
GAUSSIAN PROCESSES; KOLMOGOROV-CHENTSOV THEOREM

STEVEN P. LALLEY

1. GAUSSIAN PROCESSES: DEFINITIONS AND EXAMPLES

Definition 1.1. A standard (one-dimensional) Wiener process (also called Brownian motion) is
a stochastic process {Wt}t≥0+ indexed by nonnegative real numbers t with the following
properties:

(1) W0 = 0.
(2) With probability 1, the function t→Wt is continuous in t.
(3) The process {Wt}t≥0 has stationary, independent increments.
(4) The increment Wt+s −Ws has the NORMAL(0, t) distribution.

The term independent increments means that for every choice of nonnegative real numbers
0 ≤ s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sn < tn <∞, the increment random variables

Wt1 −Ws1 ,Wt2 −Ws2 , . . . ,Wtn −Wsn

are jointly independent; the term stationary increments means that for any 0 < s, t <∞ the
distribution of the incrementWt+s−Ws has the same distribution asWt−W0 = Wt. In gen-
eral, a stochastic process with stationary, independent increments is called a Lévy process;
more on these later. The Wiener process is the intersection of the class of Gaussian pro-
cesses with the Lévy processes. Using only elementary properties of the normal (Gaussian)
distributions you should be able to verify the following in 30 seconds or less:

Proposition 1.1. Let {W (t)}t≥0 be a standard Brownian motion. Then each of the following
processes is also a standard Brownian motion:

{−W (t)}t≥0(1.1)

{W (t+ s)−W (s)}t≥0(1.2)

{aW (t/a2)}t≥0(1.3)

{tW (1/t)}t≥0.(1.4)

The first three of these, although elementary, are of crucial importance in stochastic cal-
culus. In particular, property (1.3), the Brownian scaling law, is what accounts for so much
of the strangeness in Brownian paths. More on this later. For now the issue is funda-
mental: does there exist a stochastic process that satisfies the conditions of Definition 1.1?
That is, are the requirements on the distributions of the increments compatible with path-
continuity? We will approach this by asking the more general question: which Gaussian
processes have versions with continuous paths?

Definition 1.2. A Gaussian process {Xt}t∈T indexed by a set T is a family of (real-valued)
random variables Xt, all defined on the same probability space, such that for any finite
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subset F ⊂ T the random vector XF := {Xt}t∈F has a (possibly degenerate) Gaussian dis-
tribution. Equivalently, {Xt}t∈T is Gaussian if every finite linear combination

∑
t∈F atXt

is either identically zero or has a Gaussian distribution on R. The covariance function of a
Gaussian process {Xt}t∈T is the bivariate function

(1.5) R(s, t) = cov(Xs, Xt) = E(Xs − EXs)(Xt − EXt).

Covariance Functions: You should recall that the covariance matrix of a multivariate
Gaussian random vector is a symmetric, nonnegative definite matrix; the distribution is
said to be nondegenerate if its covariance matrix is strictly positive definite. The mean vec-
tor and covariance matrix uniquely determine a Gaussian distribution; consequently, the
mean function and covariance function of a Gaussian process completely determine all
of the finite-dimensional distributions (that is, the joint distributions of finite subsets XF of
the random variables). Thus, if two Gaussian processes X = {Xt}t∈T and Y = {Yt}t∈T
have the same mean and covariance functions, then for any event B that depends on only
finitely many coordinates,

(1.6) P{X ∈ B} = P{Y ∈ B}.
Since any event can be arbitrarily well-approximated by events that depend on only finitely
many coordinates, it follows that the equality (1.6) holds for all events B. Therefore, the
processes X and Y are identical in law.

Gaussian processes: Examples

Example 1.1. The most important one-parameter Gaussian processes are the Wiener pro-
cess {Wt}t≥0 (Brownian motion), the Ornstein-Uhlenbeck process {Yt}t∈R, and the Brownian
bridge {W ◦t }t∈[0,1]. These are the mean-zero processes with covariance functions

EWsWt = min(s, t),(1.7)

EYsYt = exp{−|t− s|},(1.8)

EW ◦t W
◦
s = min(s, t)− st.(1.9)

Note: In certain situations we truncate the parameter space T – in particular, sometimes
we are interested in the Wiener process Wt only for t ∈ [0, 1], or in the Ornstein-Uhlenbeck
process Yt for t ≥ 0.

