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WHAT IS A STATISTICAL MODEL?'
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This paper addresses two closely related questions, “What is a statistical
model?” and “What is a parameter?” The notions that a model must “make
sense,” and that a parameter must “have a well-defined meaning” are deeply
ingrained in applied statistical work, reasonably well understood at an
instinctive level, but absent from most formal theories of modelling and
inference. In this paper, these concepts are defined in algebraic terms, using
morphisms, functors and natural transformations. It is argued that inference
on the basis of a model is not possible unless the model admits a natural
extension that includes the domain for which inference is required. For
example, prediction requires that the domain include all future units, subjects
or time points. Although it is usually not made explicit, every sensible
statistical model admits such an extension. Examples are given to show why
such an extension is necessary and why a formal theory is required. In the
definition of a subparameter, it is shown that certain parameter functions
are natural and others are not. Inference is meaningful only for natural
parameters. This distinction has important consequences for the construction
of prior distributions and also helps to resolve a controversy concerning the
Box—Cox model.

1. Introduction. According to currently accepted theories [Cox and Hink-
ley (1974), Chapter 1; Lehmann (1983), Chapter 1; Barndorff-Nielsen and
Cox (1994), Section 1.1; Bernardo and Smith (1994), Chapter 4] a statistical
model is a set of probability distributions on the sample space 4. A parameterized
statistical model is a parameter set ® together with a function P:® — £ (4),
which assigns to each parameter point # € ® a probability distribution Py on 4.
Here £ (48) is the set of all probability distributions on 4. In much of the following,
it is important to distinguish between the model as a function P: ® — £ (4), and
the associated set of distributions P® C P (4).

In the literature on applied statistics [McCullagh and Nelder (1989); Gelman,
Carlin, Stern and Rubin (1995); Cox and Wermuth (1996)], sound practical advice
is understandably considered to be more important than precise mathematical
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definitions. Thus, most authors do not offer a precise mathematical definition of
a statistical model. Typically, the preceding definition is taken for granted, and
applied to a range of sensibly constructed models.

At a minimum, a Bayesian model requires an additional component in the
form of a prior distribution on ®. A Bayesian model in the sense of Berger
(1985), Smith (1984) or Bernardo and Smith (1994) requires an extra component
in the form of a judgment of infinite exchangeability or partial exchangeability
in which parameters are defined by limits of certain statistics. Although Bayesian
formulations are not the primary focus of this paper, the notion that the model is
extendable to a sequence, usually infinite, is a key concept.

The parameterization is said to be identifiable if distinct parameter values
give rise to distinct distributions; that is, Py = Py implies 6 = 6’. Thus, the
parameter is identifiable if and only if P:® — & (4) is injective. Apart from
these conditions, the standard definition permits arbitrary families of distributions
to serve as statistical models, and arbitrary sets ® to serve as parameter spaces.

For applied work, the inadequacy of the standard definition is matched only by
the eccentricity of the formulations that are permitted. These examples make it
abundantly clear that, unless the model is embedded in a suitable structure that
permits extrapolation, no useful inference is possible, either Bayesian or non-
Bayesian.

To be fair, most authors sound a note of warning in their discussion of
statistical models. Thus, for example, Cox and Hinkley [(1974), Chapter 1], while
admitting that “it is hard to lay down precise rules for the choice of the family
of models,” go on to offer a range of recommendations concerning the model
and the parameterization. In particular, “the model should be consistent with
known limiting behavior” and the parameterization should be such that “different
parameter [components] have individually clear-cut interpretations.” The intention
of this article is to define some of these concepts in purely algebraic terms.

2. Examples.

2.1. Twelve statistical exercises. The following list begins with four exercises
in which the models are plainly absurd. The point of the exercises, however, is not
so much the detection of absurd models as understanding the sources of absurdity.
From a more practical viewpoint, the more interesting exercises are those in which
the absurdity is not obvious at first sight.

EXERCISE 1 (A binary regression model). Consider a model for independent
binary responses in which certain covariates are prespecified. One of these
covariates is designated the treatment indicator. The model specifies a logit link
if the number of subjects is even, and a probit link otherwise. Inference is required
for the treatment effect. Predictions are required for the response of a future subject
with specified covariate values.
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EXERCISE 2 (A randomized blocks model). Consider a randomized blocks
design with b blocks and k varieties. In the statistical model, all observations are
independent and normally distributed with unit variance. The expected yield ;;
of variety i in block j is assumed to be expressible in the following manner for
some real-valued function « on varieties and 8 on blocks:

e+ B if k + b is even,
Hij = exp(e; + B;), otherwise.

On the basis of this model, inference is required in the form of a confidence interval
or posterior distribution for a particular variety contrast oy — a.

EXERCISE 3 (A linear regression model). In the standard linear regression
model Y ~ N (X8, o2I,) on R", the parameter (8, o?),isa point in R? x [0, 00).
In our modified eccentric version, the parameter space is ® = R? x [n, 00), so
that 0 > n. A prediction interval is required for the value of the response on a
new subject whose covariate value is x € R”.

EXERCISE 4 [An ii.d. normal model (Section 6.6)]. In this model, the
observations are independent, identically distributed and normal. The parameter
spaceis ® = R2.1f n is even, the mean is #; and the variance is 922: otherwise, the
mean is 6, and the variance is 912. On the basis of observed values (y1, ..., y»),
inference is required in the form of confidence limits or a posterior distribution
on ©®.

EXERCISE 5 [The type III model (Section 6.6)]. Consider a randomized
blocks design as in Exercise 2 above, all observations being independent, normal
with unit variance. According to the type III model as described in the SAS manual
[Littell, Freund and Spector (1991), pages 156—160], the vector p lies in the linear
subspace 1y, of dimension bk — k 4 1 such that the k variety means are equal,

iy ={pe R iy, = = ).

On the assumption that the fit is adequate, what conclusions can be drawn about
variety differences on either a subset of the blocks or on other blocks similar to
some of those used in the experiment?

EXERCISE 6 [The Box—Cox model (Section 7)]. In the Box—Cox model
[Box and Cox (1964)], it is assumed that after some componentwise power
transformation Y; +— Yl.)‘, the transformed response variable satisfies the standard
normal-theory linear model with mean E(Y*) = X8 and constant variance o2.
In the problem posed by Bickel and Doksum (1981), inference is required in the
form of confidence intervals or a posterior distribution for the parameter 8 or a

component thereof.
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EXERCISE 7 [A model for clustered data (Section 6.6)]. In a cluster of
size k, the response Y has joint density with respect to Lebesgue measure on R¥

proportional to
1 ) 1 Yiyj
expl —=61 Zy,- + -6 Z
2 2 iz k—1

for some 61 > 0 and 0 < 60, < 0. Thus, the vector Y is normally distributed with
zero mean and exchangeable components. Observations on distinct clusters are
independent. On the basis of the observed data (ky, Y1), ..., (k;, Ys), in which
k, is the size of cluster r and Y, normally distributed on RFkr | a confidence set is
required for 6. In particular, if the observed clusters are all of size 2, inference is
required for the distribution of the cluster mean in a cluster of size 8.

EXERCISE 8 [An i.i.d. Cauchy model (Section 6.6)]. By the two-parameter
Cauchy family is meant the set of distributions on R with densities

021 dy
765 + (y —61)?)

Let Yy, ..., Y, be n independent and identically distributed random variables with
distribution in the two-parameter Cauchy family. A confidence interval or posterior
distribution is required for the parameter 6;. The catch here is that the Cauchy
family is closed under the real fractional linear group, and the confidence interval
is required to have the corresponding property. In other words, for any real numbers
a, b, c,d such that ad — bc # 0, the random variables Z; = (aY; + b)/(cY; + d)
are i.i.d. Cauchy. If we write 6 = 61 £i6, as a conjugate pair of complex numbers,
the transformed parameter is ¢ = (a6 + b)/(c6 + d) [McCullagh (1992, 1996)].
The procedure used must be such that if the values Zy, ..., Z,, are reported as i.i.d.
Cauchy(y), and a confidence interval is requested for 8 = R((dy —b)/(a —cV)),
the same answer must be obtained regardless of the values a, b, ¢, d.

:92750, 91 EJR}.

EXERCISE 9 (A model for a spatial process). The temperature in a room
is modelled as a stationary isotropic Gaussian process in which the mean
temperature is constant E(Y,) = u, and the covariance function is cov(Yy, Yy/) =
o2 exp(—i|x — x'|). The parameter space is

(11,02, 1) € R x (0, 00)%.

A confidence interval is required for 0 = /o .

EXERCISE 10 [Regression and correlation (Section 6.2)]. Consider the
standard normal-theory linear regression model with one covariate in which
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the observations are independent, normally distributed with conditional mean
E(Y|x) = a + Bx and constant variance o-2. The parameter space is

(a, B, 0% € R? x [0, 00).

A confidence interval or posterior distribution is required for the correlation
coefficient.

EXERCISE 11 [Spatial simultaneous equation model (Section 6.5)]. Let Y be
a spatial process observed on a rectangular lattice of sites. The joint distribution is
defined by a set of simultaneous equations

Yi=) BYj+ei,

j~i

in which j ~ i means that site j 7 i is a neighbour of site i. This expression is
interpreted to mean that (/ — B)Y = ¢ is standard normal. The components of B
are zero except for neighboring sites for which b;; = B. The system is such that
I — B is invertible, so that Y is normal with zero mean and inverse covariance
matrix (I — B)T (I — B). A confidence interval is required for .

EXERCISE 12 [Contingency table model (Section 6.4)]. All three factors in
a contingency table are responses. In principle, each factor has an unbounded
number of levels, but some aggregation has occurred, and factor B is in fact
recorded in binary form. The log-linear model AB + BC is found to fit well, but
no log-linear submodel fits. What conclusions can be drawn?

2.2. Remarks. These exercises are not intended to be comparable in their
degree of absurdity. They are intended to illustrate a range of model formulations
and inferential questions, some clearly artificial, some a little fishy, and others
bordering on acceptability. In the artificial class, I include Exercises 1, 2, 4,
and possibly 3. Exercise 9 ought also to be regarded as artificial or meaningless
on the grounds of common sense. The type III model has been criticized from
a scientific angle by Nelder (1977) in that it represents a hypothesis of no
scientific interest. Despite this, the type III model continues to be promoted in text
books [Yandell (1997), page 172] and similar models obeying the so-called weak
heredity principle [Hamada and Wu (1992)] are used in industrial experiments.
The absurdity in the other exercises is perhaps less obvious. Although they appear
radically different, from an algebraic perspective Exercises 2 and 5 are absurd in
rather similar ways.

Each of the formulations satisfies the standard definition of a statistical model.
With respect to a narrowly defined inferential universe, each formulation is
also a statistical model in the sense of the definition in Sections 1 and 4.
Inference, however, is concerned with natural extension, and the absurdity of
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each formulation lies in the extent of the inferential universe or the scope of the
model. Although a likelihood function is available in each case, and a posterior
distribution can be computed, no inferential statement can breach the bounds of the
inferential universe. To the extent that the scope of the model is excessively narrow,
none of the formulations permits inference in the sense that one might reasonably
expect. We conclude that, in the absence of a suitable extension, a likelihood and
a prior are not sufficient to permit inference in any commonly understood sense.

3. Statistical models.

3.1. Experiments. Each statistical experiment or observational study is built
from the following objects:

1. A set U of statistical units, also called experimental units, plots, or subjects;
2. A covariate space £2;
3. A response scale V.

The design is a function x : U — 2 that associates with each statistical unit
i € U a point x; in the covariate space Q. The set D = QY of all such functions
from the units into the covariate space is called the design space.

The response is a function y : U — V that associates with each statistical unit 7,
a response value y; in V. The set § = VYU of all such functions is called the
sample space for the experiment. In the definition given in Section 1, a statistical
model consists of a design x: U — €2, a sample space § = VY and a family of
distributions on 4.

A statistical model P:® — £ (4) associates with each parameter value 0
a distribution PO on 4. Of necessity, this map depends on the design, for example,
on the association of units with treatments, and the number of treatment levels that
occur. Thus, to each design x : U — €2, there corresponds a map Py : © — F(8)
such that P,6 is a probability distribution on 4. Exercise 2 suggests strongly that
the dependence of P, on x € D cannot be arbitrary or capricious.

3.2. The inferential universe. Consider an agricultural variety trial in which
the experimental region is a regular 6 x 10 grid of 60 rectangular plots, each
seven meters by five meters, in which the long side has an east-west orientation.
It is invariably understood, though seldom stated explicitly, that the purpose of
such a trial is to draw conclusions concerning variety differences, not just for
plots of this particular shape, size and orientation, but for comparable plots of
various shapes, sizes and orientations. Likewise, if the trial includes seven potato
varieties, it should ordinarily be possible to draw conclusions about a subset of
three varieties from the subexperiment in which the remaining four varieties are
ignored. These introductory remarks may seem obvious and unnecessary, but they
have far-reaching implications for the construction of statistical models.
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The first point is that before any model can be discussed it is necessary to
establish an inferential universe. The mathematical universe of experimental units
might be defined as a regular 6 x 10 grid of 7 x 5 plots with an east—west
orientation. Alternatively, it could be defined as the set of all regular grids of
rectangular plots, with an east-west orientation. Finally, and more usefully, the
universe could be defined as a suitably large class of subsets of the plane, regardless
of size, shape and orientation. From a purely mathematical perspective, each of
these choices is internally perfectly consistent. From the viewpoint of inference,
statistical or otherwise, the first and second choices determine a limited universe in
which all inferential statements concerning the likely yields on odd-shaped plots
of arbitrary size are out of reach.

In addition to the inferential universe of statistical units, there is a universe
of response scales. In an agricultural variety trial, the available interchangeable
response scales might be bushels per acre, tones per hectare, kg/m?, and so on.
In a physics or chemistry experiment, the response scales might be °C, °K, °F,
or other suitable temperature scale. In a food-tasting experiment, a seven-point
ordered scale might be used in which the levels are labelled as

V = {unacceptable, mediocre, . .., excellent},
or a three-point scale with levels
V' = {unacceptable, satisfactory, very good}.

It is then necessary to consider transformations V — V' in which certain levels
of V are, in effect, aggregated to form a three-level scale. Finally, if the response
scale is bivariate, including both yield and quality, this should not usually preclude
inferential statements concerning quality or quantity in isolation.

Similar comments are in order regarding the covariate space. If, in the
experiment actually conducted, fertilizer was applied at the rates, 0, 100, 200 and
300 kg/ha, the inferential universe should usually include all nonnegative doses.
Likewise, if seven varieties of potato were tested, the inferential universe should
include all sets of varieties because these particular varieties are a subset of other
sets of varieties. This does not mean that informative statements can be made about
the likely yield for an unobserved variety, but it does mean that the experiment
performed may be regarded as a subset of a larger notional experiment in which
further varieties were tested but not reported.

3.3. Categories. Every logically defensible statistical model in the classical
sense has a natural extension from the set of observed units, or observed varieties,
or observed dose levels, to other unobserved units, unobserved blocks, unobserved
treatments, unobserved covariate values and so on. Thus, in constructing a
statistical model, it is essential to consider not only the observed units, the observed
blocks, the observed treatments and so on, but the inferential universe of all
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relevant sample spaces, all relevant sets of blocks, all relevant covariate values
and so on. Every sensible statistical model does so implicitly. The thesis of this
paper is that the logic of every statistical model is founded, implicitly or explicitly,
on categories of morphisms of the relevant spaces. The purpose of a category is
to ensure that the families of distributions on different sample spaces are logically
related to one another and to ensure that the meaning of a parameter is retained
from one family to another.

A category C is a set of objects, together with a collection of arrows representing
maps or morphisms between pairs of objects. In the simplest categories, each
object is a set, and each morphism is a map. However, in the category of statistical
designs, each design is a map and each morphism is a pair of maps, so a morphism
need not be a map between sets. To each ordered pair (S, S’) of objects in C, there
corresponds a sethome (S, '), also denoted by C(S, S’), of morphisms ¢ : § — §’,
with domain S and codomain §’. For certain ordered pairs, this set may be empty.
Two conditions are required in order that such a collection of objects and arrows
should constitute a category. First, for each object S in C, the identity morphism
1:S — Sisincluded in hom(S, S). Second, for each pair of morphisms ¢ : § — §’
and ¢ :S" — §”, such that domy = codg, the composition Y¢:S — §” is a
morphism in hom(S, §”) in €. In particular, the set hom(S, S) of morphisms
of a given object is a monoid, a semigroup containing the identity and closed
under composition. A glossary of certain category terminology is provided in the
Appendix. For all further details concerning categories, see Mac Lane (1998).

In the discussion that follows, the symbol caty represents the category of
morphisms of units. The objects in this category are all possible sets U, U/, ...
of statistical units. These sets may have temporal, spatial or other structure.
The morphisms ¢: U — U’ in caty, are maps, certainly including all insertion
maps ¢: U — U (such that pu = u) whenever U C U’. In general, caty is the
category of morphisms that preserves the structure of the units, such as equivalence
relationships in a block design [McCullagh (2000), Section 9.5] or temporal
structure in time series. In typical regression problems therefore, caty; is identified
with the the generic category J{ of injective, or 1-1, maps on finite sets. These are
the maps that preserve distinctness of units: u # u’ in U implies ¢ (u) # @u')
in U'.

A response is a value taken from a certain set, or response scale. If the response
is a temperature, each object in caty is a temperature scale, including one object
for each of the conventional scales °C, °F and °K. To each ordered pair of
temperature scales (V, V') there corresponds a single invertible map, which is an
affine transformation 'V — V’. Likewise, yield in a variety trial may be recorded
on a number of scales such as bushels/acre, tones/ha or kg/m?. To each response
scale there corresponds an object V in caty, and to each pair of response scales
there corresponds a single invertible map, which is a positive scalar multiple. For
a typical qualitative response factor with ordered levels, the morphisms are order-
preserving surjections, which need not be invertible. Special applications call for
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other sorts of morphisms, such as censoring in survival data. The essential point
here is that each response scale determines a distinct object in caty, and the maps
V — V' are surjective (onto).

Since statistical inferences are invariably specific to the scale of measurement, it
is absolutely essential that the various quantitative response scales not be fused into
one anonymous scale labelled R or R*. An affine transformation of temperature
scales is a transformation ¢ : 'V — V'’ from one scale into another. Unless V = V’,
such a transformation is not composable with itself, a critical distinction that is lost
if all scales are fused into R. Thus, although caty may be a category of invertible
maps, it is ordinarily not a group.

Likewise, the symbol catg represents the category whose objects are the
covariate spaces, and whose morphisms are maps, ordinarily injective, between
covariate spaces. Because of the great variety of covariate spaces, these maps are
more difficult to describe in general. Nonetheless, some typical examples can be
described.

A quantitative covariate such as weight is recorded on a definite scale, such as
pounds, stones or kg. To each scale 2 there corresponds a set of real numbers,
and to each pair (2, 2") of quantitative scales there corresponds a 1-1 map
Q — €/, usually linear or affine. The objects in catg are some or all subsets
of each measurement scale. For some purposes, it is sufficient to consider only
bounded intervals of each scale: for other purposes, all finite subsets may be
sufficient. Generally speaking, unless there is good reason to restrict the class of
sets, the objects in catg are all subsets of all measurement scales. The morphisms
are those generated by composition of subset insertion maps and measurement-
scale transformation. Thus, catg may be such that there is no map from the set
{ten stones, eleven stones} into {140 Ibs, 150 lbs, 160 Ibs} but there is one map
into {x lbs:x > 0} whose image is the subset {140 lbs, 154 Ibs}.

For a typical qualitative covariate such as variety with nominal unordered
levels, the objects are all finite sets, and catp may be identified with the generic
category J{, of injective maps on finite sets. If the levels are ordinal, catg may
be identified with the subcategory of order-preserving injective maps. Factorial
designs have several factors, in which case catg, is a category in which each object
is a product set 2 = 21 x - - - x Q. The relevant category of morphisms is usually
the product category, one component category for each factor. For details, see
McCullagh (2000).

4. Functors and statistical models.

4.1. Definitions. It is assumed in this section that the response is an intensive
variable, a V-valued function on the units. Extensive response variables are
discussed in Section 8. In mathematical terms, an intensive variable is a function
on the units: an extensive variable such as yield is an additive set function. The
importance of this distinction in applied work is emphasized by Cox and Snell
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[(1981), Section 2.1]. The implications for the theory of random processes are
discussed briefly by Kingman [(1984), page 235].

In terms of its logical structure, each statistical model is constructed from the
following three components:

1. A category caty, in which each object U is a set of statistical units. The
morphisms U — U’ in catq are all injective maps preserving the structure
of the units. In typical regression problems, caty; may be identified with the
category [ of all injective maps on finite sets.

2. A category catg in which each object €2 is a covariate space. The morphisms
Q — Q' are all injective maps preserving the structure of the covariate spaces.

3. A category caty in which each object V is a response scale. The morphisms
V — V' are all maps preserving the structure of the response scale. These are
typically surjective.

These three categories are the building blocks from which the design category,
the sample space category and all statistical models are constructed.

Given a set of units U and a covariate space €2, the design is a map x : U —
associating with each unit # € U a point x,, in the covariate space 2. In practice,
this information is usually coded numerically for the observed units in the form
of a matrix X whose uth row is the coded version of x,. The set of all such
designs is a category catgp in which each object x is a pair (U, 2) together with a
map x : U — 2. Since the domain and codomain are understood to be part of the
definition of x, the set of designs is the set of all such maps with U in caty and
Q2 in catg, in effect, the set of model matrices X with labelled rows and columns.
Each morphism ¢ :x — x’ in which x": U’ — €/, may be associated with a pair
of injective maps ¢;: U — U’ in caty, and ¢.: Q2 — Q' in catg such that the
diagram

U -5 Q
(pdl (chv

commutes [Tjur (2000)]. In other words x'¢; and ¢.x represent the same design
U — '. In matrix notation, X’ = UXW in which U is a row selection matrix,
and W is a code-transformation matrix.

The general idea behind this construction can be understood by asking what
it means for one design to be embedded in another. Here we consider simple
embeddings obtained by selection of units or selection of covariate values. First,
consider the effect of selecting a subset U C U’ of the units and discarding the
remainder. Let ¢4 : U — U’ be the insertion map that carries each u € U to itself
as an element of U’. The design that remains when the units not in U are discarded
is the composition x"¢, : U — ', which is the restriction of x” to U. The diagram
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may thus be completed by taking Q2 = Q’, ¢, the identity, and x = x’¢ . Next,
consider the effect of selection based on covariate values, that is, selecting only
those units U whose covariate values lie in the subset Q C Q. Let ¢.: Q — '
and @z : U — U’ be the associated insertion maps. The design map x: U — Q is
given by x’ restricted to the domain U and codomain  C '. Finally, if U = U/,
Q = Q' and ¢, is a permutation of €2, the design ¢,x is simply the design x with a
rearrangement of labels. The same design could be obtained by suitably permuting
the units before using the design map x, that is, the design x¢,.

