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I. Background: Hyperbolic Geometry

Hyperbolic Metric Space: A geodesic metric space such that for
some δ > 0 all geodesic triangles are δ−thin.

Examples:

(A) The hyperbolic plane.
(B) The d−regular tree.

Definition: A finitely generated group Γ is hyperbolic (also called
word-hyperbolic) if its Cayley graph (when given the usual graph
metric) is a hyperbolic metric space.

Lemma: If Γ is hyperbolic with respect to generators A then it is
hyperbolic with respect to any finite symmetric generating set.



Geometry of the Hyperbolic Plane

Halfplane Model: H = {x + iy : y > 0} with metric ds/y
Disk Model: D = {reiθ : r < 1} with metric 4 ds/(1− r2) .

Miscellaneous Facts:

(0) Disk and halfplane models are isometric.
(1) Isometries are linear fractional transformations that fix ∂H or ∂D.
(2) Isometry group is transitive on H and ∂H× ∂H.
(3) Geodesics are circular arcs that intersect ∂H or ∂D orthogonally.
(4) Circle of radius t has circumference � et .



Fuchsian Groups

Fuchsian group: A discrete group of isometries of the hyperbolic
plane H. Examples: Surface group (fundamental group of closed
surface of genus ≥ 2), free group Fd , triangle groups.

Note: Isometries of H are linear fractional transformations z 7→ az+b
cz+d

with a,b, c,d ∈ R where
(

a b
c d

)
∈ SL(2,R). Hence, a Fuchsian group

is really a discrete subgroup of SL(2,R)

Fact: The Cayley graph of a finitely generated Fuchsian group can be
quasi-isometrically embedded in H. This implies that any Fuchsian
group is hyperbolic.

Consequence: Geodesics of the Cayley graph (word metric) track
hyperbolic geodesics at bounded distance.



Fuchsian Groups

Hyperbolic Isometry: Any isometry ψ of D that is conjugate by map
Φ : H→ D to a linear fractional transformation z 7→ λz of H. The
geodesic from Φ(0) to Φ(∞) is the axis of ψ, and Φ(0),Φ(∞) are the
fixed points.

Proposition: If Γ is a co-compact Fuchsian group then Γ contains
hyperbolic elements, and fixed-point pairs ξ, ζ of such elements are
dense in ∂D× ∂D.



Free Groups are Fuchsian

A
B



Other Examples of Hyperbolic Groups

Z is hyperbolic.

Free products G1 ∗G2 ∗ · · · ∗Gd of finite groups are hyperbolic.

Fundamental groups of compact Riemannian manifolds with strictly
negative sectional curvature are hyperbolic.

Discrete groups of isometries of n−dimensional hyperbolic space Hn.

Theorem (Bonk-Schramm): If Γ is hyperbolic then for any finite
symmetric generating set A the Cayley graph G(Γ; A) is
quasi-isometric to a convex subset of Hn.



Geometric Boundary and Gromov Compactification

Two geodesic rays (xn)n≥0 and (yn)n≥0 are equivalent if there exists
k ∈ Z such that for all large n,

d(xn, yn+k ) ≤ 2δ.

Geometric Boundary ∂Γ: Set of equivalence classes of geodesic rays.

Topology on Γ ∪ ∂Γ: Basic open sets:

(a) singletons {x} with x ∈ Γ; and
(b) sets Bm(ξ) with m ≥ 1 and ξ ∈ ∂Γ where Bm(ξ) = set of x ∈ Γ

and ζ ∈ ∂Γ such that there exists geodesic rays (xn) and (yn)
with initial points x0 = y0 = 1, endpoints ξ and ζ (or ξ and x), and
such that

d(xj , yj ) ≤ 2δ ∀ j ≤ m

Non-elementary Hyperbolic Group: |∂Γ| =∞.



Geometric Boundary and Gromov Compactification

Basic Facts

Proposition 1: ∂Γ is compact in the Gromov topology.

Proposition 2: Γ acts by homeomorphisms on ∂Γ, and if Γ is
nonelementary then every Γ−orbit is dense in ∂Γ.