Exercise 1.1. Check that if Wt is a standard Wiener process, then the derived processes

W ◦t := Wt − tW1 and Yt := e−tWe2t

have the same covariance functions as given above, and so these derived processes have
the same “finite-dimensional distributions” as the Brownian bridge and Ornstein-Uhlenbeck
process, respectively. Also, check that for any scalar α > 0 the process

W̃t := α−1Wα2t

has the same covariance function, and therefore also the same finite-dimensional distribu-
tions, as Wt. (This correspondence is called Brownian scaling.)

Exercise 1.2. Let Wt be a standard Wiener process, and let f(t) be any continuous (non-
random) function. Define

Zt =
∫ t

0
Wsf(s) ds
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(The integral is well-defined because the Wiener process has continuous paths.) Show
that Zt is a Gaussian process, and calculate its covariance function. HINT: First show that
if a sequence Xn of Gaussian random variables converges in distribution, then the limit
distribution is Gaussian (but possibly degenerate).

Example 1.2. Let ξ1, ξ2, . . . be independent, identically distributed unit normals. Then for
any finite set of frequencies ωi ≥ 0, the process

(1.10) Xt :=
m∑
i=1

ξi cos(ωit)

indexed by t ∈ R is a Gaussian process. This process has smooth sample paths (they
are just random linear combinations of cosine waves). Note that for any finite set F of
cardinality larger than m the random vector XF has a degenerate Gaussian distribution
(why?).

Example 1.3. The two-parameter Brownian sheet {Ws}s∈R2
+

is the mean-zero Gaussian pro-
cess indexed by ordered pairs s = (s1, s2) of nonnegative reals with covariance function

(1.11) EWsWt = min(s1, t1) min(s2, t2).

Observe that for each fixed r > 0, the one-parameter process Zrs := Ws,r has the same
covariance function as a standard Wiener process multiplied by

√
r. Thus, the Brownian

sheet has slices in the two coordinate directions that look like scaled Wiener processes. For
figures showing simulations of Brownian sheets, see Mandelbrot’s book Fractal Geometry
of Nature.

Example 1.4. The fractional Brownian motion with Hurst parameter H ∈ (0, 1) is the mean-
zero Gaussian process {XH

t }t≥0 with covariance function

(1.12) EXH
t X

H
s =

1
2

(t2H + s2H − |t− s|2H),

equivalently,

(1.13) E|XH
t −XH

s |2 = |t− s|2H .
The case H = 1/2 is just standard Brownian motion. When H < 1/2 the increments of
XH are negatively correlated; for H > 1/2 they are positively correlated. As for Brownian
motion, increments are stationary; and as for Brownian motion, there is a scaling law

(1.14) {a−HXH(at)}t≥0
D= {XH(t)}.

It is not immediately obvious that the covariance kernel (1.12) is nonnegative definite.
However, this will follow from an explicit construction of XH

t from standard Brownian
motion given later (see Exercise 3.4 in section 3 below).

Example 1.5. The discrete Gaussian free field is a mean-zero Gaussian process {Xv}v∈V in-
dexed by the vertices v of a (let’s say) finite, connected graph G = (V, E). The covariance
function (which in this case can be viewed as a symmetric matrix Σ = (rv,w)v,w∈V ) is the
inverse of the Dirichlet form associated with the graph; thus, the joint distribution of the
random variables Xv is the multivariate normal distribution with density proportional to

exp{−H(x)}
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where
H(x) =

1
2

∑
(v,w):vw∈E

(xv − xw)2

with the sum being over all pairs of vertices v, w such that vw is an edge of the graph. The
Gaussian free field and its continuum limit are basic objects of study in quantum field theory.

Distributions and Conditional Distributions of Random Processes

The Space C(J). For any compact interval J ⊆ R (or more generally any compact metric
space J), the space C(J) of continuous, real-valued functions on J is a (complete, separa-
ble) metric space relative to the sup-norm distance:

(1.15) d(f, g) := ‖f − g‖∞ := max
t∈J
|f(t)− g(t)|.

The Borel σ−algebra on C(J) is the smallest σ−algebra containing all open sets. (More
generally, the Borel σ−algebra on an arbitrary metric space X is the smallest σ−algebra
containing all open sets.) The Borel σ−algebra on C(J) is generated by the cylinder sets,
that is, events of the form

(1.16) {x ∈ C(J) : x(ti) ∈ Ai ∀ 1 ≤ i ≤ k}
where each Ai is an open interval of R. (Exercise: check this.) This is quite useful to know,
because it means that a Borel probability measure on C(J) is uniquely determined by its
finite-dimensional distributions, that is, its values on cylinder sets.