4.2. Model. Let 'V be a fixed response scale. A response y on U is a
function y:U — V, a point in the sample space VU. To each set U there
corresponds a sample space VY% of V-valued functions on U. Likewise, to each
injective morphism ¢ : U — U’ in catqy there corresponds a coordinate-projection

map ¢*: Yy — yU For f e VYU, the pullback map defined by functional
composition ¢* f = fog is a V-valued function on U. Thus (V, %) is a functor
on caty, associating with each set U the sample space VY, and with each
morphism ¢: U — U’ the map ¢*: yu 5 pu by functional composition. The
identity map U — U is carried to the identity V¥ — VY and the composite map
Ye:U— U” to the composite p* ™ : YU s YU in reverse order.

Before presenting a general definition of a statistical model, it may be helpful to
give a definition of a linear model. Let 'V be a vector space, so that the sample space
VU is also a vector space. A linear model is a subspace of VYU, suitably related to
the design. In the functor diagram below, each map in the right square is a linear
transformation determined by functional composition. Thus, for f € V| the
pullback by ¢ is ¢ f = fop., which is a vector in V. Likewise, ¥'* f = f oy’
is a vector in VU,

Design Linear model
u 2 Q s=yU X gy cve
wl (ch' wﬂ Tfpf
w oo s =yv X o5 cve

As defined in McCullagh (2000), a linear model is determined by a subrepresenta-
tion ©g C V¢, together with the design pullback map 1*. A subrepresentation ®
in the standard representation 'V is a sequence of subspaces {®q C V**}, indexed
by the objects in catg such that, for each map ¢, : 2 — Q' in catg, the linear trans-
formation ¢ : V¥ — V< also satisfies ¢*Og = Oq.

This skeleton description of a linear model focuses only on the linear subspace,
and says nothing about probability distributions on the sample space. In the usual
complete formulation, the parameter space is extended to ® x R by the inclusion
of a dispersion parameter . For the design ¥ : U — , the sample space is
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8 = VY, and the full normal-theory linear model is the set of normal distributions
with mean vector in the subspace ¥ *®gq, and variance matrix proportional to the
identity.

The skeletal description is shared by nonnormal linear models, certain nonlinear
models and all generalized linear models [McCullagh and Nelder (1989)]. The
only modification required is the step by which the representation ® determines a
family of distributions on 4. In generalized linear models, this step is determined
by the linear predictor n = ¥*# from © into VY, an invertible link function =
g(w) that is also a natural componentwise transformation V% — VU, together
with a suitable error distribution with independent components.

The general construction follows the same lines. For each fixed 'V, the parameter
(O, %) is a contravariant functor catg — J associating with each covariate set 2
a parameter set ®gq, and with each (injective) covariate morphism ¢, : Q2 — '
a surjective parameter map ¢ :®q — Ogq. Frequently, KX is the category of
surjective linear transformations on vector spaces, in which case ® is called a
representation of catg. A statistical model is a functor on catg associating with
each design object ¥ : U — 2 a model object, which is a map Py : @q — £ (8)
such that Py6 is a probability distribution on . The set of distributions thus
generated is ¥y = Py ®gq. To each morphism (¢4, ¢:): ¥ — ' in catgp, the

functor associates a map ((p;, @}): Py — Py as illustrated below:

Design Sample space Model
P
u L@ 5=V P8 <L g
(1) . ' .
(Pdl fﬂcl (PdT ‘PdT ‘PCT
/ , Pl//’
U - 8 =pu P8 < Oy .

As usual in such diagrams, the maps in both squares are assumed to commute.
Some consequences of this definition are as follows:

1. The sample-space transformation ¢} : 8’ — & also carries each distribution F

on 4’ to the transformed distribution <p:§F =F o(p;_l on 4.

2. Commutativity: Py} = (p;PI/,/ :0qg — P(4). In other symbols, for each
0 € Ogr, Pyg0 = ¢} Pyi0.

Condition (1) ensures that the family of distributions on 4 is suitably embedded
in the family of distributions on 8’. The maps ¢}:8" — 4 that define this
embedding depend on the category of morphisms on units. For ¢, equal to the
identity on €2, and thus ¢ the identity on ®g, the consistency condition (2) asserts
that the distribution Py6 on & is the same as the marginal distribution of P60
on 4’ by the embedding map ¢ : 8’ — 4.
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The association U — VY, ¢4 > @) determines the structure of the sample
spaces as functor on caty, and thus as a functor on catg. The set of morphisms of
sample spaces is in fact a category isomorphic with catf{f, the category obtained
by reversing all arrows in catq. Likewise, the association U P(YVW, ©q — qo;
is also a functor on caty;, whose image is isomorphic with catf{f. The mapping
3= P8),¢)— (p; is an isomorphism of categories. The parameter ® is a
functor on catg and thus also a functor on catp. The model P:® — P (8) is
thus a natural transformation of functors on catg.

Let P, Q:® — £(8) be two models having the same domain ®. For each
0 <a <1, the convex combination o P + (1 — &) Q is also a statistical model, so
the set of models ® — & (&) is convex. The majority of non-Bayesian models that
occur in practice are extreme points of this set [Lauritzen (1988)].

A glance at almost any book on statistical modelling shows that the concepts of
a model “making sense,” and a parameter “having a meaning” are deeply ingrained
in statistical thinking and well understood at an instinctive level. The purpose of
the preceding definitions is to state in purely mathematical terms what is meant
by a model “making sense” logically (as opposed to making sense physically or
biologically). The sense of a model and the meaning of a parameter, whatever
they may be, must not be affected by accidental or capricious choices such as
sample size or experimental design. The definition of the map (pg, together with the
commutativity condition (2), ensures that the meaning of the parameter is retained
for families on different sample spaces and different designs. The parameter
sets ®gq, and the maps P and ¢ are not otherwise prescribed, so the framework
provides ample opportunity for imaginative construction of specific models. Note,
for example, that if ¢, is the identity on €2, (pcT is the identity on ®g, so the marginal
distribution of P60 by the map (p; is equal to Py 0.

4.3. Composition, mixtures and hierarchical models. To each set S we
associate the vector space vect(S) of formal linear combinations o151 + o5y + - - -
of the elements of S. By restricting these formal linear combinations to formal
convex combinations in which «; > 0 and ) «; = 1, we obtain the set P (S) C
vect(S) of probability distributions on S. If S is countable, each formal convex
combination o1s; + a2s2 + --- may be interpreted as an actual operation in
which an element of {s1, s2, ...} is chosen according to the probability distribution
{oe1, ez, .. .}. The point of this abstract construction is that each function 2: S — T
determines a linear transformation 2* : vect(S) — vect(T') by

h*(o1s1 +azsy + -+ -) = arh(s)) + ash(s2) + - - - .

Evidently h* also carries the subset £ (S) into &(T). The extreme points of
& (S) may thus be identified with the elements of S. This correspondence between
h:S — T and h*:vect(S) — vect(T) is so natural that, wherever possible, the
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notational distinction is avoided. Given h:S — T, formal linearity determines
h:P(S)— P(T).

Consider a design ¥ :U — Q2 and a distribution F on ®g. The model
P:® — P (8) associates with each point 6 € Ogq a distribution Py 6 on 4.
Since F is a formal convex combination of points in ®gq, Py F is a similar
formal combination of points in & (§), that is, a joint distribution on g x §q;.
In other words, to each model component Py, : ©®q — $(8y) there corresponds
amap Py :P(0q) — P(Oq x 8y, associating with each prior distribution F
on Og a joint distribution Py F' on ®q x 4, by formal convex combinations. The
marginal distribution on 44, is obtained by integration over ®g, that is, by treating
the formal linear combination F' as an actual linear combination.

A hierarchical model is a chain ®!, @2, ..., ©F of parameter functors, together
with a chain of natural transformations,
PO > PO, PO’ P@O,..., POk P4,

By the compositional operation described above, we have
(PiPiei-- P):O! - PO x --- x OF x 8).

This composite function is not a statistical model according to the definition,
but it can be converted into one by the natural transformation of integration in
which the formal linear combination P_; - -- P is interpreted as an actual linear
combination,

O p@2 x ... x OF x §) = P(8).

A Bayesian model is a hierarchical model in which £ > 1 and O! = {0} is the
trivial functor, a one-point set with identity map.

4.4. Submodel. Let ®, B :catg — K be two contravariant functors from catg
into the category of surjective maps. To each model P:® — 4 (4) and natural
transformation s:E — © there corresponds a submodel Ph:E — P (4) by
restriction of P to the image of h. These relationships are illustrated by the

commutative diagram

Py hg
1ﬂ 3)(5) < @Q < EQ
(. soc)l szﬂ o T wé[
Plp/ hg/
w/ J)(/S/) <~ @Q/ <— EQ/

4.5. Subparameter. The notion that only certain functions of a parameter
“make sense,” or “have a meaning” is well understood and formalized to some
extent by dimensional analysis in physics. Thus, in an i.i.d. normal model for
the weight distribution of apples at harvest, it might make sense to compare the
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subparameter o/ for different varieties, but the “subparameters” u + o2 and
U + o/ are clearly meaningless. We are thus led to the concept of a natural
subparameter.

A natural subparameter is a natural transformation g:® — E of functors
on catg. To each design 1 : U — 2 the natural transformation g associates a map
8y 1 ©q — Eg in such a way that the diagram shown below commutes

8y

Y ®q — Egq
(¢d, %)J or T wéT
gl///
l/// @Q/ — EQ/

In other words g, 97 = ¢.g,-

Let g:® — E and h:® — W be two natural subparameters such that
(g,h):® — ExW is a natural isomorphism of functors. When such a pair exists,
we say that g, h are complementary subparameters in ®. In general, for a given
subparameter g there need not exist a complementary subparameter. When a
complementary parameter exists, it need not be unique. The notion of orthogonal
parameters [Cox and Reid (1987)] does not arise here unless the parameter sets O
are inner product spaces, and the maps ¢ preserve inner products. Such functors
do arise in rather specialized applications.

4.6. Identifiability. The parameter ® is said to be identifiable at the design
YU — Q if distinct parameter values give rise to distinct distributions on
the sample space. In other words, ® is identifiable at ¢ if the associated map
Py :©q — P (8) is injective.

Likewise, a natural subparameter E is identifiable at i if distinct &-values
give rise to nonoverlapping sets of distributions. To each point & € Egq there
corresponds a set of points glfé in Ogq, and a set of distributions Pl/,glzlé
in ¥, = Py®gq. The subparameter g& — E is said to be identifiable at v if,
for each & # &’ in Egq, the sets

nglzl“;‘ and ng,;l&"

are nonempty and nonoverlapping. An identifiable subparameter is thus a surjec-
tive natural transformation g : ©® — & that generates a partition of ¥ by nonover-
lapping sets.

4.7. Response-scale morphisms. In the discussion thus far, the response scale
has been kept fixed. That is to say, the analysis has not considered the effect on the
model of changing the units of measurement from, say, bushels per acre to tonnes
per hectare, or of aggregating selected levels of an ordinal response variable. To
complete the story, it is necessary to consider the various morphisms y : V — V’
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of the response scale and their effect on the sample space and model. For each
response scale V in caty, the sample space is a contravariant functor on caty;, and
the model is a contravariant functor on the design. To each morphism y : V — V'
in cat'V there corresponds a natural transformation of sample spaces as illustrated
in the commutative diagram below:

v Loy

U yuo %y
wl w%T Twéf
W pu o

The category of morphisms of sample spaces, catg, is the category whose objects
are all sample spaces 8 = V¥ with V € caty and U € caty. The morphisms
YU o YU gre all compositions yq,¢3 = @3, ¥q, in which y:V — V' is a
morphism of the codomain, and ¢* is a functional composition with the domain
morphism ¢ : U — U’. In this way, the category of morphisms on sample spaces
is built up from a category of injective morphisms on units, and a category of
morphisms on response scales.

In fact, catg is isomorphic with the product category caty x catf,’f, where catf,)f(J is
the opposite category derived from catq by the process of reversing all arrows. The
categories cat:%3 and cat%p are defined in the same way. The logical structure of a
statistical model is then illustrated by the following functor sequences, which show
that catg and the parameter ® are covariant functors on caty X cat%).

caty X cat%’ — caty X catf;f = catg = P (48),

) caty X cat?g — catyp X cat?zp g K.
Model: P: 0 — P (48).

The functor catg — & (4) is an isomorphism, associating with each sample space
$ = VU the set of all probability distributions on 4§, and with each morphism
f:8 — & of sample spaces a morphism on distributions defined by composition
with the inverse image of f. A model is a natural transformation P:® — 5 (4§)
associating with each pair (V, ¥ : U — ) amap Py :© — P (V) satisfying the
properties in (1).

In the absence of covariate effects, the commutative diagram of a statistical
model takes the following simplified form in which the model P:©® — £ (48)
is indexed by sample spaces 4, 4’,.... First, the parameter space (O, ) is a
covariant functor on the category caty, associating with each response scale V,
a parameter set ®v, and with each morphism y : V — V" a parameter morphism
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yT:©y — Oy. Second, to each morphism of sample spaces y¢*: YU o pU
the transformation on the model is described by the commutative diagram,

Py
8§ =pU P8 < Oy
yfp’ﬁ }W*)—l V
5=y 28 & oy

To see what this means, consider a random variable Y taking values in § = yu
with distribution Pz6 for some 6 € ®+. Each morphism § — 4§’ is the composition
of a coordinate projection map ¢* and a response-scale morphism y . The marginal
distribution of Y is (Pg0)o(y (p*)_1 on 4’. Commutativity ensures that this
distribution is also equal to the image under Py of the induced parameter y 6.
In other words, P : ® — £ (4) is a natural transformation of functors.

5. Special cases. The statement in equations (1) and (2), that a statistical
model is a natural transformation P:® — £ (4) of functors, is a consistency
condition ensuring that different ways of computing the probability of equivalent
events give the same answer. As a consequence, equivalent events determine the
same likelihood. Some familiar instances are as follows.

Equivariance and transformation models. Let C = § be a group acting on
the response scale V. The group induces a homomorphic action § — 4 on
the sample space, usually by componentwise transformation. Likewise, the same
group induces a homomorphic action ® — ©® on the parameter space. The group
actions on 4 and on ® are conventionally denoted by the same symbol y - gy
and 6 — g6, respectively. Ordinarily, this abuse of notation leads to no confusion
because the functors § — 4 and § — ©® are usually group isomorphisms. The
group transformation formulation is an assertion that the event-parameter pairs
(E;0) and (gE; g0) are equivalent. The commutativity condition may then be
written in the form P (E;6) = P(gE; g0). Examples include the Cauchy model,
location-scale models, and the Box—Cox model (Section 7).

A natural, or equivariant, subparameter [Lehmann and Casella (1998),
page 160], or a permissible subparameter [Helland (1999a, b)] is a function
h:® — E such that #(01) = h(6,) implies h(g01) = h(gb,) for each g € 4. Pro-
vided that 4 is surjective, this condition ensures that high~!: & — & is well de-
fined, and is a group homomorphism. The term “invariantly estimable parameter”
has been used by Hora and Buehler (1966), but this terminology is doubly mislead-
ing. First, a natural parameter is equivariant and not ordinarily invariant under the
group, that is, gh~! need not be the identity on E. Second, estimability depends
on the design, and a natural parameter need not be estimable or even identifiable
at a given design.
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Insertion maps and Kolmogorov consistency. Let caty be the category of
insertion maps on finite sets, V = R a fixed set, catg = {0} a one-point set, and
let § = RY be the standard contravariant representation. Then © is necessarily
a set with one object and identity map. For each finite set U = {i1, ..., i} C
U ={1,...,n} the insertion map ¢ : U — U’ carries each i € U to itself (pi =1i)
as an element in U’. The pullback map ¢™*: RUY — RU is a linear coordinate-
projection map that deletes all coordinates except those in U. For simplicity of
notation, assume that i, = r, so that U consists of the first m elements of U’. The
implication of using insertion maps is that the event E = A} x --- x A, C RY
and the event

E=¢* TE=A1x - x Ay x Rx - xRCRY

are equivalent. The natural transformation P:® — P(R?) in equation (1)
associates with each parameter point 6 € ® a probability distribution Py(-; 6)
on RY¥ in such a way that these equivalent events have the same probability
Py (E;0) = Py/(E’; 0). Commutativity is equivalent to the statement that the
Kolmogorov existence condition for a stochastic process [Billingsley (1986),
equation (36.3)], is satisfied at each parameter point.

Interference and insertion maps. Let catq be the category of insertion maps
on finite sets, V = R a fixed set, and let § = KU be the standard contravariant
representation. Let U = {1,...,m}, U ={1,...,n} and let ¢;: U — U’ be the
insertion map, implying m < n. Consider a morphism of designs ¥ — ¥’ in which
@c: 2 — Q is the identity. In other words, v is obtained from v’ by ignoring, or
forgetting, the units {m + 1, ..., n}. The commutativity condition in equation (1) is
simply the statement that, for each 6 € Og, the events E and E’ as defined above
have the same probability Py (E;6) = Py/(E’;6). This is a stronger condition
than Kolmogorov consistency because the design v/ carries information on the
association of covariates, or assignment of treatments, to all units including those
unobserved units {m -+ 1, ...,n} for which the event E’ does not determine a
value. In the literature on experimental design, this assumption is called lack of
interference [Cox (1958), Section 2.4; Rubin (1986)].

If catg, includes insertion maps, ¢, : 2 — €’ need not be the identity map. The
commutativity condition (1) Py (E; ¢X6) = Py/(E ’; 0) implies not only that lack
of interference holds for each family Py : ©q — P (RW), but also that, for #Q/
the distributions in each family are related in a natural way. For each 6" such that
00" =6, Py(E;0)= Py (E';0).

Exchangeability and injection maps. Let catyy = { be the category of injective
maps on finite sets, V = R a fixed set, catg = {0} a one-point set, and let § = RU
be the standard contravariant representation. Then ® is necessarily a set with one
object and identity map. To each injective map ¢ : U — U’ in 4, the standard
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(contravariant) representation associates the surjective linear map ¢*: RU > U
by functional composition: (¢* f)(i) = f(¢(i)) fori € U. For U = U’, the linear
map ¢* permutes coordinates: more generally, ¢* is a coordinate-projection map.
The commutativity condition in (1) is the statement that, to each 6 € ® there
corresponds a distribution Py,6 on RV that satisfies the following conditions.

1. For each permutation ¢ : U — U, the coordinate-permutation map ¢*: RY% —
RU carries Pyf to itself. In other words, Py is invariant under coordinate
permutation.

2. For each injection ¢ : U — U/, the coordinate-projection map ¢*: RUY — RU
carries the distribution Pq/6 on RY to Py6 on RU.

In other words, to each point 6 € ® there corresponds a sequence { Py 6} that
is the distribution of an infinitely exchangeable sequence of random variables in
the sense of de Finetti [(1975), Section 11.4]. The set Invy(RY) of all natural
transformations {0} — 2 (RY) is the set of all infinitely exchangeable probability
models on the standard representation.

Partial exchangeability and 4%. The preceding example may be modified by
restricting the objects and maps in catq,. Let caty, be the product category {42
in which the objects are all Cartesian product sets U x W and the morphisms
U x W— U x W are all injective maps preserving the product structure. Each
morphism is an ordered pair (¢, ¢2) in which ¢1: U — U and ¢ : W — W’ are
injective maps acting componentwise. The standard representation of 4> associates
with each product set U x ‘W the vector space Syw = R¥*W, and with each
injective morphism (g1, ¢2), a surjective linear map (1, ¢2)*: RUXW . RUxXW
by functional composition,

(01, 92)* £, ) = fe1G), 92()))

for f e RUXW  For simplicity, assume that ® is a set containing one element.
The commutativity condition in (1) is the statement that, to each rectangular
index array {1,...,m} x {1, ..., n} there corresponds a distribution P,,;, on R""
such that, for m" > m and n’ > n, P, is the marginal distribution of P,
under all coordinate-projection maps (@1, ¢2)* in the standard representation. In
particular, P, is invariant under row permutation and column permutation. In
other words, P is the distribution of an infinite partially exchangeable array in the
sense of Aldous (1981). Conversely, each infinite partially exchangeable array of
random variables has a distribution that corresponds to an {2-invariant distribution.
A model is thus a set of such distributions indexed by ®. The set Inv 2 (8) of
all 42-natural transformations {0} — % (&) is the set of all invariant probability
models on the standard {?-representation.
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A completely randomized design. Consider a design in which caty, = { imply-
ing that the units are infinitely exchangeable. We assume also that catg includes
all insertion maps. In a linear or generalized linear model, ® is a representation of
catg by surjective linear transformations. For generalized linear models with un-
known dispersion, the most common choice is the representation @g = R @ R%,
or the subrepresentation R @ 1 implying equal treatment effects. Depending on the
choice of P:® — £ (4), the representation ® may serve as an index set for var-
ious families, typically with independent components, such as ¥; ~ N (0y (), 93),
Y; ~ Cauchy(0y (i), |00]), Yi ~ Po(exp(0yi))), Yi ~ Bi(1,1/(1 + exp(—0y;)))) in
which (i) is the treatment associated with unit i. In addition to the two com-
ponent parameters 6y € R and 6 € R%, the only natural linear subparameter
g:©® — E is the quotient projection R — R/1, corresponding to the space
of treatment contrasts [McCullagh (1999)].

Block designs. Let catyy = N D be the category in which each object U is
a set together with the equivalence relation, u ~ u’ if units « and u’ belong to
the same block. The morphisms ¢: U — U’ are all injective maps that preserve
the equivalence relationship: u ~ u’ in U if and only if gu ~ ¢u’ in U'. To
say the same thing in a slightly different way, each object in &N D is a set of
plots together with a map b:plots — blocks. If b is surjective, we may write
U ={(i,b(i)):i € plots}. The morphisms ¢ :b — b’ are all ordered pairs (¢z, p)
of injective maps such that the following diagram commutes:

plots . blocks

W e
plots’ 5 blocks' .

Let catg = {0} be a one-point set, so that ® is also a set. According to (1), a model
for a block design with no specific factors is a natural transformation P:® —
2 ($) in which 4 is the representation R ¥, meaning real-valued functions on plots.
In other words, each P6 is a distribution in Inv v o (RY).

Let €9, {€;}, {np} be independent standard normal random variables. Let Y be an
infinite sequence of random variables indexed by the objects U such that, for some
measurable function g: R3 — R, Yo has the same distribution as Xq; on RY,
where

Xy (@) = g(eo, &, np@i))

for i € U. Then Y has a distribution in Invy p(4). The usual normal-theory
variance-components model is obtained if g is a linear combination of ¢; and
Nb(i)- Thus, we may have © = R3, and PO equal to the distribution of Y, where
Yi =00+ 018 + 0anp(i)-
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Causality and nonspecific effects. Although the same category of morphisms
arises in these last two examples, the standard models are quite different. If the
units are regarded as having the infinitely exchangeable block structure associated
with N D, we arrive at a random-effects model. If the units are regarded as
infinitely exchangeable modulo specific covariate effects, the model contains
specific parameters for those effects. Nonspecific factors such as blocks, temporal
structure and spatial structure, for which no level-specific inference is required, are
best regarded as a property defining the structure of the units. Specific factors such
as treatment, variety, age, race, sex or religion, for which level-specific inferences
may be required, must be regarded as objects in catg. Level-specific effects may
be ascribed to specific factors, whether intrinsic or not, but causal effects are
not ordinarily ascribed to intrinsic factors [Holland (1986); Cox (1986)]. Thus,
longevity may vary with race, sex and religion, in a specific manner, but it would
be at best an abuse of language to assert that race, sex or religion is a cause of
longevity.