Proposition 3: If Γ is a finitely generated, nonelementary hyperbolic
group then Γ is nonamenable.

In fact, the action of Γ on ∂Γ has no invariant probability measure.



Geometric Boundary and Gromov Compactification

Fact: If Γ is a co-compact Fuchsian
group (i.e., if H/Γ is compact) then the
geometric boundary is homeomorphic
to the circle.

Fact: If Γ is a co-compact Fuchsian
group then the set of pairs (ξ−, ξ+) of
fixed points of hyperbolic elements of
Γ is dense in ∂D× ∂D.



Convergence to the Boundary

Theorem: Let Xn be a symmetric, irreducible FRRW on a
nonamenable hyperbolic group Γ. Then with probability one the
sequence Xn converges to a (random) point X∞ ∈ ∂Γ.

Proof: (Sketch) Since Γ is nonamenable the random walk has positive
speed. Since the random walk has bounded step size, the (word)
distance between successive points Xn and Xn+1 is O(1). Now use:

Lemma: If xn is any sequence of points such that d(1, xn)/n→ α > 0
and d(xn, xn+1) is bounded then xn converges to a point of the
Gromov boundary.

Proposition: The distribution of X∞ is nonatomic, and attaches
positive probability to every nonempty open set U ⊂ ∂Γ.

Note: The result is due to Furstenberg (?). For an exposition see
Kaimanovich, Ann. Math. v. 152
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Visual Metric on ∂Γ

Visual Metric: A metric da on ∂Γ such that for any ξ, ζ ∈ ∂Γ, any
bi-infinite geodesic γ from ξ to ζ, and any vertex y on γ minimizing
distance to 1,

C1a−d(1,y) ≤ da(ξ, ζ) ≤ C2a−d(1,y)

Proposition: For some a > 1 a visual metric exists.

Remark: For the hyperbolic plane D, the Euclidean metric on ∂D is a
visual metric.



Visual Metric on ∂Γ

Visual Metric: A metric da on ∂Γ such that for any ξ, ζ ∈ ∂Γ, any
bi-infinite geodesic γ from ξ to ζ, and any vertex y on γ minimizing
distance to 1,

C1a−d(1,y) ≤ da(ξ, ζ) ≤ C2a−d(1,y)

Proposition: For some a > 1 a visual metric exists.

Remark: For the hyperbolic plane D, the Euclidean metric on ∂D is a
visual metric.



Ledrappier-Kaimanovich Formula
Billingsley Dimension: Let ν be a probability measure on metric
space (Y,d). Define

dim(ν) = inf{H-dim(A) : ν(A) = 1}.

Theorem: (Le Prince; BHM) Let Γ be a hyperbolic group with
geometric boundary ∂Γ and visual metric da on ∂Γ. For any FRRW on
Γ with Avez entropy h, speed `, and exit measure ν1,

dim(ν1) =
1

log a
h
`

Theorem: (Furstenberg) For any co-compact Fuchsian group Γ there
is a symmetric probability measure µ on Γ such that the RW with step
distribution µ has exit distribution absolutely continuous relative to
Lebesgue on S1. The measure µ does not have finite support.

Conjecture: For any finite symmetric generating set A there is a
constant CA < dimH(∂Γ) such that for any symmetric FRRW with step
distribution supported by A

dim(ν1) ≤ CA.



II. Martin Kernel and Martin Boundary

Martin Kernel:

ky (x) = Kr (x , y) =
Gr (x , y)

Gr (1, y)
where

Gr (x , y) =
∑
n=0

rnPx{Xn = y}

Martin Compactification Γ̂: Unique minimal compactification of Γ to
which each function y 7→ ky (x) extends continuously.

Martin Boundary: Set ∂Γ̂ of all pointwise limits limn→∞ kyn (·) not
already included in {ky}y∈Γ. The functions in ∂Γ̂ are r−harmonic.



Martin Kernel and Martin Boundary

Theorem: (Series-Ancona-Gouezel-Lalley) Let Γ be a nonelementary
hyperbolic group. Then for any symmetric FRRW on Γ and any
1 ≤ r ≤ R the Martin boundary is homeomorphic to the geometric
boundary.