Distributions of Stochastic Processes with Continuous Paths. The distribution of a sto-
chastic process {Xt}t∈J with continuous paths is the (Borel) probability measure µ on the
space C(J) of continuous functions indexed by t ∈ J defined by

(1.17) µ(B) := P{{Xt}t∈J ∈ B}
where B is a Borel subset of C(J). To show that two stochastic processes {X(t)}t∈J and
{Y (t)}t∈J with continuous paths have the same distribution, it suffices to check that they
have the same finite-dimensional distributions, that is, that

(1.18) P{Xti ∈ Ai ∀ 1 ≤ i ≤ k} = P{Yti ∈ Ai ∀ 1 ≤ i ≤ k}
for all choices of ti and Ai. Consequently, to check that two Gaussian processes with con-
tinuous paths have the distribution, it suffices to check that they have the same mean and
covariance functions.

Regular Conditional Distributions. Let {Xt = X(t)}t∈J be a stochastic process with con-
tinuous paths. For any sub-σ−algebra G of the underlying probability space (Ω,F , P ),
the conditional distribution of the stochastic process {X(t)}t∈J given G is defined in the
obvious way:

(1.19) P ({Xt}t∈J ∈ B | G).

It is a nontrivial theorem (see Wichura notes) that there is always a regular conditional dis-
tribution, that is, a version of the conditional distribution (1.19) such that for every ω ∈ Ω,

P ({Xt}t∈J ∈ · | G)(ω)
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is a Borel probability measure on C(J). Henceforth, assume that conditional distributions
of stochastic processes with continuous paths are regular. This makes it possible to talk
about conditional distributions of stochastic processes given events of probability zero like
W (1) = x.

Exercise 1.3. Let Wt be a standard Wiener process, and let G be the σ−algebra of events
generated by the random variableW1 (that is, the smallest σ−algebra containing all events
{W1 ∈ B}, where B is a Borel set). Show that the conditional distribution of {Wt}0≤t≤1

given G is the same as the distribution of the process

W ◦t + ξt

whereW ◦ is a standard Brownian bridge and ξ is an independent standard normal random
variable.

HINT: First prove the following general lemma: If {Xt}t∈T is a Gaussian process then for
any finite set {tj}1≤j≤k ⊂ T of indices and any matching set {yj}1≤j≤k of real numbers,
the conditional joint distribution of {Xt}t∈T given the values Xtj = yj is itself the law of a
Gaussian process.

Construction of Gaussian Processes. It is not at all obvious that the Gaussian processes
in Examples 1.1 and 1.3 exist, nor what kind of sample paths/sheets they will have. The
difficulty is that uncountably many random variables are involved. We will show that not
only do all of the processes above exist, but that they have continuous sample functions.
This will be done in two steps: First, we will show that Gaussian processes with countable
index sets can always be constructed from i.i.d. unit normals. Then, in section 2, we will
show that under certain restrictions on the covariance function a Gaussian process can be
extended continuously from a countable dense index set to a continuum. The following
example shows that some restriction on the covariance is necessary.

Exercise 1.4. Show that there is no Gaussian process {Xt}t∈[0,1] with continuous sample
paths and covariance function

R(s, t) = 0 for s 6= t and

R(s, s) = 1.

Processes with Countable Index Sets. For each m = 1, 2, .., let Fm be a (Borel) probability
distribution on Rm. Assume that these are mutually consistent in the following sense: for
each Borel subset B of Rm,

(1.20) Fm(B) = Fm+1(B × R);

that is, Fm is the marginal joint distribution of the first m coordinates of a random vector
with distribution Fm+1. I will show that on some probability space are defined random
variables Xi such that for each m, the random vector (X1, X2, . . . , Xm) has distribution
Fm+1. In fact, any probability space that support an i.i.d. sequence Ui of uniform-[0,1]
random variables will suffice.

Recall that any probability distributionF on R can be “simulated” using a single uniform-
[0,1] random variable U , by the quantile transform method. Hence, there is a (Borel) func-
tion ϕ1(U1) := X1 that has distribution F1. Now suppose thatXi have been constructed for
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i ≤ m using the values Ui, with i ≤ m, in such a way that the joint distribution of the ran-
dom vector (Xi)i≤m is Fm. Let Gm+1 be the conditional distribution on R1 of the (m+ 1)st
coordinate of an Fm+1− distributed random vector given that the first m coordinates have
values (Xi)i≤m. Use Um+1 to produce a random variable Xm+1 with conditional distribu-
tion Gm+1 given the values (Xi)i≤m. Then the joint distribution of (Xi)i≤m+1 will be Fm+1,
by the consistency hypothesis.

