
CONDITIONAL EXPECTATION

STEVEN P. LALLEY

1. CONDITIONAL EXPECTATION: L2−THEORY

Definition 1. Let (Ω,F ,P ) be a probability space and let G be a σ−algebra contained in F . For
any real random variable X ∈ L2(Ω,F ,P ), define E(X |G ) to be the orthogonal projection of X
onto the closed subspace L2(Ω,G ,P ).

This definition may seem a bit strange at first, as it seems not to have any connection with
the naive definition of conditional probability that you may have learned in elementary prob-
ability. However, there is a compelling rationale for Definition 1: the orthogonal projection
E(X |G ) minimizes the expected squared difference E(X −Y )2 among all random variables Y ∈
L2(Ω,G ,P ), so in a sense it is the best predictor of X based on the information in G . It may be
helpful to consider the special case where the σ−algebra G is generated by a single random
variable Y , i.e., G =σ(Y ). In this case, every G−measurable random variable is a Borel function
of Y (exercise!), so E(X |G ) is the unique Borel function h(Y ) (up to sets of probability zero) that
minimizes E(X −h(Y ))2. The following exercise indicates that the special case where G =σ(Y )
for some real-valued random variable Y is in fact very general.

Exercise 1. Show that if G is countably generated (that is, there is some countable collection of
set B j ∈ G such that G is the smallest σ−algebra containing all of the sets B j ) then there is a
G−measurable real random variable Y such that G =σ(Y ).

The following exercise shows that in the special case where the σ−algebra G is finite, Defini-
tion 1 is equivalent to the naive definition of conditional expectation.

Exercise 2. Suppose that the σ−algebra G is finite, that is, suppose that there is a finite mea-
surable partition B1,B2, . . . ,Bn ofΩ such that G is the σ−algebra generated by the sets Bi . Show
that for any X ∈ L2(Ω,F ,P ),

E(X |G ) =
n∑

i=1

E(X 1Bi )

P (Bi )
1Bi a.s.

Because conditional expectation is defined by orthogonal projection, all of the elementary
properties of orthogonal projection operators translate to corresponding properties of condi-
tional expectation. Following is a list of some of the more important of these.

Properties of Conditional Expectation: Let X ∈ L2(Ω,F ,P ) and let G be aσ−algebra contained
in F . Then

(0) Linearity: E(aX1 +bX2 |G ) = aE(X1 |G )+bE(X2 |G ).
(1) Orthogonality: X −E(X |G ) ⊥ L2(Ω,G ,P ).
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(2) Best Prediction: E(X |G ) minimizes E(X −Y )2 among all Y ∈ L2(Ω,G ,P ).
(3) Tower Property: If H is a σ−algebra contained in G , so that H ⊆G ⊆F , then

E(X |H ) = E(E(X |G ) |H ).

(4) Covariance Matching: E(X |G ) is the unique random variable Z ∈ L2(Ω,G ,P ) such that
for every Y ∈ L2(Ω,G ,P ),

E(X Y ) = E(Z Y ).

Property (4) is just a re-statement of the orthogonality law. It is usually taken to be the defi-
nition of conditional expectation (as in Billingsley). Observe that for the equation in (4) to hold
for all Y ∈ L2(Ω,G ,P ) it is necessary that Z be square-integrable (because the equation must
hold for Y = Z ). That there is only one such random variable Z (up to change on events of
probability 0) follows by an easy argument using indicators of events B ∈ G : if there were two
G−measurable random variables Z1, Z2 such that the equation in (4) were valid for both Z = Z1

and Z = Z2, and all Y , then for every B ∈G ,

E(Z1 −Z2)1B = 0.

But any G−measurable random variable that integrates to 0 on every event B ∈G must equal 0
a.s. (why?).

2. CONDITIONAL EXPECTATION: L1−THEORY

The major drawback of Definition 1 is that it applies only to square-integrable random vari-
ables. Thus, our next objective will be to extend the definition and basic properties of condi-
tional expectation to all integrable random variables. Since an integrable random variable X
need not be square-integrable, its conditional expectation E(X |G ) on a σ−algebra G cannot be
defined by orthogonal projection. Instead, we will use the covariance property (4) as a basis for
a general definition.

