\Gamma$, any bi-infinite geodesic γ from ξ to ζ , and any vertex y on γ minimizing distance to 1,

$$C_1 a^{-d(1,y)} \leq d_a(\xi,\zeta) \leq C_2 a^{-d(1,y)}$$

Proposition: For some a > 1 a visual metric exists.

Remark: For the hyperbolic plane \mathbb{D} , the Euclidean metric on $\partial \mathbb{D}$ is a visual metric.

(日)

Ledrappier-Kaimanovich Formula

Billingsley Dimension: Let ν be a probability measure on metric space (\mathcal{Y}, d) . Define

$$\dim(\nu) = \inf\{\operatorname{H-dim}(A) : \nu(A) = 1\}.$$

Theorem: (Le Prince; BHM) Let Γ be a hyperbolic group with geometric boundary $\partial\Gamma$ and visual metric d_a on $\partial\Gamma$. For any FRRW on Γ with Avez entropy h, speed ℓ , and exit measure ν_1 ,

$$\dim(\nu_1) = \frac{1}{\log a} \frac{h}{\ell}$$

Theorem: (Furstenberg) For any co-compact Fuchsian group Γ there is a symmetric probability measure μ on Γ such that the RW with step distribution μ has exit distribution absolutely continuous relative to Lebesgue on S^1 . The measure μ does not have finite support.

Conjecture: For any finite symmetric generating set *A* there is a constant $C_A < \dim_H(\partial\Gamma)$ such that for any symmetric FRRW with step distribution supported by *A*

 $\dim(\nu_1) \leq C_A.$

II. Martin Kernel and Martin Boundary

Martin Kernel:

$$egin{aligned} & \mathcal{K}_{r}(x) = \mathcal{K}_{r}(x,y) = rac{G_{r}(x,y)}{G_{r}(1,y)} & ext{where} \ & G_{r}(x,y) = \sum_{n=0} r^{n} \mathcal{P}^{x} \{ X_{n} = y \} \end{aligned}$$

Martin Compactification $\hat{\Gamma}$: Unique minimal compactification of Γ to which each function $y \mapsto k_y(x)$ extends continuously.

Martin Boundary: Set $\partial \hat{\Gamma}$ of all pointwise limits $\lim_{n\to\infty} k_{y_n}(\cdot)$ not already included in $\{k_y\}_{y\in\Gamma}$. The functions in $\partial \hat{\Gamma}$ are *r*-harmonic.

Martin Kernel and Martin Boundary

Theorem: (Series-Ancona-Gouezel-Lalley) Let Γ be a nonelementary hyperbolic group. Then for any symmetric FRRW on Γ and any $1 \le r \le R$ the Martin boundary is homeomorphic to the geometric boundary.

Series: r = 1, Fuchsian groups Ancona: r < R, Hyperbolic groups Gouezel-Lalley: r = R, Fuchsian groups Gouezel: r = R, Hyperbolic groups Theorem: (GL) Let Γ be a nonelementary hyperbolic group. Then for any symmetric FRRW on $\Gamma \exists \beta < 1$ such that for every $1 \le r \le R$ and any geodesic ray $1y_1y_2y_3\cdots$ converging to a point $\xi \in \partial\Gamma$ of the geometric boundary,

$$\left|\frac{G_r(x, y_n)}{G_r(1, y_n)} - K_r(x, \zeta)\right| \leq C_x \beta^n.$$

Consequently, for each $x \in \Gamma$ the function $(r, \xi) \mapsto K_r(x, \xi)$ is Hölder continuous relative to visual metric on $\partial \Gamma$.

(日) (日) (日) (日) (日) (日) (日)

Martin Kernel and Martin Boundary

Question: Is the Martin boundary of a symmetric, FRRW on a co-compact lattice of a connected semisimple Lie group with finite center determined, up to homeomorphism type, by the ambient Lie group?

Question: Is the Martin boundary of a symmetric, FRRW on a nonamenable discrete group determined, up to homeomorphism type, by the group.