Now let R(s, t) be a positive definite function indexed by a countable set T , that is, a
symmetric function with the property that for every finite subset F of T , the matrix ΣF :=
(R(s, t))s,t∈F is positive definite. Without loss of generality, assume that T = N. Then the
sequence of distributions

Fm = Normal(0,Σm)
is mutually consistent (why?). Therefore, by the preceding paragraph, there exists a se-
quence of random variablesXi such that, for each finite subset F ⊂ T the joint distribution
of XF is Gaussian with mean zero and covariance ΣF . �

2. KOLMOGOROV-CHENTSOV THEOREM

2.1. Continuity of Sample Paths. The Kolmogorov-Chentsov theorem provides a useful
criterion for establishing the existence of versions of stochastic processes with continuous
sample paths. It is not limited to Gaussian processes, nor is it limited to stochastic pro-
cesses indexed by t ∈ [0,∞); it applies also to processes indexed by parameters that take
values in a subset of a higher-dimensional Euclidean space. Such processes are called ran-
dom fields. More generally, a random field is a family X = {Xt}t∈T of real random variables
indexed by the points t ∈ T of a subset T of a topological space V .

Theorem 1. (Kolmogorov-Chentsov) Let X be a random field whose index set T is a dense set of
points t in an open domain D ⊆ Rd. Suppose that there are positive constants α, β, C such that

(2.1) E|Xt −Xs|α ≤ C|t− s|d+β for all s, t ∈ T.

Then the random field can be extended to a random field {X̃t}t∈D̄ indexed by the closure D̄ of D
in such a way that, with probability one, the mapping t 7→ X̃t is continuous, and so that for every
t ∈ T ,

(2.2) Xt = X̃t almost surely.

Moreover, if γ < β/α then for every compact subset K ⊂ D̄,

(2.3) max
s 6=t∈K

|Xt −Xs|
|t− s|γ

<∞ almost surely.

Remark 1. The inequality (2.3) means that the sample functions Xt are Hölder continuous
with Hölder exponent γ.

Remark 2. The hypothesis (2.1) means that if t, s ∈ T are close, then the random variables
Xt and Xs are close in the Lα norm. In particular, it follows that if sn → t in T then

(2.4) Xsn

P−→ Xt.

This by itself is not enough to imply that Xt can be extended continuously to D̄, as the
following example shows.
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Example 2.1. Consider the standard Poisson counting process {Nt}t≥0: this certainly does
not have continuous paths, even though (2.4) holds. This shows that the moment hypoth-
esis (2.1) requires an exponent d+ β strictly larger than d, at least when d = 1, because for
every α = 1, 2, . . . ,

(2.5) E(Nt+s −Nt)α = Cαs.

Exercise 2.1. Find similar examples to show that the moment hypothesis requires an ex-
ponent d+ β strictly larger than d in any dimension d.

Example 2.2. Next, consider the Wiener process Wt: the increment Wt −Ws is normally
distributed with mean 0 and variance |t−s|, equivalently,Wt−Ws has the same distribution
as |t− s|1/2Z, where Z is standard normal. Hence,

(2.6) E|Wt −Ws|2k = Ck|t− s|k

where Ck is the 2kth moment of a standard normal. Thus, the Kolmogorov-Chentsov
condition (2.1) holds with α = 2k and β = k − 1 for all k ≥ 1, and so Theorem 1 implies
that there exists a version of the Wiener process with continuous sample paths. Moreover,
since (k − 1)/2k → 1/2 as k →∞, it follows from (2.3) that for every γ < 1/2,

(2.7) max
t6=s∈[0,1]

|Wt −Ws|
|t− s|γ

<∞

almost surely. (Note: Lévy proved a considerably sharper result, called Lévy’s modulus.
This states that the denominator |t− s|γ can be replaced by

√
|t− s| log(1/|t− s|).)

Exercise 2.2. Use the Kolmogorov-Chentsov criterion to prove that there is a continuous
extension of the Brownian sheet to the parameter space t ∈ [0, 1]2.

Exercise 2.3. More generally, let R(s, t) be any covariance function defined for s, t in an
open subset of Rd that satisfies

(2.8) R(s, s) +R(t, t)− 2R(s, t) ≤ C|t− s|γ

for some γ > 0. Show that there is a mean-zero Gaussian process Xt with covariance
function R(s, t) that has continuous sample functions almost surely.