Definition 2. Let (Ω,F ,P ) be a probability space and let G be a σ−algebra contained in F .
For any real random variable X ∈ L1(Ω,F ,P ), define E(X |G ) to be the unique random variable
Z ∈ L1(Ω,G ,P ) such that for every bounded, G−measurable random variable Y ,

(5) E(X Y ) = E(Z Y ).

In particular, equation (5) must hold for every indicator Y = 1G , where G ∈G . We have already
seen that there can be at most one such random variable Z ∈ L1(Ω,G ,P ); thus, to verify that
Definition 2 is a valid definition, we must prove that there is at least one random variable Z ∈
L1(Ω,G ,P ) satisfying equation (5).

Proposition 1. For every X ∈ L1(Ω,F ,P ) there exists Z ∈ L1(Ω,G ,P ) such that equation (5) holds
for all bounded , G−measurable random variables Y .

First Proof. There is a short, easy proof using the Radon-Nikodym theorem. It is enough to
consider the case where X is nonnegative, because in general an integrable random variable
can be split into positive and negative parts. Assume, then, that X ≥ 0. Define a finite, positive
measure ν on (Ω,G ) by

ν(G) = E X 1G .
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It is easily checked that ν ¿ P on G . Therefore, the Radon-Nikodym theorem implies that
there exists a nonnegative, G−measurable random variable Z such that for every bounded,
G−measurable Y , ∫

Y dν= E(Z Y ).

�

Although it is short and elegant, the preceding proof relies on a deep theorem, the Radon-
Nikodym theorem. In fact, the use of the Radon-Nikodym theorem is superfluous; the fact that
every L1 random variable can be arbitrarily approximated by L2 random variables makes it pos-
sible to construct a solution to (5) by approximation. For this, we need several more properties
of the conditional expectation operator on L2.

(6) Normalization: E(1 |G ) = 1 almost surely.
(7) Positivity: For any nonnegative, bounded random variable X ,

E(X |G ) ≥ 0 almost surely.

(8) Monotonicity: If X ,Y are bounded random variables such that X ≤ Y a.s., then

E(X |G ) ≤ E(Y G ) almost surely.

The normalization property (6) is almost trivial: it holds because any constant random vari-
able c is measurable with respect to any σ−algebra, and in particular G ; and any random vari-
able Y ∈ L2(Ω,G ,P ) is its own projection. The positivity property (7) can be easily deduced from
the covariance matching property (4): since X ≥ 0 a.s., for any event G ∈G ,

E(X 1G ) = E(E(X |G )1G ) ≥ 0;

consequently, E(X |G ) must be nonnegative almost surely, because its integral on any event is
nonnegative. The monotonicity property (8) follows directly from linearity and positivity.

Second Proof of Proposition 1. First, observe again that it suffices to consider the case where X
is nonnegative. Next, recall that X = lim ↑ X ∧n. Each of the random variables X ∧n is bounded,
hence in L2, and so its conditional expectation is well-defined by orthogonal projection. More-
over, by the positivity and monotonicity laws (7) – (8), the conditional expectations E(X ∧n |G )
are nonnegative and non-decreasing with n. Consequently,

Z := lim ↑ E(X ∧n |G )

exists and is G−measurable. Now by the Monotone Convergence Theorem, for any bounded,
nonnegative, G−measurable random variable Y ,

E(X Y ) = lim ↑ E((X ∧n)Y )

= lim ↑ E(E(X ∧n |G )Y )

= E(Z Y ).

This proves equation (5) for nonnegative Y ; it then follows for arbitrary bounded Y by linearity,
using Y = Y+−Y−. �
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2.1. Properties of Conditional Expectation. Henceforth we shall take Definition 2 to be the
definition of conditional expectation. By the covariance matching property (4), this definition
agrees with Definition 1 for X ∈ L2. Given Definition 2, the following properties are all easily
established. (Exercise: Check any that you do not find immediately obvious.)