・ロト・日本・モー・ 日・ つへの

Ancona Inequalities

Key to the Martin Boundary:

Theorem A: (Ancona Inequalities) Let Γ be a nonelementary hyperbolic group. Then for any symmetric FRRW on Γ with spectral radius $\rho = 1/R$ there exists $C < \infty$ such that for any $x, y, z \in \Gamma$, if y lies on the geodesic segment from x to z then for all $1 \le r \le R$,

 $G_r(x,z) \leq CG_r(x,y)G_r(y,z)$

Note: Reverse inequality with C = 1 is trivial. The two inequalities imply that the multiplicative relation exploited in the Dynkin-Malyutov proof almost holds.

Exponential Decay of the Green's function

Theorem B: (Exponential Decay of Green's Function) Let Γ be a nonelementary hyperbolic group. Then for any symmetric FRRW on Γ there exist $C < \infty$ and $0 < \beta < 1$ such that for all $1 \le r \le R$ and all $x \in \Gamma$,

$$G_r(1,x) \leq C \beta^{d(1,x)}$$

Remark: For an irreducible random walk it is always the case that the Green's function decays no faster than exponentially in distance.

Explanation: Assume for simplicity that the step distribution gives probability $\geq \alpha > 0$ to each generator of Γ . Then for d(x, y) = m there is a path of length *m* from *x* to *y* with probability $\geq \alpha^m$, so

$$G_r(x, y) \geq r^m \alpha^m$$
.

Exponential Decay of the Green's Function

Objective: Prove Theorems A–B for nearest neighbor, symmetric random walk on a co-compact Fuchsian group Γ .

Assumption: Henceforth Γ is a co-compact Fuchsian group, and only symmetric, nearest neighbor random walks will be considered.

Preliminary Observations:

- (1) $\lim_{d(1,x)\to\infty} G_R(1,x) = 0.$
- (2) $G_R(1, xy) \ge G_R(1, x)G_R(1, y)$

Proof of (1): Backscattering argument: Concatenating any path from 1 to *x* with path from *x* to 1 gives path from 1 to 1 of length $\geq 2d(1, x)$. Hence,

$$\sum_{n=2d(1,x)}^{\infty} R^n p^n(1,1) \ge G_R(1,x)^2/G_R(1,1).$$

Exponential Decay of the Green's Function

Key Notion: A barrier is a triple (V, W, B) consisting of non-overlapping halfplanes V, W and a set B disjoint from $V \cup W$ such that every path from V to W passes through B; and

$$\max_{x\in V}\sum_{y\in B}G_R(x,y)\leq \frac{1}{2}.$$

Theorem C: For any two points $\xi \neq \zeta \in \partial \mathbb{D}$ there exists a barrier separating ξ and ζ .

Corollary: $\exists \varepsilon > 0$ such that any two points $x, y \in \Gamma$ are separated by $[\varepsilon d(x, y)]$ disjoint barriers.

Exponential Decay of the Green's Function

Barriers \implies exponential decay.

Explanation: Existence of barriers and compactness of $\partial \mathbb{D}$ implies that $\exists \varepsilon > 0$ such that for any $x \in \Gamma$ with m = dist(1, x)sufficiently large there are εm non-overlapping barriers B_i separating 1 from x. Hence,

$$egin{aligned} G_r(1,x) &\leq -\sum_{z_i \in \mathcal{B}_i} \prod_i G_r(z_i,z_{i+1}) \ &\leq 2^{-arepsilon m} \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Strategy: Use random walk paths to build barriers.