2.2. Differentiablity of Gaussian Random Fields. Gaussian processes may or may not
have differentiable sample paths. For instance, the Wiener process does not, but the in-
tegrated Wiener processes of Exercise 1.2 do, by the fundamental theorem of calculus. In
general, the degree of smoothness of a Gaussian process is determined by the smoothness
of its covariance function near the diagonal. I will not try to prove this in any generality,
but will discuss the case of Gaussian processes with a one-dimensional parameter t ∈ R.

Proposition 2.1. Let {X(t)}t∈R be a mean-zero Gaussian process with C1 sample paths and co-
variance function R(s, t). Then the derivative process X ′(t) is mean-zero Gaussian, with continu-
ous covariance function R̃(s, t) := ∂s∂tR(s, t).

Proof. First, if X(t) is a continuous mean-zero Gaussian process, then its covariance func-
tion EX(t)X(s) must be jointly continuous in s, t, because the collection {X(t)X(s)}s,t is
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uniformly integrable (why?). Now define

DX(t, ε) : =
X(t+ ε)−X(t)

ε
for ε 6= 0,

= X ′(t) for ε = 0.

Since X(t) is continuously differentiable, DX(t, ε) is a continuous two-parameter process.
I claim that this two-parameter process is Gaussian. To see this, first observe that any
linear combination of random variables DX(t, ε) with ε 6= 0 is Gaussian, because such a
linear combination is nothing more than a linear combination of random variables X(s),
and the processX(t) was assumed Gaussian. ButDX(t, 0) is the limit of random variables
DX(t, ε), so a linear combination of DX(t, ε) possibly including terms with ε = 0 is still
Gaussian. (Exercise: Explain this.) Hence, the entire two-parameter process DX(t, ε) is
Gaussian, and so in particular the restriction DX(t, 0) = X ′(t) is Gaussian. Finally, con-
sider the covariance function. It is clear that for ε 6= 0,

cov(DX(s, ε), DX(t, ε)) = (R(t+ ε, s+ ε)−R(t, s+ ε)−R(t+ ε, s) +R(t, s)) /ε2.

Taking the limit as ε → 0, you get ∂s∂tR(s, t) as the covariance function of the derivative
process X ′(t). �

There is a partial converse, which you might try to prove as an exercise:

Proposition 2.2. LetR(s, t) be a positive definite function with continuous mixed partial R̃(s, t) :=
∂s∂tR(s, t). Suppose also that R̃(s, t) satisfies inequality (2.8) above. Then there is a continuously
differentiable, mean-zero Gaussian process X(t) with covariance R(s, t).

2.3. Proof of the Kolmogorov-Chentsov Theorem. For simplicity I will consider the spe-
cial case where D = (0, 1)d is the unit cube in d dimensions and T is the set of dyadic
rationals in D. The general case can be proved by the same argument, with some obvious
modifications. The basic tool is the following purely analytic fact:

Lemma 2.3. Let x(t) be a real-valued function defined on the set T of dyadic rationals in D. Write
T = ∪∞m=1Lm whereLm is the set of points whose coordinates are of the form k/2m for 0 ≤ k ≤ 2m.
Suppose that for some γ > 0 and C <∞,

(2.9) |x(s)− x(t)| ≤ C|t− s|γ

for all neighboring1 pairs s, t in the same dyadic level Lm. Then x(t) extends to a continuous
function on the closed unit cube, and the extension is Hölder of exponent γ, that is, for some C ′ <
∞,

(2.10) |x(s)− x(t)| ≤ C ′|t− s|γ .

Proof. This is based on a technique called chaining: the idea is that each point t ∈ D̄ can be
reached via a sequence (“chain”) of points sm(t) of points in ∪mLm. For each point t ∈ D̄,
there is a point of Lm within distance Cd2−m of t, with Cd = 2d/2 (by Pythagoras’ theorem).
Choose such a point and label it sm(t). Clearly, the sequence sm(t) converges to t. In fact,
the distance between successive points sm(t) and sm+1(t) is less than 2Cd2−m, and so there

1Two points s, t ∈ Lm are neighbors if 2ms and 2mt are neighbors in the d−dimensional integer lattice, that
is, if 2ms and 2mt differ by a unit vector.
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is a short chain of neighboring pairs (no more than 2d steps) in level Lm+1 connecting sm(t)
to sm+1(t). Consequently, by the hypothesis (2.9),

|x(sm(t))− x(sm+1(t))| ≤ 2dC2−γm.

