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Chapter 10 1

Genetic Recombination 2

Mary Sara McPeek 3

Genetic recombination and genetic linkage are dual phenomena that arise in connec- 4

tion with observations on the joint pattern of inheritance of two or more traits or ge- 5

netic markers. For example, consider two traits of the sweet pea, Lathyrus odoratus, 6

an organism studied in depth by Mendel [9]: flower color, with purple (dominant) 7

and red (recessive) phenotypes, and form of pollen, with long (dominant) and round 8

(recessive) phenotypes. Under the Mendelian model for flower color (recast in more 9

current terminology), each plant carries two alleles for flower color, one inherited 10

from each parent, where each allele can be one of two types, denoted P and p. The 11

pair of alleles carried by a plant is known as its genotype. Plants with genotype PP or 12

Pp have purple flowers, while plants with genotype pp have red flowers. Mendel’s 13

First Law can be interpreted as specifying that a parent plant passes on a copy of one 14

of its two alleles to each offspring, with each parental allele having an equal chance 15

of being copied, and with this occurring independently across offspring and across 16

parents. Similarly, each plant carries two alleles for form of pollen, where each of 17

these can be L or l. Plants with genotype LL or Ll have long pollen, while plants 18

with genotype ll have round pollen. Suppose one crossed a true-breeding parental 19

line having purple flowers and long pollen (all individuals having genotype PPLL) 20

with a true-breeding parental line having red flowers and round pollen (all individ- 21

uals having genotype ppll). Then the offspring of that cross, known as the F1 gen- 22

eration, would all have genotype PpLl, resulting in purple flowers and long pollen. 23

Suppose a backcross were performed, in which F1 individuals were crossed with in- 24

dividuals from the ppll parental line. In this example, genetic linkage would refer to 25

a tendency for pairs of alleles inherited from the same parent, such as the pair PL or 26

the pair pl, to be transmitted together during meiosis, while genetic recombination 27

would refer to the event that an individual transmits a pair of alleles that were in- 28

herited from different parents, such as the pair Pl or pL. If we let 0 ≤ θ ≤ .5 denote 29

the recombination fraction, which is the probability of a recombination between
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the genes for these two traits in a single meiosis, then in the backcross offspring, we 30

expect individuals with genotypes PpLl, ppll, Ppll and ppLl to occur with relative 31

frequencies (1−θ )/2, (1−θ )/2, θ/2 and θ/2, respectively. 32

A long-standing, important application of the ideas of linkage and recombina- 33

tion is to construction of genetic maps [15] and to subsequent localization of genes 34

(or other genetic variants of interest) on those maps. The key observation is that 35

the recombination fraction between a pair of genetic markers tends to increase with 36

the chromosomal distance between them, with markers on different chromosomes 37

having recombination fraction .5. Thus, by merely observing patterns of joint in- 38

heritance of traits, one can make inference about which trait genes lie on the same 39

chromosome, chromosome, and make estimates of distances between them. The 40

basic ideas of and mathematics behind linkage and recombination were developed 41

early in the 20th century [10, 15, 5]. Notably, these problems attracted the interest 42

of R. A. Fisher [3]. 43

Starting in the early 1980’s, there was a resurgence of interest in the problem of 44

genetic map construction, spurred by the development of recombinant DNA tech- 45

nology which resulted in the ability to collect genotype data on large numbers of 46

neutral genetic markers throughout the human genome [1] as well as genomes of 47

model organisms. It was not long after these technological breakthroughs occurred 48

that Terry shifted much of his energy and interest into the field of statistical ge- 49

netics, near the beginning of the explosion of new data and resulting need for new 50

statistical models and methods. In human data, the map construction problem called 51

for more sophisticated statistical analysis than that typically required in experimen- 52

tal organisms. In model organisms, experimental crosses can often be planned in 53

such a way that it is feasible to simply observe the relative frequency of recom- 54

binants in any given interval and convert it to a distance using a “map function”, 55

an analysis method that we will call the “two-point analysis.” However, in humans, 56

crosses cannot be planned, and so any given human meiosis would typically be 57

uninformative for some of the markers of interest. (For example, in the sweet pea 58

example above, all meioses from an individual with genotype Ppll would be un- 59

informative for recombination between these two genes, because the recombinant 60

and non-recombinant allele pairs are indistinguishable.) When many genetic mark- 61

ers are considered simultaneously in each meiosis, and many meioses from different 62

individuals (with different patterns of informativeness) are analyzed together, sub- 63

stantial additional information, beyond that available from a two-point analysis, can 64

typically be obtained by a joint analysis using a suitable statistical model for joint 65

recombination events among a collection of genetic markers. 66

Thus, the statistical challenges of genetic mapping in humans naturally led to 67

consideration of probability models for the crossover process that causes the ob- 68

servation of recombination. In humans and other diploid eukaryotes, crossing over 69

takes place during a phase of meiosis in which the two parental versions of a given 70

chromosome have each been duplicated, and all four resulting strands or chromatids 71

are lined up together, forming a tight bundle. located along this bundle, with each 72

crossover involving exactly two of the four chromatids. It is assumed that the two 73

chromatids involved in any particular crossover are nonsister chromatids, that is, 74
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the two chromatids cannot be the two identical copies of one of the parent’s versions 75

of the chromosome. After crossing over has occurred, the four resulting chro- 76

matids are each mosaics of the original parental chromosomes. Keeping in mind 77

this framework, one can consider two key aspects of the model: (1) the distribu- 78

tion of crossover points along the bundle of four chromatids and (2) the choice of 79

nonsister pair of chromatids involved in each crossover. Perhaps the simplest use- 80

ful model is the no-interference model of Haldane [5], which models aspect (1) by 81

assuming that the crossover points form a homogeneous Poisson process and mod- 82

els aspect (2) by assuming that each nonsister pair is equally likely to be chosen 83

for each crossover, independently across crossovers. Interference refers to devia- 84

tion from Haldane’s model. Interference, in the form of local inhibition of crossover 85

points on a resulting single chromatid, was readily apparent in early Drosophila data 86