The definitions given in Section 4 deliberately avoid all reference to causal
mechanisms, which are necessarily context dependent in ways that categories
and morphisms are not. A given model such as quasi-symmetry, arising in very
different fields of application from linkage disequilibrium in genetics to citation
studies in science, may be capable of numerous mechanistic interpretations. Also,
models exist for which no mechanististic interpretation is readily available, or
which are in conflict with accepted scientific laws. Such alternative models are
necessary in order that scientific laws may be tested.

6. Examples.

6.1. Location-scale models. For simplicity of exposition in this section, we
consider only models for independent and identically distributed scalar responses.
Such models are determined by their one-dimensional marginal distributions on
the response scale, so we may ignore catq; and catg. The motivation for location-
scale models comes from transformations of the response scale, that is, the
morphisms in caty. For definiteness, take caty to be the category of morphisms
of temperature scales. The objects in this category are all temperature scales, °F,
°C, °K, and possibly others not yet invented. Associated with each scale V is a
certain set of real numbers, and to each pair (V, V') of scales there corresponds
a single invertible affine map (a, b): V — V', which transforms y on the V-scale
into a + by on the V’'-scale. If V =°C and V' =°F, the map (32,9/5) carries y
in °Cto 324 9y/5 in °F.

One example of a functor is the map T :caty — GA(R) in which each object
in caty is associated with &R, and each map (a, b): V — V' is associated with an
affine transformation (a, b)" : R — R defined by x > a + bx. If caty contains the
three objects °C, °F and °K, and nine maps, the image maps R — R in T caty are
the identity, the affine maps (32,9/5), (273, 1), (523.4,9/5) and their inverses,
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making a total of seven maps. These are not closed under composition, so the
image T caty is not a category. However, if all conceivable scales are included
in caty, the image of T is equal to the affine subgroup with b > 0 acting on R.

Another example of a functor is the map ®:caty — GA(R?) in which each
(a,b):V — V' is associated with the affine map R?> — R? defined by

(a,b)":(61,62) > (a + bby, bby),

and we may take ® as the parameter space for a location-scale model. Two
examples of models ® — £ (V%) with independent components are

61,602) = N6, 622) and (01, 6») — Cauchy(0; +i6,).

Since the points (01,=%6,) give rise to the same distribution, the parameter
is not identifiable. Provided that b > 0, the subobject R x R determines a
subfunctor, and the submodel with 6, > 0 generates the same family. These models
are equivalent to the usual group formulation by affine transformations acting
componentwise on RY only if caty contains all scales, that is, all pairs (a, b)
with b > 0. Otherwise, the image of ® is not a group.

To each affine transformation (a, b) of response scales, there corresponds a
transformation (a,b)": R? — R? on the object in ©. The first component of
this transformation 6 — a + b0; does not depend on 6, so the coordinate
projection (61, 6>) — 6 is a natural transformation. The mean or median is a
natural subparameter. The same is true for the second component, so 6 +— 6; is
also a natural subparameter. However the coefficient of variation T = 61 /6, is not
a natural subparameter because the transformation (61, 62) — 6, /6 is not natural
for the category of location-scale transformations. The location-scale morphism
(a, b) carries T = 601 /0; to |b|6» /(a +bb), which cannot be expressed as a function
of (t, a, b) alone. On the other hand, for the subcategory (0, ) of componentwise
nonzero scalar multiplication, the coefficient of variation is a natural subparameter.
The induced transformation is T +— sign(b)t.

The analysis for other location-scale families follows the same lines. Consider,
for example, the location-scale ¢ family,

F=lt(u,o?):neR, >0, v=1,2,...}

with integer degrees of freedom. Then v is invariant under all maps in the category,
and the induced transformations for (i, 02) are those described above. Relative
to the category of location-scale and coordinate-projection maps, u and o2 are
natural subparameters, but combinations such as 7 = o/u or u + o are not.
However i 4+ o and each percentile is a natural subparameter relative to the sub-
category in which b > 0.
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6.2. Regression and correlation. The issue in Exercise 10 concerns the effect
on the parameter 6 = («, B, o), and on the correlation coefficient of selection of
experimental units. The correlation coefficient

Boy
V(@7 + B2

depends on the design through the design variance 01/2/. To show that the map
(e, B,0) > p is not natural, observe that if ¢, = 1 in the diagram in Section 4.5,
the induced maps ¢, ¢, are both identities. In other words, for any design
morphism (¢4, 1), the induced parameter map is the identity and g6 is invariant
under these maps. But aé is not invariant under selection of units, so p is not a
natural transformation.

Any inferential statement concerning p must necessarily be interpreted relative
to a suitable model and category for which p is a natural transformation of
functors. One way to achieve this is to regard the pair (y, x) as a bivariate response
on the units. Then € = {0} and there is only one design. Let caty be the group
of componentwise affine transformations, R> — R2. We write y' = a + by,
x" = ¢+ dx in which bd # 0. The induced morphism on the parameter space is

o' =a+ba —bcB/d; B =bB/d; o' =|blo;

so @ is a functor or group homomorphism R — R3. In addition, the scalar mul-
tiple sign(bd), acting as amap [—1, 1] — [—1, 1], is also a group homomorphism.
Since p’ = sign(bd) p, the correlation coefficient is a natural subparameter. Within
the limitations of this subcategory, inference for p may be sensible.

6.3. Splines and curve estimation. Let the objects in catg be all bounded
intervals of R, and let the morphisms Q2 — ' be all invertible affine maps. This
is a subcategory of the category of injective maps on subsets of R because each
object in catg is a bounded interval, and each map is invertible (injective and
surjective). Let Jfg(zk ) be the vector space, of dimension 2k + 4 of cubic splines
on 2 = (a, b) with k knots and k + 1 intervals of equal length. For each invertible

affine map ¢ : Q2 — Q' and f a cubic spline in Jfgi), the composition ¢* f = f oo

is a vector in J(’g‘ ) Thus #® = {Jfg(zk )} is a contravariant functor on catg.

Since the objects J(’S(?k) are vector spaces and the maps ¢*: Jfg(zk/) — J(’S(?k) are

linear, #® is a representation of catg, a finite-dimensional subrepresentation
in the standard representation {RS}. Note that the subrepresentations of this
category in {R%} are very different from the subrepresentations of the affine group
GA(R) in the standard representation by real-valued functions on R. Each finite-
dimensional subrepresentation of the affine group in K% is a vector space of
nonhomogeneous polynomials on R.
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The linear model in which the response Y satisfies
E¥Y[)=p@);  cov¥ o) =021,

for some pu € J(’g‘ ) satisfies the conditions for a statistical model. The parameter
functor is © = H® x RT.

The preceding category includes only invertible affine maps, and the models
are not closed under restriction to subintervals of the x-scale. If it is required that
the model also be closed under restriction, we may construct a statistical model as
follows. Let catg be the category in which each object €2 is an interval of the real
line, including infinite intervals if so desired. The morphisms are all affine maps,
not necessarily invertible. Let st(zk) be the set of functions on €2 such that each

fe Jfg(zk ) is a cubic spline with k or fewer knots, not necessarily equally spaced.
This set is not a vector space because it is not closed under addition of functions.

But, foreach f € stgk,), and Q C ', the restriction of f to Q2 is a function in the set
st(zk). Moreover, for each injective map ¢ : Q — €/, the pullback map ¢* f = fo@

satisfies (p*Jfg(zk,) = J(.’S(?k), so ¢* is surjective. With this modification, the conditions
for a statistical model relative to the extended category are satisfied.

6.4. Contingency-table models. In Exercise 12, the model AB + BC invites
the conclusion that variables A and C are conditionally independent given B.
This unqualified conclusion does not stand up to scrutiny because it is not
invariant under aggregation of levels of B as the context appears to demand.
The statement cannot be true at every level of aggregation unless either A is
independent of (B, C) or C is independent of (A, B), and the data indicate that
neither of these models fits. The stated conclusion, that A and C are conditionally
independent given that B is recorded at a particular level of aggregation, evidently
accords preferential status to a particular response scale. In practice, although
considerable aggregation may have occurred, the nature of such aggregation
is seldom arbitrary. For convenience of tabulation, aggregation tends to occur
over levels that are sparse or levels that are considered to be homogeneous.
Thus, despite the preferential status accorded to the aggregated levels of B,
the conditional independence conclusion may be defensible. The point of this
discussion is that the bald statement of conditional independence is not an
automatic consequence of the fitted model.

From the viewpoint of categories and functors, to each response scale with
unstructured levels it is natural to associate the category Surj of surjective maps on
finite nonempty sets, or at least a suitable subcategory of certain surjective maps.
Since there are three response factors, caty = Surj’, the parameter © is a covariant
functor on Surj®, and P® is a class of distributions that is closed under marginal
transformations. Among log-linear models, the only families having this property
are those associated with the model formulas

A+B+C, AB+C, AC+B, A+ BC, ABC,
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in which each letter occurs exactly once. No formulation such as AB + BC whose
interpretation necessarily accords preferential status to the recorded levels can be
a statistical model in the sense of being a covariant functor on Surj>.

If in fact, some or all factors have ordered levels, we may restrict Surj to the
subcategory Surj,y of weakly monotone surjective maps. The set of models is
thereby greatly increased. In the bivariate case, the set of distributions having
constant global cross-ratio [Pearson (1913); Plackett (1965); Dale (1984)] is closed
under monotone marginal transformation. The sets of distributions having additive
or log-additive global cross-ratios are likewise closed.

The importance of the distinction between response and explanatory factor
is evident in the functor sequence (2). Suppose that A is the response and
B, C are explanatory, all having unordered levels. It may then be appropriate
to choose caty = Surj for surjective morphisms on the levels of A, and
cato = 42 for selection of the levels of B and C. Then © is a covariant functor
on Surj x 4°P x J°P. Among log-linear formulations, each factorial expression that
includes A + BC represents a model in the sense of (2). For two-way tables, the
set of nonnegative matrices of rank < k is a functor corresponding to a model
not of the log-linear type. If the levels of A are ordered and attention is restricted
to order-preserving surjective maps, further models are available in the form of
cumulative logit and related formulations [McCullagh (1980)]. Apart from the
rank 2 canonical correlation models, none of the association models described
by Goodman (1979, 1981) for two-way tables with ordered levels is a covariant
functor on either Surjgrdl or Surj,q X lgfd. Goodman’s association structure is not
preserved under aggregation of adjacent response levels. In the absence of an
extension to other levels of aggregation, all conclusions derived from fitting such
models are necessarily specific to the particular level of aggregation observed, so
the scope for inference is rather narrow.

6.5. Embeddability and stochastic processes. The point of Exercise 11 is that
such a specification need not define a process that extends beyond the observed
lattice. Let the observed 3 x 3 lattice be embedded as the central square of a
larger n x n lattice. The distribution of the response on the sublattice may be
computed from the n>-dimensional normal distribution with zero mean and inverse
variance matrix (I, — B,)T (I, — By) by integrating out the n? — 9 unwanted
variables. The matrices I, and B, are of order n? x n?. But the result of this
computation is different for each n, and is not equal to the normal distribution
with inverse covariance matrix (I3 — B3)? (I3 — B3). In other words, Exercise 11
does not identify an embeddable process. Similar issues arise in connection with
edge effects in Gibbs models for finite lattice systems: for details, see Besag and
Higdon [(1999), Section 2.3.1].
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6.6. Comments on selected exercises. With the usual understanding of what is
meant by natural embedding, the formulations in Exercises 1-5 do not determine
a unique probability distribution or likelihood function. In Exercise 1, which
asks for predictions for a future subject, the observed event is either £ C R"
or the equivalent set E' = E x R C R"T!. The likelihood function may thus
legitimately be calculated either by P,(E;0) or by P,1+1(E’; 0). The absurdity
of Exercise 1 lies in the fact that these expressions are not equal. To the extent that
this embedding is natural, the likelihood function is not well defined. The nature of
the embeddings may be different, but the same objection applies to Exercises 1-5
and 11. Although the set P® in Exercise 4 is the set of all i.i.d. normal models,
the parameterization is unnatural and the likelihood function is not well defined.

The logical contradiction in the type IIIl model in Exercise 5 is exactly the same
as in Exercises 1 and 2, but the formulation is less flagrant and consequently more
persistent. Let £, be the family of normal distributions on R¥0 with constant
variance o2 > 0, such that y lies in the linear subspace Il It is understood that
the sample space morphisms include the coordinate projection map R¥0T¢ — Rkb
in which one entire block is deleted or ignored. It is easy to see that the fixed-sum
constraint is not satisfied by the blocks that remain. In other words, the sequence of
vector spaces {Illy} is not closed under such maps, and consequently the sequence
F = {Fip} of families is not closed either. Put more bluntly, the observation y C
R* is equivalent to the incomplete observation y’ = y x KK ¢ KK+ taken
from a larger design in which one entire block is unobserved. But the likelihood
function based on (y, ¢p) is not equivalent to the likelihood function based
on (¥, Fxw+1))- Given this embedding, no unique likelihood can be associated
with the type Il model.

Gibbsian models have the property that the conditional distribution of certain
subsets of the variables given the values of all other variables is also of the
same type. This property makes it straightforward to construct families that are
closed under conditioning. Exercise 7 illustrates a familiar problem in the use of
quadratic exponential families and Gibbs models. Although the normal family is
closed under coordinate projection, the implied parameterization, in which (61, 6»)
does not depend on cluster size, does not yield a commutative model diagram.
In other words, if (Y1, ..., Yx) have the exchangeable normal distribution with
parameter (61, 6»), the marginal distribution of (Y7, ..., Yx_1) is exchangeable and
normal, but the parameter is not 8. By contrast, the conventional parameterization
by variance and nonnegative covariance independent of cluster size, does yield
a commutative model diagram. Even though the two formulations may coincide
when applied to an example in which the cluster size is constant, their extensions
to variable-sized clusters are different, and this difference is critical for prediction
and inference. The version in which the variance and covariance are nonnegative
and independent of cluster size is a statistical model. The version described in
Exercise 7 is not.
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The problem with the Cauchy model is that, although the family is closed under
the group of real fractional linear transformations, the projection (61, 67) + 6 is
not a natural transformation. Since the components are independent, it is sufficient
to take 4 = R and ¢y = (ay + b)/(cy + d) in the diagram below:

y c@O) <«— 0 — g0 =06,
QOJ( (pTJ( QD*J' Jfo/ —9
s Cp) «— v=9 o ay=y,

In fact, Y1 = N((@0 + b)/(cO + d)) depends on 6, and is not expressible as
a function of (01, ¢) alone. The real part is not a natural parameter relative to
the group of fractional linear transformations. It appears that the only natural
transformations are the identity on ® and the constant function ® — {0}.

In each particular application, it is essential to establish the category of relevant
morphisms of sample spaces at the outset. Even though the observations are mod-
elled by Cauchy distributions, it is perfectly acceptable, and frequently entirely
reasonable, to choose the family of location-scale and coordinate projection maps.
Unless the response is an overt ratio of outcomes, fractional linear transformations
are seldom appealing in applied work, and they should be excluded on that ba-
sis. The category of morphisms on sample spaces must not be determined by the
chosen family of distributions, but by the context. The mere fact that the Cauchy
family happens to be closed under reciprocals does not mean that the category
must include reciprocals.

The implicit category of morphisms in Exercise 9 is generated by affine
transformations of temperature, together with scalar and rotational transformations
of physical space. When the temperature scale is morphed from Fahrenheit to
Celsius, there is a corresponding morph,

(1,02, 0) = (5 —32)/9, (55/9)%, 1)

of the parameter space. But there exists no corresponding morph for ) = u/o
or 0 = /A, or for any other nonsensical combination such as o + A.

7. The Box—Cox model.

7.1. Natural subparameter. It is sufficient in what follows to consider the
simplified Box—Cox model in which the observations yi, ..., y, are independent
and identically distributed. The sample spaces are all finite-dimensional real vector
spaces {R" :n > 0}. For m > n, the morphisms R — R" include all coordinate
permutation and coordinate projection maps. In addition, all scalar multiples
y > yy for y > 0 and all componentwise power transformations y > =%|y|* for
A # 0, are also included in C. The inferential difficulties that arise in the Box—
Cox model are due principally to the interaction between the power transformation
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and the multiplicative scalar maps rather than coordinate projection maps. In the
discussion of sample-space morphisms, therefore, we restrict our attention to the
power transformation and scalar multiplication maps.

Since the observations are independent and identically distributed by assump-
tion, the family of distributions on R”" is determined by the one-dimensional
marginal family. Let N(B, o2, ) be the distribution on R such that when ¥ ~
N (B, o2, )), then Y* ~ N (B, o2). Minor complications associated with nega-
tive values may be handled by interpreting Y* as |Y|* sign(Y). It follows that
Y* ~ N(B,02 1Ja) for o # 0. In addition, for each scalar y > 0, yY ~
N(y*B.y*a?, 1).

The parameter is (8, 02, ), and the parameter setis ® = R x Rt x {R\ 0}. To
each scalar multiple y > 0 the associated parameter map y*: ® — © is the group
homomorphism,

y*i(B, 0% 0 = (v B yHat h).

For each power transformation map y — y* on the sample space, the parameter
map is «*: A > A/a, with 8 and 0% unaffected. The Box—Cox model is thus a
parameterized statistical model according to our definition.

The fundamental difficulty, clearly evident in the discussion [Box and Cox
(1982)] is that the coordinate projection (8, 62, 1) — B is not a natural transfor-
mation of functors. The problem is evident from the diagram in which y : R — R
is a positive scalar multiple:

R (B,o?,2) — B

Vl V*J JV’=?
R (B yPern) — yB

Commutativity requires the map y’ acting on B8 € R, that is, the pair (y, 8), to
deliver the value y*8, an impossible task. Consequently, neither 8 nor o> nor
(B, 0?) is a natural parameter. Some examples of natural parameters include

A, Blo, BY* (B,A) and (02, 1).

The fact that 8 is not a natural parameter according to our definition is an implicit
statement that inference for 8 is meaningless in this system, that is, relative to the
given category of morphisms, power transformations and positive scalar multiples.

One objection to the preceding analysis runs as follows: “The data ¥ were
generated according to a particular distribution N (B, o*g, Ag), and I want to
know the true value By.” The difficulty here is that the equivalent data 2Y were
generated according to the distribution N (2% 8, 2”00(%, Ap). But there is no way
to transform the true value of 8 into the true value of 2* 8. Evidently, the phrase
“the true value of 87 is meaningless within the context of the group of scalar
multiples acting on the sample space.
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7.2. The modified power transformation. The problem of parameter inter-
pretability is greatly reduced, though not entirely eliminated, by considering the
modified power transformation K" — R in which y©@ is a vector with compo-
nents

a—1
y O = ye e,

where y is the geometric mean of {yi,...,y,} [Hinkley and Runger (1984)].
The first algebraic obstacle is that, for caty, = J, the transformation y > y@ is
not a natural transformation R" — R" on the standard representation. Although
the geometric mean is invariant under permutation of units, it is not invariant
under coordinate projection maps. The geometric mean of a proper subset of
{¥1, ..., yu} is not the same as the geometric mean of all n values. In other words,
modified Box—Cox transformation followed by coordinate projection is not the
same as coordinate projection followed by modified Box—Cox transformation.
Such differences may, however, be sufficiently small to be overlooked in practice.

In the following analysis, the category is reduced by restriction to a single
object, a particular set of n units and the associated sample space, § = R".
The morphisms are coordinate permutation, modified power transformation, and
positive scalar multiplication, each of which commutes with the modified power
transformation. The modified transformation is natural relative to the restricted
category. Let N, (8, 02, 1) be the distribution on R such that if ¥ ~ N,,(8, 0%, 1)
then Y ~ N, (8,02, 1), with independent normal components. This family is a
functor on the restricted category: for multiplicative scalar morphisms Y +— y Y,
the associated parameter morphism is

y* (B, 0% 0 = (vB, 2ol h).

For modified power morphisms Y > Y on the sample space, the parameter
morphism is A > A/a with (8, 0?) fixed. In both cases, the transformation acts
componentwise.

Thus, relative to this restricted and artificial category, the modified Box—Cox
family is a parameterized statistical model in which each component is a natural
subparameter. It should come as no surprise that 8/A is not a natural subparameter.

8. Extensive response variable.

8.1. Spatial aggregation and measure processes. Let D be a fixed domain in
the plane. An algebra 4 = {Ay, ...} is a collection of subsets of £, containing
the empty set and closed under finite set unions and set differences. A measure Y
on 4 is an additive set function taking the value zero on the empty set and additive
for disjoint sets. If A, B are elements of 4, then AU B, A\ B and AN B are also
in A, and

Y(AUB)+Y(ANB)=Y(A)+Y(B).
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The yield of crop in a field trial is an additive set function. Typically, the process
is defined on Borel sets, and observed on the algebra generated by the plots.

In the discussion that follows, it is assumed that the process Y takes values in
a set 'V that includes zero and is closed under addition (an additive semigroup).
In practice, this usually means that 'V is the set of nonnegative integers, the set of
nonnegative reals, the set of real or complex numbers, or the Cartesian product of
such sets.

Let C be the category in which each object + is a finite algebra of Borel-
measurable subsets of D, and each morphism ¢: A — A’ is the insertion map
in which A C 4A’. The sample space is a contravariant functor on € that associates
with each algebra A the set measy(+4) of V-valued additive set functions
on +4, and with each insertion map ¢:A — A’ the map ¢*:measy(A) —
measy () by restriction to 4 C A'. A probability model P for the process
is a contravariant functor on C that associates with each 4 a probability
distribution P4 on measy(s) in such a way that, when § C measy(A) is
P 4-measurable, the inverse image <p*_1S C measy (A') is P4 -measurable, and
P4(S) =Py ((p*_lS). In other words, P, is the marginal distribution of P/,

A measy () Py
(pJ( QD*T ‘[o 90*_1
A measy (A') Py )

This is a category-style statement of the Kolmogorov consistency condition that
must be satisfied by the finite-dimensional distributions of a measure process on
[Kingman (1984)]. The term “process” refers both to the random variable Y and
to the probability model P on D satisfying the preceding conditions.

A point process is a process for which each outcome is a countable set of
points in . In other words, a point process is a nonnegative integer-valued
random measure such that, with probability 1, ¥ has countable support and no
multiple points. Then Y (A) is the number of points in A. A Poisson process
[Kingman (1993)] is a point process in which, for some weakly finite nonatomic
measure u on D, (a) Y (A) has the Poisson distribution with mean w(A); (b) for
nonoverlapping sets Aj, As, ..., the random variables Y (Aj), Y(A3),... are
independent. A process satisfying condition (2) is said to be completely random.