(1) Definition: E X Y = EE(X |G )Y for all bounded, G−measurable random variables Y .
(2) Linearity: E(aU +bV |G ) = aE(U |G )+bE(V |G ) for all scalars a,b ∈R.
(3) Positivity: If X ≥ 0 then E(X |G ) ≥ 0.
(4) Stability: If X is G−measurable, then E(X Z |Y ) = X E(Z |Y ).
(5) Independence Law: If X is independent of G then E(X |G ) = E X is constant a.s.
(6) Tower Property: If H ⊆G then E(E(X |G ) |H ) = E(X |H .
(7) Expectation Law: E(E(X |G )) = E X .
(8) Constants: For any scalar a, E(a|G ) = a.
(9) Jensen Inequalities: If ϕ :R→R is convex and E |X | <∞ then

E(ϕ(X )) ≥ϕ(E X ) and

E(ϕ(X )|Y ) ≥ϕ(E(X |Y ).

In all of these statements, the relations = and ≤ are meant to hold almost surely. Properties
(3)–(7) extend easily to nonnegative random variables X with infinite expectation. Observe that,
with the exceptions of the Stability, Tower, and Independence Properties, all of these correspond
to basic properties of ordinary expectation. Later, we will see a deeper reason for this. Follow-
ing is another property of conditional expectation that generalizes a corresponding property of
ordinary expectation.

Proposition 2. (Jensen Inequality) If ϕ :R→R is convex and E |X | <∞ then

(9) E(ϕ(X )|G ) ≥ϕ(E(X |G ).

REMARK. Since (9) holds for the trivial σ−algebra {;,Ω}, the usual Jensen inequality Eϕ(X ) ≥
ϕ(E X ) is a consequence.

Proof of the Jensen Inequalities. One of the basic properties of convex functions is that every
point on the graph of a convex function ϕ has a support line: that is, for every argument x∗ ∈ R
there is a linear function yx∗(x) = ax +b such that

ϕ(x∗) = yx∗(x∗) and

ϕ(x) ≥ yx∗(x) for all x ∈R.

Let X be a random variable such that E |X | <∞, so that the expectation E X is well-defined and
finite. Let yE X (x) = ax +b be a support line to the convex function at the point (E X ,ϕ(E X )).
Then by definition of a support line, yE X (E X ) =ϕ(E X ); also, yE X (X ) ≤ϕ(X ), and so

E yE X (X ) ≤ Eϕ(X ).

But because yE X (x) = ax +b is a linear function of x,

E yE X (X ) = yE X (E X ) =ϕ(E X ).

This proves the Jensen inequality for ordinary expectation. The proof for conditional expec-
tation is similar. Let yE(X |G )(x) be the support line at the point (E(X |G ),ϕ(E(X |G ))). Then
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yE(X |G )(E(X |G )) = ϕ(E(X |G )), and for every value of X , yE(X |G )(X ) ≤ ϕ(X ). Consequently, by
the linearity and positivity properties of conditional expectation,

ϕ(E(X |G )) = yE(X |G )(E(X |G ))

= E(yE(X |G )(X )|G )

≤ E(ϕ(X )|G ).

�

Proposition 3. Let {Xλ}λ∈Λ be a (not necessarily countable) uniformly integrable family of real
random variables on (Ω,F ,P ). Then the set of all conditional expectations {E(Xλ|G )}λ∈Λ,G⊂F ,
where G ranges over all σ−algebras contained in F , is uniformly integrable.

Proof. We will use the equivalence of the following two characterizations of uniform integra-
bility: a family {Yλ}λ∈Λ of nonnegative random variables is uniformly integrable if either of the
following holds.

(a) For each ε> 0 there exists α<∞ such that EYλ1{Yλ ≥α} < ε.
(b) The expectations EYλ are bounded (that is, supλ∈ΛEYλ <∞), and for each ε > 0 there

exists δ> 0 such that for every event A of probability less than δ,

sup
λ∈Λ

EYλ1A < ε.