[16, 11]. It is convenient to refer to failure of assumption (1) of Haldane’s model as 87

crossover interference and failure of assumption (2) of Haldane’s model as chro- 88

matid interference. 89

Under the assumption of no chromatid interference (NCI), Speed et al. [14] de- 90

rive a set of constraints, on the multilocus recombination probabilities, that are nec- 91

essary and sufficient to ensure the existence of a counting process model for the 92

distribution of crossover points along the bundle of four chromatids. They apply 93

these constraints to prove a consistency result for the maximum likelihood estimate 94

of the map order of a finite number of genetic markers along a chromosome. Specif- 95

ically, they show that, under the assumption of NCI, in the case of complete data, 96

i.e. when all meioses are informative for all markers, if maximum likelihood es- 97

timation is performed assuming the Haldane model, then the MLE will converge 98

almost surely to the true map order, even when the true crossover point process is 99

not Poisson (it can be any counting process). 100

The idea that the assumption of NCI imposes constraints on multilocus recombi- 101

nation probabilities is developed further in Zhao et al. [18], in which the main goal is 102

assessment of the empirical evidence for chromatid interference. This paper extends 103

the constraints from single spore data (such as that from humans and Drosophila) 104

to tetrad data (from organisms such Neurospora crassa, Saccharomyces cerevisiae 105

and Aspergillus nidulans) in which data on all 4 chromatid strands are available for 106

each meiosis, providing much more information about strand choice and, hence, al- 107

lowing a more powerful test of the NCI assumption. An efficient iterative algorithm 108

for maximum likelihood estimation under the constraints is developed, and a like- 109

lihood ratio test is proposed to assess whether there is evidence that the constraints 110

are not satisfied by the multinomial model assumed to generate the data. An em- 111

pirical bootstrap approach is used to assess significance. Some of the experiments 112

did provide evidence for chromatid interference, but overall there was no consistent 113

pattern. The extent and type of chromatid interference seemed to vary across or- 114

ganisms and across experiments. Because the loci considered in these experiments 115

are functional genes, as opposed to neutral markers, it is possible that differential 116

viability may play a role in the results as well. In single-spore data, in particular, the 117

constraints imposed by NCI are rather weak, and the available data do not provide 118
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much power to contradict them. Therefore, it seemed reasonable to assume NCI and 119

focus attention on models for the crossover process. 120

Because the Haldane no-interference model was so clearly contradicted by most 121

of the available, relevant data, Terry was somewhat concerned about relying on it 122

for map inference. If a more flexible, yet still parsimonious and tractable, model 123

could be developed and shown to fit the data better, Terry reasoned, it could be use- 124

ful for a range of applications in genetic inference. This problem is addressed by 125

McPeek and Speed [8], in which a range of point process models, involving one 126

or two additional parameters, are fit to Drosophila data by maximum likelihood. 127

Goodness of fit of the models is assessed, and the pattern of interference gener- 128

ated by each model is compared to that in data. The most promising model that 129

emerges from this study, the gamma model, is a stationary gamma renewal process 130

on four strands, combined with the assumption of NCI to generate a thinned pro- 131

cess. In addition to fitting the data better and providing a pattern of interference that 132

mimics that in data, the gamma model is also parsimonious and, when an integer 133

shape parameter is used, results in efficient computational methods. This promising 134

model is further developed in Zhao et al. [19], in which the gamma model with in- 135

teger shape parameter is referred to as the chi-square model because it results in 136

a stationary renewal process having chi-square interarrivals (with even degrees of 137

freedom) for the process on a single strand. The model is fit to datasets from a num- 138

ber of different organisms, with different datasets from the same organisms having 139

similar estimated shape parameter. The results of the analyses suggest that it may 140

be reasonable to use an organism-specific shape parameter to model interference. 141

In a closely-related line of research, Terry and colleagues sought to connect prob- 142

ability modeling of the crossover process with the initially mysterious-seeming map 143

functions commonly used in two-point analysis. A map function is used to convert 144

probability of recombination across an interval to genetic distance of the interval, 145

where genetic distance is defined as the expected number of crossovers per strand 146

per meiosis. A difficulty in application of map functions to multilocus analyses is 147

that when there are more than three markers, the multilocus recombination prob- 148

abilities cannot be uniquely determined from the map function [3]. Earlier work 149

[4, 13, 7] had proposed to solve this identifiability problem by constraining the 150

probability of an odd number of crossovers across a union of disjoint intervals to 151

depend only on the total length of these intervals. However, this is not a biologically 152

plausible assumption, and, as shown by Evans et al. [2], assuming NCI, the class of 153

count-location models [6, 12] is the only class of models having map functions that 154

satisfy this constraint. Zhao and Speed [17] remove this biologically implausible 155

constraint, and instead solve the general problem of developing stationary renewal 156

process models that can generate specific map functions. They show that in most 157

cases of previously-proposed map functions, one can construct a stationary renewal 158

process that generates the map function. Furthermore, they show that this station- 159

ary renewal process can typically be approximated quite well by the gamma or chi- 160

square model. The useful practical consequence of this is that two-point analyses us- 161

ing a particular map function can easily be extended to more informative multipoint 162

analyses, an approach that is particularly valuable in the presence of missing data. 163
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