A measure process is called Gaussian if, for each finite collection of subsets
{A1,..., A,}, the random variable (Y (Ay), ..., Y(A,)) is normally distributed.

8.2. Domain morphisms. We consider first some of the issues connected with
statistical models for processes in which covariate effects do not arise. Ordinarily
we require a family that is extendable to a large class of subsets of the plane.
Accordingly, we begin with a category catg in which the objects D, D', ... are
some or all such subsets of the plane. The class of morphisms ¢ : D — D’ depends
on the context, but is restricted to injective maps that preserve Borel sets. In
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practice, the morphisms are usually translations, rotations and scalar multiples
that preserve some aspect of Euclidean structure. Every injective map ¢ : D — D’
preserves Boolean structure in the sense that, for A, B C D, ¢(A U B) = ¢(A)
U @(B), and ¢(A N B) = ¢(A) N ¢(B). Thus, ¢ carries each algebra of Borel
subsets of D into an algebra of Borel subsets of D’.

In the diagram below, to each domain £ there corresponds a sample space, 49,
of V-valued measures on (the Borel subsets of) $. For each point ¥ € 84/,
ameasure on D', (¢p*Y)(A) =Y (pA) is the composition measure on D.

D Yep Sp  PBp) <& Ep

3) l«p I Lp* }p* Lp’

, Py
D Y 8o PBp) <«— Eo .
The map ¢’ on probability models is defined by composition with the inverse
image of ¢*, that is, (9T F)(S) = F(¢*~'S) for S C 8p and F € P ($9/).

Typically, the process Y to be studied is modelled as a measure on £, assigning
values to each of the Borel sets. Although we refer to the sample space as the set
of measures on D it is important to understand that Y is ordinarily not observed
on the Borel sets, but on the finite subalgebra generated by the plots.

An invariant probability model is a natural transformation {0} — & (8) that
associates with each object O a process, Pp on meas(D), in such a way that,
for each domain morphism ¢ : D — D’, the sample-space map ¢*: 85 — Sp
satisfies Pp = Pgop™~!. For example, the Poisson process with constant unit
intensity function is invariant under translation and rotation of domains. For many
categories of domain morphisms, however, invariant processes do not exist. For
example, there exists no nontrivial process that is invariant under translation and
scalar multiplication. However, the family of Poisson processes with constant
intensity function is closed under similarity transformations. Likewise, the family
of stationary Gaussian processes with constant intensity and isotropic covariance
density

o*zexp(—ylx —x')dxdx’, 02, y >0,

is also closed under similarity transformations.

A statistical model P:E — #(4) is a natural transformation of functors
on catp. For example, if catgp is the group of similarity transformations acting
on R?, we may take Ep = RT and ¢’ equal to the Jacobian of ¢. If Ppé& is the
homogeneous Poisson process on & with intensity &, the diagram commutes.

More generally, let E¢p be the set of nonnegative measures on . For each
@ :D — D’ the induced map ¢’ on measures is given by (¢’ )(A) = u(pA) for
uw€EBgp and A C D. If u is nonatomic, so also is ¢'u. The set of nonatomic
measures is thus a subfunctor of E. If Py is the Poisson process on D’ with
nonatomic mean measure [, the induced process ¢ Poru on D is Poisson with
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nonatomic mean measure @', and the diagram commutes. An arbitrary measure
@ with atoms gives rise to a process in which multiple events occur with nonzero
probability at the same point. Although Ppu is a Poisson process, it is not a point
process according to the usual definition [Kingman (1993)]. Further submodels
exist if catg is restricted to continuous maps.

8.3. Covariate effects in spatial processes. In a field trial over a domain D,
the design is a map ¥ : D — €2, associating with each point # in the domain a
point ¥u in 2. In practice, since observations are made on plots, not points, ¥ is
constant on each plot. Each morphism ¢ — v’ of designs is a pair of injective
maps (g4, ¢c) such that ¥'oq = ..

To construct a model for the effect of covariates on a measure-valued process,
it is essential to begin with a suitable baseline family, or uniformity model, for
the process when covariate effects are absent. Such a family is necessarily closed
under the category of morphisms of the domains. In the diagram shown below, the
parameter space is a contravariant functor associating with each design ¢ : D — 2
a parameter set Ep X Og, and with each morphism (¢4, ¢.): ¥ — ¥’ a map
(@), ¢l):Bp x O — Ep X Oq. A statistical model is a natural transformation
of functors on the design. The baseline uniformity model is obtained by choosing
® = {0}.

Design Sample space Model
v > Py L
O — Q 8p = meas(D) PSp) <«— Ep x0Bgq
“)
wJ wcl wﬂ wﬂ WZJ Tfpé
’ v ’ ’ Py —
D — Q 89 = meas(D’) PBp) <«— Eg X Og

In order to see what this diagram means in practice, let ¢: D — D’ be a

similarity transformation with scalar multiple /2. Then the area of the image
@aD C D’ is twice the area of D, and the mean intensity of Y¢; = ¢;Y on D
is twice the intensity of ¥ on £’. Thus, in the baseline model, we may choose
Ep =R and ¢, = |0¢q/0u| =2 as a scalar multiple.

Let ¢, be the identity on €, so that ¢, is the identity on ®g. Suppose
that the design ¥ on D’ uses two varieties and that the yield for variety 2
exceeds the yield for variety 1 by one ton per acre. As observed on D, the yield
per unit area for each variety is doubled, and the difference is also doubled.
For the two varieties, the processes on D’ are Py/(£,61) and Py (§,60,) with
intensity functions A(§, 61), A(§, 62). On O we obtain Py, (2§, 61) and Py (2§, 6>)
with intensity functions A(2&,6;), A(2§, 6,). Commutativity requires a model
parameterized in such a way that the difference between the intensity functions
on D is twice the difference between the intensity functions on D’. So far as
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expected yields are concerned, the variety effects must be multiplicative, not
additive.

Definition (4) is sufficiently flexible to accommodate interference in the form
of carry-over effects such as fertilizer seepage, or prolonged residual effects in
cross-over trials. To do so, however, the covariate space must be extended so that
Y associates with each unit the treatment applied to that unit and the treatments
applied to the neighbouring units. The morphisms ¥ — v preserve designs in this
extended sense, and Py may incorporate specific carry-over effects.

A model for yield in agricultural field trials that is closed under spatial
aggregation has obvious conceptual advantages. However, there are competing
issues to be considered, including model flexibility and ease of fitting. First,
uniformity trials seem to indicate that most agricultural processes are not spatially
stationary, so a family of nonstationary baseline processes may be required. It is
not at all clear what sorts of nonstationarity should be accommodated in such a
baseline model. Partly for these reasons, the model presented by Besag and Higdon
(1999) uses a baseline family that is not closed under spatial aggregation. For
further commentary on this point, see the discussion by Best, Ickstadt and Wolpert
(1999), Harville and Zimmerman (1999) and the reply by the authors (page 740).
The Besag—Higdon formulation is thus not a statistical model for an extensive
variable in the sense of the present paper. Algebra does not easily deal with
approximations or inequalities, so it is hard to say in what sense the Besag—Higdon
formulation might be approximately closed under spatial aggregation, rotation or
other domain morphisms.

8.4. Conformal models. A conformal model is a natural transformation of
functors in which catg is the category of conformal maps acting on domains in the
plane. The category of conformal maps is a natural choice for real spatial processes
because it preserves local Euclidean structure.

A completely random process on D is characterized by its one-dimensional
distributions. Because it represents an additive set function, such a process on
Borel sets is necessarily infinitely divisible, so that the log characteristic function
of the one-dimensional distributions has the form

log E(e"™" ™) = m(A) x log¢ (1)

for some nonnegative measure m on . A family of completely random processes
is determined by a particular choice of characteristic function ¢ together with a
suitable family of intensity measures closed under the required category of domain
morphisms. For example, if the category includes scalar multiples, the family of
measures must be closed under scalar multiplication. Likewise, under conformal
mapping, ¢ : D — D', the process p*Y = Y ¢ on D has log characteristic function

log E ('@ W) = 1og E(e! @My = m(pA) x log ¢ (1)
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for A C . The measure m on P’ is thus transformed to the measure mg on D by
functional composition. If m has a density dm with respect to Lebesgue measure
on D', the induced measure has a density ¢’dm with respect to Lebesgue measure
on D given by

o'dm(x) = dm(px) x [d¢(x)/dx].

As will be shown below, the family of intensity measures whose log densities
are harmonic functions is closed under conformal mapping. Thus, an infinitely
divisible distribution together with such a family of mean measures determines a
conformal family of completely random processes.

Some further examples of conformal models can be described in terms of
cumulant measures. The first cumulant measure of the process Y on D is assumed
to have a positive density such that

E(Y(dx)) =exp(r1(x))dx.
Thus

E(Y(A)):Aexp(kl(x))dx

for A C O. The variance measure on O and covariance measure on D x D are
also assumed to have densities expressible as follows:

var(Y (dx)) = exp(r2(x)) dx,
cov(Y(dx), Y(dx")) =exp(r11(x, x"))dxdx’,
for x # x’. Thus,

cov(Y(A),Y(B)) = /AmB exp(ra(x))dx + /AXB exp(Ai1(x, x"))dxdx’.

Let Y be a process on O’ with logarithmic intensity functions A}, 5, A/;. Let
¢ : D — D’ be a conformal transformation, and let Y ¢ be the composition process
on D. Then the first and second cumulant measures of the transformed process at
x in D have logarithmic intensities such that

A1 (x) = A (px) + log J (x),
A2 (x) = A5 (px) +1log J (x),
Ai(x, x') =17 (ex, ox") +log J (x) +1log J (x),

where J(x) = [0¢(x)/dx] is the Jacobian of the transformation. If ¢ : D — D’
is conformal, log J : & — R is harmonic. Note also that 1> — A1 is an absolute
invariant.

Let #p be the vector space of harmonic functions on D. In particular, if
¢:D — D’ is conformal, logJ is harmonic and thus a vector in Hgp. If the
intensity functions A}, A5 are also in Hp, it is evident that A = Aj o and



WHAT IS A STATISTICAL MODEL? 1259

Ay = Nzo(p are in Hg . Further, if Aj; € J(’gz, the corresponding transformed
parameter A/, is a vector in Jfg/z. For example, log|x — x| is a vector in %%/2
(excluding the diagonal set x = x" in D x D), and log |p(x) — @(x)| is a vector
in J(’gz, also excluding the diagonal.

The baseline processes considered here are those conformal processes for
which the log-transformed cumulant densities are harmonic functions. The sub-
family of completely random processes for which A1; = —oo, and thus A2 (x) =
A1(x) 4+ const, is of particular interest in the analysis of field experiments.

8.5. A conformal model with covariates. We consider a model in which,
conditionally on the real-valued function A, the mean and variance of the process Y
at x € O are modelled as follows:

u(dx) = E(Y(dx)) = exp(r(x) + (¥ *6)(x))dx,
(5) var(Y (dx)) = o2u(dx),
cov(Y(dx), Y(dx")) =0,

for some volatility parameter o> > 0. Following Besag and Higdon (1999),
we may interpret the term A(x) as the fertility intensity at x. Although the
notation (¥ *0)(x) may appear unfamiliar, the effects of variety, treatment and
other covariates are modelled in the usual manner, though their effects on the mean
are multiplicative rather than additive. The multiplicative form in (5) is necessary
to ensure that the diagram (4) is commutative for the category of conformal
transformations. It is possible but not necessary that ¥ should be a Gaussian
process.

The key issue concerns the assumptions to be made about fertility effects. It is
generally understood that, for field experiments, the assumption of uniform fertility
is unduly optimistic. Neighboring plots tend to have similar fertilities, but there can
be substantial fertility gradients over the domain of interest. At the other extreme,
if no assumptions are made about fertility patterns, that is, if A is regarded as
an arbitrary continuous function in R®, the variety effects are not identifiable.
One intermediate option is to assume that fertility variation can be modelled as
a quadratic function or a rational function of suitable low order. In this section,
we explore a third option, namely assuming that the fertility intensity A on D lies
in the vector space of harmonic functions #g. This assumption means that the
fertility at x € D is equal to the average fertility on each disk D(x,r) C O with
center x and radius r > 0. The model allows considerable flexibility for fertility
gradients, but it does imply that the fertility function cannot have a local maximum
or minimum in the interior of O. As with all such assumptions born of algebraic
convenience, empirical work is needed to see if the assumption is reasonable. The
available numerical evidence is limited, but very positive.
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A harmonic function has the property that the Laplacian at x = (x1, x2)
vanishes:
GRS LS

B T
8x12

Vi(x) = 8x§

for each x € O. Formal application of the Laplacian operator to our model gives

Vlog Z—l: = V(o) (x)

since the Laplacian is a linear operator. Provided that the the fertility function is
sufficiently smooth to be approximated by a vector in #gp, no prior distribution
is required. Even though the vector space F#g of fertility intensities is infinite
dimensional, certain treatment and variety contrasts are identifiable. Identifiability
requires that V(y*0) not be identically zero. Numerical calculation shows that, in
many cases, all variety contrasts remain identifiable.

8.6. Lattice approximation. We assume here that the response measure Y is
observed on a regular m x n grid of rectangular plots, A, x Ay, sufficiently
small that the Laplacian can be approximated at each internal plot. Let the rows
be indexed by 1 <i < m, and the columns by 1 < j < m. On the assumption
that the plot sizes are sufficiently small that A is effectively constant on plots, the
multiplicative model in the preceding section gives

1(A) = E(Y(A)) =exp(hy + (¥70)a) x |Al,
var(Y (A)) = o2 u(A)

in which (1*0)4 is the effect of the treatment or variety associated with plot A.
Reverting to more classical notation in which the plots are indexed by (i, j) €
m x n, we have

log,uij :)\ij + (Xe)ij + log |Aij|'

In the terminology of generalized linear models [McCullagh and Nelder (1989)],
the offset is log |A|, the link function is log, and the variance function is the mean.
Provided that the plot areas are constant, the term log |A| can be absorbed into the
harmonic A.

The simplest lattice version of the Laplacian is proportional to

(VY)ij = (Yio1j — 2V + Yig1, )/ AT + (Yijo1 = 2V + Yi 1)/ A

for2<i<m—1and?2 < j<n—1.Itis absolutely essential to take account of
the geometry of the plots by including the factors Ay and A, in the definition of
the Laplacian. If the plots are square, the Laplacian at (Z, j) may be approximated
by the sum of the four neighbors minus four times the value at (i, j).
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The kernel of the linear transformation V:R™ — R(M=2"=2) ig the sub-
space J# of lattice harmonic functions, of dimension equal to the number of
boundary plots. The linear projection R"" — R™",

H=1-V (VV) v

has the property that the image of H is the kernel of V, which is the subspace .
The model formula is thus kerV 4+ X, or H + X, with log link and variance
proportional to the mean. An approximate estimate of the variety contrasts may
be obtained by solving

(X'WX)B=XW(ogY),

where W = V/(VV/)~1V. Since V annihilates constants and linear functions, the
matrix X’W X is not invertible. At best, only contrasts are estimable.

In principle, the nonlinear model can be fitted by standard software such as
GLIM or the glm () function in Splus. In practice, since H is mn x mn of rank
h =2(m + n — 2), it is necessary to eliminate the redundant columns. This can be
done by using an equivalent full-rank matrix H' = HJ in which J is mn x h of
full rank. A matrix of independent uniform random numbers is adequate for this
purpose.

The data from the wheat uniformity trial reported by Mercer and Hall (1911),
and reproduced in Andrews and Herzberg (1985), were reanalysed in the light of
the preceding discussion. The design is a grid of 20 x 25 nearly square plots, each
1/500 of an acre in area. Each plot contains 11 drill rows 10.82 feet long. From the
given total area, we infer that the drill rows are approximately nine inches apart
and that the plot size is 10.82 x 8.05 in feet. After allowing for multiplicative row
and column effects, it is found that the mean square due to harmonic variations is
0.304 on 82 degrees of freedom, whereas the residual mean square is 0.107 on 374
degrees of freedom. At the expense of the boundary plots, a 25% reduction in the
variance of treatment contrasts is achieved by the elimination of harmonic trends.
The observed variance ratio of 2.85 provides strong evidence for the presence of
at least two variance components in these data, and the ratio might well have
been considerably larger had the region not been selected on the basis of its
uniform appearance. Numerically, it matters little whether the model is additive
or multiplicative.

The real and imaginary parts of (x| 4 ix2)* are homogeneous polynomials of
degree k, both of which are harmonic functions. The set #; C # of harmonics
of degree k or less on D = R? is a subspace of dimension 2k + 1 closed
under similarity transformations, that is, planar rotation, translation and scalar
multiplication. That is to say, #; and #/J are representations of this group,
and there is a corresponding invariant decomposition of the harmonic sum of
squares. In the Mercer—Hall data, low-order harmonics tend to dominate, but this
dominance is much less pronounced than I had anticipated. After allowing for
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row and column effects, the seven unaliased harmonics of degree five or less
account for only 17% of the total harmonic sum of squares. The F-ratio of 2.19
on 7, 75 degrees of freedom gives a p-value of 4.5%. It should be borne in mind,
however, that this one-acre region of the field was selected by visual inspection on
account of its evident uniformity. Had the harvested region been predetermined, or
otherwise selected at random, large-amplitude low-order harmonic trends might
well have been more pronounced.

Curiously, Besag [(1974), Table 16] obtains exactly the same residual mean
square using a second-order Gibbs model with a linear trend adjustment. This
coincidence can be explained in part by noting that the average of the four first-
order coefficients in the fitted Gibbs model is almost exactly 0.25, while the
second-order coefficients are very small. These values suggest nonstationarity
[Besag and Kooperberg (1995)], and are consistent with the hypothesis that the
process is white noise plus a (random) harmonic function. An intrinsic Gaussian
process with a harmonic generalized covariance density of the form —log |x — x’|
for x # x’ is a possibility. It should be noted that the orientation of the plots is not
entirely clear from the description given. If the plots were in fact 8.05 x 10.82,
so that the total area is 201.25 x 216.4 rather than 161.0 x 270.5, the preceding
analysis would give a residual mean square of 0.114. The Gibbs model, which
ignores such physical spatial information, is unaffected.

8.7. A parting proposal. Many traditional field experiments use block designs,
in which the model matrix X includes block effects in addition to treatment
and variety effects. Certain directional block effects and discontinuities may
be attributable to drainage, ploughing, harvesting or other field management
practices, and specific allowance for these may be required. Other artificial
block effects may also be included to compensate for natural spatial variation.
The fertility patterns modelled by block effects are constant on blocks but
discontinuous at block boundaries. The fertility patterns modelled by harmonic
functions are smooth trends having the characteristic mean-value property. In
the absence of a compelling argument for fertility discontinuities beyond those
described above, it should not be necessary to include artificial block effects in
the model in addition to harmonic variations. This line of argument leads to the
modest, but challenging, proposal to augment the theory of block designs with
a theory of efficient harmonic designs for field experiments. It is inefficient, for
example, to assign the same treatment to neighboring plots.

APPENDIX

Glossary on categories. Category theory asks of every type of mathematical
object: “What are the morphisms?”; it suggests that these morphisms should be
described at the same time as the objects [Mac Lane (1998)]. The morphisms
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determine the structure of the objects, and, in a sense, they are more important
than the objects.

A category C is determined by the objects 2, €/, ... it contains, and the
morphisms, maps or arrows, ¢:Q — Q' between pairs of objects. The set of
morphisms Q — €' in € is denoted by C(£2, ') or home (2, ). Two conditions
are required in order that a given collection of objects and arrows should constitute
a category. First, for each object €2, the identity arrow 1:Q — €2 is a morphism
in C. Second, to each pair of arrows ¢ : Q — Q/, ¥ : Q" — Q” in € such that the
domain of v is equal to the codomain of ¢, the composition arrow ¢ : Q2 — Q"
is a morphism in C(2, Q). A category is thus a collection of morphisms that
contains each identity and is closed under composition of composable arrows.

Each set C(£2, ©2) contains the identity and is closed under composition, that
is, C(£2, 2) is a monoid (semigroup with identity). A category with all arrows
invertible is a groupoid; a category with all arrows identities is a set, the set of
objects; a category with exactly one object is a monoid; a category with one object
and invertible arrows is a group.

Product category. Let C, K be two categories. The objects in the product
category C x JK are the Cartesian products 2 x I in which Q € C and T" € K.
The morphisms  x I' > Q" x I'" are all ordered pairs (¢p: Q2 — Q', ¢ :T — I")
of morphisms acting componentwise: (¢, ¥) (I, j) = (@i, ¥j).

Functor. A functor T:C — J is a morphism of categories, preserving
category structure (identity and composition). Since the functor acts on objects
as well as arrows, we sometimes write 7 = (7, %) in which T is the object map
and * is the arrow map. The object map carries €2 to the object TQ2 = T in K.
In a covariant functor, the arrow map carries the arrow ¢ : Q2 — ' to the arrow
p*:Tq — Tg in K. Two conditions are required. First, the identity 1:Q — Q
in C is carried to the identity 1: Tq — Tgq in K. Second, for each ¥ : Q" — Q”, the
composition arrow ¢ : Q — Q" is carried to the composition V¥ *¢p*: T — T
in X.

In a contravariant functor, the arrow map carries ¢ : Q2 — Q' to ¢*: Ty — Tgq,
reversing the sense of the arrow. Apart from this reversal, the functor preserves
category structure. First, each identity 1: Q2 — Q in C is carried to an identity
1:Tq — Tq in K. Second, the composition arrow ¢ : Q2 — Q" is carried to the
composition *y* : Tor — Tgq, reversing the order of composition.

The example in Section 6.1 shows that the set of arrows in the image of 7' need
not be closed under composition; that is, 7C need not be a subcategory of K.

A group homomorphism is a functor in which € and X are groups. On account
of isomorphism, the distinction between covariant and contravariant functors does
not arise. The image T ¢ C K is a subgroup in X.
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Isomorphism. An isomorphism of categories is a covariant functor 7 : € — K
that is a bijection on both objects and arrows. A contravariant functor 7: C — X

that is a bijection on both objects and arrows is an opposite-isomorphism € —
CP= XK.

Representation. Let K be the category of linear transformations on vector
spaces. A functor 7:C — K 1is said to be a representation of C by linear
transformations, or simply a representation of C.

The standard contravariant representation of € associates with each object <2
the vector space R, and with each morphism ¢ : Q — ' the linear transforma-

tion ¢*: RY 5 RL by functional composition: ¢* f = f o .

Dual representation. Let J be the category of linear transformations on
vector spaces. The dual functor associates with each vector space V in X
the dual vector space V' of linear functionals on V. To each morphism,
or linear transformation, A:V — W in JK there corresponds a dual linear
transformation A’: W — V', also called the vector-space adjoint transformation.
This operation reverses the direction of each arrow, so the dual is a contravariant
functor K — K. In matrix notation, A’ is the transpose of A.

. . . . T
The dual of a covariant representation 7:C — K is the composition C—

K-> K associating with each object 2 the dual vector space, T, and with each
morphism ¢ : Q@ — Q' the dual linear transformation (T'¢)": T, — T,.