We may assume without loss of generality in proving the proposition that all of the random
variables Xλ are nonnegative. Since the family {Xλ}λ∈Λ is uniformly integrable, for each ε > 0
there exists δ> 0 such that for every event A satisfying P (A) < δ and every λ ∈Λ,

(10) E Xλ1A < ε.

Moreover, since the set {Xλ}λ∈Λ is uniformly integrable, the expectations are uniformly bounded,
and so the set {E(Xλ|G )}λ∈Λ,G⊂F of all conditional expectations is bounded in L1. Hence, by the
Markov inequality,

lim
α→∞sup

λ∈Λ
sup
G⊂F

P {E(Xλ |G ) ≥α} = 0.

To show that the set of all conditional expectations {E(Xλ|G )}λ∈Λ,G⊂F is uniformly integrable
it suffices, by criterion (a), to prove that for every ε > 0 there exists a constant 0 < α <∞ such
that for each λ ∈Λ and each σ−algebra G ⊂F ,

(11) EE(Xλ |G )1{E(Xλ |G )>α} < ε.

But by the definition of conditional expectation,

EE(Xλ |G )1{E(Xλ |G )>α} = E Xλ1{E(Xλ |G )>α}.

If α<∞ is sufficiently large then by the preceding paragraph P {E(Xλ |G ) >α} < δ, where δ> 0
is so small that the inequality (10) holds for all events A with probability less than δ. The desired
inequality (11) now follows. �
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3. CONVERGENCE THEOREMS FOR CONDITIONAL EXPECTATION

Just as for ordinary expectations, there are versions of Fatou’s lemma and the monotone and
dominated convergence theorems.

Monotone Convergence Theorem . Let Xn be a nondecreasing sequence of nonnegative random
variables on a probability space (Ω,F ,P ), and let X = limn→∞ Xn . Then for any σ−algebra G ⊂
F ,

(12) E(Xn |G ) ↑ E(X |G ).

Fatou’s Lemma . Let Xn be a sequence of nonnegative random variables on a probability space
(Ω,F ,P ), and let X = liminfn→∞ Xn . Then for any σ−algebra G ⊂F ,

(13) E(X |G ) ≤ liminfE(Xn |G ).

Dominated Convergence Theorem . Let Xn be a sequence of real-valued random variables on a
probability space (Ω,F ,P ) such that for some integrable random variable Y and all n ≥ 1,

(14) |Xn | ≤ Y .

Then for any σ−algebra G ⊂F ,

(15) lim
n→∞E(Xn |G ) = E(X |G ) and lim

n→∞E(|Xn −X | |G ) = 0

As in Properties 1–9 above, the limiting equalites and inequalities in these statements hold
almost surely. The proofs are easy, given the corresponding theorems for ordinary expectations;
I’ll give the proof for the Monotone Convergence Theorem and leave the other two, which are
easier, as exercises.

Proof of the Monotone Convergence Theorem. This is essentially the same argument as used in
the second proof of Proposition 1 above. By the Positivity and Linearity properties of condi-
tional expectation,

E(Xn |G ) ≤ E(Xn+1 |G ) ≤ E(X |G )

for every n. Consequently, the limit V := limn→∞ ↑ E(Xn |G ) exists with probability one, and V ≤
E(X |G ). Moreover, since each conditional expectation is G -measurable, so is V . Set B = {V <
E(X |G )}; we must show that P (B) = 0. Now B ∈G , so by definition of conditional expectation,

E(X 1B ) = E(E(X |G )1B ) and E(Xn1B ) = E(E(Xn |G )1B ).