Series: r = 1, Fuchsian groups
Ancona: r < R, Hyperbolic groups
Gouezel-Lalley: r = R, Fuchsian groups
Gouezel: r = R, Hyperbolic groups



Martin Kernel and Martin Boundary

Theorem: (GL) Let Γ be a nonelementary hyperbolic group. Then for
any symmetric FRRW on Γ ∃β < 1 such that for every 1 ≤ r ≤ R and
any geodesic ray 1y1y2y3 · · · converging to a point ξ ∈ ∂Γ of the
geometric boundary,∣∣∣∣∣Gr (x , yn)

Gr (1, yn)
− Kr (x , ζ)

∣∣∣∣∣ ≤ Cxβ
n.

Consequently, for each x ∈ Γ the function (r , ξ) 7→ Kr (x , ξ) is Hölder
continuous relative to visual metric on ∂Γ.



Martin Kernel and Martin Boundary

Question: Is the Martin boundary of a symmetric, FRRW on a
co-compact lattice of a connected semisimple Lie group with finite
center determined, up to homeomorphism type, by the ambient Lie
group?

Question: Is the Martin boundary of a symmetric, FRRW on a
nonamenable discrete group determined, up to homeomorphism
type, by the group.



Ancona Inequalities

Key to the Martin Boundary:

Theorem A: (Ancona Inequalities) Let Γ be a nonelementary
hyperbolic group. Then for any symmetric FRRW on Γ with spectral
radius % = 1/R there exists C <∞ such that for any x , y , z ∈ Γ, if y
lies on the geodesic segment from x to z then for all 1 ≤ r ≤ R,

Gr (x , z) ≤ CGr (x , y)Gr (y , z)

Note: Reverse inequality with C = 1 is trivial. The two inequalities
imply that the multiplicative relation exploited in the Dynkin-Malyutov
proof almost holds.



Exponential Decay of the Green’s function

Theorem B: (Exponential Decay of Green’s Function) Let Γ be a
nonelementary hyperbolic group. Then for any symmetric FRRW on Γ
there exist C <∞ and 0 < β < 1 such that for all 1 ≤ r ≤ R and all
x ∈ Γ,

Gr (1, x) ≤ Cβd(1,x)

Remark: For an irreducible random walk it is always the case that the
Green’s function decays no faster than exponentially in distance.

Explanation: Assume for simplicity that the step distribution gives
probability ≥ α > 0 to each generator of Γ. Then for d(x , y) = m
there is a path of length m from x to y with probability ≥ αm, so

Gr (x , y) ≥ rmαm.



Exponential Decay of the Green’s Function

Objective: Prove Theorems A–B for nearest neighbor, symmetric
random walk on a co-compact Fuchsian group Γ.

Assumption: Henceforth Γ is a co-compact Fuchsian group, and only
symmetric, nearest neighbor random walks will be considered.

Preliminary Observations:

(1) limd(1,x)→∞GR(1, x) = 0.
(2) GR(1, xy) ≥ GR(1, x)GR(1, y)

Proof of (1): Backscattering argument: Concatenating any path from
1 to x with path from x to 1 gives path from 1 to 1 of length
≥ 2d(1, x). Hence,

∞∑
n=2d(1,x)

Rnpn(1,1) ≥ GR(1, x)2/GR(1,1).



Exponential Decay of the Green’s Function

Key Notion: A barrier is a triple (V ,W ,B) consisting of
non-overlapping halfplanes V ,W and a set B disjoint from V ∪W
such that every path from V to W passes through B; and

max
x∈V

∑
y∈B

GR(x , y) ≤ 1
2
.

Theorem C: For any two points ξ 6= ζ ∈ ∂D there exists a barrier
separating ξ and ζ.

Corollary: ∃ε > 0 such that any two points x , y ∈ Γ are separated by
[εd(x , y)] disjoint barriers.



Exponential Decay of the Green’s Function

Barriers =⇒ exponential decay.