Opposites. To each category C we make correspond an abstract category C°P
by retaining the objects, and reversing all arrows. The functor € — CP is
contravariant, and the order of composition is reversed. Each category of invertible
maps (groupoid) is isomorphic with its opposite. The category obtained by
replacing each object Q2 of € by the power set 2%, and each map ¢ : @ — Q' by its
inverse image ¢! 29 5 09 g isomorphic with C°P. Other concrete instances
of opposites include the standard representation and the dual category of linear
transformations.

Natural transformation. Let C, K be two categories, and let S, 7 be two
covariant functors € — K. A natural transformation g:S — T associates with
each object 2 in C an arrow g, : So — Tgq in such a way that the arrow diagram
commutes.

Q So ﬁ) To
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In other words, for each ¢:Q — Q' in C the image arrows ¢ and ¢ satisfy

¢r8q = 8g¢s 1 Sa — Tar
If S and T are contravariant functors, the direction of the arrows ¢ and ¢ is
reversed. The commutativity condition then becomes ¢/ g, = g5 : Sor — Ta.
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DISCUSSION
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Introduction. I am glad of the opportunity to discuss some aspects of Peter
McCullagh’s paper. Parametric statistical formulations have recently come under
intense attack [e.g., Breiman (2001)] but I strongly disagree with the notion
that they are no longer relevant in contemporary data analysis. On the contrary,
they are essential in a wealth of applications where one needs to compensate
for the paucity of the data. Personally, I see the various approaches to data
analysis (frequentist, Bayesian, machine learning, exploratory or whatever) as
complementary to one another rather than as competitors for outright domination.
Unfortunately, parametric formulations become easy targets for criticism when,
as occurs rather often, they are constructed with too little thought. The lack of
demands on the user made by most statistical packages does not help matters and,
despite my enthusiasm for Markov chain Monte Carlo (MCMC) methods, their
ability to fit very complicated parametric formulations can be a mixed blessing. So,
in that sense, McCullagh’s paper is timely and of course it makes many valid points
but I also think it is misconceived, both in its general aims and in the agricultural
application discussed in Section 8.

General comments. My overall impression of McCullagh’s framework is that
it really concerns mathematical models, whereas statistical models are more subtle,
which makes the subject in some ways more difficult and more rewarding. That

1Supported in part by the Center for Statistics and the Social Sciences with funds from the
University Initiatives Fund at the University of Washington.
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said, I have always disliked the term “statistical model” because I think it accords a
status to formulations that is seldom earned in practice. In spatial statistics, I failed
to persuade anyone to adopt the term “scheme” [Besag (1974)] or “prescription”
[Besag (1975)] and these days often fall back on “representation” (with or without
its Bayesian connotations). I prefer to reserve the term “model” for something that
has a physical justification, such as the Poisson process in certain applications.
I doubt whether generalized linear models, for example, usually fall into this
category, any more than do spatial autoregressions. McCullagh seems to demand
the universality of a physical model, but without doing any of the physics, and
surely this is too much to ask? A statistical formulation can still be very useful
without universality, so long as one restricts inferences to what might loosely
be described as “interpolation” rather than “extrapolation.” Is this not what we
teach our students? Yet several of McCullagh’s criticisms and examples involve
“extrapolation” to parts of a space in which there is no claim that the original
formulation holds. This is different from the valid points that are made about
ensuring consistency between different measurement scales, say.

Moreover, if I were forced by law to call something a statistical model, then
I would insist that it must be useable for and assessable by data analysis, whereas
a McCullagh statistical model is a mathematical object involving data but not
necessarily data analysis. As a concrete example, I think McCullagh views the
formulation in Section 8.6 as a lattice-based approximation to a previous statistical
model, whereas I would interpret it as a statistical scheme motivated by a previous
(I believe untenable) mathematical model.

Maybe the above point is a minor one, but it is related to another that to
me is crucial and yet seems absent from McCullagh’s framework, namely the
role of approximation. Indeed, he writes, “Algebra does not easily deal with
approximations or inequalities.” It seems to me that, except for some rather
limited randomization analyses, the initial choice of an appropriate level of
approximation is a vital ingredient in almost any statistical investigation (though
maybe requiring review in the light of the available data) and is perhaps the
most creative aspect of our subject. McCullagh seeks to produce rules within
which creativity must operate, but it is not obvious that his formalism takes us
constructively beyond sound common sense. Furthermore, it can impose quite
unreasonable constraints. Obviously, I agree that one should always recognize
and seek to rectify mathematical inconsistencies but not slavishly so if this means
abandoning a scientifically useful approximation in favor of a formulation that is
universally self-consistent but unsustainable in the region of interest.

Although, in principle, the purpose of an investigation should govern the
formulation and the type and the amount of data collected, practice is often
harsher and the specification one adopts depends qualitatively on the available
sample size. Fisher (1922) wrote, “More or less elaborate forms will be suitable
according to the volume of the data.” Indeed, this interdependence provides the
salvation of frequentist p-values against the argument that failure to “reject” a
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model occurs merely because the sample size is too small. That is, the argument
becomes irrelevant if one recognizes that the generality of statistical formulations
should normally increase with sample size, until ultimately one may indeed be
allowed the luxury of machine learning. I may need to add that my interpretation of
a p-value is merely as an exploratory device that quantifies inconsistency between
the observed data and a particular formulation. McCullagh seems not to accept
that sample size should be an important ingredient in statistical modeling; see
Section 4.2. Of course, I agree that generally there should be coherence between
formulations in going from sample size n to n + 1 but this process also takes us
from 7 to n? and then there will often be overriding concerns and a need for greater
flexibility.

Markov random fields. Markov random fields (MRFs) are distributions
specified via their full conditionals (originally called local characteristics). The
identification between any particular MRF and a corresponding Gibbs distribution
and vice versa follows from the Hammersley—Clifford theorem [e.g., Besag
(1974)]. The only restriction on either class is a minor positivity condition, so
Gibbs (say) distributions are not required to have the property McCullagh ascribes
to them in Section 6.6.

Exercise 7 is supposedly an example of the inconsistencies that plague MRFs
but seems badly chosen. I agree of course that the formulation is bizarre but,
without a context, there is no reason why the distribution of Y in a cluster of
size k, marginalized over its kth component, should be required to coincide with
that of Y in a cluster of size k — 1. For example, suppose that k refers to the litter
sizes in a study of piglets and that a measurement is made on each piglet. Then
exchangeability within litters might be a reasonable assumption but marginalizing
over a piglet in a litter of size k does not produce a litter of size k — 1. And whatever
the formulation, it seems reckless even to contemplate drawing inferences about
litters of size eight from data merely on litters of size two!

A better example of the contradictions that arise in MRF formulations is
mentioned in McCullagh’s discussion of Exercise 11. That is, a parametric MRF on
a grid (say) is generally inconsistent with the corresponding MRF on a subset of the
grid. In principle, consistency can be restored by conditioning on an appropriate
boundary but this is usually too wasteful in practice. Partial fixes may be available
by using marginalizations of MRFs on Z? or otherwise; see Besag and Kooper-
berg (1995), Besag and Higdon (1999) and Rue and Tjelmeland (2002). However,
spatial effects are often of secondary importance, as in variety trials, and the main
intention is to absorb an appropriate level of spatial variation in the formulation,
rather than produce a spatial model with scientifically interpretable parameters.
Nevertheless, McCullagh’s basic point is well taken. For example, I view the use
of MRFs in geographical epidemiology [e.g., Besag, York and Mollié (1991)] as
mainly of exploratory value, in suggesting additional spatially related covariates
whose inclusion would ideally dispense with the need for a spatial formulation;
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see Byers and Besag (2000) for an example on prostate cancer and ethnicity.
A particularly blatant abuse of MRFs occurs in the analysis of social networks,
where the parameters in Markov random graphs are often ascribed substantive
interpretations that are meaningless, if only because they depend on the size of the
system. I anticipate that MRFs will play a diminishing role in statistical analysis
but currently they still have useful computational advantages when MCMC is
used.

Agricultural field experiments. Although field experiments no longer fea-
ture in most graduate programs, their design and analysis comprise an important
area of application for statistics. Variety trials usually involve say 25 to 75 vari-
eties of a crop, with very limited replication, perhaps three or, even worse, only
two plots being assigned to each variety. Here I exclude early generation trials, of-
ten having very large numbers of varieties and no replication but with check plots
of a standard variety used as controls.

It has always been recognized that generally a crop will perform much more
similarly on two plots close together than on plots further apart. Thus, Fisher
[(1928), page 229] wrote, “... the peculiarity of agricultural field experiments
lies in the fact, verified in all careful uniformity trials, that the area of ground
chosen may be assumed to be markedly heterogeneous, in that its fertility varies
in a systematic, and often a complicated manner from point to point.” Soil
measurements, such as pH, are not generally available to make adjustments for
fertility. Fisher’s solution to the problem resulted in the design and analysis
of experiments, an approach that provides rigorous inference via randomization
analysis but, for modern-day experiments, can be very inefficient when compared
to model-based analysis.

McCullagh refers frequently to agricultural experiments and in Section 8
proposes a spatial formulation based on harmonic functions. Despite initial
resistance, spatial methods have become increasingly popular: for example,
frequentist spatial analysis is now used in some 5000 experiments annually in
Australia alone [Gilmour, Cullis, Smith and Verbyla (1999)]. In several places,
McCullagh mentions Besag and Higdon (1999), henceforth BH, though with
no obvious enthusiasm. As background, BH describes a Bayesian approach to
statistical analysis, with some emphasis on variety trials, and examines several
complicated data sets; easier examples are analyzed in Besag and Higdon (1993),
in Besag, Green, Higdon and Mengersen [(1995), Section 5] and in the rejoinder
to discussion in BH. A first-order Gaussian intrinsic autoregression is used as
a simple but flexible baseline representation of the spatial variation in fertility.
BH does not pretend to provide a complete solution and indeed discusses some
current deficiencies. Below 1 will confine my comments to points raised by
McCullagh.
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Response scale (Section 3.2). McCullagh makes the basic point that statistical
analysis should not depend on response scale. BH achieves this by standardizing
the raw data, which is effective but rather untidy in a Bayesian framework.

Covariate space (Section 3.2). McCullagh states that, for a trial in which
fertilizer is applied at rates in the range 0-300 kg/ha, he requires the inferential
universe to extend to all nonnegative rates. Yet this seems pointless without a
corresponding extension of the model itself, even though any such extension
cannot be assessed. Indeed, I presume that McCullagh himself would be unwilling
to draw inferences at a rate of, say, 400 kg/ha, without additional information.
Similarly, in his example on potatoes, I would not address varieties that are not in
the experiment or remain yet to be invented. Of course, this is not the case if the
tested varieties form a random sample from a definite population.

Experimental units (Section 3.2). In discussing variety trials, McCullagh
claims, “It is invariably understood, though seldom stated explicitly, that the
purpose of such a trial is to draw conclusions concerning variety differences, not
just for plots of this particular shape, size and orientation, but for comparable plots
of various shapes, sizes and orientations.” Here I would replace “invariably” by
“almost never.” McCullagh seems to confuse variety trials with uniformity trials
in which a single variety is grown. Uniformity trials (e.g., the Mercer and Hall
data in Section 8.6) were used long ago to investigate optimal plot size for genuine
experiments, but they are performed very rarely now and plot dimensions are often
determined by management practice rather than by statistical criteria. However, in
passing I note that the asymptotic logarithmic behavior of the variogram for the
BH intrinsic autoregression is in good agreement with the empirical findings from
uniformity trials in Fairfield Smith (1938) and Pearce (1976).

Of course, in a genuine variety trial, one might want to predict what the
aggregate yield over the entire field would have been for a few individual
varieties but this does not require any extension of the formulation to McCullagh’s
conceptual plots. Indeed, such calculations are especially well suited to the
Bayesian paradigm, both theoretically, because one is supposed to deal with
potentially observable quantities rather than merely with parameters, and in
practice, via MCMC, because the posterior predictive distributions are available
rigorously. That is, for the aggregate yield of variety A, one uses the observed
yields on plots that were sown with A and generates a set of observations from
the likelihood for those that were not for each MCMC sample of parameter values,
hence building a corresponding distribution of total yield. One may also construct
credible intervals for the difference in total yields between varieties A and B and
easily address all manner of questions in ranking and selection that simply cannot
be considered in a frequentist framework; for example, the posterior probability
that the total yield obtained by sowing any particular variety (perhaps chosen in
the light of the experiment) would have been at least 10% greater than that of
growing any other test variety in the field.
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I am aware that the previous paragraph may be misconstrued. David Higdon and
I are primarily “spatialists” rather than card-carrying Bayesians and BH merely
explores some consequences of a Bayesian approach. There are other caveats. The
above arguments assume that the formulation is correct, though one can and should
carry out sensitivity analysis; also any model-based formulation should leave room
for outliers and other aberrations, which BH discusses via hierarchical #’s and other
robust procedures that relax the baseline Gaussian distributions.

More to the point, neither the agronomists who make recommendations nor the
farmers themselves care too much about the difference in yield between varieties
A and B grown on one particular experimental field. I presume McCullagh would
include other “similar” fields in his inferential universe, something I feel is useful
only if there is additional external information. Ideally, and often in practice,
several trials are carried out in a range of environments, in which case progress can
be made, perhaps invoking a hierarchical formulation; see BH for an example on
corn (maize) grown at six different sites in North Carolina. This also downgrades
the importance of the specific assumptions that are made at plot level (and at any
finer scale). If trials are not conducted at several sites, then recommendations
need to be moderated appropriately. Incidentally, the use of posterior predictive
distributions, with their additional variability, might be helpful in curbing the
frustration of plant breeders when the “best” variety experimentally does not
subsequently perform as well.

Fertility (Section 8). Some care is required in what is meant by “fertility”:
both McCullagh and BH are rather vague. Fertility does not exist in abstraction,
nor even in a particular field, because it means different things for different crops.
To me, “fertility” represents the plot-to-plot variation due to the environment,
if a single variety in the trial is grown throughout. This is well defined only
if one can make the usual assumption that variety effects are additive, perhaps
after a transformation of yield. My version of fertility usually includes standard
fixed effects caused by human intervention, such as those due to blocks (if these
have a physical presence) or to boustrophedon harvesting, but here I shall assume
such fixed effects are taken into account separately. However, fertility must also
cater for all other environmental (usually thought of as random) effects and it is
generally recognized that these include indeterminate plot-aligned effects due to
management practice. McCullagh writes, “It is absolutely essential to take account
of the geometry of the plots” but he ignores the influence of other effects that
destroy any assumed isotropy in the natural variation of the soil; and underlying
isotropy is itself a somewhat dubious assumption in the first place. I agree that
McCullagh’s rule would often be adequate in practice (e.g., for the Mercer and
Hall data); indeed, many trials these days use plots that are sufficiently long
and narrow for one-dimensional representations to suffice. However, I would still
prefer to include a parameter for directionality, as in BH, rather than rely on the
rule. This may involve a substantial computational overhead, which McCullagh
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conveniently avoids, but it sacrifices negligible information even when the rule
holds. For an example where one-dimensional adjustment suffices but in the
opposite direction to that expected, see Besag and Higdon [(1993), Section 1].
McCullagh’s “absolutely essential” seems to me to indulge an inappropriate
mathematical assumption.

Variety effects (Section 8.3). McCullagh claims, “variety effects must be
multiplicative,” as a result of certain mathematical assumptions. This would lead
me to reject the assumptions! Variety effects cannot be perfectly additive on yield
itself, because yields cannot be negative, but this is a different point and is usually
irrelevant in practice. Of course, I agree that one often needs to transform the data
to achieve approximate additivity.

Incidentally, the need to attach a prior to variety effects in a Bayesian analysis
will be seen by many as a handicap but I think this is mistaken. Experience
suggests close numerical agreement between frequentist and Bayesian results for
corresponding spatial formulations when an approximately uniform variety prior
is adopted. However, in practice, varieties within known groups may be genetically
very similar, in which case it is natural to adopt appropriate Gaussian (or perhaps ¢)
priors, which result in appropriate shrinkage of the estimates, particularly when
there is little replication. This would again help prevent the frustration of plant
breeders mentioned above.

Stationarity (Section 8.3). McCullagh agrees that stationarity of the environ-
mental (random) effects is dubious (at the scale of the experiment). My experience
in fitting stationary lattice schemes is that typically one obtains parameter values
on the nonstationary edge of the parameter space, a finding that is not restricted to
agricultural data. Thus, following Kiinsch (1987), I have preferred instead to use
limiting intrinsic versions. For example, in one spatial dimension, a first-order sta-
tionary autoregression becomes a random walk, with an arbitrary level rather than
being tied down somewhere. The increments need not be Gaussian. In two dimen-
sions, a first-order Gaussian intrinsic autoregression can be interpreted in terms
of locally planar interpolation, in the same sense that a Gaussian random walk,
viewed bilaterally, is locally linear. Again the level is arbitrary, in accordance with
a definition of fertility based on variation. Mathematically, the scheme is an inde-
pendent increments process, subject to the logical constraint that the increments on
any loop sum to zero. This may be a useful interpretation in devising non-Gaussian
versions. BH also discusses locally quadratic representations that do not attenuate
peaks and troughs but suggests that these may overfit fertility.

Spatial scale (Section 8). Scale invariance, at least to a very good approxi-
mation, is a requirement for any genuine model of “fertility” and so it is natural
to begin in continuous space, even if eventual interest is in discrete plots. How-
ever, it is less clear whether one should work in four-dimensional space—time, in
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three-dimensional space or merely in two dimensions. Even in two dimensions,
there has been rather limited success in devising plausible formulations that are
amenable to integration. In geography, the issue of invariance is referred to as the
modifiable areal unit problem and has a long history. In statistics, early references
are Heine (1955), Whittle (1962) and Matérn (1986), first published (remarkably)
in 1960. However, it seems extremely unlikely that any formulation can be thought
of as an accurate model for variation in fertility without additional measurements
of factors that influence the growth of the particular crop under study. These could
be in the form of extensive soil measurements, such as pH levels, or the use of
check plots of a standard variety, dispersed over the experimental site, as occurs in
single-replicate early generation trials.

Fortunately, the sole purpose of variety trials is to compare varieties, not
to assess spatial variation, which enters the formulation merely as a nuisance
factor. With the benefit of some replication, it seems reasonable to expect that
an approximate representation of “fertility” is generally adequate for statistical
analysis. All the investigations that I know of support this view. Such investigations
usually involve uniformity data to which dummy variety effects are added, so that
the true values are known to be zero. An early example is in Besag and Kemp-
ton (1986). The findings typically suggest that the gains from spatial analysis in
a badly designed experiment provide improvements commensurate with standard
analysis and optimal design. This is not a reason to adopt poor designs but the
simple fact is that, despite the efforts of statisticians, many experiments are carried
out using nothing better than randomized complete blocks.

It is highly desirable that the representation of fertility is flexible but is also
parsimonious because there are many variety effects to be estimated, with very
limited replication. McCullagh’s use of discrete approximations to harmonic
functions in Section 8 fails on both counts: first, local maxima or minima cannot
exist except (artificially) at plots on the edge of the trial; second, the degrees of
freedom lost in the fit equals the number of such plots and is therefore substantial
(in fact, four less in a rectangular layout because the corner plots are ignored
throughout the analysis!).

Nevertheless, there is something appealing about the averaging property of
harmonic functions, if only it were a little more flexible. What is required is a
random effects (in frequentist terms) version and that is precisely the thinking
behind the use of intrinsic autoregressions in BH and elsewhere. Indeed, such
schemes fit McCullagh’s discretized harmonic functions perfectly, except for edge
effects (because BH embeds the array in a larger one to cater for such effects),
and they also provide a good fit to more plausible fertility functions. For specific
comments on the Mercer and Hall data, see below.

Of course, spatial scale remains an important issue for variety trials and indeed
is discussed empirically in Section 2.3 and in the rejoinder of BH. For one-
dimensional adjustment, the simplest plausible continuum process is Brownian
motion with an arbitrary level, for which the necessary integrations can be
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implemented rigorously in the analysis. In the example in BH, there is close
agreement between the estimates from the discrete and continuous formulations
(which are not quite consistent mathematically). In two-dimensional adjustment,
one can experiment with splitting the plots and comparing the results obtained
from the fertility priors at the two scales. This can be done rigorously via MCMC
by treating the yields in each pair of half plots as unknown but summing to the
observed value. The few examples I have tried again suggest close agreement
but, of course, I would much rather see a sound mathematical justification of
approximate closure under spatial aggregation. This might be available via an
appropriate extension of McCullagh’s harmonic processes.

Mercer and Hall data (Section 8.6). McCullagh does not draw a clear
distinction between the purposes of analyzing data from uniformity trials and
from genuine variety trials. He also comments on a purely illustrative analysis
of mine from more than 25 years ago about which I wrote [Besag (1974)], “It
cannot be claimed that the present auto-normal schemes have been successful
in reflecting the overall probabilistic structure of the wheat plots process.” The
perhaps definitive discussion of the Mercer and Hall data is McBratney and
Webster (1981), which uses the original records from Rothamsted Experimental
Station to explain the characteristics noted by McCullagh, in terms of a previous
ridge and furrow system. McCullagh’s formulation includes fixed effects for rows
and columns in addition to those for the harmonic approximation, so that more
than 120 parameters are fitted. This type of approach does not seem well suited to
variety trials. The BH formulation fits two parameters, one of which provides data-
driven directional flexibility, which McCullagh does not allow. Although, after 90
years, the Mercer and Hall data are now very tired indeed and deserve a decent
burial, it might be worth noting that the basic BH fit at least retains all of the
peaks and troughs in McBratney and Webster’s Table 1, though it is certainly not
a physical model.

Spatial design (Section 8.7). McCullagh proposes the development of a theory
of efficient harmonic designs for agricultural experiments. Such designs would be
very close to those that exist already for more relevant spatial formulations. For a
recent review, see Atkinson and Bailey (2001), especially Section 10.

Conclusion. Although McCullagh’s paper makes many valuable points,
I believe that the approach is too rigid and places an emphasis on pure mathematics
that is inappropriate for applied statistics. The paper promotes a universality in
statistical modeling that is seldom present or necessary in practice. The role of
approximation and its interrelationship with sample size seem to be ignored. As
regards spatial statistics, the paper rediscovers old problems but does not yet
provide effective solutions. Nevertheless, I am glad to end on a positive note by
agreeing that the generalized covariance function in Section 8.6, known as the
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de Wijs model in geostatistics and dating back to the early 1950s, may be useful in
developing more coherent spatial formulations for the analysis of agricultural field
experiments.
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DISCUSSION

BY PETER J. BICKEL

University of California, Berkeley

Peter McCullagh is to be congratulated for this formidable paper reexamining
the questions of what is a statistical model and what is a parameter in terms of one
of the major mathematical developments of the late twentieth century, the algebraic
theory of categories.

I cannot but agree with the major points that McCullagh makes in connection
with designed experiments which are at the base of his analysis.