But the Monotone Convergence Theorem for ordinary expectation implies that

E X 1B = lim
n→∞E Xn1B and

EV 1B = lim
n→∞EE(Xn |G )1B ,

so E X 1B = EV 1B . Since V < X on B , this implies that P (B) = 0. �
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4. REGULAR CONDITIONAL DISTRIBUTIONS

Let X be a real random variable defined on a probability space (Ω,F ,P ) and let G be a
σ−algebra contained in F . For each Borel set B ⊂R define

(16) P (X ∈ B |G ) = E(1{X∈B} |G )

to be the conditional probability of the event {X ∈ B} given G . Observe that the conditional
probability P (X ∈ B |G ) is a random variable, not a scalar. Nevertheless, conditional probability,
like unconditional probability, is countably additive, in the sense that for any sequence Bn of
pairwise disjoint Borel sets,

(17) P (∪n≥1Bn |G ) = ∑
n≥1

P (Bn |G ) a.s.

(This follows by the linearity of conditional expectation and the monotone convergence theo-
rem, as you should check.) Unfortunately, there are uncountably many sequences of Borel sets,
so we cannot be sure a priori that the null sets on which (17) fails do not add up to an event of
positive probability. The purpose of this section is to show that in fact they do not.

Definition 3. Let (X ,FX ) and (Y ,FY ) be measurable spaces. A Markov kernel (or Markov
transition kernel) from (X ,FX ) to (Y ,FY ) is a family {µx(d y)}x∈X of probability measures on
(Y ,FY ) such that for each event F ∈FY the random variable x 7→µx(F ) is FX−measurable.

Definition 4. Let X be a random variable defined on a probability space (Ω,F ,P ) that takes
values in a measurable space (X ,FX ), and let G be a σ−algebra contained in F . A regular
conditional distribution for X given G is a Markov kernel µω from (Ω,G ) to (X ,FX ) such that
for every set F ∈FX ,

(18) µω(F ) = P (X ∈ F |G )(ω) a.s.

Theorem 1. If X is a real random variable defined on a probability space (Ω,F ,P ) then for every
σ−algebra G ⊂F there is a regular conditional distribution for X given G .

The proof will use the quantile transform method of constructing a random variable with a
specified cumulative distribution function F from a uniform-[0,1] random variable. Given a
c.d.f. F , define

(19) F−(t ) = inf{x : F (x) ≥ t } for t ∈ (0,1).

Lemma 1. If U has the uniform distribution on [0,1] then F−(U ) has cumulative distribution
function F , that is, for every x ∈R,

P (F−(U ) ≤ x) = F (x).

Proof. Exercise. �

Corollary 1. For any cumulative distribution function F on R (that is, any right-continuous,
nondecreasing function satisfying F → 0 at −∞ and F → 1 at +∞) there is a Borel probability
measure µF on R such that for every x ∈R,

(20) µF (−∞, x] = F (x).
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Proof. This follows directly from the following more general fact: if (Ω,F ,P ) is any probability
space and if X : Ω → X is a measurable transformation taking values in (X ,FX ) then µ =
P ◦X −1 is a probability measure on (X ,FX ). �

Thus, the quantile transform together with the existence of Lebesgue measure on [0,1] im-
plies the existence of a measure satisfying (20). In proving Theorem 1 we shall use this to reduce
the problem of constructing probability measures µω(d x) to the simpler problem of construct-
ing c.d.f.s Fω(x) such that

(21) Fω(x) = P (X ≤ x |G ) a.s.

Proof of Theorem 1. For each rational x define Fω(x) = P (X ≤ x |G )(ω) to be some version of the
conditional probability. Consider the following events:

B1 = {Fωnot monotone onQ};

B2 = {∃x ∈Q : Fω(x) 6= lim
y→x+Fω(y)};

B3 = { lim
n→∞Fω(n) 6= 1};

B4 = { lim
n→∞Fω(−n) 6= 0};

B = B1 ∪B2 ∪B3 ∪B4.

(In B2, the limit is through the set of rationals, and in B3 and B4 the limit is through the positive
integers n.) These are all events of probability 0. (Exercise: why?)

On the event B redefine Fω(x) =Φ(x), whereΦ is the standard normal c.d.f. On B c , and on B c

extend Fω to all real arguments by setting

Fω(x) = inf
y∈Q, y>x

Fω(x).