Explanation: Existence of
barriers and compactness of ∂D
implies that ∃ ε > 0 such that for
any x ∈ Γ with m = dist(1, x)
sufficiently large there are εm
non-overlapping barriers Bi
separating 1 from x . Hence,

Gr (1, x) ≤ −
∑
zi∈Bi

∏
i

Gr (zi , zi+1)

≤ 2−εm



Existence of Barriers
Strategy: Use random walk paths to build barriers.

Lemma: E1GR(1,Xn) ≤ GR(1,1)2R−n

Proof: Paths from 1 to x can be concatenated with paths from x to 1
to yield paths from 1 to 1. Hence, by symmetry,
(i.e.,FR(1, x) = FR(x ,1))

GR(1,1) ≥
∞∑

k=n

Rk P1{Xk = 1}

≥
∑

x

RnP1{Xn = x}FR(1, x)

= RnE1FR(Xn,1)

= RnE1GR(1,Xn)/GR(1,1)

where FR(1, x) is the first-passage generating function .

Corollary: If Xn and Yn are independent versions of the random walk,
both started at X0 = Y0 = 1, then

E1,1GR(Ym,Xn) =E1,1GR(1,Y−1
m Xn)

= E1GR(z,Xm+n)

≤ GR(1,1)2R−m−n
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Existence of Barriers

Construction: Attach independent random walk paths to the random
points Xm and Ym to obtain two-sided random paths (Un)n∈Z and
(Vn)n∈Z such that∑

n,n′∈Z
EGR(Un,Vn′) ≤ 4GR(1,1)2R−2m

Recall: Each random walk path a.s. converges to a point of ∂D, and
the exit distribution is nonatomic.

Consequence: There exist two-sided paths {un}n∈Z and {vn}n∈Z
converging to distinct endpoints ξ1, ξ2, ξ3, ξ4 ∈ ∂D such that∑

n,n′∈Z
GR(un, vn′) ≤ 4GR(1,1)2R−2m <

1
2
.

The endpoint pairs ξ1, ξ2 and ξ3, ξ4 determine nonempty open disjoint
arcs of ∂D that are separated by the paths {un}n∈Z and {vn}n∈Z.
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Existence of Barriers

Conclusion: There exist two-sided paths (un)n∈Z and (vn)n∈Z
separating disjoint open arcs J and J ′ of ∂D such that∑

n

∑
m

GR(un, vm) < ε.

Let U and V be halfplanes on opposite sides of the paths (un)n∈Z and
(vn)n∈Z. Then the triple (U,V , (vm)m∈Z) is a barrier.

To obtain barriers separating arbitrary points ξ, ζ ∈ D, apply
isometries g ∈ Γ.



Proof of the Ancona Inequalities

Theorem A: (Ancona Inequalities) Let Γ be a co-compact Fuchsian
group. Then for any symmetric nearest neighbor RW on Γ with
spectral radius % = 1/R there exists C <∞ such that for any
x , y , z ∈ Γ, if y lies on the geodesic segment from 1 to z then for all
1 ≤ r ≤ R,

Gr (x , z) ≤ CGr (x , y)Gr (y , z)

Note: A. Ancona proved that Gr (x , z) ≤ Cr Gr (x , y)Gr (y , z) for r < R
using a coercivity technique. See

A. Ancona, Positive harmonic functions and hyperbolicity, Springer
LNM vol. 1344.



Proof of the Ancona Inequalities

Theorem A: (Ancona Inequalities) Let Γ be a co-compact Fuchsian
group. Then for any symmetric nearest neighbor RW on Γ with
spectral radius % = 1/R there exists C <∞ such that for any
x , y , z ∈ Γ, if y lies on the geodesic segment from 1 to z then for all
1 ≤ r ≤ R,

Gr (x , z) ≤ CGr (x , y)Gr (y , z)

Strategy: Let Cm be the max of GR(x , z)/GR(x , y)GR(y , z) over all
triples x , y , z where y lies on the geodesic segment from 1 to z and
d(x , z) ≤ m. Since there are only finitely many possibilities, Cm <∞.

To Show: sup Cm <∞
Will Show: Cm/C(.9)m ≤ 1 + εm where

∑
εm <∞.