1. Models must be embedded in suitable structures that permit extrapolation.
A rather practical example of this issue not explicitly raised in this paper
arises in well-designed clinical trials where permutation and rank tests assure
us that any inference we make about the null hypothesis is valid without
any assumptions on the nature of the subjects. This is, however, essentially
irrelevant since we are interested not in the group on which the trials are being
performed but a putative population of interest from which they were drawn.
That is, one needs to talk about probability distributions referring to populations
in the end rather than experimental randomization.

2. One must also consider a world of experiments in which to embed the
experiment one performs. This seems an entirely correct and novel insight.
That means one must consider collections of sets of probability distributions
with specified allowable relations between them.

3. One must only consider parameters viewed as functions on the set of
distributions to be relevant if they map properly in terms of the relations
between experiments.

Unfortunately, I find the mathematics of category theory which McCullagh,
I think necessarily, has to invoke, entirely unfamiliar. Since, in general, I have been
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interested in data not from designed experiments, hopefully such mathematics is
not too necessary.

Having said this I would like to comment on an example discussed by
McCullagh, Box—Cox transformations, which Doksum and I discussed many years
ago. As McCullagh notes, Hinkley and Runger validly criticized the analysis in
which we concluded that one could not act as if the shape parameters were known
in estimating regression parameters S, that is, that there was variance inflation
due to the correlation between the estimates of the shape parameter A and the
estimate of 8. Their critique was that statements about 8 in the absence of A
were meaningless. McCullagh gives a formal argument in his framework why g
by itself is not a parameter when one takes into account that parameters must map
appropriately under the mappings between experiments in which one changes units
by scalar multiplication or taking powers.

There are two attractive choices among the parameters he lists as allowable,
B/o and (B, A). The first has been considered by a number of authors, most
recently by Chen, Lockhart and Stephens (2002). One reason for its attractiveness
to me is that if one considers the more realistic semiparametric model,

(6) a(Y)=pBX +e¢,

where a is an arbitrary monotone transformation and ¢ has a N (u, o2) distribution
then /o is identifiable and estimable at the n~!/? rate while 8 is not identifiable.
Bickel and Ritov (1997) discuss ways of estimating /0 and a which is also
estimable at rate n~!/2 optimally and suggest approaches to algorithms in their
paper.

The choice (8, 1) is of interest to me because its consideration is the appropriate
response to the Hinkley—Runger critique. One needs to specify a joint confidence
region for (8, A) making statements such as “the effect magnitude § on the X scale
is consistent with the data.”

The effect of lack of knowledge of A on the variance of 8 remains interpretable.

It would be more attractive if McCullagh could somehow divorce the calculus
of this paper from the language of functors, morphisms and canonical diagrams
for more analysis-oriented statisticians such as myself.
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BY HANS BR@NS

University of Copenhagen

Peter McCullagh’s paper is exciting, because it can be seen as the start of a new,
long overdue discussion of the mathematical foundation of the theory of statistics.
He rightly points out that only part of the thinking in theoretical statistics is
formalized mathematically and tries to extend the existing theory of statistical
modelling using modern abstract mathematical tools. This is a great philosophical
challenge, but it is a formidable pedagogical task to communicate the results to the
statisticians.

The paper contains beyond the abstract definition of the new extended concept
of a statistical model a treasure trove of examples and counterexamples, but I shall
concentrate on an analysis of the definition of models. McCullagh’s idea is that
parameter spaces and sample spaces which are usually treated as sets or measure
spaces in applications have a richer structure defining what one could be tempted
to call their “physical nature,” which should be reflected in the models and in the
choice of transformations between them. This is done by giving them an inner
structure, symmetry for example, and by considering each model as a unit in a
greater universe of models. To give this a mathematical expression, the much loved
and much hated theory of categories is used.

McCullagh’s categories are a little bushy. Any object in any category can be
connected by an arrow with any other object in any of the categories considered.
They are evidently assumed to be built on sets and can therefore be connected by
functions; that is, they are all concrete categories [Mac Lane (1998), page 26].
A category A is concrete, if it is equipped with a faithful (injective on hom-
sets) functor to the category Set of sets and functions. Let this forgetful functor
be denoted by U 4.

Several of the categories constructed by McCullagh are so-called comma
categories [Mac Lane (1998), page 46]. Consider a diagram

8L alc

of three categories and two functors with the same codomain. The comma category
from T to S, denoted (7, S) or (T | S) as we shall do, has as objects triples
(b,c, f), where b is an object in category B, ¢ an object in category C, and
f:Th — Sc is an arrow in category +. Arrows between objects (b, c, f) and
V', ¢, f') in the category (T | S) are all pairs (g, g’) consisting of an arrow
g:b — b’ in category B and an arrow g’':¢ — ¢’ in category € such that the
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diagram

Tg
Th — TV’

b
Sg’

S¢ —— 8¢’

is commutative. Composition in (7 |, S) is coordinatewise, and identities are pairs
of identities.

By taking the first and second coordinates of the objects and arrows in the
comma category it is provided with a pair of natural (forgetful) projection functors

82 (1852 e

Let O be a category with object class obj(D) and let D:D — (T | S) be a
functor (if O is small enough D would be called a diagram over D in the
comma category). For d € obj(D) put D(d) = (D1(d), D>(d), D3(d)) such that
D3(d): T(D1(d)) — S(D2(d)) in A. By joggling the symbols it is seen that the
family (D3(d))dcobjp) 18 a natural transformation 7 o D — S o D:D — A.
The mapping D + (Prg o D, Pre o D, (D3(d))dcobj(p)) 1s a 1-1 correspondence
between functors D:D — (T | S) and triples (Dg, De, m) consisting of a
functor Dg:D — B, a functor De:D — €, and a natural transformation
w:ToDg— SoDe:D — . In this way a diagram in (T | S) is identified
with a natural transformation between certain functors.

In his most general definition of a statistical model McCullagh starts with
three categories: (1) the category caty; of statistical units, (2) the category caty
of response scales, and (3) the category catg of covariate spaces. From these he
first constructs the category catgp of designs as a comma category, in our notation:

catp = (Ucatu J Ucatg)
and then the category catg of sample spaces as a product category,
cats = caty x caty) .

Finally, the basic category is the product category caty X cat?g. Let

P
Pry op rcat%} op
caty <— caty X caty — caty

be the diagram of projections. Since

idcatv XPrcatOP

U caty x cat({f = catyg,

caty X catg

both catgp and catg can be derived from the basic category.
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The objects of catg are the sample spaces 4 which are carriers of probability
distributions with & (4) the set of probability distributions on 4. Sample spaces are
therefore not just sets in general, but must be sets with some kind of measurability
property by having an attached o -algebra of subsets to support abstract probabilitiy
measures, by having the structure of a locally compact topological space to be the
basis for a normed Radon-measure, or by having some similar structure. Arrows
between two such spaces should be measurable, proper or something similar, such
that transformation of probability measures is defined. These properties should
be part of the definition of the basic category, and they ensure the existence of a
(faithful) functor V from catg to the concrete category MeasSet of measurable
sets and measurable mappings. If to an arrow 7 : 8§ — 8’ in MeasSet we assign the
mapping P (t): P (8) — P(8’) that carries a probability measure on 4§ into the
t-transformed probability on §’, we get a functor & : MeasSet — Set.

The parameter ® in McCullagh’s model is a contravariant functor on catg to
a not very accurately specified concrete category X, and the model is a natural
transformation,

P:Uggo@oPrcat%) oPr

cat.

> .
o —> P 0O o (idcaty, X Pr

op
: X —
%n) caty x caty — Set

or in more detail,

0
caty x caty
Pr_op idcatyy XPr__ op

op op

cat gy caty X catq,
Pr
(23[?2p

Op P
catg, = catg
o l v

K MeasSet
k /
Set

Besides considering this overall structure McCullagh puts specific contraints on
the arrows in some of the categories, constraints of the same sort as limiting factors
to be surjective mappings in the multifactor analysis of variance models. Such
restrictions tend to make the mathematical formalization heavier and are really not
needed.

The simplest statistical models in McCullagh’s paper are the (parametrized)
statistical models, which are triples (®, 4, P) consisting of a parameter set, a
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sample space, and a mapping P : ® — £ (48). The obvious choice of an arrow from
a statistical model (©, 4, P) to another (®', 8, P’) is a pair (¢, r) of a mapping
¢:©® — O and a measurable mapping 7 : 8§ — 8’ such that the diagram

P
e —— P(43)

¢ l l P
P/

@ — P&

is commutative. In this way a category StatMod is created, which is precisely the
comma category (idset | ). This category of statistical models can be interpreted
as the sea in which statisticians maneuver or the universe in which they live their
mathematical lives and can never escape. To include all statistical transformations
Markov kernels must be allowed, but let us leave that aside.

Returning to McCullagh’s general model we find, using the result above, that
the natural transformation

P :idgeto Uy 0 ®oPr_ opoPr

> .
catgy cat%}z — PoBo (ldcatv x Pr

. op
cat‘;f) :caty X caty — Set

is equivalent to a functor
P :caty x cat?g — (idget 4 ),

or a “diagram” over the basic category in StatModel. McCullagh’s models are
therefore diagrams over a special kind of category in the category of statistical
models. If we consider the complicated definition of the basic category and the
difficulty with which McCullagh argues for the “scale of measurement,” it is
hard to see why only this special kind of category is included in the theory. The
basic principle is that the elementary models considered are object values for the
functor P and the arrows between them are arrow values of P. It seems natural to
consider diagrams over arbitrary categories. This will then include inbeddings of
subcategories, which seems to be very desirable.

McCullagh has some considerations on product sets, product categories, and
repetitive models. His definition of a product category is not completely clear and
not the usual one. Technically, the best way to treat structures of this kind is to
use monoidal categories, monoidal functors and monoidal natural transformations,
that is, categories with a tensor product, functors between two monoidal categories
with a monoidal structure connecting the tensor products in the two categories
and natural transformations respecting the monoidal structures of the monoidal
functors they go between [see Mac Lane (1998), page 161]. In the category Set
the Cartesian product is a tensor product, in MeasSet the Cartesian product of two
measurable sets equipped with, for example, the product o -algebra, is a tensor
product, and the functor J :MeasSet — Set has a monoidal structure from the
mapping of two probabilities into the product probability. The monoidal structure
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of the functors defining a comma category extends to a tensor product on the
comma category, in our example producing the product of statistical models. The
diagrams in StatMod should be over monoidal categories and should be monoidal
functors, etc.

McCullagh’s definition of a natural parameter or subparameter seems to be
in accordance with the definition of the extended models. It is sad that he does
not consider the consequences on the sample side. His main achievement is to
have convincingly emphasized the importance of imposing further structure on the
statistical models to give them more of a physical life and to have made a succesful
attempt at formalizing this idea. We should be thankful for his drive and courage.
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DISCUSSION

By D. A. S. FRASER AND N. REID

University of Toronto

This is an important and very original examination of statistical modelling,
which is such a ubiquitous part of statistical theory and statistical practice that
it is usually nearly overlooked. McCullagh provides a substantial examination
and structuring of this serious foundational issue; indeed, the examination is both
intensive and extensive. Foundational issues have not been prominent in statistics
for some time, perhaps not since the shift away from the decision theoretic
approach to the more pragmatic addressing of individual applied problems. It is
gratifying now to see this substantial examination of the foundational issue of
statistical modelling.

McCullagh motivates his development with a series of examples that display
various logical or structural anomalies that can arise in the use and application
of the examples. Most of the examples are extreme, but this is appropriate for
highlighting potential difficulties.

His development works from the familiar definition of a model as a set of
probability distributions on a sample space and a parameterized model as having
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in addition a mapping from a parameter space into the set of distributions. The
discussion focusses on how a model impacts on the context being examined, and
how it might extend in applications to broader contexts. Category theory is used to
provide the general framework for this.

One could reasonably question the familiar definition of a model in various
simple ways. Do we wish to speak of just a set of possible response distributions
as providing the core model of statistics? Why not perhaps the minimal step up
to the perception of a black box mechanism, with the output being the response
variable and an input dial giving the parameter value that determines the response
distribution, or are we so influenced by set theory that we would view these as
the same? One could argue that the two formulations are isomorphic, but the
perception and accessibility and influence for the latter are quite different. The
former describes an essentially unrelated set of possible statistical behaviors while
the latter at least conceptualizes a behavioral pattern that is changed by the input
dial [Fraser (1968a)].

The modelling should perhaps be more elaborate still. Most deterministic sys-
tems identify discrete component elements with linkages among these. The sys-
tem is not modelled by just recording the set of pairs consisting of the determined
outcome response with the corresponding input values. The components and the
directions of causes and influences are modelled as well. Why should it be less
for the statistical model? While the theory of graphical models does attempt to
describe such linkages, much of applied statistics does not.

In many contexts there are identifiable sources for variation and error contribu-
tion. Shouldn’t these individual sources, rather than the global effect, be directly
modelled? The discussion in the paper does not address such more elaborate mod-
elling. Does it matter when the response behavior is the same? It can matter in
terms of what is known about the system when output values are observed. When
the detailed model provides more information, one should certainly expect to ob-
tain more for inference. An examination of statistical models that does not go be-
yond the pre-black box modelling to include specific elements of structure such as
the error variables and other internal component elements can be viewed as short
on the “extensive” side of coverage.

The attention given to component parameters is needed and very welcome. The
artificiality of the regression parameters for the Box—Cox model has taken a long
time to emerge with such clarity as it does here. It is also very interesting to
have a mathematical explanation of the widely (but not uniformly) adopted rule
in applied work that models with interactions and no corresponding main effects
are not sensible.

In the context of transformation models there is some discussion of the nature
of particular component parameters in Fraser [(1968b), page 65]. Consider a
transformation model with parameter 6 taking values in a transformation group
and with identifiable error variable, say z; thus y = 6z. In this transformation
model setting what does it mean to say a component parameter ¢ is natural?
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It is argued in Fraser [(1968b), page 65] that a component parameter is natural
if it indexes the left cosets of a subgroup. The arguments are not dissimilar to
those arguing in reverse that the regression parameter 8 is not a natural parameter
for the Box and Cox model. Also, suppose for simplicity that the application of
the group is unitary and that left and right invariant measures on the group are
available. The model is invariant in the sense that y = gy has distribution with
parameter value & = g6. The application of the group to the parameter space
would suggest the left invariant measure d i (6) as the natural default prior measure
for the parameter. But if we view the transformation 6 as being relative to some
initial error presentation then we might change that presentation and have 6 = 0k
applied to the modified error as 42 ~!z. We might then want invariance relative to the
transformation 6 = Ah. This then suggests that we should use the right invariant
measure dv(6) as the natural default measure for the parameter, a default measure
often preferred in the Bayesian context.

The weighing in of category theory leading to the definition of a natural
parameter would seem to need to be qualified by an acceptance that a statistical
model in an application is only providing some reasonable approximation to the
reality under investigation. Thus, for example, in Section 6.1 it is noted that
the coefficient of variation is not a natural component parameter; but in many
applications it can be a very useful and informative parameter.

McCullagh shows how category theory provides a frame of reference for
examining various simple but anomalous examples. But can category theory
do more than provide a frame of reference? Can it provide a positive way of
implementing and extracting anomalies in modelling? It is clear that the subject of
category theory is difficult to master. Perhaps it would be better to extract simple
and broadly based principles for modelling. Or will the approach need to be one
of seeking the anomalous examples and then seeking the related principle.

The Cauchy example highlights an important point. McCullagh notes that
the location parameter is not a natural parameter in the context of the linear
fractional group. The concerns for the linear fractional group should perhaps go
further. A typical transformation is not a mapping of the real line to itself, but
can map a point to the point at infinity and vice versa; a rather severe lack of
continuity. McCullagh (1992) used these transformations to illustrate the apparent
nonuniqueness of the common ancillary statistic for location scale analysis. For
this the proposed reference set from the use of the linear fractional group is the
contour corresponding to the observed value of the ancillary, and will have multiple
points with one or another coordinate at infinity, hardly a reference set with the
reasonable continuity expected for applications. It would seem appropriate that
such anomalies be avoided at the foundational assessment level for the model.
Thus the use of the linear fractional group for assessing the location model should
be rejected less for the anomalous nature of the location parameter and more for
the fact that it does not provide mappings of the sample space to itself.
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This is a very comprehensive examination of serious foundational issues for
statistical theory and practice. We look forward to new examples of anomalies
uncovered by category theory and also to a wider concern for foundational issues.
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University of Oslo

Theoretical statistics has since the beginning been founded on the idea that a
statistical model is just a parametric family of probability measures. Now Peter
McCullagh has given us a much richer model concept, and, importantly, this is
strictly motivated from applied science considerations.

In fact this new model concept is so rich and at the same time so abstract that
it will take time for us to absorb it and for the statistical community to assess its
implications. Therefore I will limit these comments to the simplest situation, which
is a model under symmetry, so that the categories involved are groups. The idea
that it might be useful to supplement the choice of a statistical model—in the sense
of a parametric class of measures—by the choice of a symmetry group, is an old
one, albeit still somewhat controversial regarding its implications. One thing that is
new here in McCullagh’s approach is the systematic use of the concept of natural
subparameter. I will expand a little on this concept, using parallel developments
from Helland (2002).

Let a group G be defined on the parameter space ® of a model. A measurable
function £ from ® to another space E is called a natural subparameter if £(61) =
£(0y) implies £(g01) = &(g0,) forall g € G.

For example, in the location and scale case the location parameter o and the
scale parameter o are natural, while the coefficient of variation /o is not natural
(it is if the group is changed to the pure scale group). In general the parameter &
is natural iff the level sets of the function & = £(0) are transformed onto other



WHAT IS A STATISTICAL MODEL? 1287

level sets by elements of the group G. Using this on the location and scale group,
and making some smoothness assumptions, one can prove that & is natural iff
& =u(kip + kyo) for some 1-1 function u and some constants k| and k.

Thus the assumption that a given subparameter is natural is definitely a restric-
tion. Yet McCullagh indicates through his examples that in general statistical in-
ference should be limited to natural subparameters. 1 will give some additional
arguments to support this rather radical statement. ~

First, £ is a natural subparameter if and only a new group G can be defined
consistently on E by g&(0) = £(g0). This means that for natural subparameters,
group-based inference can be done in a similar way as with the original parameter.

To illustrate this, consider a general and useful result on equality between
confidence sets and credibility sets. Let 5(9) be a one-dimensional continuous
natural parametric function, and let 51 (x) and 52 (x) be two equivariant estimators.
[An estimator is called equivariant if S(gx) = g(“;‘ (x)) for all g, x.] Let the
group G be locally compact, transitive and proper; that is, the actions of G on
the sample space should be continuous, and the inverse image of compact sets
under the mapping (g, x) — (gx, x) should be compact, a rather weak technical
requirement. Define C(x) = {0 : 51 (x)<E&@) < 52 (x)}, and let 6 have a prior given
by the right Haar measure from the group G. Then C(x) is both a credibility set
and a confidence set with the same associated probability/ confidence level.

The requirement that a subparameter should be natural may also help to resolve
certain inconsistencies in statistical inference, in particular the marginalization
inconsistency discussed in detail by Dawid, Stone and Zidek (1973). Their main
problem is a violation of the plausible reduction principle: assume that a general
method of inference, applied to data (y, z), leads to an answer that in fact depends
on z alone. Then the same answer should appear if the same method is applied to z
alone.

A Bayesian implementation of this principle runs as follows: assume first that
the probability density p(y, z | 1, ¢) depends on the parameter 6 = (, {) in such
a way that the marginal density p(z | ¢) only depends upon ¢. Then the following
implication should hold: if (a) the marginal posterior density (¢ | y, z) depends
on the data (y, z) only through z, then (b) this 7 (¢ | z) should be proportional to
a(¢)p(z | ¢) for some function a(¢), so that it is proportional to a posterior based
solely on the z data. For a proper prior 7 (1, ¢) this can be shown to hold with a(¢)
being the appropriate marginal prior 7 (¢). Dawid, Stone and Zidek (1973) gave
several examples where the implication above is violated by improper priors of the
kind that we sometimes expect to have in objective Bayes inference.

For our purpose, the interesting case is when there is a transformation group G
defined on the parameter space. Under the assumption that ¢ is maximal invariant
under G and making some regularity conditions, it is then first shown by Dawid,
Stone and Zidek (1973) that it necessarily follows that p(z | n, ¢) only depends
upon ¢, next (a) is shown to hold always, and finally (b) holds if and only if the
prior is of the form v (dn) d¢, where vg is right Haar measure, and the measure
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d¢ is arbitrary. Thus for this situation with such a prior not only does the reduction
principle hold; we also have that the premises of the principle are automatically
satisfied.

The strong assumption made above was that ¢ is invariant. In a second class
of examples Dawid, Stone and Zidek (1973) show that this assumption cannot be
violated arbitrarily. In Helland (2002) we show that it is essentially enough to make
the much weaker assumption that ¢ is a natural subparameter.

Specifically, assume that ¢ is natural, and let K be the subgroup of G given by
K ={g:t(gh) = ¢(0) for all 8}. Then ¢ is maximal invariant under K. Assume
also that z is maximal invariant under the corresponding group acting on the
sample space. Then using right Haar prior under G on the parameter space ©, we
have that any data (y, z) leads to a posterior of ¢ proportional to the one obtained
from only data z.

A simple example is provided by letting G be the location and scale group
defined by u — a + bu, 0 — bo (b > 0), and then taking ¢ = p or { = o when
the right invariant prior is du do/o. There is no marginalization paradox in this
case.

In all such examples the choice of group is crucial. Some general requirements
on this choice can be specified: (i) the class of probability distributions should be
closed under the transformations in the group; (ii) if the problem is formulated
in terms of a loss function, this should be unchanged when observations and
parameters are transformed conformably by the group; (iii) the right Haar measure
of the group should be chosen as the uninformative prior for the problem.
A further requirement is that all parametric functions of interest should be natural
subparameters with respect to the group. It is this last requirement which makes
the location and scale group, not the group of real fractional linear transformations,
the canonical choice for the Cauchy distribution case.

Statistical models can be reduced by keeping one subparameter constant and
focusing on the remaining parameter. Reduction of statistical models is often
useful in prediction settings. Every model reduction should be via a natural
subparameter. We also know quite generally that the parameter along an orbit of the
group can be estimated in an optimal way by a Pitman type estimator. Therefore,
to be of use in estimation or prediction, model reduction should be limited to only
concerning the orbit indices of the group. This was used in Helland (2001) to
motivate model reduction in regression problems which gives a relationship to the
chemometricians’ partial least squares regression.

There is a situation resembling model reduction, however, which should
not necessarily be done via natural subparameters: assume that ¢ € W is a
superparameter that can be used to describe several experiments, among which
a choice must be made. Assume also that a group is defined on W. Then the
parameters of the single experiments are not necessarily natural subparameters
of ¢. It may namely be the case that the subparameter makes sense only relative
to this particular subexperiment, not in any global way.
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Consider as an example the following situation: assume that the model of two
experiments on the same unit depends upon which experiment is carried out first,
say that the parameter of the first experiment is 61 (Y, «) if this is done first,
otherwise 01 (¥, B), where there is a given relationship between « and . Let the
morphisms contain permutation of the order of the experiments. Then, in general,
01 will not be a natural subparameter.