Note that for rational x this definition coincides with the original choice of Fω(x) (because the
event B c ⊂ B c

2). Then Fω(x) is, for every ω ∈Ω, a cumulative distribution function, and so there
exists a Borel probability measure µω(d x) on R with c.d.f. Fω. The proof will be completed by
establishing the following two claims.

Claim 1: {µω(d x)}ω∈Ω is a Markov kernel.
Claim 2: {µω(d x)}ω∈Ω is a regular conditional distribution for X given G .

Proof of Claim 1. Eachµω is by construction a Borel probability measure, so what must be proved
is that for each Borel set B the mapping ω 7→ µω(B) is G−measurable. This is certainly true for
each interval (−∞, x] with x ∈Q, since Fω(x) is a version of P (X ≤ x |G ), which by definition is
G−measurable. Moreover, by countable additivity, the set of Borel sets B such thatω 7→µω(B) is
G−measurable is aλ−system (why?). Since the set of intervals (−∞, x] with x ∈Q is aπ−system,
the claim follows from the π−λ theorem. �

Proof of Claim 2. To show that {µω(d x)}ω∈Ω is a regular conditional distribution for X , we must
show that equation (18) holds for every Borel set F . By construction, it holds for every F =
(−∞, x] with x rational, and it is easily checked that the collection of all F for which (18) holds
is a λ−system (why?). Therefore, the claim follows from the π−λ theorem. �

�
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Regular conditional distributions are useful in part because they allow one to reduce many
problems concerning conditional expectations to problems concerning only ordinary expecta-
tions. For such applications the following disintegration formula for conditional expectations
is essential.

Theorem 2. Letµω(d x) be a regular conditional distribution for X given G , let Y be G−measurable,
and let f (x, y) be a jointly measurable real-valued function such that E | f (X ,Y )| <∞. Then

(22) E( f (X ,Y ) |G ) =
∫

f (x,Y (ω))µω(d x) a.s.

Proof. By the usual arguments (linearity plus approximation by simple functions plus mono-
tone convergence) it suffices to prove this in the special case where f = 1F is an indicator
function. By the usual π−λ argument, it suffices to consider sets F of the form F = A ×B ,
so f (X ,Y ) = 1A(X )1B (Y ). Thus, our task is to show that

E(1A(X )1B (Y ) |G ) =
∫

1A(x)1B (Y (ω))µω(d x).

Since the indicator 1B (Y ) factors out on both sides (by the stability property of conditional ex-
pectation – see section 2.1 above) it is enough to show that for any measurable set A,

E(1A(X ) |G )(ω) =
∫

1A(x)µω(d x).

But this follows directly from the definition of regular conditional distribution. �

Exercise 3. Let X and Y be real random variables defined on a probability space (Ω,F ,P ), and
let G =σ(Y ) be the σ−algebra generated by Y . Show that there is a Markov kernel µy (d x) from
(R,B) to (R,B) such that a regular conditional distribution for X given G is given by

µY (B) = P (X ∈ B |G ) a.s.

�

As an example of the use of regular conditional distributions, consider the Jensen inequality
(9)

E(ϕ(X )|G ) ≥ϕ(E(X |G ).

The Jensen inequality for ordinary expectations is easy: see the proof of Proposition 2 above.
Now let µω(d x) be a regular conditional distribution for X given G . Then

E(ϕ(X ) |G )(ω) =
∫
ϕ(x)µω(d x) a.s.

≥ϕ
(∫

xµω(d x)

)
=ϕ(E(X |G )) a.s.

The inequality in the middle line follows from the Jensen inequality for ordinary expectations,
since each µω is a Borel probability.
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5. BOREL SPACES

It is not unusual – especially in the theory of Markov processes, and also in decision theory
– that a random variable X of interest will take its values not in R but in some other space
of objects. These might be paths, or configurations, or (in decision problems) actions. The
argument given in section 4 to establish the existence of regular conditional distributions used
in an essential way the hypothesis that the random variable X was real-valued. Are there regular
conditional distributions for random variables that do not take real values? In this section we
will show that if X takes values in a Borel space then rcds always exist.