Lemma: $E^1G_R(1, X_n) \le G_R(1, 1)^2 R^{-n}$

Proof: Paths from 1 to *x* can be concatenated with paths from *x* to 1 to yield paths from 1 to 1. Hence, by symmetry, (i.e., $F_R(1, x) = F_R(x, 1)$)

$$G_{R}(1,1) \geq \sum_{k=n}^{\infty} R^{k} P^{1} \{X_{k} = 1\}$$

$$\geq \sum_{x} R^{n} P^{1} \{X_{n} = x\} F_{R}(1,x)$$

$$= R^{n} E^{1} F_{R}(X_{n},1)$$

$$= R^{n} E^{1} G_{R}(1,X_{n}) / G_{R}(1,1)$$

where $F_R(1, x)$ is the first-passage generating function.

Strategy: Use random walk paths to build barriers.

Lemma: $E^1G_R(1, X_n) \le G_R(1, 1)^2 R^{-n}$

Corollary: If X_n and Y_n are independent versions of the random walk, both started at $X_0 = Y_0 = 1$, then

$$egin{aligned} & \Xi^{1,1}G_R(Y_m,X_n) = & E^{1,1}G_R(1,Y_m^{-1}X_n) \ & = & E^1G_R(z,X_{m+n}) \ & \leq & G_R(1,1)^2R^{-m-n} \end{aligned}$$

・ロト・4回ト・4回ト・4回ト・4回ト

Construction: Attach independent random walk paths to the random points X_m and Y_m to obtain two-sided random paths $(U_n)_{n \in \mathbb{Z}}$ and $(V_n)_{n \in \mathbb{Z}}$ such that

$$\sum_{n,n'\in\mathbb{Z}} EG_R(U_n,V_{n'}) \leq 4G_R(1,1)^2 R^{-2m}$$

Recall: Each random walk path a.s. converges to a point of $\partial \mathbb{D}$, and the exit distribution is nonatomic.

Construction: Attach independent random walk paths to the random points X_m and Y_m to obtain two-sided random paths $(U_n)_{n \in \mathbb{Z}}$ and $(V_n)_{n \in \mathbb{Z}}$ such that

$$\sum_{n,n'\in\mathbb{Z}} EG_R(U_n,V_{n'}) \leq 4G_R(1,1)^2 R^{-2m}$$

Recall: Each random walk path a.s. converges to a point of $\partial \mathbb{D}$, and the exit distribution is nonatomic.

Consequence: There exist two-sided paths $\{u_n\}_{n \in \mathbb{Z}}$ and $\{v_n\}_{n \in \mathbb{Z}}$ converging to distinct endpoints $\xi_1, \xi_2, \xi_3, \xi_4 \in \partial \mathbb{D}$ such that

$$\sum_{n,n'\in\mathbb{Z}}G_{R}(u_{n},v_{n'})\leq 4G_{R}(1,1)^{2}R^{-2m}<\frac{1}{2}$$

The endpoint pairs ξ_1, ξ_2 and ξ_3, ξ_4 determine nonempty open disjoint arcs of $\partial \mathbb{D}$ that are separated by the paths $\{u_n\}_{n \in \mathbb{Z}}$ and $\{v_n\}_{n \in \mathbb{Z}}$.

・ロト・日本・モト・モー ショー ショー

Conclusion: There exist two-sided paths $(u_n)_{n \in \mathbb{Z}}$ and $(v_n)_{n \in \mathbb{Z}}$ separating disjoint open arcs *J* and *J'* of $\partial \mathbb{D}$ such that

$$\sum_{n}\sum_{m}G_{R}(u_{n},v_{m})<\varepsilon.$$

Let *U* and *V* be halfplanes on opposite sides of the paths $(u_n)_{n \in \mathbb{Z}}$ and $(v_n)_{n \in \mathbb{Z}}$. Then the triple $(U, V, (v_m)_{m \in \mathbb{Z}})$ is a barrier.

(日) (日) (日) (日) (日) (日) (日)

To obtain barriers separating arbitrary points $\xi, \zeta \in \mathbb{D}$, apply isometries $g \in \Gamma$.