Proof of Ancona Inequalities

x y w z

Place points x , y ,w , z approximately along a geodesic at distances

d(x , y) = (.1)m
d(y ,w) = (.7)m
d(w , z) = (.2)m

and let C be a circle of radius
√

m centered at w . Assume m is large
enough that

√
m < (.1)m.

Note: Any path from x to z must either enter C or go around C.



Proof of Ancona Inequalities

x y w z

Fact: The hyperbolic circumference of C is ≈ e
√

m/10. Thus, a path
from x to z that goes around C must pass through δ

√
m barriers.

Consequently, the contribution to the Green’s function GR(x , z) from
such paths is bounded above by

(1/2)exp{δ
√

m}

.



Proof of Ancona Inequalities

x y w z

u

Any path from x to z that enters C must exit C a last time, at a point u
inside C. Thus,

GR(x , z) ≤ 2− exp{δ
√

m} +
∑

u

GR(x ,u)G∗R(u, z)

where G∗R(u, z) denotes sum over paths that do not re-enter C.

The distance from x to u is no larger than (.9)m, so

GR(x ,u) ≤ C(.9)mGR(x , y)GR(y ,u)



Proof of Ancona Inequalities

Conclusion: Recall that there is a constant β > 0 such that
GR(u, v) ≥ βm for any two points u, v at distance ≤ m. Consequently,

GR(x , z) ≤ 2− exp{δ
√

m} + C(.9)mGR(x , y)
∑

u

GR(y ,u)G∗R(u, z)

≤ 2− exp{δ
√

m} + C(.9)mGR(x , y)GR(y , z)

≤ (1 + 2− exp{δ
√

m}/βm)C(.9)mGR(x , y)GR(y , z)

This proves

Cm ≤ C(.9)m(1 + 2− exp{δ
√

m}/βm)



Ancona =⇒ Convergence to Martin Kernel

Theorem: (GL) Let Γ be a nonelementary hyperbolic group. Then for
any symmetric FRRW on Γ ∃β < 1 such that for every 1 ≤ r ≤ R and
any geodesic ray 1y1y2y3 · · · converging to a point ξ ∈ ∂Γ of the
geometric boundary,∣∣∣∣∣Gr (x , yn)

Gr (1, yn)
− Kr (x , ζ)

∣∣∣∣∣ ≤ Cxβ
n.

Consequently, for each x ∈ Γ the function (r , ξ) 7→ Kr (x , ξ) is Hölder
continuous relative to visual metric on ∂Γ.

Plan: Use Ancona inequalities to prove this following a template laid
out by Anderson & Schoen and Ancona.



Convergence to the Martin Kernel

Shadowing: A geodesic segment [x ′y ′] shadows a geodesic segment
[xy ] if every vertex on [xy ] lies within distance 2δ of [x ′y ′]. If geodesic
segments [x ′y ′] and [x ′′y ′′] both shadow [xy ] then they are
fellow-traveling along [xy ].

Proposition: ∃0 < α < 1 and C <∞ such that if [xy ] and [x ′y ′] are
fellow-traveling along a geodesic segment [x0y0] of length m then∣∣∣∣ Gr (x , y)/Gr (x ′, y)

Gr (x , y ′)/Gr (x ′, y ′)
− 1
∣∣∣∣ ≤ Cαm



Convergence to the Martin Kernel
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Preliminary: Poisson Integral Formula

Restricted Green’s Function: Let Ω be a subset of the Cayley graph,
let x ∈ Ω and y 6∈ Ω. Define the restricted Green’s function to be the
sum over all paths γ from x → y that remain in Ω until last step:

Gr (x , y ; Ω) =
∑

paths x→y in Ω

r |γ|p(|γ|)

Poisson Integral Formula: Let Ω be a finite set and u : Γ→ R+ be a
nonnegative function that is r−harmonic in Ω. Then for any r ≤ R

u(x) =
∑
y 6∈Ω

Gr (x , y ; Ω)u(y) ∀ x ∈ Ω

Consequently, if u is bounded in Ω and r ≤ R then the formula holds
also for infinite Ω.