Since γ > 0 this is summable inm, and so for any t the sequence x(sn(t)) is Cauchy. Hence,
it converges, and so we can set

x(t) := lim
m→∞

x(sm(t)).

Note that if t ∈ T then the limit agrees with the original value x(t) (why?). Note also that
|x(t)−x(sm(t))| ≤ C ′′2−m for a suitable constant C ′′, because the “links” of the chain from
sm(t) on are dominated by the terms of a geometric series with ratio 2−γ .

It remains to prove that the function x(t) so defined is continuous, and that it satisfies
the Hölder condition (2.10). Choose distinct points s, t ∈ D̄; then for some m,

2−m−1 ≤ |s− t| < 2−m.

It follows that the distance between sm(s) and sm(t) is less than C ′′′2−m, for a suitable
constant C ′′′ (I think C ′′′ = 6Cd will do). Thus, there is a short chain of neighboring pairs
in level Lm connecting sm(s) and sm(t), and so for some C ′′′′ <∞,

|x(sm(s))− x(sm(t))| ≤ C ′′′′2−mγ .

Since |x(u) − x(sm(u))| ≤ C ′′2−m for all u, by construction, inequality (2.10) follows from
the triangle inequality. �

Proof of Theorem 1. The crucial geometric fact is that the cardinality of Lm grows like

#Lm ∼ 2md.

(It’s not quite equal, because D is the open unit cube. What’s important is the exponential
growth rate, not the exact count.) Two points s, t ∈ Lm are neighbors if t − s is a unit
vector times 2−m. If s, t are neighbors in Lm, then by the hypothesis (2.1) and the Markov
inequality,

P{|Xt −Xs| ≥ |t− s|γ} ≤
E|Xt −Xs|α

|t− s|γα

≤ C|t− s|d+β−γα

= C2−md−mβ+mγα.

Since the number of neighboring pairs in Lm grows like a constant multiple of 2md, it
follows that

P (Bm) ≤ C ′2−mβ+mγα where(2.11)

Bm := {|Xt −Xs| ≥ |t− s|γ for some neighboring s, t ∈ Lm}.

Since β > 0, it is possible to choose γ > 0 so small that −β + γα < 0. For such a choice, the
probabilities (2.11) are summable in m, and so the Borel-Cantelli lemma guarantees that
with probability one, the event Bm occurs for only finitely many m. Consequently, with
probability one there exists a (random) ξ <∞ such that

|Xt −Xs| ≤ ξ|t− s|γ
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for all neighboring points t, s in the same dyadic level. The result now follows from
Lemma 2.3. �

3. WIENER’S PERSPECTIVE: THE WIENER INTEGRAL

The existence of Brownian motion was proved by Wiener around 1920. His proof is
far from the simplest of those now known – in fact, it is quite complicated. But behind
it lies an extremely useful insight, that Hilbert spaces of Gaussian random variables are
naturally isomorphic to Hilbert spaces of functions, and that the isomorphism gives a way
of constructing Gaussian processes with specified covariance functions. Let’s focus first on
Brownian motion.

Theorem 2. LetW (t) = Wt be a standard Wiener process defined on a probability space (Ω,F , P ).
Then for any nonempty interval J ⊆ R+ the mapping 1(s,t] 7→ Wt − Ws extends to a linear
isometry IW : L2(J) → L2(Ω,F , P ). For every function ϕ ∈ L2(J), the random variable IW (ϕ)
is mean-zero Gaussian.

Remark 3. The mapping IW is called the Wiener isometry or, more commonly, the Wiener
integral. The notation

(3.1) IW (ϕ) =
∫
ϕdW

is often used. The integral is defined only for nonrandom integrands ϕ, and in particular,
only those functions ϕ that are square-integrable against Lebesgue measure. K. Itô later
extended Wiener’s integral so as to allow random integrands – more on this later.

Proof. First, check, by direct calculation, that for any two intervals A = (s, t] and B = (u, v]
the covariance of IW (1A) and IW (1B) equals the inner product m(A4B) of 1A and 1B in
L2(J). It then follows, by linearity of the inner product and covariance operators, that

cov(IW (ϕ), IW (ψ)) =
∫
J
ϕψ dm

for all finite linear combinations ϕ,ψ of interval indicators. Also, for every such finite
linear combination ϕ, the random variable IW (ϕ) is mean-zero Gaussian, because it is a
finite linear combination of random variables Wt.