Theorem A: (Ancona Inequalities) Let Γ be a co-compact Fuchsian group. Then for any symmetric nearest neighbor RW on Γ with spectral radius $\varrho = 1/R$ there exists $C < \infty$ such that for any $x, y, z \in \Gamma$, if y lies on the geodesic segment from 1 to z then for all $1 \le r \le R$,

$$G_r(x,z) \leq CG_r(x,y)G_r(y,z)$$

Note: A. Ancona proved that $G_r(x, z) \le C_r G_r(x, y) G_r(y, z)$ for r < R using a coercivity technique. See

A. Ancona, *Positive harmonic functions and hyperbolicity*, Springer LNM vol. 1344.

(日) (日) (日) (日) (日) (日) (日)

Theorem A: (Ancona Inequalities) Let Γ be a co-compact Fuchsian group. Then for any symmetric nearest neighbor RW on Γ with spectral radius $\rho = 1/R$ there exists $C < \infty$ such that for any $x, y, z \in \Gamma$, if *y* lies on the geodesic segment from 1 to *z* then for all $1 \le r \le R$,

 $G_r(x,z) \leq CG_r(x,y)G_r(y,z)$

Strategy: Let C_m be the max of $G_R(x, z)/G_R(x, y)G_R(y, z)$ over all triples x, y, z where y lies on the geodesic segment from 1 to z and $d(x, z) \le m$. Since there are only finitely many possibilities, $C_m < \infty$.

To Show: sup
$$C_m < \infty$$

Will Show: $C_m/C_{(.9)m} \le 1 + \varepsilon_m$ where $\sum \varepsilon_m < \infty$.

Place points x, y, w, z approximately along a geodesic at distances

$$d(x, y) = (.1)m$$

 $d(y, w) = (.7)m$
 $d(w, z) = (.2)m$

and let *C* be a circle of radius \sqrt{m} centered at *w*. Assume *m* is large enough that $\sqrt{m} < (.1)m$.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Note: Any path from x to z must either enter C or go around C.

Fact: The hyperbolic circumference of *C* is $\approx e^{\sqrt{m/10}}$. Thus, a path from *x* to *z* that goes around *C* must pass through $\delta\sqrt{m}$ barriers.

Consequently, the contribution to the Green's function $G_R(x, z)$ from such paths is bounded above by

 $(1/2)^{\exp\{\delta\sqrt{m}\}}$

Any path from x to z that enters C must exit C a last time, at a point u inside C. Thus,

$$G_R(x,z) \leq 2^{-\exp\{\delta\sqrt{m}\}} + \sum_u G_R(x,u)G_R^*(u,z)$$

where $G_{R}^{*}(u, z)$ denotes sum over paths that do not re-enter C.

The distance from x to u is no larger than (.9)m, so

$$G_R(x, u) \leq C_{(.9)m}G_R(x, y)G_R(y, u)$$

Conclusion: Recall that there is a constant $\beta > 0$ such that $G_R(u, v) \ge \beta^m$ for any two points u, v at distance $\le m$. Consequently,

$$egin{aligned} G_R(x,z) &\leq 2^{-\exp\{\delta\sqrt{m}\}} + C_{(.9)m}G_R(x,y)\sum_u G_R(y,u)G_R^*(u,z) \ &\leq 2^{-\exp\{\delta\sqrt{m}\}} + C_{(.9)m}G_R(x,y)G_R(y,z) \ &\leq (1+2^{-\exp\{\delta\sqrt{m}\}}/eta^m)C_{(.9)m}G_R(x,y)G_R(y,z) \end{aligned}$$

This proves

$$C_m \leq C_{(.9)m}(1+2^{-\exp\{\delta\sqrt{m}\}}/eta^m)$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Ancona \implies Convergence to Martin Kernel

Theorem: (GL) Let Γ be a nonelementary hyperbolic group. Then for any symmetric FRRW on $\Gamma \exists \beta < 1$ such that for every $1 \le r \le R$ and any geodesic ray $1y_1y_2y_3\cdots$ converging to a point $\xi \in \partial\Gamma$ of the geometric boundary,

$$\left|\frac{G_r(x,y_n)}{G_r(1,y_n)}-K_r(x,\zeta)\right|\leq C_x\beta^n.$$

Consequently, for each $x \in \Gamma$ the function $(r, \xi) \mapsto K_r(x, \xi)$ is Hölder continuous relative to visual metric on $\partial \Gamma$.