It is tempting to approach quantum physics from a statistical point of view
by saying that it contains a number of situations with similar properties. In fact,
one can proceed quite a bit from this, but there are also very difficult questions
in this approach, in particular in understanding the formal structure of quantum
mechanics. It seems, however, that group representation theory may be of some
help, combined with a systematic reduction of statistical models.

In working in such new directions it is very important that we now have a better
characterization of what a statistical model is. The kind of precise link between
common sense and formal theory which Peter McCullagh has demonstrated so
forcefully in his paper, is indeed useful for several purposes, and it may set a
standard for much theoretical work in statistics.
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McCullagh’s paper is a plea for more realistic statistical models. He hopes
to enforce sensibility of models through category theory, by imbedding some
equivalent of “having a well-defined meaning” into the formal theory. I certainly
agree with his aims and that it is necessary to pay attention to the inference domain
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and that category theory may help you to do so. But I must confess that I stumbled
over some telltale idiosyncrasies of his terminology. He variously denotes bad
models as “absurd,” “eccentric,” “arbitrary” or “capricious.” For me, a statistical
model ordinarily is supposed to model some real-world situation, and as such it
either is adequate, or it is not. His attributes do not apply, except to straw-man
models concocted by a mathematical statistician. Correspondingly, he may go
too far with his attempts to discuss sensibility of models in the abstract; in my
opinion, constant reference to the underlying real-world situation is advisable and
even necessary. If the latter is capricious, the model should faithfully render this
capriciousness! I am thinking here, for example, of the distinction between integral
and half-integral spin values in quantum mechanics, which to the uninitiated
looks no less absurd or artificial than the even-odd distinction in McCullagh’s
Exercises 1, 2 and 4.

In the following, I shall concentrate on the category theory aspects of the
paper. I should begin by recounting some bygone experiences of my own. More
than forty years ago—I had just finished a thesis in category theory [Huber
(1961)]—I went to Berkeley to learn statistics. There, I sat in Lucien Le Cam’s
courses on decision theory. He devoted much time, I believe an entire term, to
the comparison of experiments in the style of his recently submitted, but as yet
unpublished 1964 paper in the Annals. One should know that Le Cam loved
abstractness and at that time was enthusiastic about Grothendieck’s (1955) thesis.
To avoid possible misunderstandings I should add that that thesis was in functional
analysis, not in homological algebra [see Cartier (2001), page 392 for some
of the background]. In Le Cam’s terminology, an “experiment” is exactly the
same as a “model” in McCullagh’s sense, namely a parameter set ® together
with a function P:® — S (X), which assigns to each parameter point 0 € ®
a probability distribution Py on the sample space X. Le Cam, however, found it
convenient to replace this classical notion of experiment by a weaker structure
consisting of a vector lattice with a unit, E, together with a family indexed by ®
of positive normalized linear functionals on E [Le Cam (1964), pages 1420-
1421]. With some restriction of generality, £ may be thought of as the space of
bounded observable random variables on X, and to facilitate this interpretation,
the set X was retained by Le Cam as a part of the structure. Moreover, since he
wanted to handle sufficiency, simple pointwise maps would not do, and Le Cam
had to replace them by randomized maps, or transition functions (see the example
below). Anyway, things got pretty complex, and to sort them out in my own mind,
I rephrased the fundamentals of Le Cam’s theory in categorical language.

Example: Sufficient statistics. Let Experiment A consist in observing X =
(X1,..., Xn), where the X; are i.i.d. N(pu, 02), while Experiment B consists in
observing two independent variables (U, V), where U is N'(u, o2 /n), and V /(72
18 Xr%—l‘ There is a natural map from A to B [U = X=n"! X, V= $2 =
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(X — X)2]. On the other hand, since the conditional distribution of X =
(X1,...,X,) given (X, $2) does not depend on (pu, 02), there is a randomized
map (or transition function) from B to A, reconstructing a sample ¥ = (Y1, ..., Y,)
having the same stochastic properties as the original sample X for all values of
(pm, o). With suitably chosen definitions, these two morphisms from A to B and
from B to A would be inverse to each other.

In order to deal with situations occurring in the analysis of variance, one had to
consider randomized maps not only of the sample spaces, but also of the parameter
spaces. Thus, morphisms in the category of statistical experiments really were
suitably defined equivalence classes at least of pairs of transition functions, and
built-in redundancies (vector lattices and sample spaces) complicated matters even
further.

Categorical thinking, that is: thinking in terms of morphisms, functors and
commutative diagrams, always helps to clarify the underlying structure of
mathematical objects, to define structural isomorphisms properly, and in particular,
to recognize morphisms that are natural (or canonical). Rephrasing statistical
problems in categorical language had clarified my thinking about some of them
in a crucial fashion. In particular, it had helped me to understand and properly
formalize the concept of invariance of a statistical experiment within Le Cam’s
framework of topological vector lattices, and hence to formulate and prove the
Hunt-Stein theorem in what I still believe to be its natural habitat; see the remarks
by Brown [(1984), page 407].

For my own purposes I collected the categorized foundations of Le Cam’s
theory of statistical experiments in a memo which ultimately grew to about 10
to 12 pages, all of it definitions. But then, why did I not expand my little memo
and prepare it for publication? There were two reasons: First, abstract categorical
thinking had helped me only because I already was fluent in that language. Very
few people would profit from a paper piling more abstraction on Le Cam’s already
very abstract setup, and I foresaw that I would have even more difficulties getting
it accepted than Lucien had with his papers (he told us some anecdotes about
his prolonged fights with editors and referees). Second, while my translation
into categorese had streamlined the exposition, it had not added content to these
particular problems. It did not unify different lines of thought (as I had been able
to do in my thesis, for example), it did not lead to new theorems, except very
indirectly, and did not even simplify the proof of a central statement such as the
Blackwell-Sherman—Stein theorem. Apart from that, around that time I became
engrossed in much more exciting robustness problems.

Now, how about McCullagh’s paper? First, when we compare what he does
now to what I did 40 years ago, it is quite illuminating to notice that basically
the same situation can be categorized in more than one fashion. But I think the
same comments, benefits and difficulties apply here too. It may be heartening
to learn that such papers have become publishable in statistical journals now.
McCullagh certainly is able to clarify thinking about models (but I must admit
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that even I myself found it hard to get back into the categorical lingo after 40
years). On the other hand, also in his case, category theory does not seem to
add content. Moreover, against McCullagh I doubt that categories have enough
normative power to prevent one from doing absurd things. This may be the price
we pay for the ability to model also capricious real-world situations.
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“Model” and “modeling” are the most abused, distorted, misleading, self-
serving terms in the contemporary scientific dictionary. Taking a hard look at this
very soft and messy business is most commendable. So is the author’s careful
restriction of his investigation to statistical models, defined, as usual, to be families
of probability distributions, and I am sure he would not object to the further
qualification of mathematical statistical models. Indeed, the paper is a model of
mathematical clarity.

It is very nice also to have attention focused on the technical mathematical
questions of parametrization, motivated via the idea of a “natural map” first
made precise by category theory, which is given a nicely organized summary
in the Appendix, intended for the uninitiated enthusiast. While I cannot pretend
to be an expert, has-been or to-be, as regards the examples in Section 2 around
which the development of the paper is structured, common sense suggests that
statistics cannot but benefit from a more careful look at the storehouse of current
models. McCullagh’s initiative should add much momentum to the constructive
criticism of these models, serving as a substitute for real-world experiments,
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which are not usually feasible in the problem area covered by the paper. In short,
criticism = experimentation, and statistics, today still a nonempirical science, will
be invigorated by a discussion of the kind of issues raised in the paper.

If I now come to more critical comments concerning “models” and “modeling”
it should be clear that these do not apply specifically to McCullagh’s work but
refer to (it is sad that this has to be said) the mainstream statistical literature as
a whole. My critique is that the currently accepted notion of a statistical model
is not scientific; rather, it is a guess at what might constitute (scientific) reality
without the vital element of feedback, that is, without checking the hypothesized,
postulated, wished-for, natural-looking (but in fact only guessed) model against
that reality. To be blunt, as far as is known today, there is no such thing as a
concrete i.i.d. (independent, identically distributed) process, not because this is
not desirable, nice, or even beautiful, but because Nature does not seem to be like
that. (Historical aside: recall that physicists had thought at one time that ether was
such a necessary, unavoidable, appealing, clear and beautiful concept that it must
perforce exist; alas, all physicists now living had to learn that such argumentation
cannot lead to good science.) As Bertrand Russell put it at the end of his long life
devoted to philosophy, “Roughly speaking, what we know is science and what we
don’t know is philosophy.” In the scientific context, but perhaps not in the applied
area, | fear statistical modeling today belongs to the realm of philosophy.

To make this point seems less erudite, let me rephrase it in cruder terms. What
would a scientist expect from statisticians, once he became interested in statistical
problems? He would ask them to explain to him, in some clear-cut cases, the origin
of randomness frequently observed in the real world, and furthermore, when this
explanation depended on the device of a model, he would ask them to continue
to confront that model with the part of reality that the model was supposed to
explain. Something like this was going on three hundred years ago, for example,
in discussions involving male and female births [Arbuthnott (1712)]. But in our
times the idea somehow got lost when i.i.d. became the pampered new baby.

Without trying to fix the blame for all this (why not? someone may well be
responsible, though certainly not the author) it is instructive to look at current
popular hype. A random example is the recent book by Edward J. Beltrami
[(1999), What Is Random?: Chance and Order in Mathematics and Life, 201
pages, Copernicus (a Springer imprint)]. In this the author, very properly, asks what
randomness is in the real world; he notices that “probability” describes a certain
kind of randomness, takes that as his definition of randomness and from then on
speculates on the consequences, apparently forgetting that he did not get around to
explaining or even to describing randomness in Nature. He merely filters through
his own mind great thoughts of great thinkers about probability. Lightweight
reading, a sophisticated joke, not scientific. It is ironic that a serious scientific
publisher, Springer, should be hijacked into putting such shallow philosophical (in
Russell’s sense) stuff into a new series named after a scientific icon, a towering
and independent intellect, an incorruptible critic of soft “applicable” knowledge.
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BY STEVE PINCUS

Guilford, Connecticut

This is a very interesting and thought-provoking paper, which I enjoyed reading.
While the notions of sound statistical models and parameters are essential to
the core of a classical statistical framework, heretofore a broadly applicable,
single (parsimonious) unifying conceptual approach and formalism had not been
put forth, nor one addressing the caveats pointed out in the Introduction in the
present paper. Professor McCullagh now successfully advances such a formalism,
based on the natural algebraic methodology given by category theory, building
on previous work on invariance and factorial models [McCullagh (2000)] and
on quotient spaces and statistical models [McCullagh (1999)]. The author shows
that a diverse range of sensible statistical applications, often considered as distinct
settings, all can be handled within the framework of this formalism. The breadth
of the range of the 12 examples in Section 2 reinforces the scope of the formalism.
Some might argue that this unification could be achieved without introducing
the technologic machinery of category theory or algebra. The crucial point, to
my sensibilities, clarifying that the present (or similar) technology is required
for a general formalism is the discussion of the naturality of subparameter
specification, Section 4.5, with its implications to inference. The concept of a
natural transformation is a central notion within group and category theory, but
not ubiquitous throughout mathematics.

Insofar as cross-pollination between and from algebra to (probability and)
statistics, there is a long and rich history that goes back at least half a century.
Thus the utility of Professor McCullagh’s approach is not unprecedented, although
the extensive application at the level of generality of category theory may be so.
The series of contributions to a variety of statistical problems, including topics as
diverse as experimental design and card shuffling made by Persi Diaconis, Graham
and Kantor (1983), Diaconis (1988) and Rosemary Bailey (1981, 1991), among
others, exploiting group invariance and symmetries are probably well known
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to the readers here. Notably, as well, the history also includes significant and
influential contributions made by Ulf Grenander [e.g., Grenander (1963)] to the
study of patterns, and by Harry Furstenberg (1963) to the study of products of
random matrices (from which the Lyapunov spectra and related dynamical systems
theory parameters are derived). I especially note these latter two mathematicians as
each integrally features Lie group and Lie algebra theory throughout their efforts.
Thus, disciples of these developments, already facile with the algebraic machinery
utilized herein, may be able to make additional contributions atop those developed
to date by the author.

I have two stylistic comments. First, the organization is fine for someone rela-
tively familiar with category theory, but for other readers it may be considerably
more challenging, as it leads heavily with this theory in Sections 3-5. Without a
road map, the interested reader might give up before recognizing the “meat” of the
approach. I’d strongly suggest that relatively early on, before diving headlong into
Sections 3-5, the reader jump to Section 6 and find an example of particular inter-
est, then go back and forth between the theory sections and the examples. One can
then appreciate the formal developments “concretely” from which the abstractions
and generalizations become much clearer. One illuminating example for me was
the example in 6.2, Exercise 10 of Section 2, regarding inference concerning the
correlation coefficient p derived from the standard linear regression model with
one covariate.

The second (and cosmetic) comment is that I prefer the adjective ad hoc to
absurd in describing, for example, the models of Section 2. I agree with the
substance of the author’s point, that there is no hope of a broad or natural theoretic
general framework or basis for these models. Nonetheless, such models are of
course used by well-intended yet (somewhat) naive practitioners to produce, for
example, figures of merit within specific contexts, and I see no need to embarass
the target user.

My major concern is primarily a recognition of a limitation of the algebraic
approach. Namely, the (category theory) technology utilized herein cannot be
readily extended or adapted to address some spiritually related operational
questions that are central to the core of statistical practice. To my sensibilities, this
paper is probabilistic (rather than statistical) in spirit, albeit evidently applied to
model types and problems classically considered by statisticians. I would probably
be happier with the title “What is a parametrized probabilistic (or stochastic
process) model?” This is not “bad,” as I am a probabilist, but the formalism
inferentially bears on processes and distributions, not short and moderate length
sequences apart from their definition as possible initial segments from typical
realizations of a process. The specific technical issue is that an algebraic approach
has a considerable limitation, in the lack of a natural metric. This point is noted by
Professor McCullagh in Section 8.3, albeit towards a very different consideration
(the Besag—Higdon formulation of yield in agricultural field trials): “Algebra does
not easily deal with approximations or inequalities....” The presence of a metric
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is not required in the present paper, and the lack thereof within category theory
does not obviate any of the formal developments. But suppose we wish to consider
which model form is better, given one or several (necessarily finite) realizations,
among two proposed forms? As David Cox (1990) states, “In particular, choice
of an appropriate family of distributions may be the most challenging phase of
analysis.” Most sensible means to resolve such a question, and there are many
such, require a metric, and thus primarily algebraically (particularly category
theory) based attempts would likely be artificial and inadequate. I do wish to
point out if there is topological as well as algebraic structure in a formal model
framework (e.g., a Lie group), then convergence defined by the topology can
resolve the metric question in terms of some limiting or asymptotic behavior; thus
some probabilistic, that is, infinite sequence comparisons can possibly be resolved
within an algebraic framework. But for decidedly nonasymptotic data lengths, and
statistical procedures based on them, many formal descriptions will still require
nonalgebraic approaches.

Finally, also on a related topic, I would like to mention that for discrete state
data, there is a means of assessing the “extent of randomness” or irregularity of
a finite or infinite sequence that does not require a model-based (or stochastic
process) setting, parametrized or otherwise, in the classical sense [Pincus and
Singer (1996); Pincus and Kalman (1997)]. A formalism is developed strictly on a
combinatorial basis, again for both finite and infinite length sequences. This could
be used, for example, in both discrimination and classification contexts, although
this is a separate discussion altogether.
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Peter McCullaghs article is an overwhelming cascade of interesting and
provoking ideas, related to the vague and intutitive concept of “a model making
sense.” As stressed by the author, many of the conclusions coming out of this
are already part of good statistical tradition. But I agree that it is interesting
to investigate to what extent such traditions can be stated as consequences of a
mathematically coherent models concept. What I think is missing, so far, is an
application that results in a conclusion which is nontrivial or even surprising. But
this is probably too much to ask for at the present stage of development.

Some statistical models are canonical. Canonical statistical models include, as
a minimum, the linear normal models (regression and analysis of variance), the
multiplicative Poisson models and the multinomial models derived from these by
conditioning, and the logit linear models for binary data. Very few statisticians
would probably dare to disagree here. A question closely related to the present
paper is: Why are these models canonical? And what is—if anything—a canonical
model?

A partial answer to this question is that a canonical model is a model which
is constructed from other canonical models in a canonical way. Perhaps this
statement is not of much help, but it nevertheless justifies a successful construction
which I would like to reconsider here, since the author has only mentioned it in a
brief remark (in Section 6.4). I am thinking of the models for ordinal data presented
in McCullagh (1980).

Suppose we are dealing with a universe where the natural models for handling
of binary responses are the logistic regression models. This could be some
socioeconomic research area where peoples’ attitudes to various features of brands
or service levels are recorded on a binary scale, and the interest lies in the
dependence of these attitudes on all sorts of background variables. How do we
extend this universe to deal with ordered categorical responses, for example, on
three-point positive/indifferent/negative scales? A natural requirement seems to be
that if data are dichotomized by the (arbitrary) selection of a cutpoint (putting, for
example, negative and indifferent together in a single category), then the marginal
model coming out of this is a logistic regression model. This is, after all, just a
way of recording a binary response, and even though it would hurt any statistician
to throw away information in this way, it is done all the time on more invisible
levels. Another natural requirement is that the parameters of interest—with the
constant term as an obvious exception—should not depend on how the cutpoint
is selected. It is easy to show that these two requirements are met by one and
only one class of models for ordered responses, namely the models that can
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be described by an underlying continuous linear position parameter model with
logistic error distribution, where the responses are grouped by unknown cutpoints.
The underlying continuous model can be regarded as a sort of limit of the discrete
models as the number of ordered categories grows to infinity. A projective limit,
to talk category language.

Another construction in the same spirit, though somewhat less successful from a
theoretical point of view, is the construction of overdispersion models from simple
generalized linear models. Is there a natural extension of logistic regression models
for binomial data or multiplicative Poisson models that can be used in situations
where the goodness-of-fit test shows that the model is incorrect, but point estimates
of parameters and fitted values are, nevertheless, considered relevant and correct?
Can we find a class of statistical models that extends the original generalized linear
model by some scale parameter, in such a way that:

1. the original generalized linear model comes out as a special case when the scale
parameter is fixed and equal to 1;

2. the maximum likelihood estimates in the model for the original “link-function-
linear” parameters coincide with those of the original model (ignoring the
overdispersion).

The answer to this question is no. At least for logistic regression it is
obvious that no such model exists, because the bounded supports of the response
distributions determined by the given binomial totals or indices do not allow for
a freely varying scale parameter in the usual sense. Nevertheless, the hypothetical
answer to this question is the driving force behind the development of the very
useful methods for handling of generalized linear models with overdispersion as
indicated by Nelder and Wedderburn (1972) and further developed by McCullagh
and Nelder (1989). Thus, we have here the absurd situation that the potentially
canonical—but unfortunately nonexisting—answer to a simple and canonical
question results in a collection of very useful methods. The overdispersion models
exist as perfectly respectable operational objects, but not as mathematical objects.
My personal opinion [Tjur (1998)] is that the simplest way of giving these models
a concrete interpretation goes via approximation by nonlinear models for normal
data and a small adjustment of the usual estimation method for these models. But
neither this, nor the concept of quasi-likelihood, answers the fundamental question
whether there is a way of modifying the conditions (1) and (2) above in such a way
that a meaningful theory of generalized linear models with overdispersion comes
out as the unique answer.

It is tempting to ask, in the present context, whether it is a necessity at all
that these models “exist” in the usual sense. Is it so, perhaps, that after a century
or two people will find this question irrelevant, just as we find old discussions
about existence of the number 400 irrelevant? If this is the case, a new attitude to
statistical models is certainly required.
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Statistics as practiced today suffers from many similar problems and paradoxes.
In survival analysis we have Cox’s likelihood, which undoubtably is a canonical
thing, but unfortunately not a likelihood in any model that we know of. In basic
statistical inference, paradoxes related to sequential situations and Birnbaum’s
paradox are among the problems we have learned to ignore and live with. This
does not have much to do with Peter McCullaghs paper, but it illustrates the need
for a clarification of basic concepts. A more restrictive definition of a statistical
model than the usual one by arbitrary families of probability distributions on a
sample space may turn out to be a necessary ingredient here.

Certain aspects of Peter McCullagh’s exposition take us back to the roots, in the
sense that many of the ideas that he expresses in terms of category theory are very
similar to ingredients of the slightly old-fashioned way of expressing models in
terms of populations and samples, rather than probability distributions and random
variables. I would like to stress this by repeating a single point he has concerning
regression analysis. Just to emphasize that category theory is not a necessary tool
here, but only a convenient language, I will try to do it without this tool.

The standard textbook way of specifying a simple regression model is to say that
we have observations y; of independent normal random variables Y;,i =1, ..., n,
with the same variance o2 and expectations of the form « + Sx;, where x1, ..., x,
are known quantities. This is undoubtably a useful way of saying it, but it has
the drawback that it does not specify the parameters that can be meaningfully
estimated. Quantities like the sample size n and the average expectation « 4 8x (or,
more complicated, the correlation coefficient as suggested by the author) can be
estimated without problems in this model, but this is irrelevant for most purposes
because these quanties are related not only to the unknown parameters, but also
to the design—in this case represented by the choice of the values xi, ..., x,
of the independent variable. A way of stating the model that takes this into
account goes as follows. Take as the starting point an infinite population {(x;, y;)}
of x-values and corresponding y-values. Only the x-values are visible from the
beginning, and what we do when we perform the experiment is actually to draw—
not at random, but rather by some criterion for selection of a representative set
of x-values—a sample from this population. Now, define a parameter function as
a rule which to each such selection x1, ..., x, of finitely many x-values assigns
a parameter in the usual sense, that is, a function of the unknown distribution in
the corresponding statistical model. This includes any function of (a, 8, 0'%), and
also, so far, expressions like n or o + Bx. Here, a technical condition is required,
stating that at least two distinct x-values should be present, but we will ignore this
irrelevant detail in the following. Now, define a meaningful parameter function as
a parameter function which is invariant under the formation of marginal models,
that is, when a design is reduced by removal of some of the x’s, the parameter
associated with the marginal distribution should equal the parameter associated
with the distribution in the model for the bigger sample. This reduces the possible
parameter functions to the set of functions of (a, 8, 0%). A quantity like o + BX,
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where x is the average of the x-values in the design we happened to select, is
clearly not a meaningful parameter function in this sense. Moreover, this kind of
set-up is exactly what is required if one wants a theory that does not allow for such
absurdities as those suggested in “exercises” 1, 2, 3, 4 and 5 of Section 2.1.
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University of Chicago

Jourdain: And what are they, these three operations of the mind?
Philosopher:  The first, the second and the third.

The first to conceive by means of premises;

the second to reason by means of categories;

and the third to draw conclusions by means of figures.

Moliere. Le bourgeois gentilhomme.

Major themes. The discussants cover a wide range of topics. Before respond-
ing individually, I will first address a few of the major themes.