The rest is a straightforward use of standard results in Hilbert space theory. LetH0 be the
set of all finite linear combinations of interval indicator functions 1A. Then H0 is a dense,
linear subspace of L2(J), that is, every function f ∈ L2(J) can be approximated arbitrarily
closely in the L2−metric by elements of H0. Since IW is a linear isometry of H0, it extends
uniquely to a linear isometry of L2(J), by Proposition 3.1 below. Furthermore, for any
ϕ ∈ L2(J), the random variable IW (ϕ) must be (mean-zero) Gaussian (or identically zero,
in case ϕ = 0 a.e.). This can be seen as follows: Since H0 is dense in L2, there exists a
sequence ϕn in H0 such that ϕn → ϕ in L2. Since IW is an isometry, IW (ϕn) → IW (ϕ) in
L2, and therefore also in distribution. Since each IW (ϕn) is Gaussian, the limit IW (ϕ) must
be Gaussian or zero. 2 Since the second moment of IW (ϕ) is ‖ϕ‖22, it is the zero random
variable if and only if ϕ = 0 a.e. �

2If Yn is a sequence of Gaussian random variables and if Yn → Y in distribution, then Y must be either con-
stant or Gaussian. If you don’t already know this you should prove it as an exercise. Hint: Use characteristic
functions (Fourier transforms).
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Proposition 3.1. Let H0 be a dense, linear subspace of a Hilbert space H , and let J : H0 → H ′ be
a linear isometry mapping H0 into another Hilbert space H ′. Then J extends uniquely to a linear
isometry J : H → H ′.

Proof. Exercise. If you don’t know what a Hilbert space is, just assume that H and H ′ are
closed linear subspaces of L2 spaces. �

Exercise 3.1. Let f ∈ L2[0, 1] be a strictly positive function with L2−norm 1. For t ∈ [0, 1]
define

F (t) =
∫ t

0
f(s)2 ds,

τ(t) = F−1(t) = min{s : F (s) = t}, and

Y (t) = IW (f1[0,t]).

Show that Y (τ(t)) is a Wiener process, that is, a mean-zero Gaussian process with covari-
ance function (1.7). Interpretation: f(s)dWs is a Brownian increment whose “volatility”
is multiplied by |f(s)|. Thus, τ(t) runs the integral until the total accumulated squared
volatility (variance) reaches t.

Exercise 3.2. Let g ∈ L2[0, 1] and define G(t) =
∫ t

0 g(s) ds. Note that G(t) is continuous
(why?). Also, ifW (t) is a standard Wiener process with continuous paths, then the integral∫ 1

0 g(s)W (s) ds is well-defined as a Riemann integral. Show that

G(1)W (1)− IW (G) =
∫ 1

0
g(s)W (s) ds.

Exercise 3.3. Let {W (t)}t≥0 be a standard Wiener process, and for each s ≥ 0 define

Ys :=
√

2es
∫
e−t1[s,∞](t) dW (t).

Show that {Ys}s≥0 is a standard Ornstein-Uhlenbeck process.

Exercise 3.4. Let {Wt}t≥0 and {W ∗t }t≥0 be independent standard Wiener processes. Fix
H ∈ (0, 1), and define XH

t by

(3.2) Γ(H +
1
2

)XH
t =

∫ (
(t+ s)H−1/2 − sH−1/2

)
dW ∗s +

∫
(t− s)H−1/2

+ dWs.

(Here Γ(z) is Euler’s Gamma function, and y+ denotes the positive part of y, i.e., y if y > 0
and 0 otherwise.) Check that XH

t is a fractional Brownian motion with Hurst parameter
H .

Wiener’s discovery of Theorem 2 was probably an afterthought to his original construc-
tion of the Wiener measure in the early 1920s. In hindsight, we can see that Theorem 2
suggests a natural approach to explicit representations of the Wiener process, via orthonor-
mal bases. The idea is this: If {ψn}n∈N is an orthonormal basis of L2[0, 1], then {IW (ψn)}n∈N
must be an orthonormal set in L2(Ω,F , P ). Since each IW (ϕ) is a mean-zero Gaussian ran-
dom variable, it follows that the random variables ξn := IW (ψn) must be i.i.d. standard
normals. (Exercise: why?) Finally, since IW is a linear isometry, it must map the L2−series
expansion of 1[0,t] in the basis ψn to the series expansion of Wt in the basis ξn. Thus, with
no further work we have the following.
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Theorem 3. Let ξn be an infinite sequence ξn of independent, identically distributed N(0, 1) ran-
dom variables, and let {ψn}n∈N be any orthonormal basis of L2[0, 1]. Then for every t ∈ [0, 1] the
infinite series