Plan: Use Ancona inequalities to prove this following a template laid out by Anderson & Schoen and Ancona.

(日) (日) (日) (日) (日) (日) (日)

Convergence to the Martin Kernel

Shadowing: A geodesic segment [x'y'] shadows a geodesic segment [xy] if every vertex on [xy] lies within distance 2δ of [x'y']. If geodesic segments [x'y'] and [x''y''] both shadow [xy] then they are fellow-traveling along [xy].

Proposition: $\exists 0 < \alpha < 1$ and $C < \infty$ such that if [xy] and [x'y'] are fellow-traveling along a geodesic segment $[x_0y_0]$ of length *m* then

$$\left|\frac{G_r(x,y)/G_r(x',y)}{G_r(x,y')/G_r(x',y')}-1\right| \leq C\alpha^m$$

Convergence to the Martin Kernel

Proposition: $\exists 0 < \alpha < 1$ and $C < \infty$ such that if [xy] and [x'y'] are fellow-traveling along a geodesic segment $[x_0y_0]$ of length *m* then

$$\left|\frac{G_r(x,y)/G_r(x',y)}{G_r(x,y')/G_r(x',y')}-1\right| \le C\alpha^m$$

Corollary: For any geodesic ray $1y_1y_2y_3\cdots$ converging to a point $\xi \in \partial \Gamma$ of the geometric boundary,

$$\left|\frac{G_r(x,y_n)}{G_r(1,y_n)}-K_r(x,\zeta)\right|\leq C_x\alpha^n.$$

Consequently, for each $x \in \Gamma$ the function $(r, \xi) \mapsto K_r(x, \xi)$ is Hölder continuous relative to visual metric on $\partial \Gamma$.

(日) (日) (日) (日) (日) (日) (日)

Preliminary: Poisson Integral Formula

Restricted Green's Function: Let Ω be a subset of the Cayley graph, let $x \in \Omega$ and $y \notin \Omega$. Define the restricted Green's function to be the sum over all paths γ from $x \to y$ that remain in Ω until last step:

$$G_r(x, y; \Omega) = \sum_{\text{paths } x \to y \text{ in } \Omega} r^{|\gamma|} p(|\gamma|)$$

Poisson Integral Formula: Let Ω be a finite set and $u : \Gamma \to \mathbb{R}_+$ be a nonnegative function that is r-harmonic in Ω . Then for any $r \leq R$

$$u(x) = \sum_{y \notin \Omega} G_r(x, y; \Omega) u(y) \quad \forall \ x \in \Omega$$

Consequently, if *u* is bounded in Ω and $r \leq R$ then the formula holds also for infinite Ω .

Proposition: Assume that Γ is a co-compact Fuchsian group and that its Cayley graph is embedded in \mathbb{D} . Let Ω be any halfplane, and for any $x, y, z \in \Omega$ such that y lies on the geodesic segment γ from 1 to z and γ lies entirely in Ω ,

$$G_r(x, z; \Omega) \leq CG_r(x, y; \Omega)G_r(y, z; \Omega).$$

(日) (日) (日) (日) (日) (日) (日)

The proof is virtually the same as in the unrestricted case.

Mark points $z_1, z_2, ..., z_{\varepsilon m}$ along geodesic segment $[y_0 x_0]$ such that the perpendicular geodesic through z_i divides \mathbb{D} into two halfplanes L_i and R_i . Assume that z_i are spaced so that any geodesic segment from L_i to R_{i+1} passes within distance 2δ of z_i and z_{i+1} .