Ancona Inequalities for Restricted Green’s Function

Proposition: Assume that Γ is a co-compact Fuchsian group and that
its Cayley graph is embedded in D. Let Ω be any halfplane, and for
any x , y , z ∈ Ω such that y lies on the geodesic segment γ from 1 to z
and γ lies entirely in Ω,

Gr (x , z; Ω) ≤ CGr (x , y ; Ω)Gr (y , z; Ω).

The proof is virtually the same as in the unrestricted case.



Anderson-Schoen-Ancona Argument

Mark points z1, z2, . . . , zεm along
geodesic segment [y0x0] such
that the perpendicular geodesic
through zi divides D into two
halfplanes Li and Ri . Assume
that zi are spaced so that any
geodesic segment from Li to
Ri+1 passes within distance 2δ
of zi and zi+1.

Note: R0 ⊃ R1 ⊃ R2 ⊃ · · · .



Anderson-Schoen-Ancona Argument

Define

u0(z) = Gr (z, y)/Gr (x , y) and
v0(z) = Gr (z, y ′)/Gr (x , y ′)

Note:
I Ancona inequalities imply u0 � v0 in L0.
I Both u0, v0 are r−harmonic in R0.
I Both u0, v0 are bounded in R0.
I u0(x) = v0(x) = 1.

To Show: In Rn,

|u0/v0 − 1| =

∣∣∣∣un +
∑n

i=1 ϕi

vn +
∑n

i=1 ϕi
− 1
∣∣∣∣ ≤ C′(1− ε)n



Anderson-Schoen-Ancona Argument

Plan: Inductively construct r−harmonic functions ϕi ,ui , vi in halfplane
Ri such that

ui−1 = ui + ϕi and ui−1 ≥ ϕi ≥ εui−1 in Ai ;

vi−1 = vi + ϕi and vi−1 ≥ ϕi ≥ εvi−1 in Ai

This will imply

un ≤ (1− ε)nu0

vn ≤ (1− ε)nv0

|un − vn| ≤ C(1− ε)n(u + v)

=⇒ |u0/v0 − 1| =

∣∣∣∣un +
∑n

i=1 ϕi

vn +
∑n

i=1 ϕi
− 1
∣∣∣∣ ≤ C′(1− ε)n



Anderson-Schoen-Ancona Argument

Assume that ui , vi , ϕi have been constructed. Since they are
r−harmonic in Ri , Poisson Integral Formula implies

ui (z) =
∑
w 6∈Ri

Gr (z,w ; Ri )ui (w),

vi (z) =
∑
w 6∈Ri

Gr (z,w ; Ri )vi (w).

By construction, every geodesic segment from Ri+1 to a point w not
in Ri must pass within 2δ of zi+1. Hence, Ancona inequalities imply

Gr (z,w ; Ri ) � Gr (z, zi+1; Ri )Gr (zi+1,w ; Ri ) ∀ z ∈ Ri+1.



Anderson-Schoen-Ancona Argument

Consequently,

ui (z) � Gr (z, zi+1; Ri )
∑
w 6∈Ri

Gr (zi+1,w ; Ri )ui (w),

vi (z) � Gr (z, zi+1; Ri )
∑
w 6∈Ri

Gr (zi+1,w ; Ri )ui (w),

Thus, for small α > 0

ϕi+1(z) = αui (x)
Gr (z, zi+1; Ri )

Gr (x , zi+1; Ri )
= αvi (x)

Gr (z, zi+1; Ri )

Gr (x , zi+1; Ri )

satisfies

εui ≤ ϕi+1 ≤ ui

εvi ≤ ϕi+1 ≤ vi .



III. Local Limit Theorems: Hyperbolic Groups

Tomorrow:

Theorem: (Gouezel-Lalley) For any symmetric FRRW on a
co-compact Fuchsian group,

P1{X2n = 1} ∼ CR−2n(2n)−3/2.

Theorem: (Gouezel) This also holds for any nonelementary
hyperbolic group. Moreover, for Fuchsian groups the hypothesis of
symmetry is unnecessary.

Note: Same local limit theorem also holds for finitely generated
Fuchsian groups Γ such that H/Γ has finite hyperbolic area and
finitely many cusps.
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