Definition 5. A Borel space1 is a measurable space (X ,FX ) such that FX is countably gener-
ated, that is, such that for some countable collection {Fn}n≥1,

(23) FX =σ({Fn}n≥1)

is the minimal σ−algebra containing each set Fn .

Example 1. The space (Rd ,Bd ), where Bd is the σ−algebra of d−dimensional Borel sets, is a
Borel space, because it is generated by the rectangles ×i≤d (ai ,bi ].

Example 2. If (Xn ,Fn) is a sequence of Borel spaces then the Cartesian product (×∞
n=1Xn ,×∞

n=1Fn)
is a Borel space. Here ×∞

n=1Fn is the product σ−algebra, that is, the minimal σ−algebra con-
taining all finite-dimensional cylinder sets. (A generating set is the collection of all cylinders
F1 ×F2 ×·· ·×Fn , where Fi is taken from the countable set of generators of Fn .)

Thus, in particular, the sequence space R∞ with the usual Borel field is a Borel space. This is
perhaps the most important example in probability theory.

Example 3. A Polish space is a complete, separable metric space, together with its Borel field.
(The Borel field of a metric space is the minimal σ−algebra containing all open balls of rational
radii.) Every Polish space is a Borel space. (Exercise!)

A particular case of interest is the space C [0,1] of continuous paths parametrized by time
t ∈ [0,1]. The metric on C [0,1] is induced by the supremum norm. That C [0,1] is separable
in the sup norm metric follows because the set of polygonal paths with rational endpoints is
dense.

Proposition 4. If (X ,F ) is a Borel space then there is a real-valued random variable Y : X → R

such that F =σ(Y ).

Proof. In brief, the idea is coding by indicators. If F is countably generated then it is generated
by a countable collection {Fn}n≥1. Use the indicator functions of these sets Fn to construct a
mapping to the Cantor set:

Y =
∞∑

n=1

21Fn

3n
.

This mapping is clearly measurable, and the value of Y uniquely determines the value of each
indicator 1Fn , because the ternary expansion provides a bijective mapping between the Cantor

1The terminology varies. In some places what I have defined to be a Borel space is called a standard Borel space,
and in some places (see, especially, the fundamental paper of Mackey on the subject) it is also required that the
σ−algebra separates points.
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set and the set of all infinite sequences of 0s and 1s. Consider the σ−algebra consisting of all
events of the form {Y ∈ B}, where B is a one-dimensional Borel set. This collection contains the
events Fn , so it must also contain every member of F , since F is generated by {Fn}n≥1. Since Y
is measurable, it follows that

F = Y −1(B1).

�

Theorem 3. Let (Ω,F ,P ) be a probability space and X a random variable onΩ taking values in a
Borel space (X ,FX ). Then for anyσ−algebra G contained in F there exists a regular conditional
distribution for X given G .

Proof. By Proposition 4 there is a measurable mapping Y : X →R such that FX = Y −1(B1). By
Theorem 1, there is a regular conditional distribution νω(d y) for the real random variable Y ◦X
given G . Define a Markov kernel µω(d x) from (Ω,F ) to (X ,FX ) as follows: for every Borel set
B ∈B1, set

µω(Y −1(B)) = νω(B).

Since FX = Y −1(B1), this defines µω(F ) for every F ∈ FX . That µω(d x) is a Markov kernel
follows directly from the fact thatνω(d y) is a Markov kernel. Thatµω(d x) is a regular conditional
distribution for X given G can be seen as follows. For each F ∈ FX there is a Borel set B such
that F = Y −1(B), and so

P (X ∈ F |G )(ω) = P (Y ◦X ∈ B |G )(ω)

= νω(B)

=µω(F ).

�

Exercise 4. Use the existence of regular conditional distributions for random variables valued
in (R∞,B∞) to deduce the dominated convergence theorem for conditional expectations from
the dominated convergence theorem for ordinary expectations. NOTE: You may also need the
disintegration formula of Theorem 2.
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