Abstraction. The purpose of abstraction is to incorporate into the mathematics
those essential relationships that are taken for granted in the domain of application.
Yet that is seldom how it is seen from the outside. In my view, necessity is the
mother of abstraction, so there can be no virtue in abstraction for its own sake. It
follows that this paper should not have been written had I not judged the need to
be clear and the proposed solution reasonably compelling. Unless the information
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is suitably encoded, individual plots, pigs, varieties, treatments and subjects are,
in mathematical terms, simply elements in a set. We can, and we must, do better
than that. A neighbor relationship on a graph is a possible step in this direction, but
this paper pushes that idea a little further by expecting each object (graph) to be
embedded in other objects in such a way that relationships are preserved. Many of
the discussants are clearly more comfortable with algebraic abstraction than I am,
others evidently less so. To those floating in the abstract wing it may appear that
my hesitant steps have not gone far enough. To others anchored in the concrete
it may appear that I have fallen into an abyss of mindless nonsense. The tension
between the concrete and the abstract is seldom comfortable, but I believe it is
healthy and central to the art of statistical modelling. One does not have to look
far in probability, statistics or physics to see that today’s concrete foundations are
yesterday’s abstractions. On the other hand, it must ruefully be admitted that most
of yesterday’s abstractions are buried elsewhere.

Model versus analysis. Statistical models are usually encountered in connec-
tion with the statistical analysis of data, and for that reason many statisticians seem
to regard the model and the analysis as inextricably intertwined concepts. The situ-
ation is quite different in classical applied mathematics, where it is accepted prac-
tice to discuss properties of the wave equation or Poisson’s equation independently
of any data that might (or might not) be collected. While it is difficult to discuss
statistical models without also mentioning analysis, it seems to me that the two
notions are logically distinct. As I have used the term in this paper, a model is di-
vorced from any particular area of application in much the same way that the heat
equation is not necessarily tied to heat transmission. Although I do not recom-
mend the practice, one might talk of the Bradley—Terry model without indicating
whether the intended application is to competition experiments or citation studies
or transmission disequilibrium in genetics. In that sense, I am interested in what
Tjur calls canonical models.

An analysis might well involve the comparison of two or more mutually
incompatible models by methods that require numerical approximation of integrals
using MCMC. Model checking is an essential component of every analysis, and
this might well lead to the consideration of further models. An analysis of financial
transaction data might well lead to the conclusion that Brownian motion is not
consistent with the data but that an alternative long-tailed model is satisfactory.
Thus, in any definition of the term “statistical model,” it is essential to bear in
mind that models must exist that are not compatible with any data likely to be
collected. By comparison with models, statistical analysis is a complicated topic,
and I have tried in the paper to say as little on the matter as I could hope to get
away with. As the title suggests, the topic of the paper is narrow. So far as I can
tell, it has nothing to say about computation, design or model checking, and very
little to say about model selection, or Bayesian versus frequentist analysis.
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Prediction. For purposes of prediction, it is often effective to use one model in
one region and a different model in another region. One familiar example is the use
of quantum mechanics for atomic-scale calculations, and Newtonian or relativistic
mechanics at celestial scales. Despite its success in prediction, every physicist is
well aware that this patchwork does not constitute a single model. A black box
containing a list of rules that give effective predictions may be very useful, but this
is not a model in the sense that I use the term.

Extension and embedding. Self-consistency forces the condition that P,,6 be
the marginal distribution of P,6 whenever m is a subobject in n. Here m, n are
two sets of units, or more generally two designs, in which m is deemed to be an
embedded subdesign in . The only exceptions I can see to this condition involve
systems in which the act of observation perturbs the system in an appreciable
manner, as in quantum-mechanical systems and possibly a few social science
applications. Julian Besag has hit the pig on the snout with his well-chosen
example that a subset of a litter of pigs does not constitute a litter. In the formalism
of the paper, this embedding must be coded in the category, so the category
includes as objects all litters or sets of litters, but not sublitters or sets of sublitters.
This is not a problem, but it must be spelled out explicitly by the morphisms.
However, if the pigs were weaned, say 6—12 weeks old, it might be best to take a
different view of the matter. The choice of category is essential to all that follows,
but category theory itself has nothing to say on the matter. More likely than not, the
choice is made on grounds of animal husbandry and statistical design. In principle,
it is simply the consequences of this choice that are explored in the paper. However,
the choice of category does have a constraining influence on the nature of the
inferences that can subsequently be drawn.

Extrapolation. On macroscopic scales the inverse square law for gravitational
or electrostatic forces is in good agreement with observation, but when extrapo-
lated to the atomic level it gives predictions in clear violation of everyday expe-
rience. I doubt that Newton ever intended that his law should be applied at the
angstrom level, but at the same time I do not view it as “reckless to contemplate”
such extreme extrapolation. On the contrary, it was an essential step in the early
development of quantum mechanics. Julian Besag seems inclined to say that the
Newtonian model does not apply to atomic scales. In the sense that it does not
work well, he is correct. I am inclined to say that the model does extend to atomic
and subatomic scales and that it predicts a catastrophic collapse that does not agree
with the observed facts. Provided that one does not confuse model with fact, there
is no contradiction in entertaining and comparing models whose consequences
may be absurd. To some extent, this difference in terminology is a matter of se-
mantics, but I think there is a little more to it than that. If the inverse square law
does not extend to atomic scales, I need to know where it stops and why it stops
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there. So far as fertilizer levels in agricultural experiments are concerned, the mod-
els are more mundane and more numerous but the principle is the same. The po-
tential to make falsifiable predictions is one of the properties that distinguishes a
model from an algorithm.

Approximation. Approximations of various sorts are hard to avoid in statistical
work. But an approximation must have a target; otherwise it might as well be
exact. Provided there is a target, I see no objection in principle to approximations.
Besag makes the point that there exist “schemes” that are perfectly adequate in
practice as approximations to models, and I agree that the evidence supports this
view. However, I do not agree that a statistical model, as a mathematical object,
is necessarily an approximation to anything, any more than a vector space or a
process is an approximation. In most applications several competing models vie
for supremacy. The hope is that one of these is an adequate description of the
observed facts, but the definition does not demand this or guarantee it.

Natural transformation. Natural transformations are more widespread in
statistical work than I have indicated in the paper. Consider, for example,
transformation of sample space(s) in the usual regression context. The condition
of naturality amounts to the statement that transformation g, : R — R" followed
by coordinate projection is the same as coordinate projection followed by
transformation g, _, R — R"1 The conclusion might alarm coordinate-
free theorists, but comes as no great surprise to applied statisticians. Each natural
transformation is a scalar transformation g : R — R acting componentwise, such
as the link function in a generalized linear model. The only restriction is that
g should be measurable. Most linear transformations are not natural because the
components are not preserved.

For processes, the transformation W = X ~! on covariance matrices is not
natural because the inverse of the restriction is not the restriction of the
inverse. Within the class of stationary Markov processes, noncommutativity is
restricted to the boundary, so the transformation is “almost” natural. In that
sense, the sequence of Gaussian Markov random fields with stationary interaction
coefficients W;; independent of the lattice size is an approximation to a process.
This approximation may be perfectly adequate in practice, particularly if Besag’s
suggestions for boundary adjustments are incorporated.

Field trials. Julian Besag points out that the sole purpose of a variety trial
is the comparison of varieties, not the study of fertility patterns. I agree. Even
S0, it is hard to see how anything useful can be said unless it is assumed that
variety effects are proportional to plot area, or, if defined in ratio form, that
variety effects are independent of plot area. Without admitting plots of various
sizes the proposition cannot be stated, so it cannot be a consequence of other
assumptions, such as additivity or lack of interference, defined for plots of standard



1304 REJOINDER

size. One may be inclined to regard the proposition as an matter of established
agricultural fact, so much so that it does not count as an assumption. What makes
it true, agriculturally speaking, is that agronomy knows something about plots and
varieties that mathematics does not. Agronomy knows that variety v planted in
a 2 x 2 plot is equivalent to the same variety planted in each of the individual
subplots. On the scale of scientific insights this revelation may achieve a record
low, but it not vacuous. First, it admits the existence of larger and smaller plots,
and their relation to one another by subset inclusion. Second, it says something
substantive about the relationship between varieties and plots that is true for most
agricultural treatments but is not true in general. Remember that mathematics
knows nothing about anything except mathematics, so mathematics must be
instructed in the facts of rural life. In the formalism of the present paper these
facts and relationships are encoded in the category and thereby made available
explicitly. It seems that everyone does this instinctively, much like Moliere’s
M. Jourdain who was delighted to learn that he had been speaking prose all his
life.

Responses to individual discussants. Many of Julian Besag’s remarks are
concerned with the more complicated subject of statistical strategy, ranging from
model construction and statistical analysis to model adequacy and numerical
approximation. I do not dispute the importance or the subtlety of statistical strategy
and model construction, but I view it as complementary to the topic of the paper.
Even if we cannot agree on a definition, or even the need for one, I welcome
Besag’s remarks concerning the relevance of models in applications. It is also hard
to disagree openly with his preference for models that have a physical justification,
or what are sometimes called mechanistic or causal models. While this preference
is understandable, it must be tempered with the knowledge that certain rather
successful models, such as Maxwell’s theory of electromagnetism, are hard to
justify on such grounds. The universality that I demand of a model is only the
universality that follows from the category of embeddings, and one can always
opt for a smaller category if this seems sensible. One interpretation of definition
[equation (1)] is that it states in an unfamiliar language only what is intuitively
obvious. Thus, Besag is entirely correct in his assertion that the commutativity
conditions amount to nothing more than common sense. But where I demand
internal consistency for a range of plot sizes, it seems that Besag attaches little
weight to this. Deep down, though, I'll bet he must! Aside from this point, I aim
to show below that the extent of our disagreement is considerably less than I had
originally thought.

I agree with essentially all of Peter Bickel’s remarks, including the plea for
expressing categorical ideas in more acceptable language. In the last section of his
remarks, Tue Tjur goes some way in this direction, explaining what is meant by
a natural parameter in regression. The connection between natural parameters and
identifiable parameters is not an obvious one, so I wonder whether it is a lucky
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coincidence that 8/o in the Box—Cox model is both natural and also identifiable
in a larger model.

A bushy category is evidence, if any were needed, of a novice gardener at
work, one who has acquired a few sharp tools but not yet mastered the principles
of effective pruning. Brgns takes the formal definition, dissects it, extends it,
reassembles it and reinterprets it with a dexterity [ can admire but not emulate. The
comma category StatMod is a very natural and familiar statistical object with the
right properties and only those properties. The new proposal, to define a statistical
model as a functor € — (idge; | ) from an arbitrary category C into StatMod,
achieves a degree of simplicity and generality through a new level of abstraction.
The parameter space and the sample space remain accessible by composition with
the natural projections, so nothing has been sacrificed. The pedagogical hurdles
remain formidable, but Brgns’s construction is right on the mark, and I thank him
for it.

One difficulty in constructing a general theory of models is to determine
where various conditions belong most naturally. In my view, no theory of linear
models can be considered satisfactory unless, to each subrepresentation ® C ©
there corresponds a quotient representation ®/®’ in a natural way. This is not
a consequence of the extended definition, and is the reason for the additional
surjectivity condition that I had included. If this is unnecessary in the general
definition, I suspect it must be a part of the definition of linear models.

Peter Huber is right to point out that, in some circumstances at least, what
appears to be absurd might well be real. After all, most of quantum mechanics
appears absurd and yet we must suppose it to be real. At some stage, one must
ask where the category comes from, and the answer here must depend on the
application in ways that are not easy to describe. A very sparse category containing
many objects but few morphisms is not very useful, but the inclusion of too many
morphisms may lead to the exclusion of otherwise useful formulations. I was
fascinated to read of Huber’s earlier categorization of aspects of statistical theory,
which seems to be connected with morphisms on the sample side.

Inge Helland brings a fresh quantum-mechanical perspective to the subject,
and particularly to the matter of natural subparameters. I must confess that
I was initially skeptical of the restriction to natural subparameters when I first
encountered this in Helland (1999a), and I took an opposing view at the time,
but I have to agree now that the arguments are convincing. The arguments in
Fraser (1968b) are essentially the same. It is instructive to note that the objections
raised in the paper to the correlation coefficient in regression do not apply to
autocorrelation coefficients in time series or spatial processes.

Kalman has much to say about models and statistical practice, all negative. I'm
sure glad he’s not pinning the blame entirely on me! By the statement that there
does not exist a concrete i.i.d. process in nature, I presume that he means that this
mathematical model is not a satisfactory description of observed processes. If so,
we need something better, most likely a family of non-i.i.d. processes.
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History offers ample support for Kalman’s assertion that scientists demand a
physical or mechanical explanation, in our case an explanation for the origin of
randomness in nature. But this demand does not persuade me that a mechanical
explanation should necessarily be forthcoming. The existence of the ether was
widely accepted in the nineteenth century, not for its beauty as Kalman claims,
but for its supposed mechanical properties which were deemed necessary for the
transmission of light. In 1839, the currently accepted mathematical model for the
transmission of light was put forward by James MacCullagh (no relation), but
rejected by physicists of the day because no mechanical explanation could be
provided. Although the date is given as 1842 and the name is misspelled, other
details provided by Feynman, Leighton and Sands [(1964) 2, Section 1-5] are
reliable. Two quotes from the 1839 paper suffice to illustrate my point. Concerning
the peculiar constitution of the ether, we know nothing and shall assume nothing
except what is involved in the foregoing assumptions (symmetry!). And later, by
way of summary, the reasoning which has been used to account for the [potential]
function is indirect, and cannot be regarded as sufficient in a mechanical point
of view. It is, however, the only kind of reasoning that we are able to employ, as
the constitution of the luminiferous ether is entirely unknown. Indeed it was, and
remained so for much of the rest of the century, even after the same equations were
resurrected as one leg of Maxwell’s theory in 1864. Incidentally, the 1839 paper
may be the first to employ the combination of partial derivatives now known as the
curl operator, and to show that it transforms as a vector under coordinate rotation
in R3.

Steve Pincus points out that the inferential formalism emphasizes processes and
families of processes rather than families of distributions. This is true, but to some
extent a matter of presentation. There is no objection in principle to considering
a truncated category containing a finite number of objects, such as the category
of injective maps on sets of size 12 and smaller. A process that is exchangeable
relative to this category is not necessarily extendable to an infinitely exchangeable
process, so inferences extending beyond 12 elements are inaccessible. The absence
of a metric may look odd, but we must bear in mind that each sample space
object must be a measure space with an attached o -algebra, and possibly additional
topological structure that I would rather not think about. One generic example is
the category C in which the objects are finite-dimensional inner product spaces and
the morphisms are injective linear maps ¢ : X — X’ such that (px, ¢y) = (x, y).
If 4§ is the opposite, or dual, functor € — €, the objects are implicitly assumed to
be equipped with the usual Borel o -algebra, and each ¢ is sent to the conjugate
linear transformation ¢* : X' — X.

These maps also preserve inner products, but in a different sense such that the
induced map (ker¢*)* = X'/kerg* — X is an isomorphism of inner product
spaces. A process relative to C is necessarily orthogonally invariant, or spherically
symmetric, and is characterized by scale mixtures of normals [Kingman (1972)].
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A similar characterization for symmetric and Hermitian matrix-valued processes
has recently been obtained by Wichura (2001).

Fraser and Reid ask whether category theory can do more than provide a
framework. My experience here is similar to Huber’s, namely that category theory
is well suited for this purpose but, as a branch of logic, that is all we can expect
from it. Regarding the coefficient of variation, I agree that there are applications
in which this is a useful and natural parameter or statistic, just as there are (a few)
applications in which the correlation coefficient is useful. The groups used in this
paper are such that the origin is either fixed or completely arbitrary. In either case
there is no room for hedging. In practice, things are rarely so clear cut. In order
to justify the coefficient of variation, it seems to me that the applications must be
such that the scale of measurement has a reasonably well-defined origin relevant
to the problem.

The Cauchy model with the real fractional linear group was originally used
as an example to highlight certain inferential problems. I do not believe I have
encountered an application in which it would be easy to make a convincing case
for the relevance of this group. Nevertheless, I think it is helpful to study such
examples for the light they may shed on foundational matters. The fact that the
median is not a natural subparameter is an insight that casts serious doubt on
the relevance of the group in “conventional” applications. To turn the argument
around, the fact that the Cauchy model is closed under real fractional linear
transformation is not, in itself, an adequate reason to choose that group as the
base category. In that sense, I agree with a primary thesis of Fraser’s Structure of
Inference that the group supersedes the probability model.

Tjur’s remarks capture the spirit of what I am attempting to do. In the cumulative
logit model, it is clear intuitively what is meant by the statement that the parameter
of interest should not depend on how the cutpoints are selected. As is often the
case, what is intuitively clear is not so easy to express in mathematical terms. It
does not mean that the maximum-likelihood estimate is unaffected by this choice.
For that reason, although Tjur’s second condition on overdispersion models has a
certain appeal, I do not think it carries the same force as the first. His description
of natural subparameters in regression is a model of clarity.

Conformal invariance and Markov random fields. Tue Tjur remarks that it
would be more convincing if I could produce an example of a new model using
category ideas. I agree, but this is not easy. It was in the hope of coming up with
something different that I sought to explore the consequences for spatial models
of using the category of conformal maps rather than the more conventional group
of rigid motions. Section 8 of the paper is a bit of a disappointment, at least if
judged by the suitability of the models for their intended application. Nevertheless,
it may yet be worth pursuing the same line of argument using the subcategory of
invertible conformal maps on planar domains. For simplicity of exposition, I take
D = D’ to be the Riemann sphere, or the extended complex plane. This category
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is a group in which each map is a fractional linear transformation of the form
¢:z+> (az+ b)/(cz+ d) and inverse w — (dw — b)/(a — cw), with complex
coefficients a, b, ¢, d such that ad — bc # 0.

By the symbol Y ~ W, is meant the planar Gaussian process with covariance
function —o?log |z — z/|. The principal departure from Section 8, is that Y is a
function, not a measure. For the moment I pretend that it is defined pointwise, and
the group acts by composition sending Y to Y’ = Y 0. The process is such that
pointwise differences Y (z1) — Y (z2) are zero-mean Gaussian with covariances

(z1 —z4) (22 — 23)
(z1 —z3)(22 — 24)
210 (pz1 — @z4)(pz2 — 923)
(pz1 — 9z3)(9z2 — 924)

cov(Y(z1) — Y(22), Y(z3) — Y(z4)) = o?log

=0

for each set of distinct points z1, 22, 23, Z4. The second line, which follows from
the invariance of the cross-ratio under fractional linear transformation, shows
that the transformed process also satisfies Y’ ~ W,. The fact that variances are
infinite is not a problem in practice because of regularization. Each regularized
observation is an integrated contrast, Y (p) = [ Y (z) dp, in which p = p™ — p~ is
a signed measure such that p (D) = 0. Technically, Y is defined as a random linear
functional on the L;-space of contrast measures such that

oy =— /:oz log |z — w|dp(z) dp(w) < oo,

whereas white noise is defined on the space such that

o= [, 3w dp(@) dp(w) < oo,

where 6(z, w) is Dirac’s delta. Both are defined on the intersection, as are
convolutions and mixtures. The group element ¢ sends p to pep~!,and Y to Y’ such
that Y'(p) = Y(p(p‘l), with the same distribution Y ~ Y’ ~ W,. This argument
shows that logarithmic variograms are preserved under invertible conformal
maps.

Both white noise and ‘W, are Markov random fields in the sense that, for each
closed contour, values in the interior and exterior are conditionally independent
given the values on the contour (Matheron, 1971). Both processes are also
conformal, but the similarity ends there. The set of conformal processes is also
closed under addition of independent processes. Thus, the sum of white noise
and W, is conformal but not Markov. Beyond convolutions of white noise and
‘W, , it appears most unlikely that there exists another conformal process with
Gaussian increments. Whittle’s (1954) family of stationary Gaussian processes has
the Markov property [Chiles and Delfiner (1999)] but the family is not closed under
conformal maps nor under convolution.
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Ignoring variety effects, the Besag—Higdon model is a sum of white noise and
a Markov random field on the lattice. Besag’s remark that the variogram exhibits
logarithmic behavior suggests that the fitted MRF is close to ‘W, for some o.
This is certainly plausible since ‘W, is Markov and can be well approximated by
a low-order lattice scheme, in which the MRF coefficients in the interior are an
approximation to the Laplacian. If this speculation is confirmed in applications,
the fitted model is approximately a sum of white noise and ‘W,;, which is in fact a
conformal process. In principle, the relation between the MRF coefficients and o
(in ‘'W,) can be determined. Thus, if the fitted MRF is close to W, , or even to a
linear deformation of ‘W, , the fitted Besag—Higdon process has a natural extension
beyond the lattice to plots of arbitrary size and shape, in which case my criticism
on these grounds does not apply.

At the time I wrote Section 8, I was aware of certain peculiarities of the
de Wijs process connected with its interpretation as the Newtonian potential,
or inverse of the Laplace operator. But I did not fully appreciate the Markov
property, and I was unaware of its conformal invariance. So this revelation comes
as a pleasant surprise, and helps me to understand better the connection with
MREF lattice schemes in the analysis of field trials. With twenty years of first-
hand experience in farming I thought I understood the meaning of fertility, but
I knew of no plausible argument to suggest that fertility processes should be
spatially Markov, and I failed to see why this proposition should be so readily
accepted. A wide range of arguments suggested that fertility might be a compound
process or sum of elementary processes, indicating that a model, as a set of
processes, should be closed under convolution. From the present viewpoint of
conformal transformation, this mechanistic reasoning is replaced by an argument
of an entirely different sort in which the entire concept of fertility is absent. The
set of conformal Gaussian processes is a convex cone of dimension two generated
by white noise and ‘W, in essence the random effects model that Besag suggests.
Although the Besag—Higdon scheme is not closed under convolution, all of the
conformal processes are already included at least as lattice approximations. It
would be good to have this important subset explicitly labelled. This analysis
suggests that two very different lines of argument may, in practice, lead to very
similar conclusions.

The application of conformal transformations to agricultural processes in
muddy fields may seem frivolous to the point of absurdity, but that is not how I see
it. The driving thesis is that, whatever the generating process, it should look very
much the same after any transformation that preserves the relevant aspects of the
geometry. Conformal maps preserve Euclidean geometry locally with no angular
distortion, which is the only argument for their relevance. However, Euclidean
geometry is only the visible side of a corn field. Specific nonisotropic effects
connected with topography, ploughing, harvesting and drainage are inevitable and
may even dominate the nonspecific variations. To the extent possible, these are
included in the category, and are carried along with the conformal maps. Even
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with this adjustment, we should not delude ourselves by pretending that we have
learned anything about the laws of biology or agricultural science by studying the
axioms of algebra. To learn the laws of agriculture, we must study agricultural data,
but it undoubtedly helps to do so in the light of potential models. The observed
logarithmic behavior of variograms suggests that some field processes have a
strong ‘W, component, consistent with conformal processes, but we should not
be surprised to find additional components that are not conformal.
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