(3.3) Wt :=
∞∑
n=1

ξn〈1[0,t], ψn〉

converges in the L2−metric, and the resulting stochastic process {Wt}t∈[0,1] is a Wiener process,
that is, a mean-zero Gaussian process with covariance (1.7). Here 〈, 〉 denotes the L2−inner prod-
uct:

〈f, g〉 =
∫

[0,1]
fg dm

Remark 4. Because the convergence is in the L2−metric, rather than the sup-norm, there is
no way to conclude directly that the process so constructed has a version with continuous
paths. Wiener was able to show by brute force that for the particular basis

ψn(x) =
√

2 cosπnx

the series (3.3) converges (along an appropriate subsequence) not only in L2 but also uni-
formly in t, and therefore gives a version of the Wiener process with continuous paths:

(3.4) Wt = ξ0t+
∞∑
k=1

2k−1∑
n=2k−1

n−1ξn
√

2 sinπnt.

4. LÉVY’S CONSTRUCTION

Lévy subsequently discovered that a much simpler, and in probabilistic terms more nat-
ural, construction could be given using the Haar basis (the simplest instance of a wavelet
basis). This basis is defined as follows. First, set

ψ(x) = 1 if 0 ≤ x < 1/2;(4.1)

= −1 if 1/2 ≤ x ≤ 1;

= 0 if x ∈ R \ [0, 1];

this is the mother wavelet. The Haar functions ψm,k are all scaled versions of ψ: for each
dyadic interval J = Jm,k = [k2−m, (k + 1)2−m) set

ψm,k(x) = ψ(2mx− k) and(4.2)

ϕm,k(x) = 2m/2ψm,k(x).

Go to Mathworld for a picture. The functions ψm,k are mutually orthogonal, and to-
gether with the constant function 1 span L2[0, 1] (with m ≥ 0 amd 0 ≤ k < 2m). As
defined here they haven’t been normalized; the functions ϕm,k are, though. Hence, {1} ∪
{ϕm,k}m≥0,0≤k<2m is an orthonormal basis for L2[0.1], and so Theorem 3 implies that if
ξ−1, ξ0,0, ξ1,0, ξ1,1, . . . are i.i.d. Normal-(0, 1) then the series

(4.3) Wt := ξ−1t+
∞∑
m=0

2m−1∑
k=0

ξm,k〈1[0,t], ϕm,k〉

http://mathworld.wolfram.com/HaarFunction.html
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converges in L2 and defines a Gaussian process with the mean and covariance functions of
Brownian motion. Observe that even though the Haar functions ψm,k are discontinuous,
the integrated Haar functions 〈1[0,t], ϕm,k〉 are continuous: they are the “hat” functions

Hm,k(t) = 〈1[0,t], ϕm,k〉 = 2−m/2(t− k/2m) for
k

2m
< t ≤ k

2m
+

1
2m+1

;

= 2−m/2((k + 1)/2m − t) for
k

2m
+

1
2m+1

1/2m+1 < t ≤ k + 1
2m

;

= 0 otherwise.

Consequently, the series (4.3) can be rewritten as

(4.4) Wt := ξ−1t+
∞∑
m=0

2m−1∑
k=0

ξm,kHm,k(t).

Theorem 4. With probability 1, the series (4.3) converges uniformly for t ∈ [0, 1]. Therefore, the
process Wt defined by (4.3) has continuous paths.

Proof. Fix m ≥ 0 and 0 ≤ k < 2m, and consider the event

Fm,k := {max
0≤t≤1

|ξm,kHm,k(t)| > 2−m/4} = {|ξm,k| > 2m/2}.

This event involves only the magnitude of the standard normal variable ξm,k, so its prob-
ability can be obtained by integrating the standard normal probability density over the
tail region x > 2m/2. Using a crude upper bound for the density in the region gives the
inequality

P (Fm,k) ≤
2√
2π

∫ ∞
2m/2

e−2m/2x/2 dx ≤
√

2/πe−2m−1
/2m/2

From this we conclude that
∞∑
m=0

2m∑
k=0

P (Fm,k) ≤
∞∑
m=0

2m/2e−2m−1
<∞,

and so Borel-Cantelli implies that with probability 1 only finitely many of the events Fm,k
occur. Consequently, all but finitely many terms of the series (4.4) are dominated in abso-
lute value uniformly in t by the terms of

∞∑
m=0

2−m/4 <∞.

�
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