Note: $R_0 \supset R_1 \supset R_2 \supset \cdots$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Define

$$u_0(z) = G_r(z, y)/G_r(x, y)$$
 and
 $v_0(z) = G_r(z, y')/G_r(x, y')$

Note:

- Ancona inequalities imply $u_0 \simeq v_0$ in L_0 .
- Both u_0 , v_0 are r-harmonic in R_0 .
- Both u_0 , v_0 are bounded in R_0 .

•
$$u_0(x) = v_0(x) = 1.$$

To Show: In R_n,

$$|u_0/v_0-1| = \left|\frac{u_n + \sum_{i=1}^n \varphi_i}{v_n + \sum_{i=1}^n \varphi_i} - 1\right| \le C'(1-\varepsilon)^n$$

Plan: Inductively construct *r*-harmonic functions φ_i , u_i , v_i in halfplane R_i such that

$$u_{i-1} = u_i + \varphi_i$$
 and $u_{i-1} \ge \varphi_i \ge \varepsilon u_{i-1}$ in A_i ;
 $v_{i-1} = v_i + \varphi_i$ and $v_{i-1} \ge \varphi_i \ge \varepsilon v_{i-1}$ in A_i

This will imply

$$\begin{aligned} u_n &\leq (1-\varepsilon)^n u_0 \\ v_n &\leq (1-\varepsilon)^n v_0 \\ |u_n - v_n| &\leq C (1-\varepsilon)^n (u+v) \end{aligned}$$

$$\implies |u_0/v_0-1| = \left|\frac{u_n + \sum_{i=1}^n \varphi_i}{v_n + \sum_{i=1}^n \varphi_i} - 1\right| \le C'(1-\varepsilon)^n$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assume that u_i , v_i , φ_i have been constructed. Since they are r-harmonic in R_i , Poisson Integral Formula implies

$$u_i(z) = \sum_{w \notin R_i} G_r(z, w; R_i) u_i(w),$$

$$v_i(z) = \sum_{w \notin R_i} G_r(z, w; R_i) v_i(w).$$

By construction, every geodesic segment from R_{i+1} to a point *w* not in R_i must pass within 2δ of z_{i+1} . Hence, Ancona inequalities imply

$$G_r(z, w; R_i) \asymp G_r(z, z_{i+1}; R_i) G_r(z_{i+1}, w; R_i) \quad \forall z \in R_{i+1}.$$

(日) (日) (日) (日) (日) (日) (日)

Consequently,

$$u_i(z) \asymp G_r(z, z_{i+1}; R_i) \sum_{w \notin R_i} G_r(z_{i+1}, w; R_i) u_i(w),$$

 $v_i(z) \asymp G_r(z, z_{i+1}; R_i) \sum_{w \notin R_i} G_r(z_{i+1}, w; R_i) u_i(w),$

Thus, for small $\alpha > \mathbf{0}$

$$\varphi_{i+1}(z) = \alpha u_i(x) \frac{G_r(z, z_{i+1}; R_i)}{G_r(x, z_{i+1}; R_i)} = \alpha v_i(x) \frac{G_r(z, z_{i+1}; R_i)}{G_r(x, z_{i+1}; R_i)}$$

satisfies

$$\varepsilon u_i \leq \varphi_{i+1} \leq u_i$$

$$\varepsilon v_i \leq \varphi_{i+1} \leq v_i.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

III. Local Limit Theorems: Hyperbolic Groups

Tomorrow:

Theorem: (Gouezel-Lalley) For any symmetric FRRW on a co-compact Fuchsian group,

$$P^{1}\{X_{2n}=1\}\sim CR^{-2n}(2n)^{-3/2}$$

Theorem: (Gouezel) This also holds for any nonelementary hyperbolic group. Moreover, for Fuchsian groups the hypothesis of symmetry is unnecessary.

Note: Same local limit theorem also holds for finitely generated Fuchsian groups Γ such that \mathbb{H}/Γ has finite hyperbolic area and finitely many cusps.